Submit a preprint

Direct submissions to PCI Ecology from bioRxiv.org are possible using the B2J service

Latest recommendations

Id▼Title * Authors * Abstract * Picture * Thematic fields * RecommenderReviewersSubmission date
07 Nov 2024
article picture

Using multiple datasets to account for misalignment between statistical and biological populations for abundance estimation

Diving into detection process to solve sampling and abundance issues in a cryptic species

Recommended by ORCID_LOGO based on reviews by Michael Schaub, Chloé Nater and 1 anonymous reviewer

Estimating population parameters is critical for analysis and management of wildlife populations. Drawing inference at the population level requires a robust sampling scheme and information about the representativeness of the studied population (Williams et al. 2002). In their textbook, Williams et al. (see chapter 5, 2002) listed several sampling issues, including both temporal and spatial heterogeneity and especially imperfect detection. Several methods, either sampling-based or model-based can be used to circumvent these issues.

In their paper, Kissling et al. (2024) addressed the case of the Kittlitz’s murrelet (Brachyramphus brevirostris), a cryptic ice-associated seabird, combining spatial variation in its distribution, temporal variation in breeding propensity, imperfect detection and logistical challenges to access the breeding area. The Kittlitz’s murrelet is thus the perfect species to illustrate common issues and logistical difficulties to implement a standard sampling scheme. 

The authors proposed a modelling framework unifying several datasets from different surveys to extract information on each step of the detection process: the spatial match between the targeted population and the sampled population, the probability of presence in the sample area, the probability of availability given presence in the sample area and finally, the probability of detection given presence and availability. All these components were part of the framework to estimate abundance and trend for this species. 

They took advantage of a radiotracking survey during several years to inform spatial match and probability of presence. They performed a behavioural experiment to assess the probability of availability of murrelets given it was present in sampling area, and they used a conventional distance-sampling boat survey to estimate detection of individuals. This is worth noting that the most variable components were the probability of presence in the sample area, with a global mean of 0.50, and the probability of detection given presence and availability ranging from 0.49 to 0.77. The estimated trend for Kittlitz’s murrelet was negative and all the information gathered in this study will be useful for future conservation plan. 

Coupling a decomposition of the detection process with different data sources was the key to solve problems raised by such “difficult” species, and the paper of Kissling et al. (2024) is a good way to follow for other species, allowing to inform the detection components for the targeted species - and also for our global understanding of detection process, and to infer about the temporal trend of species of conservation concern. 

References

Williams, B. K., Nichols, J. D., and Conroy, M. J. (2002). Analysis and management of animal populations. Academic Press.

Michelle L. Kissling, Paul M. Lukacs, Kelly Nesvacil, Scott M. Gende, Grey W. Pendleton (2024) Using multiple datasets to account for misalignment between statistical and biological populations for abundance estimation. EcoEvoRxiv, ver.3 peer-reviewed and recommended by PCI Ecology https://doi.org/10.32942/X2W03T

Using multiple datasets to account for misalignment between statistical and biological populations for abundance estimationMichelle L. Kissling, Paul M. Lukacs, Kelly Nesvacil, Scott M. Gende, Grey W. Pendleton<p style="text-align: justify;">A fundamental aspect of ecology is identifying and characterizing population processes. Because a complete census is rare, we almost always use sampling to make inference about the biological population, and the par...Euring Conference, Population ecologyGuillaume Souchay2023-12-28 19:59:21 View
20 Jan 2025
article picture

Regional and local variability in the morphometric traits of two emblematic seagrass species (Zostera marina and Zostera noltei) along the French coast

Importance of Scale Considerations in Understanding Seagrass Dynamics

Recommended by ORCID_LOGO based on reviews by Gudrun Bornette and 2 anonymous reviewers

Seagrasses, particularly Zostera species, have been the subject of numerous studies due to their widespread distribution across the globe (Short et al., 2007), yet they have been in decline for several years as a result of global environmental changes (Touchette, 2007). While case studies and regional studies have been conducted, there remains a lack of information on how to scale these findings, particularly because of the heterogeneous nature of these habitats.

In their study, Lacoste et al. examine the ecosystem trajectories of two Zostera species along a regional gradient spanning sites in the English Channel, the Atlantic Ocean, and the Mediterranean Sea. Their research is based on a recently published database, which offers valuable insights for comparing with other studies and serves as a resource for addressing future questions (Lacoste et al., 2024). This underscores the need for a global database to facilitate the integration of functional responses across studies, thus advancing our understanding of Zostera ecology on a larger scale. The multi-trait approach employed in their study provides a comprehensive view of population dynamics over a 1.5-year period, covering different seasons.

Such studies highlight the complex responses of Zostera populations when considering environmental, seasonal, and geographical heterogeneity. Understanding these dynamics raises important questions about modeling, particularly in relation to the development of a more global database as previously mentioned.

