Submit a preprint

Direct submissions to PCI Ecology from bioRxiv.org are possible using the B2J service

Latest recommendationsrsstwitter

IdTitle * Authors * Abstract * Picture * Thematic fields * RecommenderReviewersSubmission date
15 Nov 2023
article picture

The challenges of independence: ontogeny of at-sea behaviour in a long-lived seabird

On the road to adulthood: exploring progressive changes in foraging behaviour during post-fledging immaturity using remote tracking

Recommended by based on reviews by Juliet Lamb and 1 anonymous reviewer

In most vertebrate species, the period of life spanning from departure from the growing site until reaching a more advanced life stage (immature or adult) is critical. During this period, juveniles are often highly vulnerable because they have not reached the morphological, physiological and behavioural maturity levels of adults yet and are therefore at high risk of mortality, e.g. through starvation, depredation or competition (e.g. Marchetti & Price 1989, Wunderle 1991, Naef-Daenzer & Grüebler 2016). In line with this, juvenile survival is most often far lower than adult survival (e.g. Wooller et al. 1992). In species with parental care, juveniles have to acquire behavioural independence from their parents and possibly establish their own territory during this period of life. Very often, this is also the period that is least well-known in the life cycle (Cox et al. 2014, Naef-Daenzer & Grüebler 2016) because of reduced accessibility to individuals and/or adoption of low conspicuous behaviours. Therefore, our understanding of how juveniles acquire typical adult behaviours and how this progressively increases their survival prospects is still very limited (Naef-Daenzer & Grüebler 2016), and questions such as the length of this transition period or the cognitive (e.g. learning, memorization) mechanisms involved remain largely unresolved. This is particularly true regarding the acquisition of independent foraging behaviour (Marchetti & Price 1989).

Because direct observations of juvenile behaviours are usually very difficult except in specific situations or at the cost of an enormous effort, the use of remote tracking devices can be particularly appealing in this context (e.g. Ponchon et al. 2013, Kays et al. 2015). Over the past decades, technical advances have allowed the monitoring of not only individuals’ movements at both large and small spatial scales but also their activities and behaviours based on different parameters recording e.g. speed of movement or diving depth (Whitford & Klimley 2019). Device miniaturization has in particular allowed smaller species to be equipped and/or longer periods of time to be monitored (e.g. Naef-Daenzer et al. 2005). This has opened up whole fields of research, and has been particularly used on marine seabirds. In these species, individuals are most often inaccessible when at sea, representing most of the time outside (and even within) the breeding season, and the life cycle of these long-lived species can include an extended immature period (up to many years) during which most of them will remain unseen, until they come back as breeders or pre-breeders (e.g. Wooller et al. 1992, Oro & Martínez-Abraín 2009). Survival has been found to increase gradually with age in these species before reaching high values characteristic of the adult stage. However, the mechanisms underlying this increase are still to be deciphered.

The study by Delord et al. (2023) builds upon the hypothesis that juveniles gradually learn foraging techniques and movement strategies, improving their foraging efficiency, as previous data on flight parameters seemed to show in different long-lived bird species. Yet, these previous studies obtained data over a limited period of time, i.e. a few months at best. Whether these data could capture the whole dynamics of the progressive acquisition of foraging and movement skills can only be assessed by measuring behaviour over a longer time period and comparing it to similar data in adults, to account for seasonal variation in relation to both resource availability and energetic demands, e.g. due to molt.

The present study (Delord et al. 2023) addresses these questions by taking advantage of longer-lasting recordings of the location and activity of juvenile, immature and adult birds obtained simultaneously to investigate changes over time in juvenile behaviour and thereby provide hints about how young progressively acquire foraging skills. This study is performed on Amsterdam albatrosses, a highly endangered long-lived sea bird, with obvious conservation issues (Thiebot et al. 2015). The results show progressive changes in foraging effort over the first two months after departure from the birth colony, but large differences remain between life stages over a much longer time frame. They also reveal strong variations between sexes and over time in the year. Overall, this study, therefore, confirms the need for very long-term data to be collected in order to address the question of progressive behavioural maturation and associated survival consequences in such species with strongly deferred maturity. Ideally, the same individuals should be monitored over different life stages, from the juvenile period up to adulthood, but this would require further technical development to release the issue of powering duration limitation.

As reviewers emphasized in the first review round, one main challenge now remains to ascertain the outcome of the observed behavioural changes in foraging behaviour: we expect them to reflect improvement in foraging skills and thus performance of juveniles over time, but this would need to be tested. Collecting data on foraging efficiency is yet another challenge, that future technical developments may also help overcome. Importantly also, data were available only for individuals that could be caught again because the tracking device had to be retrieved from the bird. Here, a substantial fraction of the loggers (one-fifth) could not be found again (Delord et al. 2023). To what extent the birds for which no data could be obtained are a random sample of the equipped birds would also need to be assessed. The further development of remote tracking techniques allowing data to be downloaded from a long distance should help further exploration of behavioural ontogeny of juveniles while maturing and its survival consequences. Because the maturation process explored here is likely to show very different characteristics (e.g. timing and speed) in smaller / shorter-lived species (see Cox et al. 2014, Naef-Daenzer & Grüebler 2016), the development of miniaturization is also expected to allow further investigation of post-fledging behavioural maturation in a wider range of bird species. Our understanding of this crucial life phase in different types of species should thus continue to progress in the coming years.

References

Cox W. A., Thompson F. R. III, Cox A. S. & Faaborg J. 2014. Post-fledging survival in passerine birds and the value of post-fledging studies to conservation. Journal of Wildlife Management, 78: 183-193. https://doi.org/10.1002/jwmg.670

Delord K., Weimerskirch H. & Barbraud C. 2023. The challenges of independence: ontogeny of at-sea behaviour in a long-lived seabird. bioRxiv, ver. 6 peer-reviewed and recommended by Peer Community in Ecology. https://doi.org/10.1101/2021.10.23.465439

Kays R., Crofoot M. C., Jetz W. & Wikelski M. 2015. Terrestrial animal tracking as an eye on life and planet. Science, 348 (6240). https://doi.org/10.1126/science.aaa2478

Marchetti K: & Price T. 1989. Differences in the foraging of juvenile and adult birds: the importance of developmental constraints. Biological Reviews, 64: 51-70. https://doi.org/10.1111/j.1469-185X.1989.tb00638.x

Naef-Daenzer B., Fruh D., Stalder M., Wetli P. & Weise E. 2005. Miniaturization (0.2 g) and evaluation of attachment techniques of telemetry transmitters. The Journal of Experimental Biology, 208: 4063–4068. https://doi.org/10.1242/jeb.01870

Naef-Daenzer B. & Grüebler M. U. 2016. Post-fledging survival of altricial birds: ecological determinants and adaptation. Journal of Field Ornithology, 87: 227-250. https://doi.org/10.1111/jofo.12157

Oro D. & Martínez-Abraín A. 2009. Ecology and behavior of seabirds. Marine Ecology, pp.364-389.

