Submit a preprint

Direct submissions to PCI Ecology from bioRxiv.org are possible using the B2J service

Latest recommendations

IdTitle * Authors * Abstract * Picture * Thematic fields * RecommenderReviewersSubmission date▼
Yesterday
article picture

Crop productivity of Central European Permaculture is within the range of organic and conventional agriculture.

Permaculture, a promising alternative to conventional agriculture

Recommended by based on reviews by Julia Astegiano, Paulina Kramarz, Leda Lorenzo Montero and 1 anonymous reviewer

As mankind develops increasingly efficient and productive methods of agriculture and food production, we have reached a point where intensive agriculture threatens several aspects of life on Earth, negatively affecting biodiversity, carbon, nitrogen and phosphorus cycles and water reservoirs, while producing considerable amounts of greenhouse gases (Krebs and Bach, 2018). There was a need to develop farming methods that were friendly to both nature and people, producing good quality, healthy food without destroying the environment. The idea of permaculture, a concept of sustainable agriculture based on methods learned directly from nature, originated in the 1960s, invented and developed by Bruce Charles Mollison and David Holmgren (Mollison and Holmgren 1979, Mollison et al. 1991, Holmgren 2002). Although the idea of permaculture has attracted scientific interest, the representation in published studies is unbalanced in favour of positive ecological and sociological effects, with much less presence of rigorous experimental testing (Ferguson and Lovell 2014, Reiff et al. 2024a).

Reiff et al. (2024b) provided the first large-scale empirical evidence of permaculture production outcomes for Central Europe. Based on results from 11 commercial permaculture sites, situated mostly in Germany but also in Switzerland and Luxembourg, the authors found that food production from permaculture sites was on average comparable to that from conventional and organic agriculture. The authors were very thorough in pointing out the issues that could potentially affect their results and which need further testing.

Among these, the authors highlight the considerable variability between the 11 sites studied, which may suggest that different permacultures should differ in details according to their specificity - an interesting issue that definitely requires further study. The other factor that the authors point out that could have influenced the results and led to an underestimation of the real potential is the age of the permaculture sites. The sites from the study were relatively young, and their potential can be expected to increase with time.

It is important to note that the results are mostly applicable to vegetables, as vegetable production accounted for 94% of production in the permaculture sites (followed by tree crops, 6%, and soft fruit production, 0.5%). There is therefore a need to include other types of crops produced in further studies of this type.

To date, the results informing permaculture food production are urgently needed and should cover the potentially wide range of geographical regions and crops produced. The results of Reiff et al. (2025) show that rigorous testing of this issue is demanding, but the authors provide a very sound "road map" of further steps.      

 

Literature:

Ferguson R. S. and Lovell S. T. 2014. Permaculture for agroecology: design, movement, practice, and worldview. A review. Agronomy for Sustainable Development 34, 251-274.

Holmgren D. 2002. Permaculture: Principles & Pathways Beyond Sustainability. Holmgren Design Services, pp. 320.

Krebs J. and Bach S. 2018. Permaculture – scientific evidence of principles for the agroecological design of farming systems. Sustainability 10, 3218, doi:10.3390/su10093218

Mollison B. C. and Holmgren D. 1979. Permaculture One: A Perennial Agricultural System for Human Settlements. Tagari Publications, pp. 136.


Mollison B. C., Slay, R. M. and Jeeves A. 1991. Introduction to permaculture. Tagari Publications, pp. 198.

Reiff J., Jungkunst H. F., Mauser K. M., Kampel S., Regending S., Rösch V., Zaller J. G. and Entling M. H. 2024a. Permaculture enhances carbon stocks, soil quality and biodiversity in Central Europe. Communications Earth & Environment 5, 305.


Reiff J., Jungkunst H. F., Antes N. and Entling M. H. 2024b. Crop productivity of Central European Permaculture is within the range of organic and conventional agriculture. bioRxiv, ver.2 peer-reviewed and recommended by PCI Ecology doi: https://doi.org/10.1101/2024.09.09.611985

 

Crop productivity of Central European Permaculture is within the range of organic and conventional agriculture.Julius Reiff, Hermann F. Jungkunst, Nicole Antes, Martin H. Entling<p>Permaculture is a promising framework to design and manage sustainable food production systems based on mimicking ecosystems. However, there is still a lack of scientific evidence especially on the crop productivity of permaculture systems. In ...AgroecologyAleksandra Walczyńska2024-09-09 13:37:04 View
14 Jan 2025
article picture

Cool topoclimates promote cold-adapted plant diversity in temperate mountain forests.

Forest microclimate in mountains and its impact on plant community: Still a question of shade, but this time it’s not coming from the canopy

Recommended by based on reviews by Martin Macek and 2 anonymous reviewers

Recently, microclimate has gained significant momentum [1], as evidenced by the increasing number of studies and the emergence of a dedicated scientific community coordinating research efforts [2]. Several factors underpin this trend, including advances in technology that have made microclimate monitoring [3] and ecological contextualization [4] more accessible, as well as improvements in computational methods that facilitate modeling at unprecedented scales [5]. But the growing emphasis on microclimate is primarily driven by their ecological relevance, as microclimate represent the actual climate conditions experienced by organisms [1]. This makes them more suitable than macroclimate data for understanding and predicting biodiversity responses to climate change [6]. While macroclimate data remain a common tool in ecology, they often represent generalized climatic conditions over large spatial scales. These data are typically derived from statistical models calibrated on observations collected at meteorological stations [7], which are usually located at 2 meters above the ground in open areas and at elevations compatible with human activities. Such characteristics limit the applicability of macroclimate data for understanding biodiversity responses, particularly at finer spatial scales.