However, the review process has pointed out that the environmental data should be further refined to more rigorously support the presented results. Some statistical analyses could also benefit from improvements to ensure clearer and more explicit conclusions. These concerns are related to the challenges of sampling, the time required for such efforts, and the need to account for spatiotemporal variability. This study could serve as a foundational step for advancing our understanding of Zostera population dynamics on a global scale. In my opinion, despite the large ongoing scientific efforts, upscaling remains one of the major challenges for functional ecologists (Wood et al., 2024), particularly when plant habitats exhibit the kind of heterogeneity seen in Zostera, as demonstrated by Lacoste et al. in their work.

References

Élise Lacoste, Aurélien Boyé, Aline Blanchet-Aurigny, Nicolas Desroy, Isabelle Auby, Touria Bajjouk, Constance Bourdier, Nicolas Cimiterra, Céline Cordier, Amélia Curd, Lauriane Derrien, Élodie Foucault, Jean-Dominique Gaffet, Florian Ganthy, Loic Rigouin, Claire Rollet, Laura Soissons, Aurélien Tancray, Vincent Ouisse (2024) Regional and local variability in the morphometric traits of two emblematic seagrass species (Zostera marina and Zostera noltei) along the French coast. Zenodo, ver.3 peer-reviewed and recommended by PCI Ecology https://doi.org/10.5281/zenodo.10427767

Lacoste, E., Ouisse, V., Nicolas, D., Allano, L., Auby, I., Bajjouk, T., Bourdier, C., Caisey, X., de Casamajor, M.-N., Cimiterra, N., Cordier, C., Curd, A., Derrien, L., Droual, G., Dubois, F. S., Foucault, E., Foveau, A., Gaffet, J.-D., Ganthy, F., … Blanchet-Aurigny, A. (2024). A dataset of Zostera marina and Zostera noltei structure and functioning in four sites along the French coast over a period of 18 months. https://doi.org/10.5281/zenodo.14174128

Short, F., Carruthers, T., Dennison, W., & Waycott, M. (2007). Global seagrass distribution and diversity : A bioregional model. Journal of Experimental Marine Biology and Ecology, 350(1), 3‑20. https://doi.org/10.1016/j.jembe.2007.06.012

Touchette, B. W. (2007). The biology and ecology of seagrasses. Journal of Experimental Marine Biology and Ecology, 350(1), 1‑2. https://doi.org/10.1016/j.jembe.2007.06.013

Wood, G. V., Filbee-Dexter, K., Coleman, M. A., Valckenaere, J., Aguirre, J. D., Bentley, P. M., Carnell, P., Dawkins, P. D., Dykman, L. N., Earp, H. S., Ennis, L. B., Francis, P., Franco, J. N., Hayford, H., Lamb, J. B., Ling, S. D., Layton, C., Lis, E., Masters, B., … Wernberg, T. (2024). Upscaling marine forest restoration : Challenges, solutions and recommendations from the Green Gravel Action Group. Frontiers in Marine Science, 11. https://doi.org/10.3389/fmars.2024.1364263

Regional and local variability in the morphometric traits of two emblematic seagrass species (*Zostera marina* and *Zostera noltei*) along the French coastÉlise Lacoste, Aurélien Boyé, Aline Blanchet-Aurigny, Nicolas Desroy, Isabelle Auby, Touria Bajjouk, Constance Bourdier, Nicolas Cimiterra, Céline Cordier, Amélia Curd, Lauriane Derrien, Élodie Foucault, Jean-Dominique Gaffet, Florian Ganthy, Loic...<p><em>Z</em>Zostera marina and Zostera noltei are two foundation species that play a crucial role in the functioning of coastal ecosystems. They occur in a wide range of environmental conditions over a large geographical area in the northern hemi...Biogeography, Community ecology, Ecosystem functioning, Marine ecology, Morphometrics, Population ecologyAntoine Vernay2023-12-23 15:13:57 View
30 Oct 2024
article picture

The importance of sampling design for unbiased estimation of survival using joint live-recapture and live resight models

In the quest for estimating true survival

Recommended by ORCID_LOGO based on reviews by Rémi Fay and 1 anonymous reviewer

Accurately estimating survival rate and identifying the drivers of its variation is essential for our understanding of population dynamics and life history strategies (Sæther and Bakke 2000), as well as for population management and conservation (Francis et al. 1998, Doherty et al. 2014). Many studies estimate survival from capture–recapture data using the Cormack–Jolly–Seber (CJS) model (Lebreton et al. 1992). However, survival estimates are confounded with permanent emigration from the study area, which can be particularly problematic for mobile species. This is problematic, not only because CJS models under estimate true survival in populations where permanent emigration occurs (i.e. they estimate “apparent” survival), but also because some factors of interest may affect both survival and emigration (e.g., habitat quality, Paquet et al. 2020), leaving the interpretation of results challenging, for example in terms of management decisions.

Several methods have been developed to account for permanent emigration when estimating survival, for example by jointly analyzing CMR data with data on individuals’ locations at each capture/resighting site (to estimate their dispersal distances; Schaub and Royle 2013, Badia Boher et al. 2023), with telemetry data (Powel et al. 2000), mark recovery data (Burnham 1993, Fay et al. 2019), or with live-resight data (Barker 1997).