Ponchon A., Grémillet D., Doligez B., Chambert T., Tveera T., Gonzàles-Solìs J & Boulinier T. 2013. Tracking prospecting movements involved in breeding habitat selection: insights, pitfalls and perspectives. Methods in Ecology and Evolution, 4: 143-150. https://doi.org/10.1111/j.2041-210x.2012.00259.x

Thiebot J.-B., Delord K., Barbraud C., Marteau C. & Weimerskirch H. 2015. 167 individuals versus millions of hooks: bycatch mitigation in longline fisheries underlies conservation of Amsterdam albatrosses. Aquatic Conservation 26: 674-688. https://doi.org/10.1002/aqc.2578

Whitford M & Klimley A. P. An overview of behavioral, physiological, and environmental sensors used in animal biotelemetry and biologging studies. Animal Biotelemetry, 7: 26. https://doi.org/10.1186/s40317-019-0189-z

Wooller R.D., Bradley J. S. & Croxall J. P. 1992. Long-term population studies of seabirds. Trends in Ecology and Evolution, 7: 111-114. https://doi.org/10.1016/0169-5347(92)90143-y

Wunderle J. M. 1991. Age-specific foraging proficiency in birds. Current Ornithology, 8: 273-324.

The challenges of independence: ontogeny of at-sea behaviour in a long-lived seabirdKarine Delord, Henri Weimerskirch, Christophe Barbraud<p style="text-align: justify;">The transition to independent foraging represents an important developmental stage in the life cycle of most vertebrate animals. Juveniles differ from adults in various life history traits and tend to survive less w...Behaviour & Ethology, Foraging, OntogenyBlandine Doligez2021-10-26 07:51:49 View
28 Mar 2019
article picture

Direct and transgenerational effects of an experimental heat wave on early life stages in a freshwater snail

Escargots cooked just right: telling apart the direct and indirect effects of heat waves in freashwater snails

Recommended by based on reviews by Amanda Lynn Caskenette, Kévin Tougeron and arnaud sentis

Amongst the many challenges and forms of environmental change that organisms face in our era of global change, climate change is perhaps one of the most straightforward and amenable to investigation. First, measurements of day-to-day temperatures are relatively feasible and accessible, and predictions regarding the expected trends in Earth surface temperature are probably some of the most reliable we have. It appears quite clear, in particular, that beyond the overall increase in average temperature, the heat waves locally experienced by organisms in their natural habitats are bound to become more frequent, more intense, and more long-lasting [1]. Second, it is well appreciated that temperature is a major environmental factor with strong impacts on different facets of organismal development and life-history [2-4]. These impacts have reasonably clear mechanistic underpinnings, with definite connections to biochemistry, physiology, and considerations on energetics. Third, since variation in temperature is a challenge already experienced by natural populations across their current and historical ranges, it is not a completely alien form of environmental change. Therefore, we already learnt quite a lot about it in several species, and so did the species, as they may be expected to have evolved dedicated adaptive mechanisms to respond to elevated temperatures. Last, but not least, temperature is quite amenable to being manipulated as an experimental factor.
For all these reasons, experimental studies of the consequences of increased temperature hit some of a sweetspot and are a source of very nice research, in many different organisms. The work by Leicht and Seppala [5] complements a sequence of earlier studies by this group, using the freshwater snail Lymnaea stagnalis as their model system [6-7].
In the present study, the authors investigate how a heat wave (a period of abnormally elevated temperature, here 25°C versus a normal 15°C) may have indirect effects on the next generation, through maternal effects. They question whether such indirect effects exist, and if they exist, how they compare, in terms of effect size, with the (more straightforward) direct effects observed in individuals that directly experience a heat wave. Transgenerational effects are well-known to occur following periods of physiological stress, and might thus have non negligible contributions to the overall effect of warming.
In this freshwater snail, heat has very strong direct effects: mortality increases at high temperature, but survivors grow much bigger, with a greater propensity to lay eggs and a (spectacular) three-fold increase in the number of eggs laid [6]. Considering that, it is easy to consider that transgenerational effects should be small game. And indeed, the present study also observes the big and obvious direct effects of elevated temperature: higher mortality, but greater propensity to oviposit. However, it was also found that the eggs were smaller if from mothers exposed to high temperature, with a correspondingly smaller size of hatchlings. This suggests that a heat wave causes the snails to lay more eggs, but smaller ones, reminiscent of a size-number trade-off. Unfortunately, clutch size could not be measured in this experiment, so this cannot be investigated any further. For this trait, the indirect effect may indeed be regarded as small game : eggs and hatchlings were about 15 % smaller, an effect size pretty small compared to the mammoth direct positive effect of temperature on shell length (see Figure 4 ; and also [6]). The same is true for developmental time (Figure 3).
However, for some traits the story was different. In particular, it was found that the (smaller) eggs produced from heated mothers were more likely to hatch by almost 10% (Figure 2). Here the indirect effect not only goes against the direct effect (hatching rate is lower at high temperature), but it also has similar effect size. As a consequence, taking into account both the indirect and direct effects, hatching success is essentially the same at 15°C and 25°C (Figure 2). Survival also had comparable effect sizes for direct and indirect effects. Indeed, survival was reduced by about 20% regardless of whom endured the heat stress (the focal individual or her mother; Figure 4). Interestingly, the direct and indirect effects were not quite cumulative: if a mother experienced a heat wave, heating up the offspring did not do much more damage, as though the offspring were ‘adapted’ to the warmer conditions (but keep in mind that, surprisingly, the authors’ stats did not find a significant interaction; Table 2).
At the end of the day, even though at first heat seems a relatively simple and understandable component of environmental change, this study shows how varied its effects can be effects on different components of individual fitness. The overall impact most likely is a mix of direct and indirect effects, of shifts along allocation trade-offs, and of maladaptive and adaptive responses, whose overall ecological significance is not so easy to grasp. That said, this study shows that direct and indirect (maternal) effects can sometimes go against one another and have similar intensities. Indirect effects should therefore not be overlooked in this kind of studies. It also gives a hint of what an interesting challenge it is to understand the adaptive or maladaptive nature of organism responses to elevated temperatures, and to evaluate their ultimate fitness consequences.

References

[1] Meehl, G. A., & Tebaldi, C. (2004). More intense, more frequent, and longer lasting heat waves in the 21st century. Science (New York, N.Y.), 305(5686), 994–997. doi: 10.1126/science.1098704
[2] Adamo, S. A., & Lovett, M. M. E. (2011). Some like it hot: the effects of climate change on reproduction, immune function and disease resistance in the cricket Gryllus texensis. The Journal of Experimental Biology, 214(Pt 12), 1997–2004. doi: 10.1242/jeb.056531
[3] Deutsch, C. A., Tewksbury, J. J., Tigchelaar, M., Battisti, D. S., Merrill, S. C., Huey, R. B., & Naylor, R. L. (2018). Increase in crop losses to insect pests in a warming climate. Science (New York, N.Y.), 361(6405), 916–919. doi: 10.1126/science.aat3466
[4] Sentis, A., Hemptinne, J.-L., & Brodeur, J. (2013). Effects of simulated heat waves on an experimental plant–herbivore–predator food chain. Global Change Biology, 19(3), 833–842. doi: 10.1111/gcb.12094
[5] Leicht, K., & Seppälä, O. (2019). Direct and transgenerational effects of an experimental heat wave on early life stages in a freshwater snail. BioRxiv, 449777, ver. 4 peer-reviewed and recommended by PCI Ecology. doi: 10.1101/449777
[6] Leicht, K., Seppälä, K., & Seppälä, O. (2017). Potential for adaptation to climate change: family-level variation in fitness-related traits and their responses to heat waves in a snail population. BMC Evolutionary Biology, 17(1), 140. doi: 10.1186/s12862-017-0988-x
[7] Leicht, K., Jokela, J., & Seppälä, O. (2013). An experimental heat wave changes immune defense and life history traits in a freshwater snail. Ecology and Evolution, 3(15), 4861–4871. doi: 10.1002/ece3.874

