Submit a preprint

Direct submissions to PCI Ecology from bioRxiv.org are possible using the B2J service

Latest recommendations

IdTitle * Authors * Abstract * Picture * Thematic fields * RecommenderReviewersSubmission date
16 May 2025
article picture

MEWC: A user-friendly AI workflow for customised wildlife-image classification

Democratising AI for Ecology: MEWC Delivers Custom Wildlife Classification to All

Recommended by ORCID_LOGO based on reviews by Timm Haucke and 1 anonymous reviewer

Although artificial intelligence (AI) offers a powerful solution to the bottleneck in processing camera-trap imagery, ecological researchers have long struggled with the practical application of such tools. The complexity of development, training, and deploying deep learning models remains a significant barrier for many conservationists, ecologists, and citizen scientists who lack formal training in computer science. While platforms like Wildlife Insights (Ahumada et al. 2020), MegaDetector (Beery et al. 2019), and tools such as ClassifyMe (Falzon et al. 2020) have laid critical groundwork in AI-assisted wildlife monitoring, these solutions either remain opaque, lack customisability, or are often locked behind commercial or infrastructural limitations. Others, like Sherlock (Penn et al., 2024), while powerful, are not always deployable without significant local expertise. A notable example of a more open and collaborative approach is the DeepFaune initiative, which provides a free, high-performance tool for the automatic classification of European wildlife in camera-trap images, highlighting the growing importance of locally relevant, user-friendly AI solutions developed through broad partnerships (Rigoudy et al. 2022).

It is in this context that Brook et al. (2025) makes a compelling and timely contribution. The authors present an elegant, open-source AI pipeline—MEWC (Mega-Efficient Wildlife Classifier)—that bridges the gap between high-performance image classification and usability by non-specialists. Combining deep learning advances with user-friendly software engineering, MEWC enables users to detect, classify, and manage wildlife imagery without advanced coding skills or reliance on high-cost third-party infrastructures.

What makes MEWC particularly impactful is its modular and accessible architecture. Built on Docker containers, the system can run seamlessly across different operating systems, cloud services, and local machines. From image detection using MegaDetector to classifier training via EfficientNet or Vision Transformers, the pipeline maintains a careful balance between technical flexibility and operational simplicity. This design empowers ecologists to train their own species-specific classifiers and maintain full control over their data—an essential feature given the increasing scrutiny around data sovereignty and privacy.

The practical implications are impressive. The case study provided—focused on Tasmanian wildlife—demonstrates not only high accuracy (up to 99.6%) but also remarkable scalability, with models trainable even on mid-range desktops. Integration with community tools like Camelot (Hendry and Mann 2018)and AddaxAI (Lunteren 2023) further enhances its utility, allowing rapid expert validation and facilitating downstream analyses.

Yet the article does not shy away from discussing the limitations. As with any supervised system, MEWC’s performance is only as good as the training data provided. Class imbalances, rare species, or subtle morphological traits can challenge even the best classifiers. Moreover, the authors caution that pre-trained models may not generalise well across regions with different fauna, requiring careful curation and expert tagging for local deployments.

One particularly exciting future direction briefly mentioned—and worth highlighting—is MEWC’s potential application to behavioural and cognitive ecology (Sueur et al. 2013; Battesti et al. 2015; Grampp et al. 2019). Studies in these domains underscore the need for scalable tools to quantify social dynamics in real time. By assisting with individual identification and the detection of postures or spatial configurations, MEWC could significantly enhance the throughput, reproducibility, and objectivity of such research.

This opens the door to even richer applications. Behavioural ecologists might use MEWC for fine-grained detection tasks such as individual grooming interactions, kin proximity analysis, or identification of tool-use sequences in wild primates. Similarly, for within-species classification (e.g. sex, reproductive state, or disease symptoms), MEWC's modular backbone and compatibility with transfer learning architectures like EfficientNet or ViT make it a suitable candidate for expansion (Ferreira et al. 2020; Clapham et al. 2022).

In conclusion (Brook et al. 2025) have delivered more than a tool—they've designed an ecosystem. MEWC lowers the technical barrier to AI in ecology, promotes open science, and enables tailored workflows for a wide variety of conservation, research, and educational contexts. For anyone interested in democratising ecological AI and reclaiming control over wildlife-monitoring data, this article and its associated software are essential resources.

References

Ahumada JA, Fegraus E, Birch T, et al (2020) Wildlife Insights: A Platform to Maximize the Potential of Camera Trap and Other Passive Sensor Wildlife Data for the Planet. Environmental Conservation 47:1–6. https://doi.org/10.1017/S0376892919000298

Battesti M, Pasquaretta C, Moreno C, et al (2015) Ecology of information: social transmission dynamics within groups of non-social insects. Proceedings of the Royal Society of London B: Biological Sciences 282:20142480. https://doi.org/10.1098/rspb.2014.2480

Beery S, Morris D, Yang S, et al (2019) Efficient pipeline for automating species ID in new camera trap projects. Biodiversity Information Science and Standards 3:e37222. https://doi.org/10.3897/biss.3.37222

Barry W. Brook, Jessie C. Buettel, Peter van Lunteren, Prakash P. Rajmohan, R. Zach Aandahl (2025) MEWC: A user-friendly AI workflow for customised wildlife-image classification. EcoEvoRxiv, ver.3 peer-reviewed and recommended by PCI Ecology. https://doi.org/10.32942/X2ZW3D

Clapham M, Miller E, Nguyen M, Van Horn RC (2022) Multispecies facial detection for individual identification of wildlife: a case study across ursids. Mamm Biol 102:921–933. https://doi.org/10.1007/s42991-021-00168-5

Falzon G, Lawson C, Cheung K-W, et al (2020) ClassifyMe: A Field-Scouting Software for the Identification of Wildlife in Camera Trap Images. Animals 10:58. https://doi.org/10.3390/ani10010058

Ferreira AC, Silva LR, Renna F, et al (2020) Deep learning-based methods for individual recognition in small birds. Methods in Ecology and Evolution 11:1072–1085. https://doi.org/10.1111/2041-210X.13436

Grampp M, Sueur C, van de Waal E, Botting J (2019) Social attention biases in juvenile wild vervet monkeys: implications for socialisation and social learning processes. Primates 60:261–275. https://doi.org/10.1007/s10329-019-00721-4​

Hendry H, Mann C (2018) Camelot—intuitive software for camera-trap data management. Oryx 52:15–15. https://doi.org/10.1017/S0030605317001818

Lunteren P van (2023) AddaxAI: A no-code platform to train and deploy custom YOLOv5 object detection models. Journal of Open Source Software 8:5581. https://doi.org/10.21105/joss.05581

Rigoudy, N, Dussert, G, Benyoub, A et al (2023) The DeepFaune initiative: a collaborative effort towards the automatic identification of European fauna in camera trap images. Eur J Wildl Res 69, 113. https://doi.org/10.1007/s10344-023-01742-7