The Barker joint live-recapture/live-resight (JLRLR) model can estimate survival when resight data are continuous over a long interval and from a larger area than the capture recapture data. This model becomes particularly promising with the growing collection of data from citizen science, or remote detection tools (Dzul et al. 2023). However, as pointed out by Dzul et al., this model assumes that resight probability is homogeneous across the area where individuals can move, and this assumption is likely violated for example because of non-random movements or because of non-random location of resighting sites.

In their manuscript, Dzul et al. performed a thorough simulation study to evaluate the accuracy of survival estimates from JLRLR models under various study designs regarding the location of resight sites (global, random, fixed including the capture site, and fixed excluding the capture site). They simulated data with varying survival and movement values, varying recapture and resight probabilities, and varying sample sizes. Finally, they also developed and fitted a multi state version of the JLRLR model. They show that JLRLR models performed better than CJS models. Survival estimates were still often biased (either positively or negatively) but they were less biased when sesight sites were randomly located (rather than at fixed locations), when recapture sites were included in the resighting design, and when using the multi state JLRLR model they developed.

This study highlights (multistate) JLRLR models as an alternative to CJS models one should consider when auxiliary resight data can be collected. Moreover, it shows the importance of evaluating not only model performance, but also the efficiency of alternative sampling designs before choosing one for our studies. Hopefully, this study will help the authors and other researchers making a more informed and efficient choice of model and design to estimate survival in their study populations.

References

Jaume A. Badia-Boher, Joan Real, Joan Lluís Riera, Frederic Bartumeus, Francesc Parés, Josep Maria Bas, and Antonio Hernández-Matías. Joint estimation of survival and dispersal effectively corrects the permanent emigration bias in mark-recapture analyses. (2023) Scientific reports 13, no. 1: 6970. https://doi.org/10.1038/s41598-023-32866-0 

Richard J Barker (1997) Joint modeling of live-recapture, tag-resight, and tag-recovery data. Biometrics: 666-677. https://doi.org/10.2307/2533966 

Kenneth P. Burnham (1993) Marked Individuals in the Study of Bird Populations (ed. J.D. Lebreton), pp. 199–213. Birkhäuser, Basel

Kevin E. Doherty, David E. Naugle, Jason D. Tack, Brett L. Walker, Jon M. Graham, Jeffrey L. Beck (2014) Linking conservation actions to demography: grass height explains variation in greater sage‐grouse nest survival. Wildlife biology 20, no. 6 : 320-325. https://doi.org/10.2981/wlb.00004

Maria C. Dzul, Charles B. Yackulic, William L. Kendall (2023) The importance of sampling design for unbiased estimation of survival using joint live-recapture and live resight models. arXiv, ver.3 peer-reviewed and recommended by PCI Ecology https://doi.org/10.48550/arXiv.2312.13414

Rémi Fay, Stephanie Michler, Jacques Laesser, and Michael Schaub (2019) Integrated population model reveals that kestrels breeding in nest boxes operate as a source population. Ecography 42, no. 12: 2122-2131. https://doi.org/10.1111/ecog.04559

Charles M. Francis, John R. Sauer, Jerome R. Serie (1998) Effect of restrictive harvest regulations on survival and recovery rates of American black ducks. The Journal of Wildlife Management : 1544-1557. https://doi.org/10.2307/3802021

Jean-Dominique Lebreton, Kenneth P. Burnham, Jean Clobert, David R. Anderson (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecological monographs 62.1: 67-118. https://doi.org/10.2307/2937171

Matthieu Paquet, Debora Arlt, Jonas Knape, Matthew Low, Pär Forslund, and Tomas Pärt (2020) Why we should care about movements: Using spatially explicit integrated population models to assess habitat source–sink dynamics. Journal of Animal Ecology 89, no. 12: 2922-2933. https://doi.org/10.1111/1365-2656.13357

Larkin A. Powell, Michael J. Conroy, James E. Hines, James D. Nichols, and David G. Krementz. Simultaneous use of mark-recapture and radiotelemetry to estimate survival, movement, and capture rates. (2000) The Journal of Wildlife Management : 302-313. https://doi.org/10.2307/3803003

Bernt-Erik Sæther, Øyvind Bakke (2000) Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81.3 : 642-653. https://doi.org/10.1890/0012-9658(2000)081[0642:ALHVAC]2.0.CO;2

Michael Schaub, J. Andrew Royle. Estimating true instead of apparent survival using spatial Cormack–Jolly–Seber models (2014) Methods in Ecology and Evolution 5, no. 12: 1316-1326. https://doi.org/10.1111/2041-210X.12134

The importance of sampling design for unbiased estimation of survival using joint live-recapture and live resight modelsMaria C. Dzul, Charles B. Yackulic, William L. Kendall<p>Survival is a key life history parameter that can inform management decisions and life history research. Because true survival is often confounded with permanent and temporary emigration from the study area, many studies must estimate apparent ...Dispersal & Migration, Euring Conference, Population ecology, Statistical ecologyMatthieu Paquet2023-12-22 22:31:07 View
07 Nov 2024
article picture

A dataset of Zostera marina and Zostera noltei structure and functioning in four sites along the French coast over a period of 18 months

A functional ecology reference database on the populations of two species of Zoostera along french coasts

Recommended by ORCID_LOGO based on reviews by Antoine Vernay, Sara PUIJALON and 1 anonymous reviewer

Seagrass beds are in a poor state of conservation and the ecological function of these plant communities is poorly assessed.