Direct and transgenerational effects of an experimental heat wave on early life stages in a freshwater snailKatja Leicht, Otto Seppälä<p>Global climate change imposes a serious threat to natural populations of many species. Estimates of the effects of climate change‐mediated environmental stresses are, however, often based only on their direct effects on organisms, and neglect t...Climate changevincent calcagno2018-10-22 22:19:22 View
04 Sep 2019
article picture

Gene expression plasticity and frontloading promote thermotolerance in Pocillopora corals

Transcriptomics of thermal stress response in corals

Recommended by based on reviews by Mar Sobral

Climate change presents a challenge to many life forms and the resulting loss of biodiversity will critically depend on the ability of organisms to timely respond to a changing environment. Shifts in ecological parameters have repeatedly been attributed to global warming, with the effectiveness of these responses varying among species [1, 2]. Organisms do not only have to face a global increase in mean temperatures, but a complex interplay with another crucial but largely understudied aspect of climate change: thermal fluctuations. Understanding the mechanisms underlying adaptation to thermal fluctuations is thus a timely and critical challenge.
Coral reefs are among the most threaten ecosystems in the context of current global changes [3]. Brener-Raffalli and colleagues [4] provided a very complete study digging into the physiological, symbiont-based and transcriptomic mechanisms underlying response of corals to temperature changes. They used an experimental approach, following the heat stress response of coral colonies from different species of the genus Pocillopora. While the symbiont community composition did not significantly change facing exposure to warmer temperatures, the authors provided evidence for transcriptomic changes especially linked to stress response genes that may underlie plastic responses to heat stress.
The authors furthermore investigated the thermal stress response of corals originating from two sites differing in their natural thermal regimes, and found that they differ in the extent and nature of plastic response, including the expression of gene regulation factors and the basal expression level of some genes. These two sites also differ in a variety of aspects, including the focal coral species, which precludes from concluding about the role of thermal regime adaptation into the differences observed. However, these results still highlight a very interesting and important direction deserving further investigation [5], and point out the importance of variability in thermal stress response among localities [6] that might potentially mediate global warming consequences on coral reefs.

References

[1] Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), 37–42. doi: 10.1038/nature01286
[2] Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R., … Zust, A. (2006). European phenological response to climate change matches the warming pattern. Global Change Biology, 12(10), 1969–1976. doi: 10.1111/j.1365-2486.2006.01193.x
[3] Bellwood, D. R., Hughes, T. P., Folke, C., & Nyström, M. (2004). Confronting the coral reef crisis. Nature, 429(6994), 827–833. doi: 10.1038/nature02691
[4] Brener-Raffalli, K., Vidal-Dupiol, J., Adjeroud, M., Rey, O., Romans, P., Bonhomme, F., Pratlong, M., Haguenauer, A., Pillot, R., Feuillassier, L., Claereboudt, M., Magalon, H., Gélin, P., Pontarotti, P., Aurelle, D., Mitta, G. and Toulza, E. (2019). Gene expression plasticity and frontloading promote thermotolerance in Pocillopora corals. BioRxiv, 398602, ver 4 peer-reviewed and recommended by PCI Ecology. doi: 10.1101/398602
[5] Kenkel, Carly D., and Matz, M. V. (2017). Gene expression plasticity as a mechanism of coral adaptation to a variable environment. Nature Ecology and Evolution, 1(1), 0014. doi: 10.1038/s41559-016-0014
[6] Kenkel, C. D., Meyer, E., and Matz, M. V. (2013). Gene expression under chronic heat stress in populations of the mustard hill coral (Porites astreoides) from different thermal environments. Molecular Ecology, 22(16), 4322–4334. doi: 10.1111/mec.12390

Gene expression plasticity and frontloading promote thermotolerance in Pocillopora coralsK. Brener-Raffalli, J. Vidal-Dupiol, M. Adjeroud, O. Rey, P. Romans, F. Bonhomme, M. Pratlong, A. Haguenauer, R. Pillot, L. Feuillassier, M. Claereboudt, H. Magalon, P. Gélin, P. Pontarotti, D. Aurelle, G. Mitta, E. Toulza<p>Ecosystems worldwide are suffering from climate change. Coral reef ecosystems are globally threatened by increasing sea surface temperatures. However, gene expression plasticity provides the potential for organisms to respond rapidly and effect...Climate change, Evolutionary ecology, Marine ecology, Molecular ecology, Phenotypic plasticity, SymbiosisStaffan Jacob2018-08-29 10:46:55 View
06 Oct 2020
article picture

Does space use behavior relate to exploration in a species that is rapidly expanding its geographic range?

Explore and move: a key to success in a changing world?

Recommended by based on reviews by Joe Nocera, Marion Nicolaus and Laure Cauchard

Changes in the spatial range of many species are one of the major consequences of the profound alteration of environmental conditions due to human activities. Some species expand, sometimes spectacularly during invasions; others decline; some shift. Because these changes result in local biodiversity loss (whether local species go extinct or are replaced by colonizing ones), understanding the factors driving spatial range dynamics appears crucial to predict biodiversity dynamics. Identifying the factors that shape individual movement is a main step towards such understanding. The study described in this preregistration (McCune et al. 2020) falls within this context by testing possible links between individual exploration behaviour and movements related to daily space use in an avian study model currently rapidly expanding, the great-tailed grackle (Quiscalus mexicanus).