 This is especially true in forest ecosystems, where microclimate results from the filtering of macroclimate conditions by forest habitats [8]. A simple walk in a forest during summer highlights this filtering, with the cooling effect of canopy shading and tree packing being clearly perceptible. If humans can sense these variations, they likely influence forest biodiversity. In fact, microclimates are crucial for defining the thermal niches of understory plant species [9] and understanding plant community reshuffling in response to climate warming [10]. In mountainous areas, topography adds further complexity to microclimates. The drop in temperature with elevation, known as the elevation-temperature lapse rate, is familiar, but topography also drives fine-scale variations [11]. Solar radiation hitting forest varies with aspect and hillshade, creating localized temperature differences. For example, equator-facing slopes receive more sunlight, while west-facing slopes are sunlit during the warmest part of the day. Consequently, in the northern hemisphere, southwest-facing slopes generally exhibit warmer temperatures, longer growing seasons, and shorter snow cover durations [12]. Thus, both topography and forest canopy shape the understory microclimate experienced by organisms in temperate mountainous forests.

 Is biodiversity more influenced by topography- or canopy-induced temperature buffering? While this question may not seem particularly interesting at first glance, understanding the underlying mechanisms of microclimate is crucial for guiding biodiversity conservation decisions in the face of climate change [13]. Poleward-facing slopes, valley bottoms, and dense canopies buffer warm episodes by creating cooler, more humid habitats that can serve as refugia for biodiversity [12]. Both buffering processes are valuable for conservation, but topography-induced buffering is generally more stable over the long term [14]. In contrast, canopy buffering is more vulnerable to human management, disturbances, and the ongoing acceleration of climate change, which is expected to drive tree mortality and lead to canopy opening [15]. Identifying the dominant buffering process in a given area is essential for mapping biodiversity refugia and fully integrating microclimate into conservation strategies. This approach can improve decision-making and actions aimed at promoting biodiversity sustainability in a warming world.

 The work of Borderieux and colleagues [16] offers new insights into this question through an innovative approach. They focus on temperate forests in a watershed in the Vosges Mountains, where they monitor understory temperature and inventory forest plant communities in separate samplings. Aiming to disentangle the effects of topography and forest canopy on understory temperature and its impact on plant communities, the authors deployed a network of temperature sensors using stratified sampling, balanced according to topography (elevation, aspect, and slope) and canopy cover. They then correlated mean annual temperatures (daily mean and maximum) with topographic factors and canopy cover, considering their potential interactions in a linear model. The contribution of each microclimate component was computed, and their effects on temperatures were mapped. These predictions were then confronted to floristic inventories to test whether topography- and canopy-induced temperature variations explained plant diversity and assemblages.

 First, the authors demonstrated that local topographic variations, which determine the amount of solar radiation reaching forests in mountainous areas, outweigh the contribution of canopy shading to understory temperatures. This result is surprising, as many previous studies have emphasized the importance of canopy buffering in shaping forest microclimate conditions [8]. However, these studies mostly focused on lowland areas or large scales, where terrain roughness has less influence. It is also unexpected because the authors observed that canopy cover varies at a smaller scale than aspect or topographic position in their study area, creating habitat heterogeneity that could reasonably drive local temperature variations. Nevertheless, the authors found that aspect, heat load, and topographic position induced more variation in microclimate than canopy filtering, significantly allowing deviations from the expected elevation-temperature lapse rate. Second, the topographic effect on understory temperature propagated to biodiversity. The authors found that topography-induced temperature offset explained plant diversity and composition, while canopy-induced temperature offset did not. Specifically, cold topoclimates harbored 30% more species than the average species richness across the inventoried plots. This increase in species richness was primarily due to an increase in cold-adapted species, highlighting the role of cold topoclimates as refugia.

 It is difficult to assess the extent to which these results are influenced by the specific forest context of the study area chosen by the authors, as there is no clear consensus in previous research regarding the role of topoclimate. For example, Macek et al. (2019) [17] highlighted the predominance of topography in controlling temperature and, consequently, forest community structure in the Czech Republic, while Vandewiele et al. (2023) [18] demonstrated the dominance of canopy control in the German Alps. The forest conditions investigated by Borderieux et al. (2025) were narrow, as they focused mainly on closed forests (more than 80% of the study area and sampling sites exhibiting canopy cover greater than 79%). Given that the canopy buffering effect on temperature increases with canopy cover until plateauing at around 80% [19], this may explain why the authors did not find a strong contribution from the canopy. Nevertheless, the methodology and case presented in their study are both innovative and applicable to other mountainous regions. The work of Borderieux et al. (2025) deserves attention for highlighting a frequently overlooked component of forest microclimate, as canopy filtering is typically regarded as the dominant driver. Topoclimate is a critical factor to consider when protecting cold-adapted forest species in the context of global warming, especially since topographic features are less subject to change than canopy cover. Future research should aim to test this hypothesis across a broader range of forest and topography conditions to identify general patterns, as well as assess the long-term effectiveness of these topographic refugia for biodiversity. It remains unclear whether the cooling effect provided by topoclimate will be sufficient to stabilize climate conditions despite the expected acceleration of climate warming in the coming decades, and whether it will be able to preserve cold-adapted species, which are among the most unique but threatened components of mountain biodiversity.

References

[1] Kemppinen, J. et al. Microclimate, an important part of ecology and biogeography. Global Ecology and Biogeography 33, e13834 (2024). https://doi.org/10.1111/geb.13834

[2] Lembrechts, J. J. et al. SoilTemp: A global database of near-surface temperature. Global Change Biology 26, 6616–6629 (2020). https://doi.org/10.1111/gcb.15123

[3] Wild, J. et al. Climate at ecologically relevant scales: A new temperature and soil moisture logger for long-term microclimate measurement. Agricultural and Forest Meteorology 268, 40–47 (2019). https://doi.org/10.1016/j.agrformet.2018.12.018

[4] Zellweger, F., Frenne, P. D., Lenoir, J., Rocchini, D. & Coomes, D. Advances in Microclimate Ecology Arising from Remote Sensing. Trends in Ecology & Evolution 34, 327–341 (2019). https://doi.org/10.1016/j.tree.2018.12.012

[5] Haesen, S. et al. ForestTemp – Sub-canopy microclimate temperatures of European forests. Global Change Biology 27, 6307–6319 (2021). https://doi.org/10.1111/gcb.15892

