Amin, B., Fishman, R., Quinn, M., Matas, D., Palme, R., Koren, L., Ciuti, S.Please use the format "First name initials family name" as in "Marie S. Curie, Niels H. D. Bohr, Albert Einstein, John R. R. Tolkien, Donna T. Strickland"
<p style="text-align: justify;">Maternal phenotypes can have long-term effects on offspring phenotypes. These maternal effects may begin during gestation, when maternal glucocorticoid (GC) levels may affect foetal GC levels, thereby having an organizational effect on the offspring phenotype. Recent studies have showed that maternal effects may be different between the sexes. However, how maternal GC levels relate to foetal levels is still not completely understood. Here we related, for the first time in a free-ranging large mammal, the fallow deer (Dama dama), maternal GC levels with foetal in utero GC levels. We did this in a non-invasive way by quantifying cortisol metabolites from faecal samples collected from pregnant does during late gestation, as proxy for maternal GC level. These were then related to GC levels from hair of their neonate offspring (n = 40). We have shown that maternal GC levels were positively associated with foetal GC levels, but only in female offspring. These findings highlight sex differences, which may have evolved to optimize male growth at the cost of survival.</p>
cortisol, free-ranging, fallow deer, hair-testing, faecal metabolites
Evolutionary ecology, Maternal effects, Ontogeny, Physiology, Zoology