Movement and exploration: which direction(s) for the link between exploration and dispersal?
Individuals are known to differ in their tendency to explore the environment (Réale et al. 2007; Wolf and Weissing 2012) and therefore in their motivation to move. Accordingly, exploration has been shown to relate to dispersal behaviour, i.e. movements between breeding sites (Dingemanse et al. 2003, Le Galliard et al. 2011, Rasmussen and Belk 2012; reviews in Cote et al. 2010, Ronce et al. 2012). Yet, the mechanisms underlying this link often remain unclear, due to the correlative nature of the data. A classical assumption is that dispersers may benefit from a high capacity to explore, allowing them to familiarize quicker with their new environment once reached, thus alleviating dispersal costs (Bonte et al. 2012). The association between dispersal and exploration would in this case result from selection for this combination of traits (Ronce et al. 2012), even though dispersal event itself may be independent from (and precede the effect of) exploration behaviour. Alternatively (but not exclusively), dispersal may simply be the final outcome of longer movements by individuals exploring larger ranges (Badyaev et al. 1996, Schliehe-Diecks et al. 2012). In the absence of easy ways to manipulate dispersal behaviour, on the one hand, and exploration tendency, on the other hand, investigating detailed, small-scale individual movements in relation to exploration should thus shed light on which processes may yield the observed relations between exploration as an individual personality trait and large-scale, long-term movements, such as dispersal, underlying species range dynamics.
In this project, the exploration behaviour of grackles will be measured in controlled conditions using standardized tests in captivity (McCune et al. 2019) before individuals are released and their daily space use behaviour will then be measured using remote tracking over long time periods (McCune et al. 2020). Importantly, these coupled measures will be obtained for individuals captured in three different populations: within the historical range of the species, in the middle of its expanding range and at the edge of the range (McCune et al. 2020). Therefore, the project will test (i) whether daily space use of individuals is linked to their intrinsic exploration tendency and (ii) whether space use differs between individuals from different populations along the expanding range. The preregistration echoes a complementary project by the same team that will focus on exploration and test (iii) whether exploration tendency differs between individuals from these different populations. Taken together, these three analyses will therefore provide solid background information to assess the role of exploration in the individuals’ decisions leading to movement and range dynamics in this species.
As underlined in the preregistration, previous studies addressing the links between individual exploration behaviour and movements have mostly focused on dispersal. A first type of studies have (as will be done here) measured exploration behaviour of individuals, often in captivity (Dingemanse et al. 2003, Korsten et al. 2013) but also in the wild (Rasmussen and Belk 2012, Debeffe et al. 2013), and related these measures to subsequent dispersal behaviour. The (often implicit) underlying assumption is that more exploratory individuals will be more likely to move further, explore different habitats and thus end up breeding farther than less explorative ones. In other words, exploration tendency precedes and drives dispersal. Sometimes, exploratory behaviour is measured on individuals of known dispersal status, i.e. after the dispersal event (Hoset et al. 2011), in which case selection for certain exploration phenotypes among dispersers may already have occurred. Besides this first approach, another type of studies have measured ‘exploration’ behaviour under the form of prospecting movements of individuals and linked these movements to subsequent dispersal (often in the context of habitat selection). While these studies were in the past based on direct thus potentially biased observations (Reed et al. 1999), they now rely more and more on technological advances using (miniaturized) remote tracking devices (Ponchon et al. 2013) that provide far more complete and unbiased movement data, and sometimes also complementary measures of individuals’ internal state. In this case, the implicit assumption is that individuals prospecting farther and/or in more habitat patches will be more likely to settle in a site located farther away from their departure site, because of a more exhaustive sampling of possible sites allowing individuals to identify higher-quality sites (Badyaev et al. 1996). In other words, exploration tendency would not directly lead to higher movements or longer distances, but would allow individuals to optimize their habitat choice among more numerous options, thus leading to an increased dispersal probability or distance; the relation between exploration and dispersal would thus be indirect. Prospecting studies address more closely the underlying mechanisms of movement; however, they cannot easily separate intrinsic individual exploratory tendency from the prospecting movements themselves, with potential feedback effects of the information already gathered on future exploration of other sites or patches, thus on subsequent movements.
By focusing on individual daily space use movements as a mechanistic approach to understand large-scale movements potentially involved in colonization and range expansion, the grackle study described in this preregistration (McCune et al. 2020) will thus contribute to bridge the knowledge gaps between exploration and dispersal. By linking exploration measures obtained from a battery of standardized tests conducted in controlled conditions to individual daily space use and movements recorded in the wild, the grackle project is set in between previous studies addressing the links between exploration and dispersal: it will document exploration in a separate and independent context with respect to the movements themselves, and it will use a mechanistic view of detailed movements by the same individuals in the wild to explore potential implications for dispersal and range expansion. Testing differences between the three study populations over the species range will indeed inform about potential large-scale, population implications of among-individual variation in the link between exploration and movements. Because this study will only measure already settled adult individuals whose previous history is unknown, there will nevertheless be no direct possible exploration of the link with either previous or subsequent dispersal behaviour. Thus, the potential links studied here relate more directly to post-dispersal benefits of exploration for an optimal exploitation of the new environment. Yet, if exploration is a life-long personality trait linked to daily movement patterns, it may also relate to natal dispersal movements in young individuals.

Evolutionary and conservation perspectives
If the results of the project reveal that exploration tendency and daily space use movements are indeed linked, and that individuals from populations across the species range differ in these traits, new questions will emerge. A first question would be whether such among-individual differences are at the origin of range expansion or rather one of its consequences since, again, we deal with correlative data here. In other words, individuals may differ in exploration tendency, and this may confer them different ability to move around, find and colonize new habitats; or individuals may show differences in exploration following arrival in a new habitat, either because more explorative individuals gain fitness benefits and are thus selected, or because of behavioural plasticity and post-colonization adjustment of exploration behaviour when facing new ecological and social conditions in the new environment. Another open question relates to the link between daily space use and dispersal: is dispersal a by-product of higher daily movements that allow individuals to discover new favorable places where to settle? Exploring this link could involve measuring just fledged individuals before natal dispersal occurs and/or individuals chosen according to their own dispersal history, and this would then imply long-term population monitoring as an efficient (but constraining) tool to address such questions. Finally, assessing the fitness consequences of the link between exploration and space use behaviour, and whether these consequences differ between populations along the range expansion, would also be needed to understand the contribution of this link to the invasion success of this species.
The study model chosen for this project is a rapidly expanding species. Importantly, however, and as emphasized in the preregistration, documenting links between exploration and daily space use patterns as well as differences between populations with different trajectories can provide crucial information in general to understand population persistence in response to global climate and landscape changes, both regarding invasion ability or extinction risk. The information should be key to assess the probability that a species may decline, persist or expand in studies addressing biodiversity and community dynamics in a changing world.