[6] Lembrechts, J. J. et al. Comparing temperature data sources for use in species distribution models: From in-situ logging to remote sensing. Global Ecology and Biogeography 28, 1578–1596 (2019). https://doi.org/10.1111/geb.12974

[7] Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37, 4302–4315 (2017). https://doi.org/10.1002/joc.5086

[8] De Frenne, P. et al. Global buffering of temperatures under forest canopies. Nat Ecol Evol 3, 744–749 (2019). https://doi.org/10.1038/s41559-019-0842-1

[9] Haesen, S. et al. Microclimate reveals the true thermal niche of forest plant species. Ecology Letters 26, 2043–2055 (2023). https://doi.org/10.1111/ele.14312

[10] Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020). https://doi.org/10.1126/science.aba6880

[11] Rolland, C. Spatial and Seasonal Variations of Air Temperature Lapse Rates in Alpine Regions. Journal of climate, 16(7), 1032-1046 (2003). https://doi.org/10.1175/1520-0442(2003)016%3C1032:SASVOA%3E2.0.CO;2

[12] Rita, A. et al. Topography modulates near-ground microclimate in the Mediterranean Fagus sylvatica treeline. Sci Rep 11, 1–14 (2021). https://doi.org/10.1038/s41598-021-87661-6

[13] Bertrand, R., Aubret, F., Grenouillet, G., Ribéron, A. & Blanchet, S. Comment on “Forest microclimate dynamics drive plant responses to warming”. Science 370, eabd3850 (2020). https://doi.org/10.1126/science.abd3850

[14] Hylander, K., Greiser, C., Christiansen, D. M. & Koelemeijer, I. A. Climate adaptation of biodiversity conservation in managed forest landscapes. Conservation Biology 36, e13847 (2022). https://doi.org/10.1111/cobi.13847

[15] McDowell, N. G. & Allen, C. D. Darcy’s law predicts widespread forest mortality under climate warming. Nature Clim Change 5, 669–672 (2015). https://doi.org/10.1038/nclimate2641

[16] Borderieux, J. et al. Cool topoclimates promote cold-adapted plant diversity in temperate mountain forests. Ecoevorxiv, ver. 3( 2024). Peer-reviewed and recommended by PCI Ecology https://doi.org/10.32942/X2XC8T

[17] Macek, M., Kopecký, M. & Wild, J. Maximum air temperature controlled by landscape topography affects plant species composition in temperate forests. Landscape Ecol 34, 2541–2556 (2019). https://doi.org/10.1007/s10980-019-00903-x

[18] Vandewiele, M. et al. Mapping spatial microclimate patterns in mountain forests from LiDAR. Agricultural and Forest Meteorology 341, 109662 (2023). https://doi.org/10.1016/j.agrformet.2023.109662

[19] Zellweger, F. et al. Seasonal drivers of understorey temperature buffering in temperate deciduous forests across Europe. Global Ecology and Biogeography 28, 1774–1786 (2019). https://doi.org/10.1111/geb.12991

 

Cool topoclimates promote cold-adapted plant diversity in temperate mountain forests.Jeremy Borderieux, Emiel De Lombaerde, Karen De Pauw, Pieter Sanczuk, Pieter Vangansbeke, Thomas Vanneste, Pieter De Frenne, Jean-Claude Gégout, Josep M. Serra- Diaz<p>Climate strongly influences the composition and diversity of forest plant communities. Recent studies have highlighted the role of tree canopies in shaping understory thermal conditions at small spatial scales (i.e. microclimate), especially in...Biodiversity, Climate change, Community ecology, Spatial ecology, Metacommunities & Metapopulations, Terrestrial ecologyRomain Bertrand2024-07-05 00:17:37 View
14 Jan 2025
article picture

Delayed dichromatism in waterfowl as a convenient tool for assessing vital rates

A cost-effective and non-invasive approach to estimating population dynamics in waterfowl

Recommended by ORCID_LOGO based on reviews by 2 anonymous reviewers

    This article highlights a novel non-invasive method based on the "apparent sex ratios" that exploits delayed sexual importance in waterfowl populations. Unlike traditional capture-mark-recapture (CMR) technique, which is costly, invasive, and may disturb the target species, this method infers key population dynamics, such as adult survival rate and recruitment rate, by monitoring sex ratios in counts conducted during winter. Juvenile males that resemble adult females before molting provide a unique opportunity to estimate these vital rates. This method is cost-effective, minimizes disturbance to the species, and is particularly suitable for studying protected or invasive species.

References

Adrien Tableau, Iain Henderson, Sébastien Reeber, Matthieu Guillemain, Jean-François Maillard, Alain Caizergues (2024) Delayed dichromatism in waterfowl as a convenient tool for assessing vital rates. bioRxiv, ver.3 peer-reviewed and recommended by PCI Ecology https://doi.org/10.1101/2024.06.04.597326

Delayed dichromatism in waterfowl as a convenient tool for assessing vital ratesAdrien Tableau, Iain Henderson, Sébastien Reeber, Matthieu Guillemain, Jean-François Maillard, Alain Caizergues<p>Monitoring the number of individuals is by far the most popular strategy for studying the environmental factors that determine population dynamics and for measuring the effectiveness of management actions aimed at population recovery, control o...Biological control, Conservation biology, Demography, Life history, Population ecology, Statistical ecologyHuihuang Chen2024-06-07 17:39:34 View
06 Jan 2025
article picture

Using informative priors to account for identifiability issues in occupancy models with identification errors

Accounting for false positives and negatives in monitoring data from sensor networks and eDNA

Recommended by based on reviews by Saoirse Kelleher, Jonathan Rose and 2 anonymous reviewers

Biodiversity monitoring increasingly relies on modern technologies such as sensor networks and environmental DNA. These high-throughput methods allow biodiversity assessments with unprecedented detail and are especially useful to detect rare and secretive species that are otherwise difficult to observe with traditional survey-based methods. False negatives through imperfect detection are a typical problem in survey data and depend on intrinsic characteristics of the species, site characteristics of the survey site as well as survey characteristics (Guillera 2017). While imperfect detection might be reduced in modern sensor data and eDNA data, also these types of data are by no means error-free and may bare other challenges. In particular, the bioinformatics and image classification approaches used for species identification from these data can induce a higher rate of false positives than would be expected in expert-based survey data (Hartig et al. 2024).