Four zones of eelgrass beds (Zostera marina and Zostera noltei) were described in terms of the morphology of the plant populations and the associated fauna. At the same time, parameters related to the functioning of these ecosystems were quantified (benthic fluxes of oxygen, carbon and nutrients) over a two-year cycle.

The article provides the databases collected and provides the main characteristics of these habitats for the measured parameters.

The work provides a reference database on the Zoostera beds of french coastal areas, outlining the ecological contrasts between both ecosystems. This database can on the one hand contribute to help management and restoration of these habitats, and on the other hand provide a reference state of their ecology, with a view to long-term monitoring.

References

Élise Lacoste, Vincent Ouisse, Nicolas Desroy, Lionel Allano, Isabelle Auby, Touria Bajjouk, Constance Bourdier, Xavier Caisey, Marie-Noelle de Casamajor, Nicolas Cimiterra, Céline Cordier, Amélia Curd, Lauriane Derrien, Gabin Droual, Stanislas F. Dubois, Élodie Foucault, Aurélie Foveau, Jean-Dominique Gaffet, Florian Ganthy, Camille Gianaroli, Rachel Ignacio-Cifré, Pierre-Olivier Liabot, Gregory Messiaen, Claire Meteigner, Benjamin Monnier, Robin Van Paemelen, Marine Pasquier, Loic Rigouin, Claire Rollet, Aurélien Royer, Laura Soissons, Aurélien Tancray, Aline Blanchet-Aurigny (2023) A dataset of Zostera marina and Zostera noltei structure and functioning in four sites along the French coast over a period of 18 months.. Zenodo, ver.3 peer-reviewed and recommended by PCI Ecology https://doi.org/10.5281/zenodo.10425140

A dataset of *Zostera marina* and *Zostera noltei* structure and functioning in four sites along the French coast over a period of 18 monthsÉlise Lacoste, Vincent Ouisse, Nicolas Desroy, Lionel Allano, Isabelle Auby, Touria Bajjouk, Constance Bourdier, Xavier Caisey, Marie-Noelle de Casamajor, Nicolas Cimiterra, Céline Cordier, Amélia Curd, Lauriane Derrien, Gabin Droual, Stanislas F....<p>This manuscript describes the methodology associated with the dataset entitled: A dataset of <em>Zostera marina </em>and <em>Zostera noltei </em>structure and functioning in four sites along the French coast over a period of 18 months. The data...Biodiversity, Community ecology, Conservation biology, Ecosystem functioning, Marine ecologyGudrun Bornette2023-12-21 11:48:43 View
17 Dec 2024
article picture

Long-term survey of intertidal rocky shore macrobenthic community metabolism and structure after primary succession

10 years of primary succession in intertidal communities: specific and functional changes

Recommended by ORCID_LOGO based on reviews by Thomas Guillemaud and John Griffin

This very interesting article describes the changes taking place on artificial substrates placed in an intertidal zone. The study presents an ambitious data set and demonstrates the importance of long-term monitoring to identify community dynamics. In summary, in the short term, the authors observe a phase of complexification of the communities and a peak in productivity, but after a few years, the macro-algae disappear in favour of limpets, a situation that persists after 10 years of monitoring. Monitoring over the short term would lead to an erroneous analysis of the succession patterns and dynamics of the communities, which has important consequences in terms of the recolonisation of artificial substrates in the marine environment.

References

Aline Migné, François Bordeyne, Dominique Davoult (2023) Long-term survey of intertidal rocky shore macrobenthic community metabolism and structure after primary succession. HAL, ver.2 peer-reviewed and recommended by PCI Ecology https://hal.science/hal-04347756

Long-term survey of intertidal rocky shore macrobenthic community metabolism and structure after primary successionAline Migné, François Bordeyne, Dominique Davoult<p>Ecological succession involves the transition from opportunistic ephemeral species, which display a minimal variation in functional traits, to slow growing, more functionally diverse, perennial species. The present study aimed in measuring the ...Biodiversity, Colonization, Community ecology, Ecological successions, Ecosystem functioning, Experimental ecology, Marine ecologyGudrun Bornette Thomas Guillemaud, John Griffin, Ignasi Bartomeus, Dilip kumar jha , Abby Gilson , Francisco Arenas, Markus Molis , Matthew Bracken2023-12-19 15:39:21 View
14 Jun 2024
article picture

Hierarchizing multi-scale environmental effects on agricultural pest population dynamics: a case study on the annual onset of Bactrocera dorsalis population growth in Senegalese orchards

Uncovering the ecology in big-data by hierarchizing multi-scale environmental effects

Recommended by based on reviews by Kévin Tougeron and Jianqiang Sun

Along with the generalization of open-access practices, large, heterogeneous datasets are becoming increasingly available to ecologists (Farley et al. 2018). While such data offer exciting opportunities for unveiling original patterns and trends, they also raise new challenges regarding how to extract relevant information and actually improve our knowledge of complex ecological systems, beyond purely descriptive correlations (Dietze 2017, Farley et al. 2018).