Sueur C, MacIntosh AJJ, Jacobs AT, et al (2013) Predicting leadership using nutrient requirements and dominance rank of group members. Behav Ecol Sociobiol 67:457–470. https://doi.org/10.1007/s00265-012-1466-5

MEWC: A user-friendly AI workflow for customised wildlife-image classificationBarry W. Brook, Jessie C. Buettel, Peter van Lunteren, Prakash P. Rajmohan, R. Zach Aandahl<p>Monitoring wildlife is crucial for making informed conservation and land-management decisions. Remotely triggered cameras are widely used for this purpose, but the resulting 'big data' are laborious to process. Although artificial intelligence ...Biodiversity, Community ecology, Conservation biology, Statistical ecology, ZoologyCédric Sueur2025-02-21 02:16:08 View
12 Jan 2024
article picture

Methods for tagging an ectoparasite, the salmon louse Lepeophtheirus salmonis

Marking invertebrates using RFID tags

Recommended by ORCID_LOGO based on reviews by Simon Blanchet and 1 anonymous reviewer

Guiding and monitoring the efficiency of conservation efforts needs robust scientific background information, of which one key element is estimating wildlife abundance and its spatial and temporal variation. As raw counts are by nature incomplete counts of a population, correcting for detectability is required (Clobert, 1995; Turlure et al., 2018). This can be done with Capture-Mark-Recapture protocols (Iijima, 2020). Techniques for marking individuals are diverse, e.g. writing on butterfly wings, banding birds, or using natural specific patterns in the individual’s body such as leopard fur or whale tail. Advancement in technology opens new opportunities for developing marking techniques, including strategies to limit mark identification errors (Burchill & Pavlic, 2019), and for using active marks that can transmit data remotely or be read automatically.

The details of such methodological developments frequently remain unpublished, the method being briefly described in studies that use it. For a few years, there has been however a renewed interest in proper publishing of methods for ecology and evolution. This study by Folk & Mennerat (2023) fits in this context, offering a nice example of detailed description and testing of a method to mark salmon ectoparasites using RFID tags. Such tags are extremely small, yet easy to use, even with automatic recording procedure. The study provides a very good basis protocol that should help researchers working for small species, in particular invertebrates. The study is complemented by a video illustrating the placement of the tag so the reader who would like to replicate the procedure can get a very precise idea of it.

References

Burchill, A. T., & Pavlic, T. P. (2019). Dude, where’s my mark? Creating robust animal identification schemes informed by communication theory. Animal Behaviour, 154, 203–208. https://doi.org/10.1016/j.anbehav.2019.05.013

Clobert, J. (1995). Capture-recapture and evolutionary ecology: A difficult wedding ? Journal of Applied Statistics, 22(5–6), 989–1008.

Folk, A., & Mennerat, A. (2023). Methods for tagging an ectoparasite, the salmon louse Lepeophtheirus salmonis (p. 2023.08.31.555695). bioRxiv, ver. 2 peer-reviewed and recommended by Peer Community in Ecology. https://doi.org/10.1101/2023.08.31.555695

Iijima, H. (2020). A Review of Wildlife Abundance Estimation Models: Comparison of Models for Correct Application. Mammal Study, 45(3), 177–188. https://doi.org/10.3106/ms2019-0082

Turlure, C., Pe’er, G., Baguette, M., & Schtickzelle, N. (2018). A simplified mark–release–recapture protocol to improve the cost effectiveness of repeated population size quantification. Methods in Ecology and Evolution, 9(3), 645–656. https://doi.org/10.1111/2041-210X.12900

 

Methods for tagging an ectoparasite, the salmon louse *Lepeophtheirus salmonis*Alexius Folk, Adele Mennerat<p style="text-align: justify;">Monitoring individuals within populations is a cornerstone in evolutionary ecology, yet individual tracking of invertebrates and particularly parasitic organisms remains rare. To address this gap, we describe here a...Dispersal & Migration, Evolutionary ecology, Host-parasite interactions, Marine ecology, Parasitology, Terrestrial ecology, ZoologyNicolas Schtickzelle2023-09-04 15:25:08 View
02 Dec 2021
article picture

Metabarcoding faecal samples to investigate spatiotemporal variation in the diet of the endangered Westland petrel (Procellaria westlandica)

The promise and limits of DNA based approach to infer diet flexibility in endangered top predators

Recommended by based on reviews by Francis John Burdon and Babett Günther

There is growing evidence of worldwide decline of populations of top predators, including marine ones (Heithaus et al, 2008, Mc Cauley et al., 2015), with cascading effects expected at the ecosystem level, due to global change and human activities, including habitat loss or fragmentation, the collapse or the range shifts of their preys. On a global scale, seabirds are among the most threatened group of birds, about one-third of them being considered as threatened or endangered (Votier& Sherley, 2017). The large consequences of the decrease of the populations of preys they feed on (Cury et al, 2011) points diet flexibility as one important element to understand for effective management (McInnes et al, 2017).  Nevertheless, morphological inventory of preys requires intrusive protocols, and the differential digestion rate of distinct taxa may lead to a large bias in morphological-based diet assessments. The use of DNA metabarcoding on feces (or diet DNA, dDNA) now allows non-invasive approaches facilitating the recollection of samples and the detection of multiple preys independently of their digestion rates (Deagle et al., 2019). Although no gold standard exists yet to avoid bias associated with metabarcoding (primer bias, gaps in reference databases, inability to differentiate primary from secondary predation…), the use of these recent techniques has already improved the knowledge of the foraging behaviour and diet of many animals (Ando et al., 2020).

Both promise and shortcomings of this approach are illustrated in the article “Metabarcoding faecal samples to investigate spatiotemporal variation in the diet of the endangered Westland petrel (Procellaria westlandica)” by Quereteja et al. (2021). In this work, the authors assessed the nature and spatio-temporal flexibility of the foraging behaviour and consequent diet of the endangered petrel Procellaria westlandica from New-Zealand through metabarcoding of faeces samples.

The results of this dDNA, non-invasive approach, identify some expected and also unexpected prey items, some of which require further investigation likely due to large gaps in the reference databases. They also reveal the temporal (before and after hatching) and spatial (across colonies only 1.5km apart) flexibility of the foraging behaviour, additionally suggesting a possible influence of fisheries activities in the surroundings of the colonies. This study thus both underlines the power of the non-invasive metabarcoding approach on faeces, and the important results such analysis can deliver for conservation, pointing a potential for diet flexibility that may be essential for the resilience of this iconic yet endangered species.