Occupancy models (or occupancy-detection models) have been widely used to map species distributions by fitting a hierarchical model that estimates the paramaters of both the species-environment relationship and an observation submodel. They account for false negatives by inferring detectability from the detection history of a survey location, for example from replicate visits or multiple observers (Guillera 2017). These basic occupancy-detection models assume no false positive errors in the data. Other authors have proposed extensions for false positives that typically rely on unambiguous (known truth) information for some sites or observations (Chambert et al. 2015).

In their preprint, Monchy et al. (2024) propose an extension of classic occupancy models that considers a two-step observation process modelling the detection probability at occupied sites and the associated identification probability, separated into the true positive identification rate and the true negative identification rate. Using a simulation approach, the authors compare the effectiveness of a frequentist (maximum likelihood-based) and Bayesian approach for parameter estimation and identifiability, and additionally test the effectiveness of different priors (from non-informative to highly informative). Results of the maximum-likelihood approach indicated biased parameter estimates and identifiability problems. In the Bayesian approach, inclusion of prior information greatly reduces biases in parameter estimates, especially in detection and positive identification rate.

Importantly, informative priors for the identification process are a by-product of the classifiers that are developed for processing the eDNA data or sensor data. For example, species identification from acoustic sensors is based on image classifiers trained on labelled bird song spectrograms (Kahl et al. 2021) and as part of the evaluation of the classifier, the true positive rate (sensitivity) is routinely being estimated and could thus be readily used in occupancy models accounting for false positives. Thus, the approach proposed by Monchy et al. (2024) is not only highly relevant for biodiversity assessments based on novel sensor and eDNA data but also provides very practical solutions that do not require additional unambiguous data but recycle data that are already available in the processing pipeline. Applying their framework to real-world data will help reducing biases in biodiversity assessments and through improved understanding of the detection process it could also help optimising the design of sensor networks.

References

Thierry Chambert,  David A. W. Miller,  James D. Nichols (2015), Modeling false positive detections in species occurrence data under different study designs. Ecology, 96: 332-339. https://doi.org/10.1890/14-1507.1

Gurutzeta Guillera-Arroita (2017) Modelling of species distributions, range dynamics and communities under imperfect detection: advances, challenges and opportunities. Ecography, 40: 281-295. https://doi.org/10.1111/ecog.02445

Florian Hartig, Nerea Abrego, Alex Bush, Jonathan M. Chase, Gurutzeta Guillera-Arroita, Mathew A. Leibold,  Otso Ovaskainen, Loïc Pellissier, Maximilian Pichler, Giovanni Poggiato, Laura Pollock, Sara Si-Moussi, Wilfried Thuiller, Duarte S. Viana, David I. Warton, Damaris Zurell D, Douglas W. Yu (2024) Novel community data in ecology - properties and prospects. Trends in Ecology & Evolution, 39: 280-293. https://doi.org/10.1016/j.tree.2023.09.017

Stefan Kahl, Connor M. Wood, Maximilian Eibl, Holger Klinck (2021) BirdNET: A deep learning solution for avian diversity monitoring. Ecological Informatics, 61: 101236. https://doi.org/10.1016/j.ecoinf.2021.101236

Célian Monchy, Marie-Pierre Etienne, Olivier Gimenez (2024) Using informative priors to account for identifiability issues in occupancy models with identification errors. bioRxiv, ver.3 peer-reviewed and recommended by PCI Ecology https://doi.org/10.1101/2024.05.07.592917

Using informative priors to account for identifiability issues in occupancy models with identification errorsCélian Monchy, Marie-Pierre Etienne, Olivier Gimenez<p>&nbsp;Non-invasive monitoring techniques like camera traps, autonomous recording units and environmental DNA are increasingly used to collect data for understanding species distribution. These methods have prompted the development of statistica...Statistical ecologyDamaris Zurell2024-05-11 12:04:10 View
29 Aug 2024
article picture

Flexible reproductive seasonality in Africa-dwelling papionins is associated with low environmental productivity and high climatic unpredictability

Reproductive flexibility shapes primate survival in a changing climate driven by environmental unpredictability

Recommended by ORCID_LOGO based on reviews by 2 anonymous reviewers

As seasonal cycles become increasingly disrupted, our understanding of the ecology and evolution of reproductive seasonality in tropical vertebrates remains limited (Bronson 2009). To predict how changes in seasonality might impact these animals, it is crucial to identify which elements of their varied reproductive patterns are connected to the equally varied patterns of rainfall seasonality (within-year fluctuations) or the significant climatic unpredictability (year-to-year variations) characteristic of the intertropical region. 

Dezeure et al. (2024) provide a comprehensive examination of reproductive seasonality in papionin monkeys across diverse African environments. By investigating the ecological and evolutionary determinants of reproductive timing, the authors offer novel insights into how climatic factors, particularly environmental unpredictability, shape reproductive strategies in these primates. This study stands out not only for its methodological rigour but also for its contribution to our understanding of how primates adapt their reproductive behaviours to varying environmental pressures. The findings have broad implications, particularly in the context of ongoing climate change, which is expected to increase environmental unpredictability globally. The innovative approach of this paper lies in its multifaceted examination of reproductive seasonality, which integrates data from 21 wild populations of 11 papionin species. The study employs a robust statistical framework, incorporating Bayesian phylogenetic generalised linear mixed models to control for phylogenetic relatedness among species. This methodological choice is crucial because it allows the authors to disentangle the effects of environmental variables from evolutionary history, providing a more accurate picture of how current ecological factors influence reproductive strategies.