In this work, Caumette et al. (2024) develop an original ecoinformatics approach to relate multi-scale environmental factors to the temporal dynamics of a major pest in mango orchards. Their method relies on the recent tree-boosting method GPBoost (Sigrist 2022) to hierarchize the influence of environmental factors of heterogeneous nature (e.g., orchard composition and management; landscape structure; climate) on the emergence date of the oriental fruit fly, Bactrocera dorsalis. As boosting methods allows the analysis of high-dimensional data, they are particularly adapted to the exploration of such datasets, to uncover unexpected, potentially complex dependencies between ecological dynamics and multiple environmental factors (Farley et al. 2018). In this article, Caumette et al. (2024) make a special effort to guide the reader step by step through their complex analysis pipeline to make it broadly understandable to the average ecologist, which is no small feat. I particularly welcome this commitment, as making new, cutting-edge analytical methods accessible to a large community of science practitioners with varying degrees of statistical or programming expertise is a major challenge for the future of quantitative ecology. 

The main result of Caumette et al. (2024) is that temperature and humidity conditions both at the local and regional scales are the main predictors of B. dorsalis emergence date, while orchard management practices seem to have relatively little influence. This suggests that favourable climatic conditions may allow the persistence of small populations of B. dorsalis over the dry season, which may then act as a propagule source for early re-infestations. However, as the authors explain, the resulting regression model is not designed for predictive purposes and should not at this stage be used for decision-making in pest management. Its main interest rather resides in identifying potential key factors favoring early infestations of B. dorsalis, and help focusing future experimental field studies on the most relevant levers for integrated pest management in mango orchards.

In a wider perspective, this work also provides a convincing proof-of-concept for the use of boosting methods to identify the most influential factors in large, multivariate datasets in a variety of ecological systems. It is also crucial to keep in mind that the current exponential growth in high-throughput environmental data (Lucivero 2020) could quickly come into conflict with the need to reduce the environmental footprint of research (Mariette et al. 2022). In this context, robust and accessible methods for extracting and exploiting all the information available in already existing datasets might prove essential to a sustainable pursuit of science.

References
 
Caumette C, Diatta P, Piry S, Chapuis M-P, Faye E, Sigrist F, Martin O, Papaïx J, Brévault T, Berthier K. 2024. Hierarchizing multi-scale environmental effects on agricultural pest population dynamics: a case study on the annual onset of Bactrocera dorsalis population growth in Senegalese orchards. bioRxiv 2023.11.10.566583, ver. 3 peer-reviewed and recommended by Peer Community in Ecology.  https://doi.org/10.1101/2023.11.10.566583

Dietze MC. 2017. Ecological Forecasting. Princeton University Press
 
Farley SS, Dawson A, Goring SJ, Williams JW. 2018. Situating Ecology as a Big-Data Science: Current Advances, Challenges, and Solutions. BioScience, 68, 563–576, https://doi.org/10.1093/biosci/biy068
 
Lucivero F. 2020. Big Data, Big Waste? A Reflection on the Environmental Sustainability of Big Data Initiatives. Science and Engineering Ethics 26, 1009–1030. https://doi.org/10.1007/s11948-019-00171-7

Mariette J, Blanchard O, Berné O, Aumont O, Carrey J, Ligozat A-L, Lellouch E, Roche P-E, Guennebaud G, Thanwerdas J, Bardou P, Salin G, Maigne E, Servan S, Ben-Ari T 2022. An open-source tool to assess the carbon footprint of research. Environmental Research: Infrastructure and Sustainability, 2022. https://dx.doi.org/10.1088/2634-4505/ac84a4
 
Sigrist F. 2022. Gaussian process boosting. The Journal of Machine Learning Research, 23, 10565-10610. https://jmlr.org/papers/v23/20-322.html
 

Hierarchizing multi-scale environmental effects on agricultural pest population dynamics: a case study on the annual onset of *Bactrocera dorsalis* population growth in Senegalese orchardsCécile Caumette, Paterne Diatta, Sylvain Piry, Marie-Pierre Chapuis, Emile Faye, Fabio Sigrist, Olivier Martin, Julien Papaïx, Thierry Brévault, Karine Berthier<p>Implementing integrated pest management programs to limit agricultural pest damage requires an understanding of the interactions between the environmental variability and population demographic processes. However, identifying key environmental ...Demography, Landscape ecology, Statistical ecologyElodie Vercken2023-12-11 17:02:08 View
09 Apr 2025
article picture

Habitat structural complexity increases age-class coexistence and population growth rate through relaxed cannibalism in a freshwater fish

Habitat complexity reduces cannibalism, enhancing population-level diversity and productivity in a freshwater fish

Recommended by ORCID_LOGO based on reviews by Thomas Guillemaud, Joacim Näslund and 2 anonymous reviewers

Habitat complexity is an important mediator of processes spanning levels of biological organization from organisms to ecosystems (Shumway et al. 2007, Soukup et al. 2022). This complexity, which can be biogenic (e.g., foundation species; Bracken et al. 2007, Ellison 2019) or abiotic (e.g., substrate rugosity; Kovalenko et al. 2012), shapes processes ranging from individual foraging behavior (Michel and Adams 2009) to species’ interactions to food-web structure and biogeochemical rates (Langellotto and Denno 2006, Larsen et al. 2021, Soukup et al. 2022). For example, in the presence of simulated aquatic vegetation, predatory diving beetle larvae shift from active foraging to sit-and-wait predation, reducing activity and prey encounter rates (Michel and Adams 2009).