References

Ando H, Mukai H, Komura T, Dewi T, Ando M, Isagi Y (2020) Methodological trends and perspectives of animal dietary studies by noninvasive fecal DNA metabarcoding. Environmental DNA, 2, 391–406. https://doi.org/10.1002/edn3.117

Cury PM, Boyd IL, Bonhommeau S, Anker-Nilssen T, Crawford RJM, Furness RW, Mills JA, Murphy EJ, Österblom H, Paleczny M, Piatt JF, Roux J-P, Shannon L, Sydeman WJ (2011) Global Seabird Response to Forage Fish Depletion—One-Third for the Birds. Science, 334, 1703–1706. https://doi.org/10.1126/science.1212928

Deagle BE, Thomas AC, McInnes JC, Clarke LJ, Vesterinen EJ, Clare EL, Kartzinel TR, Eveson JP (2019) Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data? Molecular Ecology, 28, 391–406. https://doi.org/10.1111/mec.14734

Heithaus MR, Frid A, Wirsing AJ, Worm B (2008) Predicting ecological consequences of marine top predator declines. Trends in Ecology & Evolution, 23, 202–210. https://doi.org/10.1016/j.tree.2008.01.003

McCauley DJ, Pinsky ML, Palumbi SR, Estes JA, Joyce FH, Warner RR (2015) Marine defaunation: Animal loss in the global ocean. Science, 347, 1255641. https://doi.org/10.1126/science.1255641

McInnes JC, Jarman SN, Lea M-A, Raymond B, Deagle BE, Phillips RA, Catry P, Stanworth A, Weimerskirch H, Kusch A, Gras M, Cherel Y, Maschette D, Alderman R (2017) DNA Metabarcoding as a Marine Conservation and Management Tool: A Circumpolar Examination of Fishery Discards in the Diet of Threatened Albatrosses. Frontiers in Marine Science, 4, 277. https://doi.org/10.3389/fmars.2017.00277

Querejeta M, Lefort M-C, Bretagnolle V, Boyer S (2021) Metabarcoding faecal samples to investigate spatiotemporal variation in the diet of the endangered Westland petrel (Procellaria westlandica). bioRxiv, 2020.10.30.360289, ver. 4 peer-reviewed and recommended by Peer Community in Ecology. https://doi.org/10.1101/2020.10.30.360289

Votier SC, Sherley RB (2017) Seabirds. Current Biology, 27, R448–R450. https://doi.org/10.1016/j.cub.2017.01.042

Metabarcoding faecal samples to investigate spatiotemporal variation in the diet of the endangered Westland petrel (Procellaria westlandica)Marina Querejeta, Marie-Caroline Lefort, Vincent Bretagnolle, Stéphane Boyer<p style="text-align: justify;">As top predators, seabirds can be indirectly impacted by climate variability and commercial fishing activities through changes in marine communities. However, high mobility and foraging behaviour enables seabirds to...Conservation biology, Food webs, Marine ecology, Molecular ecologySophie Arnaud-Haond2020-10-30 20:14:50 View
09 Nov 2023
article picture

Mark loss can strongly bias estimates of demographic rates in multi-state models: a case study with simulated and empirical datasets

Marks lost in action, biased estimations

Recommended by ORCID_LOGO based on reviews by Olivier Gimenez, Devin Johnson and 1 anonymous reviewer

Capture-Mark-Recapture (CMR) data are commonly used to estimate ecological variables such as abundance, survival probability, or transition rates from one state to another (e.g. from juvenile to adult, or migration from one site to another). Many studies have shown how estimations can be affected by neglecting one aspect of the population under study (e.g. the heterogeneity in survival between individuals) or one limit of the methodology itself (e.g. the fact that observers might not detect an individual although it is still alive). Strikingly, very few studies have yet assessed the robustness of one fundamental assumption of all CMR-based inferences: marks are supposed definitive and immutable. If they are not, how are estimations affected? Addressing this issue is the main goal of the paper by Touzalin et al. (2023), and they did a very nice work. But, because the answer is not that simple, it also calls for further investigations.

When and why would mark loss bias estimation? In at least two situations. First, when estimating survival rates: if an individual loses its mark, it will be considered as dead, hence death rates will be overestimated. Second, more subtly, when estimating transition rates: if one individual loses its mark at the specific moment where its state changes, then a transition will be missed in data. The history of the marked individual would then be split into two independent CMR sequences as if there were two different individuals, including one which died.

Touzalin et al. (2023) thoroughly studied these two situations by estimating ecological parameters on 1) well-thought simulated datasets, that cover a large range of possible situations inspired from a nice compilation of hundreds of estimations from fish and bats studies, and 2) on their own bats dataset, for which they had various sources of information about mark losses, i.e. different mark types on the same individuals, including mark based on genotypes, and marks found on the soil in the place where bats lived. Their main findings from the simulated datasets are that there is a general trend for underestimation of survival and transition rates if mark loss is not accounting for in the model, as it would be intuitively expected. However, they also showed from the bats dataset that biases do not show any obvious general trend, suggesting complex interactions between different ecological processes and/or with the estimation procedure itself.

The results by Touzalin et al. (2023) strongly suggest that mark loss should systematically be included in models estimating parameters from CMR data. In addition to adapt the inferential models, the authors also recommend considering either a double marking, or even a single but ‘permanent’ mark such as one based on the genotypes. However, the potential gain of a double marking or of the use of genotypes is still to be evaluated both in theory and practice, and it seems to be not that obvious at first sight. First because double marking can be costly for experimenters but also for the marked animals, especially as several studies showed that marks can significantly affect survival or recapture rates. Second because multiple sources of errors can affect genotyping, which would result in wrong individual assignations especially in populations with low genetic diversity or high inbreeding, or no individual assignation at all, which would increase the occurrence of missing data in CMR datasets. Touzalin et al. (2023) supposed in their paper that there were no genotyping errors, but one can doubt it to be true in most situations. They have now important and interesting other issues to address.

References

Frédéric Touzalin, Eric J. Petit, Emmanuelle Cam, Claire Stagier, Emma C. Teeling, Sébastien J. Puechmaille (2023) Mark loss can strongly bias demographic rates in multi-state models: a case study with simulated and empirical datasets. BioRxiv, ver. 3 peer-reviewed and recommended by Peer Community in Ecology. https://doi.org/10.1101/2022.03.25.485763

Mark loss can strongly bias estimates of demographic rates in multi-state models: a case study with simulated and empirical datasetsFrédéric Touzalin, Eric J. Petit, Emmanuelle Cam, Claire Stagier, Emma C. Teeling, Sébastien J. Puechmaille<p style="text-align: justify;">1. The development of methods for individual identification in wild species and the refinement of Capture-Mark-Recapture (CMR) models over the past few decades have greatly improved the assessment of population demo...Conservation biology, DemographySylvain Billiard2022-04-12 18:49:34 View
17 Dec 2024
article picture

Long-term survey of intertidal rocky shore macrobenthic community metabolism and structure after primary succession

10 years of primary succession in intertidal communities: specific and functional changes

Recommended by ORCID_LOGO based on reviews by Thomas Guillemaud and John Griffin

This very interesting article describes the changes taking place on artificial substrates placed in an intertidal zone. The study presents an ambitious data set and demonstrates the importance of long-term monitoring to identify community dynamics. In summary, in the short term, the authors observe a phase of complexification of the communities and a peak in productivity, but after a few years, the macro-algae disappear in favour of limpets, a situation that persists after 10 years of monitoring. Monitoring over the short term would lead to an erroneous analysis of the succession patterns and dynamics of the communities, which has important consequences in terms of the recolonisation of artificial substrates in the marine environment.