The study’s focus on environmental unpredictability as a determinant of reproductive seasonality is particularly noteworthy. While previous research has established the importance of environmental seasonality (Janson and Verdolin 2005), this paper breaks new ground by showing that the magnitude of year-to-year variation in rainfall – rather than just the seasonal distribution of rainfall – plays a critical role in determining the intensity of reproductive seasonality. This finding is supported by the significant negative correlation between reproductive seasonality and environmental unpredictability, which the authors demonstrate across multiple populations and species. The results of this study are important for several reasons. First, they challenge the traditional view that reproductive seasonality is primarily driven by within-year environmental fluctuations. By showing that inter-annual variability in rainfall is a stronger predictor of reproductive timing than intra-annual variability, the authors suggest that primates, like papionins, have evolved flexible reproductive strategies to cope with the unpredictable availability of resources. This flexibility is likely an adaptive response to the highly variable environments that many African primates inhabit, where food availability can vary dramatically not just within a year but from year to year. Second, the study highlights the role of reproductive flexibility in the evolutionary success of papionins. The authors provide compelling evidence that species within the Papio genus, for example, exhibit significant variability in reproductive timing both within and between populations. This variability suggests that these species possess a remarkable ability to adjust their reproductive strategies in response to local environmental conditions, which may have contributed to their widespread distribution across diverse habitats in Africa. This finding aligns with the work of Brockman and Schaik (2005), who argued that reproductive flexibility is a key factor in the success of primates in unpredictable environments.

The study also contributes to our understanding of the evolutionary transition from seasonal to non-seasonal breeding in primates. The authors propose that the loss of strict reproductive seasonality in some papionin species may represent an adaptive shift toward greater reproductive flexibility. This shift could be driven by the need to maximise reproductive success in environments where the timing of resource peaks is difficult to predict. The authors’ findings support this hypothesis, as they show that populations living in more unpredictable environments tend to have lower reproductive seasonality. The broader implications of this study (Dezeure et al. 2024) extend beyond the specific case of papionin monkeys. The findings have relevance for the study of reproductive strategies in other long-lived, tropical mammals that face similar environmental challenges. As climate change is expected to increase the frequency and intensity of environmental unpredictability, understanding how species have historically adapted to such conditions can provide valuable insights into their potential resilience or vulnerability to future changes.

Many primate species are already facing significant threats from habitat loss, hunting, and climate change. By identifying the environmental factors that influence reproductive success, Dezeure et al. (2024) study can help inform conservation strategies aimed at protecting the most vulnerable populations. For example, conservation efforts could focus on maintaining or restoring habitat features that promote reproductive flexibility, such as access to a variety of food resources that peak at different times of the year (Chapman et al.).

References

Brockman D, Schaik C (2005) Seasonality in Primates: Studies of Living and Extinct Human and Non-Human Primates. Cambridge University Press. https://doi.org/10.1017/CBO9780511542343

Bronson FH (2009) Climate change and seasonal reproduction in mammals. Philos Trans R Soc B Biol Sci 364:3331–3340. https://doi.org/10.1098/rstb.2009.0140

Chapman CA, Gogarten JF, Golooba M, et al Fifty+ years of primate research illustrates complex drivers of abundance and increasing primate numbers. Am J Primatol n/a:e23577. https://doi.org/10.1002/ajp.23577

Jules Dezeure, Julie Dagorrette, Lugdiwine Burtschell, Shahrina Chowdhury, Dieter Lukas, Larissa Swedell, Elise Huchard (2024) Flexible reproductive seasonality in Africa-dwelling papionins is associated with low environmental productivity and high climatic unpredictability. bioRxiv, ver.2 peer-reviewed and recommended by PCI Ecology https://doi.org/10.1101/2024.05.01.591991

Janson C, Verdolin J (2005) Seasonality of primate births in relation to climate. In: Schaik CP van, Brockman DK (eds) Seasonality in Primates: Studies of Living and Extinct Human and Non-Human Primates. Cambridge University Press, Cambridge, pp 307–350 https://doi.org/10.1017/CBO9780511542343.012

Flexible reproductive seasonality in Africa-dwelling papionins is associated with low environmental productivity and high climatic unpredictabilityJules Dezeure, Julie Dagorrette, Lugdiwine Burtschell, Shahrina Chowdhury, Dieter Lukas, Larissa Swedell, Elise Huchard<p style="text-align: justify;">At a time when seasonal cycles are increasingly disrupted, the ecology and evolution of reproductive seasonality in tropical vertebrates remains poorly understood. In order to predict how changes in seasonality migh...Behaviour & Ethology, Evolutionary ecology, ZoologyCédric Sueur2024-05-04 18:57:25 View
07 Oct 2024
article picture

Guidance framework to apply best practices in ecological data analysis: Lessons learned from building Galaxy-Ecology

Best practices for ecological analysis are required to act on concrete challenges

Recommended by ORCID_LOGO based on reviews by Nick Isaac and 1 anonymous reviewer

A core challenge facing ecologists is to work through an ever-increasing amount of data. The accelerating decline in biodiversity worldwide, mounting pressure of anthropogenic impacts, and increasing demand for actionable indicators to guide effective policy means that monitoring will only intensify, and rely on tools that can generate even more information (Gonzalez et al., 2023). How, then, do we handle this new volume and diversity of data?

This is the question Royaux et al. (2024) are tackling with their contribution. By introducing both a conceptual ("How should we think about our work?") and an operational ("Here is a tool to do our work with") framework, they establish a series of best practices for the analysis of ecological data.

It is easy to think about best practices in ecological data analysis in its most proximal form: is it good statistical practice? Is the experimental design correct? These have formed the basis of many recommendations over the years (see e.g. Popovic et al., 2024, for a recent example). But the contribution of Royaux et al. focuses on a different part of the analysis pipeline: the computer science (and software engineering) aspect of it.