References

Badayev, A. V., Martin, T. E and Etges, W. J. 1996. Habitat sampling and habitat selection by female wild turkeys: ecological correlates and reproductive consequences. Auk 113: 636-646. doi: https://doi.org/10.2307/4088984
Bonte, D. et al. 2012. Costs of dispersal. Biological Reviews 87: 290-312. doi: https://doi.org/10.1111/j.1469-185X.2011.00201.x
Cote, J., Clobert, J., Brodin, T., Fogarty, S. and Sih, A. 2010. Personality-dependent dispersal: characterization, ontogeny and consequences for spatially structured populations. Philosophical Transactions of the Royal Society B 365: 4065-4576. doi: https://doi.org/10.1098/rstb.2010.0176
Debeffe, L., Morellet, N., Cargnelutti, B., Lourtet, B., Coulon, A., Gaillard, J.-M., Bon, R. and Hewison A. J. M. 2013. Exploration as a key component of natal dispersal: dispersers explore more than philopatric individuals in roe deer. Animal Behaviour 86: 143-151. doi: https://doi.org/10.1016/j.anbehav.2013.05.005
Dingemanse, N. J., Both, C., van Noordwijk, A. J., Rutten, A. L. and Drent, P. J. 2003. Natal dispersal and personalities in great tits (Parus major). Proceedings of the Royal Society B 270: 741-747. doi: https://doi.org/10.1098/rspb.2002.2300
Hoset, K. S., Ferchaud, A.-L., Dufour, F., Mersch, D., Cote, J. and Le Galliard, J.-F. 2011. Natal dispersal correlates with behavioral traits that are not consistent across early life stages. Behavioral Ecology 22: 176–183. doi: https://doi.org/10.1093/beheco/arq188
Korsten, P., van Overveld, T., Adriaensen, F. and Matthysen, E. 2013. Genetic integration of local dispersal and exploratory behaviour in a wild bird. Nature Communications 4: 2362. doi: https://doi.org/10.1038/ncomms3362
Le Galliard, J.-F., Rémy, A., Ims, R. A. and Lambin, X. 2011. Patterns and processes of dispersal behaviour in arvicoline rodents. Molecular Ecology 21: 505-523. doi: https://doi.org/10.1111/j.1365-294X.2011.05410.x
McCune K, Ross C, Folsom M, Bergeron L, Logan CJ. 2020. Does space use behavior relate to exploration in a species that is rapidly expanding its geographic range? http://corinalogan.com/Preregistrations/gspaceuse.html In principle acceptance by PCI Ecology of the version on 23 Sep 2020 https://github.com/corinalogan/grackles/blob/master/Files/Preregistrations/gspaceuse.Rmd.
McCune K, MacPherson M, Rowney C, Bergeron L, Folsom M, Logan CJ. 2019. Is behavioral flexibility linked with exploration, but not boldness, persistence, or motor diversity? (http://corinalogan.com/Preregistrations/gexploration.html) In principle acceptance by PCI Ecology of the version on 27 Mar 2019 https://github.com/corinalogan/grackles/blob/master/Files/Preregistrations/gexploration.Rmd
Ponchon, A., Grémillet, D., Doligez, B., Chambert, T., Tveraa, T., González-Solís, J. and Boulinier, T. 2013. Tracking prospecting movements involved in breeding habitat selection: insights, pitfalls and perspectives. Methods in Ecology and Evolution 4: 143-150. doi: https://doi.org/10.1111/j.2041-210x.2012.00259.x
Rasmussen, J. E. and Belk, M. C. 2012. Dispersal behavior correlates with personality of a North American fish. Current Zoology 58: 260–270. doi: https://doi.org/10.1093/CZOOLO%2F58.2.260
Réale, D., Reader, S. M., Sol, D., McDougall, P. T. and Dingemanse, N. J. 2007. Integrating animal temperament within ecology and evolution. Biological Reviews 82: 291-318. doi: https://doi.org/10.1111/j.1469-185x.2007.00010.x
Reed, J. M., Boulinier, T., Danchin, E. and Oring, L. W. 1999. Informed dispersal: prospecting by birds for breeding sites. Current Ornithology 15: 189-259. doi: https://doi.org/10.1007/978-1-4757-4901-4_5
Ronce, O. and Clobert, J. 2012. Dispersal syndromes. pp. 119-138 In Dispersal Ecology and Evolution (eds. Clobert, J., Baguette, M., Benton, T. G. and Bullock, J. M.), pp. 119-138. Oxford University Press.
Schliehe-Diecks, S., Eberle, M. and Kappeler, P. M. 2012. Walk the line - dispersal movements of gray mouse lemurs (Microcebus murinus). Behavioral Ecology and Sociobiology 66: 1175-1185. doi: https://dx.doi.org/10.1007%2Fs00265-012-1371-y
Wolf, M. and Weissing, F. J. 2012. Animal personalities: consequences for ecology and evolution. Trends in Ecology and Evolution 27: 452-461. doi: https://doi.org/10.1016/j.tree.2012.05.001

Does space use behavior relate to exploration in a species that is rapidly expanding its geographic range?Kelsey B. McCune, Cody Ross, Melissa Folsom, Luisa Bergeron, Corina LoganGreat-tailed grackles (Quiscalus mexicanus) are rapidly expanding their geographic range (Wehtje 2003). Range expansion could be facilitated by consistent behavioural differences between individuals on the range edge and those in other parts of th...Behaviour & Ethology, Biological invasions, Conservation biology, Habitat selection, Phenotypic plasticity, Preregistrations, Spatial ecology, Metacommunities & MetapopulationsBlandine Doligez2019-09-30 19:27:40 View
26 Mar 2019
article picture

Is behavioral flexibility linked with exploration, but not boldness, persistence, or motor diversity?

Probing behaviors correlated with behavioral flexibility

Recommended by ORCID_LOGO based on reviews by 2 anonymous reviewers

Behavioral plasticity, which is a subset of phenotypic plasticity, is an important component of foraging, defense against predators, mating, and many other behaviors. More specifically, behavioral flexibility, in this study, captures how quickly individuals adapt to new circumstances. In cases where individuals disperse to new environments, which often occurs in range expansions, behavioral flexibility is likely crucial to the chance that individuals can establish in these environments. Thus, it is important to understand how best to measure behavioral flexibility and how measures of such flexibility might vary across individuals and behavioral contexts and with other measures of learning and problem solving.
In this preregistration, Logan and colleagues propose to use a long-term study of the great-tailed grackle to measure how much they can manipulate behavioral flexibility in a reversal learning task, how much behavioral flexibility in one task predicts flexibility in another task and in problem solving a new task, and how robust these patterns are within individuals and across tasks. Logan and colleagues lay out their hypotheses and predictions for each experiment in a clear and concise manner. They also are very clear about the details of their study system, such as how they determined the number of trials they use in their learning reversal experiments, and how those details have influenced their experimental design. Further, given that the preregistration uses RMarkdown and is stored on GitHub (as are other studies in the larger project), their statistical code and its history of modification are easily available. This is a crucial component of making research more reproducible, which is a recent emphasis in behavioral sciences more broadly.
Reviewers of this preregistration found the study of substantial merit. The authors have responded to the reviewers' comments and their revisions have made the preregistration much clearer and cogent. I am happy to recommend this preregistration.

Is behavioral flexibility linked with exploration, but not boldness, persistence, or motor diversity?Kelsey McCune, Carolyn Rowney, Luisa Bergeron, Corina LoganThis is a PREREGISTRATION. The DOI was issued by OSF and refers to the whole GitHub repository, which contains multiple files. The specific file we are submitting is g_exploration.Rmd, which is easily accessible at GitHub at https://github.com/cor...Behaviour & Ethology, Preregistrations, ZoologyJeremy Van Cleve2018-09-27 03:35:12 View
12 Oct 2019
article picture

Investigating the use of learning mechanisms in a species that is rapidly expanding its geographic range

How would variation in environmental predictability affect the use of different learning mechanisms in a social bird?