 

In this contribution, Edeline et al. (2023) present a detailed perspective on the role of habitat complexity in shaping populations of a freshwater fish (medaka, Oryzias latipes, Adrianichthyidae), including survival, age-class diversity, population growth rate, and density-dependence in the stock-recruitment relationship associated with changes in carrying capacity. Importantly, changes in these population demographic attributes and rates were associated with the role of habitat complexity in mitigating cannibalism – consumption of juvenile O. latipes by conspecific adults. Whereas this is not unexpected – Langelotto and Denno (2006) showed that habitat complexity reduces cannibalism in wolf spiders – the careful work of Edeline et al. (2023) to link changes in habitat complexity to multiple population-level attributes provides a uniquely detailed description of the role of submerged aquatic vegetation in mediating population diversity (e.g., higher age-class diversity) and productivity (e.g., population growth rate).

 

In many ways, this work by Edeline et al. (2023) provides population-level parallels to perspectives on the role of habitat complexity in determining community-level diversity and productivity. Structurally complex habitats, such as those provided by foundation species (Bracken et al. 2007, Ellison 2019) and substrate heterogeneity (Fairchild et al. 2024), are associated with higher species diversity and abundance at the community level. Edeline et al. (2023) extend these perspectives to the population level, highlighting the importance of habitat complexity across levels of biological organization. Their work highlights within-population diversity and interactions, including cannibalism and competition, illustrating often-neglected aspects of food-web complexity (Polis and Strong 1996).

References

Matthew E. S. Bracken, Barry E. Bracken, Laura Rogers-Bennett (2007) Species diversity and foundation species: potential indicators of fisheries yields and marine ecosystem functioning. California Cooperative Oceanic Fisheries Investigations Reports 48: 82-91. https://calcofi.org/downloads/publications/calcofireports/v48/Vol_48_Bracken.pdf

Eric Edeline, Yoann Bennevault, David Rozen-Rechels (2023) Habitat structural complexity increases age-class coexistence and population growth rate through relaxed cannibalism in a freshwater fish. bioRxiv, ver.4 peer-reviewed and recommended by PCI Ecology https://www.biorxiv.org/content/10.1101/2023.07.18.549540v4

Aaron M. Ellison (2019) Foundation species, non-trophic interactions, and the value of being common. iScience 13: 254-68. https://doi.org/10.1016/j.isci.2019.02.020

Tom P. Fairchild, Bettina Walter, Joshua J. Mutter, John N. Griffin. (2024) Topographic heterogeneity triggers complementary cascades that enhance ecosystem multifunctionality. Ecology 105: e4434. https://doi.org/10.1002/ecy.4434

Katya E. Kovalenko, Sidinei M. Thomaz, Danielle M. Warfe (2012) Habitat complexity: approaches and future directions. Hydrobiologia 685: 1-17. https://doi.org/10.1007/s10750-011-0974-z

Gail A. Langellotto, Robert F. Denno. (2006) Refuge from cannibalism in complex-structured habitats: implications for the accumulation of invertebrate predators. Ecological Entomology 31: 575-81. https://doi.org/10.1111/j.1365-2311.2006.00816.x

Annegret Larsen, Joshua R. Larsen, Stuart N. Lane (2021) Dam builders and their works: beaver influences on the structure and Function of river corridor hydrology, geomorphology, biogeochemistry and ecosystems. Earth-Science Reviews 218: 103623. https://doi.org/10.1016/j.earscirev.2021.103623

Matt J. Michel, Melinda M. Adams. (2009) Differential effects of structural complexity on predator foraging behavior. Behavioral Ecology: 313-17. https://doi.org/10.1093/beheco/arp005

Gary A. Polis, Donald R. Strong (1996) Food web complexity and community dynamics. American Naturalist 147: 813-46. https://doi.org/10.1086/285880

Caroly A. Shumway, Hans A. Hofmann, Adam P. Dobberfuhl (2007) Quantifying habitat complexity in aquatic ecosystems. Freshwater Biology 52: 1065-76. https://doi.org/10.1111/j.1365-2427.2007.01754.x.