References

Aline Migné, François Bordeyne, Dominique Davoult (2023) Long-term survey of intertidal rocky shore macrobenthic community metabolism and structure after primary succession. HAL, ver.2 peer-reviewed and recommended by PCI Ecology https://hal.science/hal-04347756

Long-term survey of intertidal rocky shore macrobenthic community metabolism and structure after primary successionAline Migné, François Bordeyne, Dominique Davoult<p>Ecological succession involves the transition from opportunistic ephemeral species, which display a minimal variation in functional traits, to slow growing, more functionally diverse, perennial species. The present study aimed in measuring the ...Biodiversity, Colonization, Community ecology, Ecological successions, Ecosystem functioning, Experimental ecology, Marine ecologyGudrun Bornette Thomas Guillemaud, John Griffin, Ignasi Bartomeus, Dilip kumar jha , Abby Gilson , Francisco Arenas, Markus Molis , Matthew Bracken2023-12-19 15:39:21 View
12 Sep 2023
article picture

Linking intrinsic scales of ecological processes to characteristic scales of biodiversity and functioning patterns

The impact of process at different scales on diversity and ecosystem functioning: a huge challenge

Recommended by ORCID_LOGO based on reviews by Shai Pilosof, Gian Marco Palamara and 1 anonymous reviewer

Scale is a big topic in ecology [1]. Environmental variation happens at particular scales. The typical scale at which organisms disperse is species-specific, but, as a first approximation, an ensemble of similar species, for instance, trees, could be considered to share a typical dispersal scale. Finally, characteristic spatial scales of species interactions are, in general, different from the typical scales of dispersal and environmental variation. Therefore, conceptually, we can distinguish these three characteristic spatial scales associated with three different processes: species selection for a given environment (E), dispersal (D), and species interactions (I), respectively.  

From the famous species-area relation to the spatial distribution of biomass and species richness, the different macro-ecological patterns we usually study emerge from an interplay between dispersal and local interactions in a physical environment that constrains species establishment and persistence in every location. To make things even more complicated, local environments are often modified by the species that thrive in them, which establishes feedback loops.  It is usually assumed that local interactions are short-range in comparison with species dispersal, and dispersal scales are typically smaller than the scales at which the environment varies (I < D < E, see [2]), but this should not always be the case. 

The authors of this paper [2] relax this typical assumption and develop a theoretical framework to study how diversity and ecosystem functioning are affected by different relations between the typical scales governing interactions, dispersal, and environmental variation. This is a huge challenge. First, diversity and ecosystem functioning across space and time have been empirically characterized through a wide variety of macro-ecological patterns. Second, accommodating local interactions, dispersal and environmental variation and species environmental preferences to model spatiotemporal dynamics of full ecological communities can be done also in a lot of different ways. One can ask if the particular approach suggested by the authors is the best choice in the sense of producing robust results, this is, results that would be predicted by alternative modeling approaches and mathematical analyses [3]. The recommendation here is to read through and judge by yourself.  

The main unusual assumption underlying the model suggested by the authors is non-local species interactions. They introduce interaction kernels to weigh the strength of the ecological interaction with distance, which gives rise to a system of coupled integro-differential equations. This kernel is the key component that allows for control and varies the scale of ecological interactions. Although this is not new in ecology [4], and certainly has a long tradition in physics ---think about the electric or the gravity field, this approach has been widely overlooked in the development of the set of theoretical frameworks we have been using over and over again in community ecology, such as the Lotka-Volterra equations or, more recently, the metacommunity concept [5].

In Physics, classic fields have been revised to account for the fact that information cannot travel faster than light. In an analogous way, a focal individual cannot feel the presence of distant neighbors instantaneously. Therefore, non-local interactions do not exist in ecological communities. As the authors of this paper point out, they emerge in an effective way as a result of non-random movements, for instance, when individuals go regularly back and forth between environments (see [6], for an application to infectious diseases), or even migrate between regions. And, on top of this type of movement, species also tend to disperse and colonize close (or far) environments. Individual mobility and dispersal are then two types of movements, characterized by different spatial-temporal scales in general. Species dispersal, on the one hand, and individual directed movements underlying species interactions, on the other, are themselves diverse across species, but it is clear that they exist and belong to two distinct categories. 

In spite of the long and rich exchange between the authors' team and the reviewers, it was not finally clear (at least, to me and to one of the reviewers) whether the model for the spatio-temporal dynamics of the ecological community (see Eq (1) in [2]) is only presented as a coupled system of integro-differential equations on a continuous landscape for pedagogical reasons, but then modeled on a discrete regular grid for computational convenience. In the latter case, the system represents a regular network of local communities,  becomes a system of coupled ODEs, and can be numerically integrated through the use of standard algorithms. By contrast,  in the former case, the system is meant to truly represent a community that develops on continuous time and space, as in reaction-diffusion systems. In that case, one should keep in mind that numerical instabilities can arise as an artifact when integrating both local and non-local spatio-temporal systems. Spatial patterns could be then transient or simply result from these instabilities. Therefore, when analyzing spatiotemporal integro-differential equations, special attention should be paid to the use of the right numerical algorithms. The authors share all their code at https://zenodo.org/record/5543191, and all this can be checked out. In any case, the whole discussion between the authors and the reviewers has inherent value in itself, because it touches on several limitations and/or strengths of the author's approach,  and I highly recommend checking it out and reading it through.

Beyond these methodological issues, extensive model explorations for the different parameter combinations are presented. Several results are reported, but, in practice, what is then the main conclusion we could highlight here among all of them?  The authors suggest that "it will be difficult to manage landscapes to preserve biodiversity and ecosystem functioning simultaneously, despite their causative relationship", because, first, "increasing dispersal and interaction scales had opposing
effects" on these two patterns, and, second, unexpectedly, "ecosystems attained the highest biomass in scenarios which also led to the lowest levels of biodiversity". If these results come to be fully robust, this is, they pass all checks by other research teams trying to reproduce them using alternative approaches, we will have to accept that we should preserve biodiversity on its own rights and not because it enhances ecosystem functioning or provides particular beneficial services to humans. 