Recommended by based on reviews by Matthew Petelle and 1 anonymous reviewer

In their pre-registered paper [1], McCune and colleagues propose a field-based study of social versus individual learning mechanisms in an avian species (great-tailed grackles) that has been expanding its geographic range. The study forms part of a longer-term project that addresses various aspects of this species’ behaviour and biology, and the experience of the team is clear from the preprint. Assessing variation in learning mechanisms in different sections of the grackles’ distribution range, the researchers will investigate how individual learning and social transmission may impact learning about novel challenges in the environment. Considering that this is a social species, the authors expect both individual learning and social transmission to occur, when groups of grackles encounter new challenges/ opportunities in the wild. This in itself is not a very unusual idea to test [2, 3], but the authors are rigorously distinguishing between imitation, emulation, local enhancement, and social enhancement. Such rigour is certainly valuable in studies of cognition in the wild.
Further, the authors predict that the contribution of individual versus social learning could vary between populations, as the core may contain fewer unfamiliar/novel stimuli than the edge, where artificial sources of water (for example) may be more common. They make an argument that the core, middle, and edge populations would experience differing levels of environmental predictability. If true, their field experiments could yield very novel results on how changes in environmental predictability affect social/individual learning in a single study species. Their data would then give unusual insights into the ecological value of individual learning and distinct forms of social learning – something that is not easy to test in wild animals. The authors consider a variety of alternative hypotheses that may ultimately explain their findings, and clarify their methods and analyses in fine detail. The authors also set out limitations clearly, and give a thorough account of their approaches and thinking.
The reviewers and I have a still-unanswered question, which is central to the study: what is the predictability or unpredictability of the core versus edge environments? Although the authors have explained similarities and distinctions between the different sections of the grackles’ range, their description feels a bit vague -- it's not as rigorous or well-defined as the rest of the paper. Such a lack of definition may be inevitable in the limitations of a preprint, but ultimately it does suggest that there may be real uncertainty about the qualitative differences between the core, edge, and middle environments. The authors do explain that a lack of variation in individual responses to the field experiments would preclude the testing of further hypothesis, but do not mention how a salient lack of variation in novelty/ predictability between the environments could impact their hypotheses.
An assessment/quantification of the rate at which the different populations of grackles encounter novel stimuli would be a cornerstone of the success of this proposed study. Certainly, the authors cannot address this in much more detail during the preprint stage, but they need to consider how to best assess/describe differences before starting the full study. Such an assessment could take the form of either a GIS desktop study (comparing, for example, rates of dam/canal construction in core versus edge sections of the distribution range), or observational/ movement data contrasting how frequently members of core versus edge populations encounter artificial sources of water/food in a given month/year. Considering the long-term nature of the larger project, it is possible that these data are already available, but I am speculating. I would highly recommend that such an assessment be undertaken, beyond the mere mention of expected differences. This would solidify the central idea that there are concrete differences between the environments.
Despite this concern, the authors attended well to the comments and recommendations of the two reviewers – both experts in cognitive ecology. It is a preprint showing clear thinking and a consideration of most of the challenges that may be encountered during the course of the study. My own opinion and the estimations of the two reviewers all underscore the originality and value of this project – this should be a very valuable and potentially novel study. I look forward to seeing the outcomes of the research.

References

[1] McCune, K. B., McElreath, R., and Logan, C. J. (2019). Investigating the use of learning mechanisms in a species that is rapidly expanding its geographic range. In principle recommendation by Peer Community In Ecology. corinalogan.com/Preregistrations/g_sociallearning.html
[2] Benson-Amram, S. and Holekamp, K. E. (2012). Innovative problem solving by wild spotted hyenas. Proceedings of the Royal Society B: Biological Sciences, 279(1744), 4087–4095. doi: 10.1098/rspb.2012.1450
[3] Federspiel, I. G., Boeckle, M., von Bayern, A. M. P. and Emery, N. J. (2019). Exploring individual and social learning in jackdaws (Corvus monedula). Learning & Behavior, 47(3), 258–270. doi: 10.3758/s13420-019-00383-8

Investigating the use of learning mechanisms in a species that is rapidly expanding its geographic rangeKelsey McCune, Richard McElreath, Corina LoganThis is one of many studies planned for our long-term research on the role of behavior and learning in rapid geographic range expansions. Project background: Behavioral flexibility, the ability to change behavior when circumstances change based on...Behaviour & Ethology, Eco-evolutionary dynamics, Foraging, Preregistrations, Social structure, Spatial ecology, Metacommunities & Metapopulations, ZoologyAliza le Roux2019-07-23 18:45:20 View
08 Jan 2020
article picture

Studies of NH4+ and NO3- uptake ability of subalpine plants and resource-use strategy identified by their functional traits

Nitrate or not nitrate. That is the question

Recommended by based on reviews by Vincent Maire and 1 anonymous reviewer

The article by Legay et al. [1] addresses two main issues: the links between belowground and aboveground plant traits and the links between plant strategies (as defined by these traits) and the capacity to absorb nitrate and ammonium. I recommend this work because these are important and current issues. The literature on plant traits is extremely rich and the existence of a leaf economic spectrum linked to a gradient between conservative and acquisitive plants is now extremely well established [2-3]. Many teams are now working on belowground traits and possible links with the aboveground gradients [4-5]. It seems indeed that there is a root economic spectrum but this spectrum is apparently less pronounced than the leaf economic spectrum. The existence of links between the two spectrums are still controversial and are likely not universal as suggested by discrepant results and after all a plant could have a conservative strategy aboveground and an acquisitive strategy belowground (or vice-versa) because, indeed, constraints are different belowground and aboveground (for example because in given ecosystem/vegetation type light may be abundant but not water or mineral nutrients). The various results obtained also suggest that we do not full understand the diversity of belowground strategies, what is at stake with these strategies, and the links with root characteristics.
Each time I give a conference on the work we are carrying out on African grasses that likely absorb ammonium preferentially because they inhibit nitrification [6-7], somebody asks me a question about the fact that plant essentially absorb nitrate because ammonium is toxic and nitrate more available in the soil. The present article confirms that this is not the case and that, though there are currently some teams working on the subject, we do not really know for the moment whether plants absorb nitrate or ammonium, in which proportion, how plastic this proportion is within individuals and within species. This subject seems to me crucial because it is linked to (1) the capacity of ecosystems to conserve nitrogen [8], because nitrate, much more than ammonium, goes out of ecosystems through leaching and denitrification, (2) to carbon cycling and plant energy budget because absorbing nitrate requires spending mucho more energy than absorbing ammonium because nitrate must be reduced before being incorporated in plant biomass, which is very energy costly. These two issues are naturally very relevant to develop efficient cropping systems in terms of carbon and nitrogen.
Interestingly, the present article, comparing three grass species in different sites, suggests that there is no trade-off between the absorption of nitrate and ammonium: more acquisitive individuals tend to absorb more ammonium and nitrate. This is contrary to hypotheses we made to predict the outcome of competition between plants absorbing nitrate and ammonium in different proportions [9] but should be tested in the future comparing many different types of plants. The results also suggest that more conservative plants absorb relatively more ammonium, which makes sense because this allows them to spare the energy necessary to reduce nitrate. This leads to the question of the effect of these strategies on nitrogen retention within the ecosystem. If nitrification is high (low), absorbing ammonium is not efficient and likely leads to high (low) nitrogen losses. This should be tested in the future. Moreover, the authors have measured the absorption of nitrate and ammonium through measurements at the root scale on cut roots. This should be complemented by measurements at the whole plant scale.