Pavel R. Soukup, Joacim Näslund, Johan Höjesjö, David S. Boukal (2022) From individuals to communities: habitat complexity affects all levels of organization in aquatic environments. Wiley Interdisciplinary Reviews: Water 9: e1575.  https://doi.org/10.1002/wat2.1575

Habitat structural complexity increases age-class coexistence and population growth rate through relaxed cannibalism in a freshwater fishEric Edeline, Yoann Bennevault, David Rozen-Rechels<p>Structurally-complex habitats harbour more taxonomically-diverse and more productive communities, a phenomenon generally ascribed to habitat complexity relaxing the strength of inter-specific predation and competition. Here, we extend this clas...Allometry, Experimental ecology, Population ecologyMatthew Bracken2023-12-11 15:36:32 View
28 Jun 2024
article picture

Accounting for observation biases associated with counts of young when estimating fecundity: case study on the arboreal-nesting red kite (Milvus milvus)

Accounting for observation biases associated with counts of young: you may count too many or too few...

Recommended by ORCID_LOGO based on reviews by Steffen Oppel and 1 anonymous reviewer

Most species are hard to observe, and different methods are required to estimate demographic parameters such as the number of young individuals produced (one measure of breeding success) and survival. In the former case, and in particular for birds of prey, it often relies upon direct observations of breeding pairs on their nests. Two problems can then occur, that some young are missed and therefore the breeding success is underestimated (“false negatives”), but it is also possible that because for example of the nest structure or vegetation surrounding the nest, more young birds than in fact are present are counted (“false positives”). Sollmann et al. (2024) address this problem by using data where the truth is known as each nest was also accessed after climbing the tree, and a hierarchical model accounting for both undercounts and overcounts. Finally, they assess the impact of this correction on projected population size using simulations.

This paper is a solid contribution to the panoply of methods and models that are available for monitoring populations, and has potential applications for many species for which both false positives and false negatives can be a problem. The results on the projected population sizes – showing that for growing populations correcting for bias can lead to large differences in population sizes after a few decades – may seem counterintuitive as population growth rate of long-lived species such as birds of prey is not very sensitive to a change in breeding success (as compared to adult survival). However, one should just be reminded that a small difference in population growth rate may translate to a large difference after many years – for example a growth rate of 1.05 after 50 years mean than population size is multiplied by 11.5, whereas a growth of 1.03 after 50 years mean a multiplication by 4.4, more than twice less individuals. Small differences may matter a lot if they are sustained, and a key aspect of management is to ensure that they are. Of course, management actions having an impact on survival may be more effective, but they might be harder to achieve than for example ensuring that birds of prey breed successfully.

References

Sollmann Rahel, Adenot Nathalie, Spakovszky Péter, Windt Jendrik, Mattsson Brady J. 2024. Accounting for observation biases associated with counts of young when estimating fecundity. bioRxiv, v. 2 peer-reviewed and recommended by Peer Community in Ecology. https://doi.org/10.1101/2023.12.01.569571

 

Accounting for observation biases associated with counts of young when estimating fecundity: case study on the arboreal-nesting red kite (*Milvus milvus*)Sollmann Rahel, Adenot Nathalie, Spakovszky Péter, Windt Jendrik, Brady J. Mattsson<p style="text-align: justify;">Counting the number of young in a brood from a distance is common practice, for example in tree-nesting birds. These counts can, however, suffer from over and undercounting, which can lead to biased estimates of fec...Demography, Statistical ecologyNigel Yoccoz2023-12-11 08:52:22 View
28 Mar 2024
article picture

Changes in length-at-first return of a sea trout (Salmo trutta) population in northern France

Why are trout getting smaller?

Recommended by based on reviews by Jan Kozlowski and 1 anonymous reviewer

Decline in body size over time have been widely observed in fish (but see Solokas et al. 2023), and the ecological consequences of this pattern can be severe (e.g., Audzijonyte et al. 2013, Oke et al. 2020). Therefore, studying the interrelationships between life history traits to understand the causal mechanisms of this pattern is timely and valuable. 

This phenomenon was the subject of a study by Josset et al. (2024), in which the authors analysed data from 39 years of trout trapping in the Bresle River in France. The authors focused mainly on the length of trout on their first return from the sea.   

The most important results of the study were the decrease in fish length-at-first return and the change in the age structure of first-returning trout towards younger (and earlier) returning fish. It seems then that the smaller size of trout is caused by a shorter time spent in the sea rather than a change in a growth pattern, as length-at-age remained relatively constant, at least for those returning earlier. Fish returning after two years spent in the sea had a relatively smaller length-at-age. The authors suggest this may be due to local changes in conditions during fish's stay in the sea, although there is limited environmental data to confirm the causal effect. Another question is why there are fewer of these older fish. The authors point to possible increased mortality from disease and/or overfishing.

These results may suggest that the situation may be getting worse, as another study finding was that “the more growth seasons an individual spent at sea, the greater was its length-at-first return.” The consequences may be the loss of the oldest and largest individuals, whose disproportionately high reproductive contribution to the population is only now understood (Barneche et al. 2018, Marshall and White 2019). 