References

[1] Levin, S. A. 1992. The problem of pattern and scale in ecology. Ecology 73:1943–1967. https://doi.org/10.2307/1941447

[2] Yuval R. Zelnik, Matthieu Barbier, David W. Shanafelt, Michel Loreau, Rachel M. Germain. 2023. Linking intrinsic scales of ecological processes to characteristic scales of biodiversity and functioning patterns. bioRxiv, ver. 2 peer-reviewed and recommended by Peer Community in Ecology.  https://doi.org/10.1101/2021.10.11.463913

[3] Baron, J. W. and Galla, T. 2020. Dispersal-induced instability in complex ecosystems. Nature Communications  11, 6032. https://doi.org/10.1038/s41467-020-19824-4

[4] Cushing, J. M. 1977. Integrodifferential equations and delay models in population dynamics 
 Springer-Verlag, Berlin. https://doi.org/10.1007/978-3-642-93073-7

[5] M. A. Leibold, M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau, A. Gonzalez. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters, 7(7): 601-613. https://doi.org/10.1111/j.1461-0248.2004.00608.x

[6] M. Pardo-Araujo, D. García-García, D. Alonso, and F. Bartumeus. 2023. Epidemic thresholds and human mobility. Scientific reports 13 (1), 11409. https://doi.org/10.1038/s41598-023-38395-0

Linking intrinsic scales of ecological processes to characteristic scales of biodiversity and functioning patternsYuval R. Zelnik, Matthieu Barbier, David W. Shanafelt, Michel Loreau, Rachel M. Germain<p style="text-align: justify;">Ecology is a science of scale, which guides our description of both ecological processes and patterns, but we lack a systematic understanding of how process scale and pattern scale are connected. Recent calls for a ...Biodiversity, Community ecology, Dispersal & Migration, Ecosystem functioning, Landscape ecology, Theoretical ecologyDavid Alonso2021-10-13 23:24:45 View
05 Apr 2022
article picture

Late-acting self-incompatible system, preferential allogamy and delayed selfing in the heterostylous invasive populations of Ludwigia grandiflora subsp. hexapetala

Water primerose (Ludwigia grandiflora subsp. hexapetala) auto- and allogamy: an ecological perspective

Recommended by ORCID_LOGO based on reviews by Juan Arroyo, Emiliano Mora-Carrera and 1 anonymous reviewer

Invasive plant species are widely studied by the ecologist community, especially in wetlands. Indeed, alien plants are considered one of the major threats to wetland biodiversity (Reid et al., 2019). Ludwigia grandiflora subsp. hexapetala (Hook. & Arn.) G.L.Nesom & Kartesz, 2000 (Lgh) is one of them and has received particular attention for a long time (Hieda et al., 2020; Thouvenot, Haury, & Thiebaut, 2013). The ecology of this invasive species and its effect on its biotic and abiotic environment has been studied in previous works. Different processes were demonstrated to explain their invasibility such as allelopathic interference (Dandelot et al., 2008), resource competition (Gérard et al., 2014), and high phenotypic plasticity (Thouvenot, Haury, & Thiébaut, 2013), to cite a few of them. However, although vegetative reproduction is a well-known invasive process for alien plants like Lgh (Glover et al., 2015), the sexual reproduction of this species is still unclear and may help to understand the Lgh population dynamics.

Portillo Lemus et al. (2021) showed that two floral morphs of Lgh co-exist in natura, involving self-compatibility for short-styled phenotype and self-incompatibility for long-styled phenotype processes. This new article (Portillo Lemus et al., 2022) goes further and details the underlying mechanisms of the sexual reproduction of the two floral morphs.

Complementing their previous study, the authors have described a late self-incompatible process associated with the long-styled morph, which authorized a small proportion of autogamy. Although this represents a small fraction of the L-morph reproduction, it may have a considerable impact on the L-morph population dynamics. Indeed, authors report that “floral morphs are mostly found in allopatric monomorphic populations (i.e., exclusively S-morph or exclusively L-morph populations)” with a large proportion of L-morph populations compared to S-morph populations in the field. It may seem counterintuitive as L-morph mainly relies on cross-fecundation. 

Results show that L-morph autogamy mainly occurs in the fall, late in the reproduction season. Therefore, the reproduction may be ensured if no exogenous pollen reaches the stigma of L-morph individuals. It partly explains the large proportion of L-morph populations in the field. 

Beyond the description of late-acting self-incompatibility, which makes the Onagraceae a third family of Myrtales with this reproductive adaptation, the study raises several ecological questions linked to the results presented in the article. First, it seems that even if autogamy is possible, Lgh would favour allogamy, even in S-morph, through the faster development of pollen tubes from other individuals. This may confer an adaptative and evolutive advantage for the Lgh, increasing its invasive potential. The article shows this faster pollen tube development in S-morph but does not test the evolutive consequences. It is an interesting perspective for future research. It would also be interesting to describe cellular processes which recognize and then influence the speed of the pollen tube. Second, the importance of sexual reproduction vs vegetative reproduction would also provide information on the benefits of sexual dimorphism within populations. For instance, how fruit production increases the dispersal potential of Lgh would help to understand Lgh population dynamics and to propose adapted management practices (Delbart et al., 2013; Meisler, 2009).

To conclude, the study proposes a morphological, reproductive and physiological description of the Lgh sexual reproduction process. However, underlying ecological questions are well included in the article and the ecophysiological results enlighten some questions about the role of sexual reproduction in the invasiveness of Lgh. I advise the reader to pay attention to the reviewers’ comments; the debates were very constructive and, thanks to the great collaboration with the authorship, lead to an interesting paper about Lgh reproduction and with promising perspectives in ecology and invasion ecology.

References

Dandelot S, Robles C, Pech N, Cazaubon A, Verlaque R (2008) Allelopathic potential of two invasive alien Ludwigia spp. Aquatic Botany, 88, 311–316. https://doi.org/10.1016/j.aquabot.2007.12.004

Delbart E, Mahy G, Monty A (2013) Efficacité des méthodes de lutte contre le développement de cinq espèces de plantes invasives amphibies : Crassula helmsii, Hydrocotyle ranunculoides, Ludwigia grandiflora, Ludwigia peploides et Myriophyllum aquaticum (synthèse bibliographique). BASE, 17, 87–102. https://popups.uliege.be/1780-4507/index.php?id=9586

Gérard J, Brion N, Triest L (2014) Effect of water column phosphorus reduction on competitive outcome and traits of Ludwigia grandiflora and L. peploides, invasive species in Europe. Aquatic Invasions, 9, 157–166. https://doi.org/10.3391/ai.2014.9.2.04

Glover R, Drenovsky RE, Futrell CJ, Grewell BJ (2015) Clonal integration in Ludwigia hexapetala under different light regimes. Aquatic Botany, 122, 40–46. https://doi.org/10.1016/j.aquabot.2015.01.004

Hieda S, Kaneko Y, Nakagawa M, Noma N (2020) Ludwigia grandiflora (Michx.) Greuter & Burdet subsp. hexapetala (Hook. & Arn.) G. L. Nesom & Kartesz, an Invasive Aquatic Plant in Lake Biwa, the Largest Lake in Japan. Acta Phytotaxonomica et Geobotanica, 71, 65–71. https://doi.org/10.18942/apg.201911