References

[1] Legay, N., Grassein, F., Arnoldi, C., Segura, R., Laîné, P., Lavorel, S. and Clément, J.-C. (2020). Studies of NH4+ and NO3- uptake ability of subalpine plants and resource-use strategy identified by their functional traits. bioRxiv, 372235, ver. 4 peer-reviewed and recommended by PCI Ecology. doi: 10.1101/372235
[2] Shipley, B., Lechowicz, M.J., Wright, I. & Reich, P.B. (2006) Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology, 87, 535-541. doi: 10.1890/05-1051
[3] Reich, P.B. (2014) The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J. Ecol., 102, 275-301. doi: 10.1111/1365-2745.12211
[4] Maire, V., Gross, N., Pontes, L.D.S., Picon-Cochard, C. & Soussana, J.F. (2009) Trade-off between root nitrogen acquisition and shoot nitrogen utilization across 13 co-occurring pasture grass species. Func. Ecol., 23, 668-679. doi: 10.1111/j.1365-2435.2009.01557.x
[5] Roumet, C., Birouste, M., Picon-Cochard, C., Ghestem, M., Osman, N., Vrignon-Brenas, S., Cao, K.F. & Stokes, A. (2016) Root structure-function relationships in 74 species: evidence of a root economics spectrum related to carbon economy. New. Phytol., 210, 815-826. doi: 10.1111/nph.13828
[6] Lata, J.-C., Degrange, V., Raynaud, X., Maron, P.-A., Lensi, R. & Abbadie, L. (2004) Grass populations control nitrification in savanna soils. Funct. Ecol., 18, 605-611. doi: 10.1111/j.0269-8463.2004.00880.x
[7] Srikanthasamy, T., Leloup, J., N’Dri, A.B., Barot, S., Gervaix, J., Koné, A.W., Koffi, K.F., Le Roux, X., Raynaud, X. & Lata, J.-C. (2018) Contrasting effects of grasses and trees on microbial N-cycling in an African humid savanna. Soil Biol. Biochem., 117, 153-163. doi: 10.1016/j.soilbio.2017.11.016
[8] Boudsocq, S., Lata, J.C., Mathieu, J., Abbadie, L. & Barot, S. (2009) Modelling approach to analyze the effects of nitrification inhibition on primary production. Func. Ecol., 23, 220-230. doi: 10.1111/j.1365-2435.2008.01476.x
[9] Boudsocq, S., Niboyet, A., Lata, J.-C., Raynaud, X., Loeuille, N., Mathieu, J., Blouin, M., Abbadie, L. & Barot, S. (2012) Plant preference for ammonium versus nitrate: a neglected determinant of ecosystem functioning? Am. Nat., 180, 60-69. doi: 10.1086/665997

Studies of NH4+ and NO3- uptake ability of subalpine plants and resource-use strategy identified by their functional traitsLegay Nicolas, Grassein Fabrice, Arnoldi Cindy, Segura Raphaël, Laîné Philippe, Lavorel Sandra, Clément Jean-Christophe<p>The leaf economics spectrum (LES) is based on a suite of leaf traits related to plant functioning and ranges from resource-conservative to resource-acquisitive strategies. However, the relationships with root traits, and the associated belowgro...Community ecology, Physiology, Terrestrial ecologySébastien Barot2018-07-19 14:22:28 View
15 May 2023
article picture

Behavioral flexibility is manipulable and it improves flexibility and innovativeness in a new context

An experiment to improve our understanding of the link between behavioral flexibility and innovativeness

Recommended by ORCID_LOGO based on reviews by Maxime Dahirel, Andrea Griffin, Aliza le Roux and 1 anonymous reviewer

Whether individuals are able to cope with new environmental conditions, and whether this ability can be improved, is certainly of great interest in our changing world. One way to cope with new conditions is through behavioral flexibility, which can be defined as “the ability to adapt behavior to new circumstances through packaging information and making it available to other cognitive processes” (Logan et al. 2023). Flexibility is predicted to be positively correlated with innovativeness, the ability to create a new behavior or use an existing behavior in a few situations (Griffin & Guez 2014). 
The post-study manuscript by Logan et al. (2023) proposes to test flexibility manipulability, and the relationship between flexibility and innovativeness. The authors did so with an experimental study on great-tailed grackles (Quiscalus mexicanus), an expanding species in the US, known to be flexible. 
The authors used serial reversal learning to investigate (1) whether behavioral flexibility, as measured by reversal learning using tubes of different shades, is manipulable; (2) whether manipulating (improving/training) behavioral flexibility improves flexibility and innovativeness in new contexts; (3) the type of learning strategy used by the individuals throughout the serial reversals.
The study described in this manuscript was pre-registered in Logan et al. (2019) and received in-principle recommendation on 26 Mar 2019 (Coulon 2019). One hypothesis from this original preregistration will be treated in a separate manuscript.
Among several interesting results, what I found most striking is that flexibility, in this species, seems to be a trait that is acquired by experience (vs. inherent to the individual). This opens exciting interrogations on the role of social learning, and on the impact of rapid environmental changes (which may force the individuals to experiment new ways to access to resources, for example), on individual flexibility and adaptability to new conditions. 
 
REFERENCES

Coulon A (2019) Can context changes improve behavioral flexibility? Towards a better understanding of species adaptability to environmental changes. Peer Community in Ecology, 100019. https://doi.org/10.24072/pci.ecology.100019

Griffin, A. S., & Guez, D. (2014). Innovation and problem solving: A review of common mechanisms. Behavioural Processes, 109, 121–134. https://doi.org/10.1016/j.beproc.2014.08.027

Logan C, Rowney C, Bergeron L, Seitz B, Blaisdell A, Johnson-Ulrich Z, McCune K (2019)
Is behavioral flexibility manipulatable and, if so, does it improve flexibility and problem solving in a new context? In Principle Recommendation 2019. PCI Ecology. http://corinalogan.com/Preregistrations/g_flexmanip.html

Logan CJ, Lukas D, Blaisdell AP, Johnson-Ulrich Z, MacPherson M, Seitz B, Sevchik A, McCune KB (2023) Behavioral flexibility is manipulable and it improves flexibility and innovativeness in a new context. EcoEcoRxiv, version 5 peer-reviewed and recommended by Peer Community in Ecology. https://doi.org/10.32942/osf.io/5z8xs

Behavioral flexibility is manipulable and it improves flexibility and innovativeness in a new contextLogan CJ, Lukas D, Blaisdell AP, Johnson-Ulrich Z, MacPherson M, Seitz BM, Sevchik A, McCune KB<p style="text-align: justify;">Behavioral flexibility, the ability to adapt behavior to new circumstances, is thought to play an important role in a species’ ability to successfully adapt to new environments and expand its geographic range. Howev...Behaviour & Ethology, Preregistrations, ZoologyAurélie Coulon2022-01-13 19:08:52 View
06 Oct 2020
article picture

Implementing a rapid geographic range expansion - the role of behavior and habitat changes

The role of behavior and habitat availability on species geographic expansion

Recommended by ORCID_LOGO based on reviews by Caroline Marie Jeanne Yvonne Nieberding, Pizza Ka Yee Chow, Tim Parker and 1 anonymous reviewer

Understanding the relative importance of species-specific traits and environmental factors in modulating species distributions is an intriguing question in ecology [1]. Both behavioral flexibility (i.e., the ability to change the behavior in changing circumstances) and habitat availability are known to influence the ability of a species to expand its geographic range [2,3]. However, the role of each factor is context and species dependent and more information is needed to understand how these two factors interact. In this pre-registration, Logan et al. [4] explain how they will use Great-tailed grackles (Quiscalus mexicanus), a species with a flexible behavior and a rapid geographic range expansion, to evaluate the relative role of habitat and behavior as drivers of the species’ expansion [4]. The authors present very clear hypotheses, predicted results and also include alternative predictions. The rationales for all the hypotheses are clearly stated, and the methodology (data and analyses plans) are described with detail. The large amount of information already collected by the authors for the studied species during previous projects warrants the success of this study. It is also remarkable that the authors will make all their data available in a public repository, and that the pre-registration in already stored in GitHub, supporting open access and reproducible science. I agree with the three reviewers of this pre-registration about its value and I think its quality has largely improved during the review process. Thus, I am happy to recommend it and I am looking forward to seeing the results.