As data grows in volume and complexity, the code needed to handle it follows the same trend. It is not a surprise, therefore, to see that the demand for programming skills in ecologists has doubled recently (Feng et al., 2020), prompting calls to make computational literacy a core component of undergraduate education (Farrell & Carrey, 2018). But beyond training, an obvious way to make computational analysis ecological data more reliable and effective is to build better tools. This is precisely what Royaux et al. have achieved.

They illustrate their approach through their experience building Galaxy-Ecology, a computing environment for ecological analysis: by introducing a clear taxonomy of computing concepts (data exploration, pre-processing, analysis, representation), with a hierarchy between them (formatting, data correction, anonymization), they show that we can think about the pipeline going from data to results in a way that is more systematized, and therefore more prone to generalization.

We may buckle at the idea of yet another ontology, or yet another framework, for our work, but I am convinced that the work of Royaux et al. is precisely what our field needs. Because their levels of atomization (their term for the splitting of complex pipelines into small, single-purpose tasks) are easy to understand, and map naturally onto tasks that we already perform, it is likely to see wide adoption. Solving the big, existential challenges of monitoring and managing biodiversity at the global scale requires the adoption of good practices, and a tool like Galaxy-Ecology goes a long way towards this goal.

References

Farrell, K.J., and Carey, C.C. (2018). Power, pitfalls, and potential for integrating computational literacy into undergraduate ecology courses. Ecol. Evol. 8, 7744-7751.
https://doi.org/10.1002/ece3.4363

Feng, X., Qiao, H., and Enquist, B. (2020). Doubling demands in programming skills call for ecoinformatics education. Frontiers in Ecology and the Environment 18, 123-124.
https://doi.org/10.1002/fee.2179
 
Gonzalez, A., Vihervaara, P., Balvanera, P., Bates, A.E., Bayraktarov, E., Bellingham, P.J., Bruder, A., Campbell, J., Catchen, M.D., Cavender-Bares, J., et al. (2023). A global biodiversity observing system to unite monitoring and guide action. Nat. Ecol. Evol., 1-5. 
https://doi.org/10.1038/s41559-023-02171-0
 
Popovic, G., Mason, T.J., Drobniak, S.M., Marques, T.A., Potts, J., Joo, R., Altwegg, R., Burns, C.C.I., McCarthy, M.A., Johnston, A., et al. (2024). Four principles for improved statistical ecology. Methods Ecol. Evol. 15, 266-281.
https://doi.org/10.1111/2041-210X.14270
 
Coline Royaux, Jean-Baptiste Mihoub, Marie Jossé, Dominique Pelletier, Olivier Norvez, Yves Reecht, Anne Fouilloux, Helena Rasche, Saskia Hiltemann, Bérénice Batut, Marc Eléaume, Pauline Seguineau, Guillaume Massé, Alan Amossé, Claire Bissery, Romain Lorrilliere, Alexis Martin, Yves Bas, Thimothée Virgoulay, Valentin Chambon, Elie Arnaud, Elisa Michon, Clara Urfer, Eloïse Trigodet, Marie Delannoy, Gregoire Loïs, Romain Julliard, Björn Grüning, Yvan Le Bras (2024) Guidance framework to apply best practices in ecological data analysis: Lessons learned from building Galaxy-Ecology. EcoEvoRxiv, ver.3 peer-reviewed and recommended by PCI Ecology. 
https://doi.org/10.32942/X2G033

Guidance framework to apply best practices in ecological data analysis: Lessons learned from building Galaxy-EcologyColine Royaux, Jean-Baptiste Mihoub, Marie Jossé, Dominique Pelletier, Olivier Norvez, Yves Reecht, Anne Fouilloux, Helena Rasche, Saskia Hiltemann, Bérénice Batut, Marc Eléaume, Pauline Seguineau, Guillaume Massé, Alan Amossé, Claire Bissery, Rom...<p>Numerous conceptual frameworks exist for best practices in research data and analysis (e.g. Open Science and FAIR principles). In practice, there is a need for further progress to improve transparency, reproducibility, and confidence in ecology...Statistical ecologyTimothée Poisot2024-04-12 10:13:59 View
30 Oct 2024
article picture

General mechanisms for a top-down origin of the predator-prey power law

Rethinking Biomass Scaling in Predators-Preys ecosystems

Recommended by based on reviews by Samraat Pawar and 1 anonymous reviewer

The study titled “General mechanisms for a top-down origin of the predator-prey power law” provides a fresh perspective on the classic predator-prey biomass relationship often observed in ecological communities. Traditionally, predator-prey dynamics have been examined through a bottom-up lens, where prey biomass and energy availability dictate predator populations. However, this study, which instead explores the possibility of a top-down origin for predator-prey power laws, offers a new dimension to our understanding of ecosystem regulation and raises questions about how predator-driven interactions might influence biomass scaling laws independently of prey abundance.

Ecologists have long noted that ecosystems often exhibit sublinear scaling between predator and prey biomasses. This pattern implies that predator biomass does not increase proportionally with prey biomass but at a slower rate, leading to a power-law relationship. Traditional explanations, such as those discussed by Peters (1983) and McGill (2006), have linked this to bottom-up processes, suggesting that increases in prey availability support, but do not fully translate to, larger predator populations due to energy losses in the trophic cascade. However, these explanations assume prey abundance as the principal driver. This new work raises an intriguing question: could density-dependent predator interactions, such as competition and interference, be equally or more important in creating this observed power law?

The authors hypothesized that density-dependent predator interactions might independently control predator biomass, even when prey is abundant. To test this, they combined predator and prey biomass dynamics equation based on a modified Lotka-Volterra model with agent-based models (ABMs) on a spatial grid, simulating predator-prey populations under varying environmental gradients and density-dependent conditions. These models allowed them to incorporate predator-specific factors, such as intraspecific competition (predator self-regulation) and predation interference, offering a quantitative framework to observe whether these top-down dynamics could indeed explain the observed biomass scaling independently of prey population changes.