Meisler J (2009) Controlling Ludwigia hexaplata in Northern California. Wetland Science and Practice, 26, 15–19. https://doi.org/10.1672/055.026.0404

Portillo Lemus LO, Harang M, Bozec M, Haury J, Stoeckel S, Barloy D (2022) Late-acting self-incompatible system, preferential allogamy and delayed selfing in the heteromorphic invasive populations of Ludwigia grandiflora subsp. hexapetala. bioRxiv, 2021.07.15.452457, ver. 4 peer-reviewed and recommended by Peer Community in Ecology. https://doi.org/10.1101/2021.07.15.452457

Portillo Lemus LO, Bozec M, Harang M, Coudreuse J, Haury J, Stoeckel S, Barloy D (2021) Self-incompatibility limits sexual reproduction rather than environmental conditions in an invasive water primrose. Plant-Environment Interactions, 2, 74–86. https://doi.org/10.1002/pei3.10042

Reid AJ, Carlson AK, Creed IF, Eliason EJ, Gell PA, Johnson PTJ, Kidd KA, MacCormack TJ, Olden JD, Ormerod SJ, Smol JP, Taylor WW, Tockner K, Vermaire JC, Dudgeon D, Cooke SJ (2019) Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 94, 849–873. https://doi.org/10.1111/brv.12480

Thouvenot L, Haury J, Thiebaut G (2013) A success story: water primroses, aquatic plant pests. Aquatic Conservation: Marine and Freshwater Ecosystems, 23, 790–803. https://doi.org/10.1002/aqc.2387

Thouvenot L, Haury J, Thiébaut G (2013) Seasonal plasticity of Ludwigia grandiflora under light and water depth gradients: An outdoor mesocosm experiment. Flora - Morphology, Distribution, Functional Ecology of Plants, 208, 430–437. https://doi.org/10.1016/j.flora.2013.07.004

Late-acting self-incompatible system, preferential allogamy and delayed selfing in the heterostylous invasive populations of Ludwigia grandiflora subsp. hexapetalaLuis O. Portillo Lemus, Maryline Harang, Michel Bozec, Jacques Haury, Solenn Stoeckel, Dominique Barloy<p style="text-align: justify;">Breeding system influences local population genetic structure, effective size, offspring fitness and functional variation. Determining the respective importance of self- and cross-fertilization in hermaphroditic flo...Biological invasions, Botany, Freshwater ecology, PollinationAntoine Vernay2021-07-16 09:53:50 View
10 Oct 2024
article picture

Large-scale spatio-temporal variation in vital rates and population dynamics of an alpine bird

Do look up: building a comprehensive view of population dynamics from small scale observation through citizen science

Recommended by based on reviews by Todd Arnold and 1 anonymous reviewer

Population ecologists are in the business of decrypting the drivers of variation in the abundance of organisms across space and time (Begon et al. 1986). Comprehensive studies of wild vertebrate populations which provide the necessary information on variations in vital rates in relation to environmental conditions to construct informative models of large-scale population dynamics are rare, ostensibly because of the huge effort required to monitor individuals across ecological contexts and over generations. In this current aim, Nater et al. (2024) are leading the way forward by combining distance sampling data collected through a large-scale citizen science (Fraisl et al. 2022) programme in Norway with state-of-the-art modelling approaches to build a comprehensive overview of the population dynamics of willow ptarmigan. Their work enhances our fundamental understanding of this system and provides evidence-based tools to improve its management (Williams et al. 2002). Even better, they are working for the common good, by providing an open-source workflow that should enable ecologists and managers together to predict what will happen to their favourite model organism when the planet throws its next curve ball. In the case of the ptarmigan, for example, it seems that the impact of climate change on their population dynamics will differ across the species’ distributional range, with a slower pace of life (sensu Stearns 1983) at higher latitudes and altitudes. 

On a personal note, I have often mused whether citizen science, with its inherent limits and biases, was just another sticking plaster over the ever-deeper cuts in the research budgets to finance long-term ecological research. Here, Nater et al. are doing well to convince me that we would be foolish to ignore such opportunities, particularly when citizens are engaged, motivated, with an inherent capacity for the necessary discipline to employ common protocols in a standardised fashion. A key challenge for us professional ecologists is to inculcate the next generation of citizens with a sense of their opportunity to contribute to a better understanding of the natural world.

References

Begon, Michael, John L Harper, and Colin R Townsend. 1986. Ecology: individuals, populations and communities. Blackwell Science.

Fraisl, Dilek, Gerid Hager, Baptiste Bedessem, Margaret Gold, Pen-Yuan Hsing, Finn Danielsen, Colleen B Hitchcock, et al. 2022. Citizen Science in Environmental and Ecological Sciences. Nature Reviews Methods Primers 2 (1): 64. https://doi.org/10.1038/s43586-022-00144-4

Chloé R. Nater, Francesco Frassinelli, James A. Martin, Erlend B. Nilsen (2024) Large-scale spatio-temporal variation in vital rates and population dynamics of an alpine bird. EcoEvoRxiv, ver.4 peer-reviewed and recommended by PCI Ecology https://doi.org/10.32942/X2VP6J

Stearns, S.C. 1983. The influence of size and phylogeny of covariation among life-history traits in the mammals. Oikos, 41, 173–187. https://doi.org/10.2307/3544261

Williams, Byron K, James D Nichols, and Michael J Conroy. 2002. Analysis and Management of Animal Populations. Academic Press.

Large-scale spatio-temporal variation in vital rates and population dynamics of an alpine birdChloé R. Nater, Francesco Frassinelli, James A. Martin, Erlend B. Nilsen<p>Quantifying temporal and spatial variation in animal population size and demography is a central theme in ecological research and important for directing management and policy. However, this requires field sampling at large spatial extents and ...Biodiversity, Biogeography, Conservation biology, Demography, Euring Conference, Landscape ecology, Life history, Population ecology, Spatial ecology, Metacommunities & Metapopulations, Statistical ecology, Terrestrial ecologyAidan Jonathan Mark Hewison2024-02-02 08:54:06 View
27 Apr 2021
article picture

Joint species distributions reveal the combined effects of host plants, abiotic factors and species competition as drivers of species abundances in fruit flies

Understanding the interplay between host-specificity, environmental conditions and competition through the sound application of Joint Species Distribution Models

Recommended by ORCID_LOGO based on reviews by Joaquín Calatayud and Carsten Dormann

Understanding why and how species coexist in local communities is one of the central questions in ecology. There is general agreement that species distribution and coexistence are determined by a number of key mechanisms, including the environmental requirements of species, dispersal, evolutionary constraints, resource availability and selection, metapopulation dynamics, and biotic interactions (e.g. Soberón & Nakamura 2009; Colwell & Rangel 2009; Ricklefs 2015). These factors are however intricately intertwined in a scale-structured fashion (Hortal et al. 2010; D’Amen et al. 2017), making it particularly difficult to tease apart the effects of each one of them. This could be addressed by the novel field of Joint Species Distribution Modelling (JSDM; Okasvainen & Abrego 2020), as it allows assessing the effects of several sets of factors and the co-occurrence and/or covariation in abundances of potentially interacting species at the same time (Pollock et al. 2014; Ovaskainen et al. 2016; Dormann et al. 2018). However, the development of JSDM has been hampered by the general lack of good-quality detailed data on species co-occurrences and abundances (see Hortal et al. 2015).