References

[1] Gaston KJ. 2003. The structure and dynamics of geographic ranges. Oxford series in Ecology and Evolution. Oxford University Press, New York.

[2] Sol D, Lefebvre L. 2000. Behavioural flexibility predicts invasion success in birds introduced to new zealand. Oikos. 90(3): 599–605. https://doi.org/10.1034/j.1600-0706.2000.900317.x

[3] Hanski I, Gilpin M. 1991. Metapopulation dynamics: Brief history and conceptual domain. Biological journal of the Linnean Society. 42(1-2): 3–16. https://doi.org/10.1111/j.1095-8312.1991.tb00548.x

[4] Logan CJ, McCune KB, Chen N, Lukas D. 2020. Implementing a rapid geographic range expansion - the role of behavior and habitat changes (http://corinalogan.com/Preregistrations/gxpopbehaviorhabitat.html) In principle acceptance by PCI Ecology of the version on 16 Dec 2021 https://github.com/corinalogan/grackles/blob/0fb956040a34986902a384a1d8355de65010effd/Files/Preregistrations/gxpopbehaviorhabitat.Rmd.

Implementing a rapid geographic range expansion - the role of behavior and habitat changesLogan CJ, McCune KB, Chen N, Lukas D<p>It is generally thought that behavioral flexibility, the ability to change behavior when circumstances change, plays an important role in the ability of a species to rapidly expand their geographic range (e.g., Lefebvre et al. (1997), Griffin a...Behaviour & Ethology, Biological invasions, Dispersal & Migration, Foraging, Habitat selection, Human impact, Phenotypic plasticity, Preregistrations, ZoologyEsther Sebastián GonzálezAnonymous, Caroline Marie Jeanne Yvonne Nieberding, Tim Parker2020-05-14 11:18:57 View
28 Aug 2023
article picture

Implementing a rapid geographic range expansion - the role of behavior changes

Behavioral changes in the rapid geographic expansion of the great-tailed grackle

Recommended by ORCID_LOGO based on reviews by Francois-Xavier Dechaume-Moncharmont, Pizza Ka Yee Chow and 1 anonymous reviewer

While many species' populations are declining, primarily due to human-related impacts (McKnee et al., 2014), certain species have thrived by utilizing human-influenced environments, leading to their population expansion (Muñoz & Real, 2006). In this context, the capacity to adapt and modify behaviors in response to new surroundings is believed to play a crucial role in facilitating species' spread to novel areas (Duckworth & Badyaev, 2007). For example, an increase in innovative behaviors within recently established communities could aid in discovering previously untapped food resources, while a decrease in exploration might reduce the likelihood of encountering dangers in unfamiliar territories (e.g., Griffin et al., 2016). To investigate the contribution of these behaviors to rapid range expansions, it is essential to directly measure and compare behaviors in various populations of the species.

The study conducted by Logan et al. (2023) aims to comprehend the role of behavioral changes in the range expansion of great-tailed grackles (Quiscalus mexicanus). To achieve this, the researchers compared the prevalence of specific behaviors at both the expansion's edge and its middle. Great-tailed grackles were chosen as an excellent model due to their behavioral adaptability, rapid geographic expansion, and their association with human-modified environments. The authors carried out a series of experiments in captivity using wild-caught individuals, following a detailed protocol. The study successfully identified differences in two of the studied behavioral traits: persistence (individuals participated in a larger proportion of trials) and flexibility variance (a component of the species' behavioral flexibility, indicating a higher chance that at least some individuals in the population could be more flexible). Notably, individuals at the edge of the population exhibited higher values of persistence and flexibility, suggesting that these behavioral traits might be contributing factors to the species' expansion. Overall, the study by Logan et al. (2023) is an excellent example of the importance of behavioral flexibility and other related behaviors in the process of species' range expansion and the significance of studying these behaviors across different populations to gain a better understanding of their role in the expansion process.

Finally, it is important to underline that this study is part of a pre-registration that received an In Principle Recommendation in PCI Ecology (Sebastián-González 2020) where objectives, methodology, and expected results were described in detail. The authors have identified any deviation from the original pre-registration and thoroughly explained the reasons for their deviations, which were very clear. 

References

Duckworth, R. A., & Badyaev, A. V. (2007). Coupling of dispersal and aggression facilitates the rapid range expansion of a passerine bird. Proceedings of the National Academy of Sciences, 104(38), 15017-15022. https://doi.org/10.1073/pnas.0706174104

Griffin, A.S., Guez, D., Federspiel, I., Diquelou, M., Lermite, F. (2016). Invading new environments: A mechanistic framework linking motor diversity and cognition to establishment success. Biological Invasions and Animal Behaviour, 26e46. https://doi.org/10.1017/CBO9781139939492.004

Logan, C. J., McCune, K., LeGrande-Rolls, C., Marfori, Z., Hubbard, J., Lukas, D. 2023. Implementing a rapid geographic range expansion - the role of behavior changes. EcoEvoRxiv, ver. 3 peer-reviewed and recommended by PCI Ecology. https://doi.org/10.32942/X2N30J

McKee, J. K., Sciulli, P. W., Fooce, C. D., & Waite, T. A. (2004). Forecasting global biodiversity threats associated with human population growth. Biological Conservation, 115(1), 161-164. https://doi.org/10.1016/S0006-3207(03)00099-5

Muñoz, A. R., & Real, R. (2006). Assessing the potential range expansion of the exotic monk parakeet in Spain. Diversity and Distributions, 12(6), 656-665. https://doi.org/10.1111/j.1472-4642.2006.00272.x

Sebastián González, E. (2020) The role of behavior and habitat availability on species geographic expansion. Peer Community in Ecology, 100062. https://doi.org/10.24072/pci.ecology.100062. Reviewers: Caroline Nieberding, Tim Parker, and Pizza Ka Yee Chow.

Implementing a rapid geographic range expansion - the role of behavior changesLogan CJ, McCune KB, LeGrande-Rolls C, Marfori Z, Hubbard J, Lukas D<p>It is generally thought that behavioral flexibility, the ability to change behavior when circumstances change, plays an important role in the ability of species to rapidly expand their geographic range. Great-tailed grackles (<em>Quiscalus mexi...Behaviour & Ethology, Preregistrations, ZoologyEsther Sebastián González2023-04-12 11:00:42 View