References

Audzijonyte, A. et al. 2013. Ecological consequences of body size decline in harvested fish species: positive feedback loops in trophic interactions amplify human impact. Biol Lett 9, 20121103. https://doi.org/10.1098/rsbl.2012.1103

Barneche, D. R. et al. 2018. Fish reproductive-energy output increases disproportionately with body size. Science Vol 360, 642-645. https://doi.org/10.1126/science.aao6868

Josset, Q. et al. 2024. Changes in length-at-first return of a sea trout (Salmo trutta) population in northern France. biorXiv, 2023.11.21.568009, ver 4, Peer-reviewed and recommended by PCI Ecology. https://doi.org/10.1101/2023.11.21.568009

Marshall, D. J. and White, C. R. 2019. Have we outgrown the existing models of growth? Trends in Ecology & Evolution, 34, 102-111. https://doi.org/10.1016/j.tree.2018.10.005

Oke, K. B. et al. 2020. Recent declines in salmon body size impact ecosystems and fisheries. Nature Communications, 11, 4155. https://doi.org/10.1038/s41467-020-17726-z

Solokas, M. A. et al. 2023. Shrinking body size and climate warming: many freshwater salmonids do not follow the rule. Global Change Biology, 29, 2478-2492. https://doi.org/10.1111/gcb.16626

Changes in length-at-first return of a sea trout (*Salmo trutta*) population in northern FranceQuentin Josset, Laurent Beaulaton, Atso Romakkaniemi, Marie Nevoux<p style="text-align: justify;">The resilience of sea trout populations is increasingly concerning, with evidence of major demographic changes in some populations. Based on trapping data and related scale collection, we analysed long-term changes ...Biodiversity, Evolutionary ecology, Freshwater ecology, Life history, Marine ecologyAleksandra Walczyńska2023-11-23 14:36:39 View
09 Aug 2024
article picture

Reconstructing prevalence dynamics of wildlife pathogens from pooled and individual samples

Pooled samples hold information about the prevalence of wildlife pathogens

Recommended by ORCID_LOGO based on reviews by Megan Griffiths and 2 anonymous reviewers

Although monitoring the prevalence of pathogens in wildlife is crucial, there are logistical constraints that make this difficult, costly, and unpractical. This problem is often compounded when attempting to measure the temporal dynamics of prevalence. To improve the detection rate, a commonly used technique is pooling samples, where multiple individuals are analyzed at once. Yet, this introduces further potential biases: low-prevalence samples are effectively diluted through pooling, creating a false negative risk; negative samples are masked by the inclusion of positive samples, possibly artificially inflating the estimate of prevalence (and masking the inter-sample variability).

In their contribution, Borremans et al. (2024) come up with a modelling technique to provide accurate predictions of prevalence dynamics using a mix of pooled and individual samples. Because this model represents the pooling of individual samples as a complete mixing process, it can accurately estimate the prevalence dynamics from pooled samples only.

It is particularly noteworthy that the model provides an estimation of the false negative rate of the test. When there are false negatives (or more accurately, when the true rate at which false negatives happens), the value of the effect coefficients for individual-level covariates are likely to be off, potentially by a substantial amount. But besides more accurate coefficient estimation, the actual false negative rate is important information about the overall performance of the infection test.

The model described in this article also allows for a numerical calculation of the probability density function of infection. It is worth spending some time on how this is achieved, as I found the approach relying on combinatorics to be particularly interesting. When pooling, both the number of individuals that are mixed is known, and so is the measurement made on the pooled samples. The question is to figure out the number of individuals that because they are infectious, contribute to this score. The approach used by the authors is to draw (with replacement) possible positive and negative test outcomes assuming a number of positive individuals, and from this to estimate a pathogen concentration in the positive samples. This pathogen concentration can be transformed into its test outcome, and this value taken over all possible combinations is a conditional estimate of the test outcome, knowing the number of pooled individuals, and estimating the number of positive ones.

This approach is where the use of individual samples informs the model: by providing additional corrections for the relative volume of sample each individual provides, and by informing the transformation of test values into virus concentrations.

The authors make a strong case that their model can provide robust estimates of prevalence even in the presence of common field epidemiology pitfalls, and notably incomplete individual-level information. More importantly, because the model can work from pooled samples only, it gives additional value to samples that would otherwise have been discarded because they did not allow for prevalence estimates.

References

Benny Borremans, Caylee A. Falvo, Daniel E. Crowley, Andrew Hoegh, James O. Lloyd-Smith, Alison J. Peel, Olivier Restif, Manuel Ruiz-Aravena, Raina K. Plowright (2024) Reconstructing prevalence dynamics of wildlife pathogens from pooled and individual samples. bioRxiv, ver.3 peer-reviewed and recommended by PCI Ecology https://doi.org/10.1101/2023.11.02.565200

Reconstructing prevalence dynamics of wildlife pathogens from pooled and individual samplesBenny Borremans, Caylee A. Falvo, Daniel E. Crowley, Andrew Hoegh, James O. Lloyd-Smith, Alison J. Peel, Olivier Restif, Manuel Ruiz-Aravena, Raina K. Plowright<p style="text-align: justify;">Pathogen transmission studies require sample collection over extended periods, which can be challenging and costly, especially in the case of wildlife. A useful strategy can be to collect pooled samples, but this pr...Epidemiology, Statistical ecologyTimothée Poisot Joshua Hewitt2023-11-21 23:16:20 View