Facon et al. (2021) use a particularly large compilation of field surveys to study the abundance and co-occurrence of Tephritidae fruit flies in c. 400 orchards, gardens and natural areas throughout the island of Réunion. Further, they combine such information with lab data on their host-selection fundamental niche (i.e. in the absence of competitors), codifying traits of female choice and larval performances in 21 host species. They use Poisson Log-Normal models, a type of mixed model that allows one to jointly model the random effects associated with all species, and retrieve the covariations in abundance that are not explained by environmental conditions or differences in sampling effort. Then, they use a series of models to evaluate the effects on these matrices of ecological covariates (date, elevation, habitat, climate and host plant), species interactions (by comparing with a constrained residual variance-covariance matrix) and the species’ host-selection fundamental niches (through separate models for each fly species).

The eight Tephritidae species inhabiting Réunion include both generalists and specialists in Solanaceae and Cucurbitaceae with a known history of interspecific competition. Facon et al. (2021) use a comprehensive JSDM approach to assess the effects of different factors separately and altogether. This allows them to identify large effects of plant hosts and the fundamental host-selection niche on species co-occurrence, but also to show that ecological covariates and weak –though not negligible– species interactions are necessary to account for all residual variance in the matrix of joint species abundances per site. Further, they also find evidence that the fitness per host measured in the lab has a strong influence on the abundances in each host plant in the field for specialist species, but not for generalists. Indeed, the stronger effects of competitive exclusion were found in pairs of Cucurbitaceae specialist species. However, these analyses fail to provide solid grounds to assess why generalists are rarely found in Cucurbitaceae and Solanaceae. Although they argue that this may be due to Connell’s (1980) ghost of competition past (past competition that led to current niche differentiation), further data on the evolutionary history of these fruit flies is needed to assess this hypothesis.

Finding evidence for the effects of competitive interactions on species’ occurrences and spatial distributions is often difficult, perhaps because these effects occur over longer time scales than the ones usually studied by ecologists (Yackulic 2017). The work by Facon and colleagues shows that weak effects of competition can be detected also at the short ecological timescales that determine coexistence in local communities, under the virtuous combination of good-quality data and sound analytical designs that account for several aspects of species’ niches, their biotopes and their joint population responses. This adds a new dimension to the application of Hutchinson’s (1978) niche framework to understand the spatial dynamics of species and communities (see also Colwell & Rangel 2009), although further advances to incorporate dispersal-driven metacommunity dynamics (see, e.g., Ovaskainen et al. 2016; Leibold et al. 2017) are certainly needed. Nonetheless, this work shows the potential value of in-depth analyses of species coexistence based on combining good-quality field data with well-thought out JSDM applications. If many studies like this are conducted, it is likely that the uprising field of Joint Species Distribution Modelling will improve our understanding of the hierarchical relationships between the different factors affecting species coexistence in ecological communities in the near future.

 

References

Colwell RK, Rangel TF (2009) Hutchinson’s duality: The once and future niche. Proceedings of the National Academy of Sciences, 106, 19651–19658. https://doi.org/10.1073/pnas.0901650106

Connell JH (1980) Diversity and the Coevolution of Competitors, or the Ghost of Competition Past. Oikos, 35, 131–138. https://doi.org/10.2307/3544421

D’Amen M, Rahbek C, Zimmermann NE, Guisan A (2017) Spatial predictions at the community level: from current approaches to future frameworks. Biological Reviews, 92, 169–187. https://doi.org/10.1111/brv.12222

Dormann CF, Bobrowski M, Dehling DM, Harris DJ, Hartig F, Lischke H, Moretti MD, Pagel J, Pinkert S, Schleuning M, Schmidt SI, Sheppard CS, Steinbauer MJ, Zeuss D, Kraan C (2018) Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false conclusions. Global Ecology and Biogeography, 27, 1004–1016. https://doi.org/10.1111/geb.12759

Facon B, Hafsi A, Masselière MC de la, Robin S, Massol F, Dubart M, Chiquet J, Frago E, Chiroleu F, Duyck P-F, Ravigné V (2021) Joint species distributions reveal the combined effects of host plants, abiotic factors and species competition as drivers of community structure in fruit flies. bioRxiv, 2020.12.07.414326. ver. 4 peer-reviewed and recommended by Peer community in Ecology. https://doi.org/10.1101/2020.12.07.414326

Hortal J, de Bello F, Diniz-Filho JAF, Lewinsohn TM, Lobo JM, Ladle RJ (2015) Seven Shortfalls that Beset Large-Scale Knowledge of Biodiversity. Annual Review of Ecology, Evolution, and Systematics, 46, 523–549. https://doi.org/10.1146/annurev-ecolsys-112414-054400

Hortal J, Roura‐Pascual N, Sanders NJ, Rahbek C (2010) Understanding (insect) species distributions across spatial scales. Ecography, 33, 51–53. https://doi.org/10.1111/j.1600-0587.2009.06428.x

Hutchinson, G.E. (1978) An introduction to population biology. Yale University Press, New Haven, CT.

Leibold MA, Chase JM, Ernest SKM (2017) Community assembly and the functioning of ecosystems: how metacommunity processes alter ecosystems attributes. Ecology, 98, 909–919. https://doi.org/10.1002/ecy.1697

Ovaskainen O, Abrego N (2020) Joint Species Distribution Modelling: With Applications in R. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781108591720

Ovaskainen O, Roy DB, Fox R, Anderson BJ (2016) Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models. Methods in Ecology and Evolution, 7, 428–436. https://doi.org/10.1111/2041-210X.12502

Pollock LJ, Tingley R, Morris WK, Golding N, O’Hara RB, Parris KM, Vesk PA, McCarthy MA (2014) Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM). Methods in Ecology and Evolution, 5, 397–406. https://doi.org/10.1111/2041-210X.12180

Ricklefs RE (2015) Intrinsic dynamics of the regional community. Ecology Letters, 18, 497–503. https://doi.org/10.1111/ele.12431

Soberón J, Nakamura M (2009) Niches and distributional areas: Concepts, methods, and assumptions. Proceedings of the National Academy of Sciences, 106, 19644–19650. https://doi.org/10.1073/pnas.0901637106

Yackulic CB (2017) Competitive exclusion over broad spatial extents is a slow process: evidence and implications for species distribution modeling. Ecography, 40, 305–313. https://doi.org/10.1111/ecog.02836