Their results show that density-dependent predator dynamics, particularly at high predator densities, can yield sublinear scaling in predator-prey biomass relationships. This aligns well with empirical data, such as African mammalian ecosystems where predators seem to self-regulate under high prey availability by competing amongst themselves rather than expanding in direct proportion to prey biomass. Such findings support a shift from bottom-up perspectives to a model where top-down processes drive population regulation and biomass scaling.

I think that the work by Mazzarisi and collaborators (2024) offers a thought-provoking twist on predator-prey dynamics and suggests that our traditional frameworks may benefit from a broader, more predator-centered focus.

References

1. Onofrio Mazzarisi, Matthieu Barbier, Matteo Smerlak (2024) General mechanisms for a top-down origin of the predator-prey power law. bioRxiv, ver.2 peer-reviewed and recommended by PCI Ecology https://doi.org/10.1101/2024.04.04.588057

2. Peters, R. H. (1986). The ecological implications of body size (Vol. 2). Cambridge university press.

3. McGill, B. J. (2006). “A renaissance in the study of abundance.” Science, 314(5801), 770-772. https://doi.org/10.1126/science.1134920

General mechanisms for a top-down origin of the predator-prey power lawOnofrio Mazzarisi, Matthieu Barbier, Matteo Smerlak<p style="text-align: justify;">The ratio of predator-to-prey biomass density is not constant along ecological gradients: denser ecosystems tend to have fewer predators per prey, following a scaling relation known as the ``predator-prey power law'...Allometry, Community ecology, Food webs, Macroecology, Theoretical ecologySamir Simon Suweis2024-04-06 21:04:59 View
26 Aug 2024
article picture

Urban Cepaea nemoralis snails are less likely to have nematodes trapped within their shells

Urbanisation linked to a decline in the proportion of snails with trapped nematodes in their shell

Recommended by based on reviews by Robbie Rae and 1 anonymous reviewer

Urbanisation modifies species’ habitats affecting their density, distribution, fitness, and behaviour with knock-on effects for their parasites’ abundance and transmission (Bradley & Altizer 2007). A meta-analysis found that changes in resource provisioning due to anthropogenic change can have both positive and negative effects on parasite infection in wildlife populations, but that feeding on urban waste had an effect of reducing infection, especially for helminths and protozoa (Becker, Streicker & Altizer 2015). Another study found that urbanisation reduced ectoparasite load in birds, but had no effect on endoparasites or avian flu (Reid et al. 2024). These changes may be due to novel diets reducing transmission via predation upon trophic hosts (Becker, Streicker & Altizer 2015) or behavioural, leading to more time available to preen (Reid et al. 2024). Less is known about how urbanisation affects invertebrates (but see Lewthwaite et al., 2024) and their parasites. This is important considering that invertebrates are often intermediate hosts of, and/or vector other parasites.

Recent work has found that snails and slugs can trap nematodes in their shells to prevent infection (Rae 2017). This newly discovered resistance mechanism reveals that the shell serves an immune defence function. It also provides a record of nematode exposure and documents incidences of resistance to infection as the trapped nematode becomes fixed onto the shell surface (Rae 2017). Dahirel and co-authors exploit this to investigate whether snail-nematode interactions change in response to increasing levels of urbanisation (Dahirel et al. 2024).

They explore whether the proportion of Cepaea nemoralis snails with trapped nematodes in their shell changes across an urbanisation gradient. They also explore whether different phenotypic snail traits, notably shell size, colour, band number and fusion explain the likelihood of having trapped nematodes in their shells. An increase in urbanisation was associated with a decrease in the proportion of snails with trapped nematodes in their shells. At the same time larger shells were more likely to have trapped nematodes, but this effect did not change across the urbanisation gradient. 

The authors discuss that reduced nematode encapsulation in urban environments may be due to lower encounter rate due to either fewer nematodes in urban environments, changes in snail behaviour reducing exposure, or alternatively that urban snails were less resistant to nematode infection. 

It will be interesting to investigate how this resistance mechanism is related to other forms of snail immunity and whether high rates of nematode encapsulation are an indicator of high resistance or high exposure. This will enable nematode trapping to be used as a marker to indicate environments and/or snail populations harbouring high levels of parasitism and further exploitation of museum collections to understand host-parasite interactions in the past (Rae 2017).

References

Becker, D.J., Streicker, D.G. & Altizer, S. (2015) Linking anthropogenic resources to wildlife-pathogen dynamics: a review and meta-analysis. Ecol Lett, 18, 483-495. https://doi.org/10.1111/ele.12428

Bradley, C.A. & Altizer, S. (2007) Urbanization and the ecology of wildlife diseases. Trends Ecol Evol, 22, 95-102. https://doi.org/10.1016/j.tree.2006.11.001

Maxime Dahirel, Hannah Reyné, Katrien De Wolf, Dries Bonte (2024) Urban Cepaea nemoralis snails are less likely to have nematodes trapped within their shells. bioRxiv, ver.4 peer-reviewed and recommended by PCI Ecology https://doi.org/10.1101/2024.03.07.583959

Lewthwaite, J.M.M., Baiotto, T.M., Brown, B.V., Cheung, Y.Y., Baker, A.J., Lehnen, C., McGlynn, T.P., Shirey, V., Gonzalez, L., Hartop, E., Kerr, P.H., Wood, E. & Guzman, L.M. (2024) Drivers of arthropod biodiversity in an urban ecosystem. Sci Rep, 14, 390. https://doi.org/10.1038/s41598-023-50675-3

Rae, R. (2017) The gastropod shell has been co-opted to kill parasitic nematodes. Sci Rep, 7, 4745. https://doi.org/10.1038/s41598-017-04695-5

Reid, R., Capilla-Lasheras, P., Haddou, Y., Boonekamp, J. & Dominoni, D.M. (2024) The impact of urbanization on health depends on the health metric, life stage and level of urbanization: a global meta-analysis on avian species. Proc Biol Sci, 291, 20240617. https://doi.org/10.1098/rspb.2024.0617