Joint species distributions reveal the combined effects of host plants, abiotic factors and species competition as drivers of species abundances in fruit fliesBenoit Facon, Abir Hafsi, Maud Charlery de la Masselière, Stéphane Robin, François Massol, Maxime Dubart, Julien Chiquet, Enric Frago, Frédéric Chiroleu, Pierre-François Duyck & Virginie Ravigné<p style="text-align: justify;">The relative importance of ecological factors and species interactions for phytophagous insect species distributions has long been a controversial issue. Using field abundances of eight sympatric Tephritid fruit fli...Biodiversity, Coexistence, Community ecology, Competition, Herbivory, Interaction networks, Species distributionsJoaquín Hortal Carsten Dormann, Joaquín Calatayud2020-12-08 06:44:25 View
16 May 2025
article picture

Is the audience gender-blind? Smaller attendance in female talks highlights imbalanced visibility in academia

Gender matters: smaller audiences for women in academia

Recommended by ORCID_LOGO based on reviews by Silvia Beatriz Lomascolo and Letícia dos Anjos

The current lack of social diversity - that is, gender, race and ethnicity - in academia reinforces a historical pattern of exclusion, wherein the knowledge, perspectives and advances of certain groups dominate the narrative, set rhythms and agenda, while the contributions of others are minimised or overlooked. The underrepresentation of and discrimination against women in academia is a well-documented and persistent issue. Despite policies designed to increase female representation and mitigate the structural processes that lead women to abandon their academic careers (Shaw & Stanton, 2012), women scientists continue to face inequalities in authorship, publications, funding, salaries, recognition and decision-making spaces (Astegiano et al., 2019, Woolston, 2019; Fox et a. 2023; Fontanarrosa et al. 2024; Zandonà, 2022; among others). Making these inequalities visible and fostering open discussion is a critical first step toward dismantling them. In this sense, the study by Rodrigues Barreto et al. (2025) makes an important contribution. The authors examine gender bias in seminar series within the field of Ecology, Evolution and Conservation Biology at the University of São Paulo (Brazil), using audience size as an indirect measure of speaker recognition.

The most interesting and novel finding of this work is that talks given by women -especially by female professors- attract smaller audiences than those given by men counterparts, despite the women having comparable levels of academic productivity, similar career trajectories, and presenting on equivalent topics to those of their male colleagues. These results suggest that seminar culture is not gender-blind (Dupas et al., 2021) and provide a new layer of evidence on how gender-based stereotypes continue to influence the visibility and recognition of women in science.

The authors also investigated whether the implementation of affirmative actions (i.e., open calls for volunteer speakers that prioritised women) improved both the representation of female speakers and the size of their audiences. As expected, these actions did succeed in increasing the representation of women among presenters, especially at senior academic levels; however, they did not lead to a proportional rise in audience size. While the time series and number of talks considered before the implementation of affirmative actions were considerably higher than those after this policy, the comparison remains relevant given the importance and timeliness of the topic.

The authors found that women give fewer talks than men. However, as they discuss, their results do not allow them to distinguish whether this inequality is due to gender bias or to a structural gender imbalance. Through a supplementary analysis of a subset of data from the University of São Paulo community, they find some evidence that the underrepresentation of women in the academic population itself may partly explain the gender gap in the seminar series. In any case, these findings, along with similar results from other studies (e.g. Greska, 2023) raise valuable questions: Will simply increasing the number of women in academia be enough to close the recognition gap between men and women scholars? What role might affirmative actions play in attracting a wider audience or enhancing the visibility and recognition of women's work? What kinds of initiatives could change the way we acknowledge women researchers’  contributions? What could reconfigure that “recognition landscape” from a feminist perspective, i.e., one less competitive, less hierarchical, more communitarian and less individual-centered?

As the authors acknowledge, the study has limitations (e.g., its focus on a single institution, a short timeframe to assess the impact of affirmative actions), but it provides valuable evidence to initiate broader approaches that include other disciplines, institutions, experimental approaches, and intersectional perspectives.

References

Astegiano J, Sebastián-González E, Castanho C de T (2019) Unravelling the gender 465 productivity gap in science: a meta-analytical review. Royal Society Open Science 6: 466 181566. https://doi.org/10.1098/rsos.181566​

Dupas P, Modestino AS, Niederle M, Wolfers J, Collective TSD (2021) Gender and the Dynamics of Economics Seminars. Cambridge, MA: National Bureau of Economic Research. http://www.nber.org/papers/w28494.pdf

Fontanarrosa, G., Zarbá, L., Aschero, V., Dos Santos, D. A., Montellano, M. G. N. et al. (2024). Over twenty years of publications in Ecology: Over-contribution of women reveals a new dimension of gender bias. PLoS ONE 19(9): e0307813.  https://doi.org/10.1371/journal.pone.0307813

Fox CW, Meyer J, Aimé E (2023) Double-blind peer review affects reviewer ratings and 509 editor decisions at an ecology journal. Functional Ecology 37: 1144–1157. https://doi.org/10.1111/1365-2435.14259​

Greska L (2023) Women in Academia: Why and where does the pipeline leak, and how can we fix it? MIT Science Policy Review 4: 102–109. https://doi.org/10.38105/spr.xmvdiojee1​

Rodrigues Barreto J, Romitelli I, Santana PC, Aprígio Assis A.N., Pardini R, de Souza Leite M. (2025) Is the audience gender-blind? Smaller attendance in female talks highlights imbalanced visibility in academia. EcoEvoRxiv, ver.4 peer-reviewed and recommended by PCI Ecology https://doi.org/10.32942/X25607

Shaw AK, Stanton DE (2012) Leaks in the pipeline: separating demographic inertia from ongoing gender differences in academia. Proceedings of the Royal Society B: Biological Sciences 279: 3736–3741. https://doi.org/10.1098/rspb.2012.0822​

Woolston C (2019) Scientists’ salary data highlight US$18,000 gender pay gap. Nature 565: 597 527–527. https://doi.org/10.1038/d41586-019-00220-y​

Zandonà E (2022) Female ecologists are falling from the academic ladder: A call for action. 602 Perspectives in Ecology and Conservation 20: 294–299. ​​​​https://doi.org/10.1016/j.pecon.2022.04.001​

Is the audience gender-blind? Smaller attendance in female talks highlights imbalanced visibility in academiaJúlia Rodrigues Barreto, Isabella Romitelli, Pamela Cristina Santana, Ana Paula Aprígio Assis, Renata Pardini, Melina de Souza Leite<p>Although diverse perspectives are fundamental for fostering and advancing science, power relations have limited the development, propagation of ideas, and recognition of political minority groups in academia. Gender bias is one of the most well...Biodiversity, Conservation biology, Evolutionary ecology, Tropical ecologyNatalia Mariel Schroeder2024-05-30 23:00:46 View