Urban *Cepaea nemoralis* snails are less likely to have nematodes trapped within their shellsMaxime Dahirel, Hannah Reyné, Katrien De Wolf, Dries Bonte<p style="text-align: justify;">Urbanisation is a major human-induced environmental change which can impact not only individual species, but also the way these species interact with each other. As a group, terrestrial molluscs interact frequently ...Host-parasite interactions, Human impactAlison Duncan2024-03-11 11:35:15 View
26 Aug 2024
article picture

Easy, fast and reproducible Stochastic Cellular Automata with chouca

An R package for flexible and fast Stochastic Cellular Automata modeling

Recommended by ORCID_LOGO based on reviews by Broder Breckling and 1 anonymous reviewer

Stochastic Cellular Automata (SCA) are a popular modelling tool because in, spite of their simplicity, they can generate a variety of spatial patterns. This makes them particularly appreciated, for instance, to validate the insights of analytical or semi-analytical spatial models that make simplifying assumptions, e.g. moment equations models. A first limit to SCA are that as soon as details are added to the model, reproducibility issues may occur. Computation speed is also an issue, especially for large populations. The work by Génin et al. addresses these two issues through the development of an R package, chouca.

The use of the package is designed to be as smooth as possible: users only need to define the type of possible transitions along with their rates, the parameter values, the number of neighbours, and the initial state of the landscape. The main function returns the population dynamics of each state and even the final state of the landscape.

In addition to its flexibility, an asset of chouca resides in its use of the Rcpp package, which compiles the model designed by the user in C++. This allows for high computation speed, which can be further boosted by using parallelising options from R.

In their manuscript, the authors use ecological models to illustrate the more advanced possibilities opened by chouca, e.g. in terms of graphical interpretation or even to estimate parameter values by computing likelihood functions (the implementation in R does make it very appropriate for statistical inference in general). The package still has some limitations, and, for example, it currently only applied to 2D rectangular grids and it cannot include elaborate movement processes. However, some of these could be addressed in future releases and chouca already has the potential to become central for SCA modelling, both for beginners and expert users, especially in ecology.

References

Alexandre Génin, Guillaume Dupont, Daniel Valencia, Mauro Zucconi, M. Isidora Ávila-Thieme, Sergio A. Navarrete, Evie A. Wieters (2024) Easy, fast and reproducible Stochastic Cellular Automata with chouca. bioRxiv, ver.6 peer-reviewed and recommended by Peer Community in Ecology https://doi.org/10.1101/2023.11.08.566206

Easy, fast and reproducible Stochastic Cellular Automata with choucaAlexandre Génin, Guillaume Dupont, Daniel Valencia, Mauro Zucconi, M. Isidora Ávila-Thieme, Sergio A. Navarrete, Evie A. Wieters<p style="text-align: justify;">Stochastic cellular automata (SCA) are models that describe spatial dynamics using a grid of cells that switch between discrete states over time. They are widely used to understand how small-scale processes scale up...Community ecology, Landscape ecology, Spatial ecology, Metacommunities & Metapopulations, Statistical ecology, Theoretical ecologySamuel Alizon2024-03-11 10:54:39 View
29 Jun 2024
article picture

Reassessment of French breeding bird population sizes using citizen science and accounting for species detectability

Reassessment of French breeding bird population sizes: from citizen science observations to nationwide estimates

Recommended by ORCID_LOGO based on reviews by 2 anonymous reviewers

Estimating populations size of widespread, common species in a relatively large and heterogeneous country like France is difficult for several reasons, from having a sample covering well the diverse ecological gradients to accounting for detectability, the fact that absence of a species may represent a false negative, the species being present but not detected. Bird communities have been the focus of a very large number of studies, with some countries like the UK having long traditions of monitoring both common and rare species. Nabias et al. use a large, structured citizen science project to provide new estimates of common bird species, accounting for detectability and using different habitat and climate covariates to extrapolate abundance to non-sampled areas. About 2/3 of the species had estimates higher than what would have been expected using a previous attempt at estimating population size based in part on expert knowledge and projected using estimates of trends to the period covered by the citizen science sampling. Some species showed large differences between the two estimates, which could be in part explained by accounting for detectability.

This paper uses what is called model-based inference (as opposed to design-based inference, that uses the design to make inferences about the whole population; Buckland et al. 2000), both in terms of detectability and habitat suitability. The estimates obtained depend on how well the model components approximate the underlying processes, which in a complex dataset like this one is not easy to assess. But it clearly shows that detectability may have substantial implications for the population size estimates. This is of course not new but has rarely been done at this scale and using a large sample obtained on many species. Interesting further work could focus on testing the robustness of the model-based approach by for example sampling new plots and compare the expected values to the observed values. Such a sampling could be stratified to maximize the discrimination between expected low and high abundances, at least for species where the estimates might be considered as uncertain, or for which estimating population sizes is deemed important.

References

Buckland, S. T., Goudie, I. B. J., & Borchers, D. L. (2000). Wildlife Population Assessment: Past Developments and Future Directions. Biometrics, 56(1), 1-12. https://doi.org/10.1111/j.0006-341X.2000.00001.x

 Nabias, J., Barbaro, L., Fontaine, B., Dupuy, J., Couzi, L., et al. (2024) Reassessment of French breeding bird population sizes using citizen science and accounting for species detectability. HAL, ver. 2 peer-reviewed and recommended by Peer Community in Ecology. https://hal.science/hal-04478371

Reassessment of French breeding bird population sizes using citizen science and accounting for species detectabilityJean Nabias, Luc Barbaro, Benoit Fontaine, Jérémy Dupuy, Laurent Couzi, Clément Vallé, Romain Lorrillière<p style="text-align: justify;">Higher efficiency in large-scale and long-term biodiversity monitoring can be obtained through the use of Essential Biodiversity Variables, among which species population sizes provide key data for conservation prog...Biogeography, Macroecology, Spatial ecology, Metacommunities & Metapopulations, Species distributions, Statistical ecologyNigel Yoccoz2024-02-26 18:10:27 View