Submit a preprint

Direct submissions to PCI Ecology from bioRxiv.org are possible using the B2J service

26

Gene expression plasticity and frontloading promote thermotolerance in Pocillopora coralsuse asterix (*) to get italics
K. Brener-Raffalli, J. Vidal-Dupiol, M. Adjeroud, O. Rey, P. Romans, F. Bonhomme, M. Pratlong, A. Haguenauer, R. Pillot, L. Feuillassier, M. Claereboudt, H. Magalon, P. Gélin, P. Pontarotti, D. Aurelle, G. Mitta, E. ToulzaPlease use the format "First name initials family name" as in "Marie S. Curie, Niels H. D. Bohr, Albert Einstein, John R. R. Tolkien, Donna T. Strickland"
2019
<p>Ecosystems worldwide are suffering from climate change. Coral reef ecosystems are globally threatened by increasing sea surface temperatures. However, gene expression plasticity provides the potential for organisms to respond rapidly and effectively to environmental changes, and would be favored in variable environments. In this study, we investigated the thermal stress response in *Pocillopora* coral colonies from two contrasting environments by exposing them to heat stress. We compared the physiological state, bacterial and Symbionaceae communities (using 16S and ITS2 metabarcoding), and gene expression levels (using RNA-Seq) between control conditions and heat stress (the temperature just below the first signs of compromised health). Colonies from both thermal regimes remained apparently normal and presented open and colored polyps during heat stress, with no change in bacterial and Symbionaceae community composition. In contrast, they differed in their transcriptomic responses. The colonies from Oman displayed a more plastic transcriptome, but some genes had a higher basal expression level (frontloading) compared to the less thermotolerant colonies from New Caledonia. In terms of biological functions, we observed an increase in the expression of stress response genes (including induction of tumor necrosis factor receptors, heat shock proteins, and detoxification of reactive oxygen species), together with a decrease in the expression of genes involved in morpho-anatomical functions. Gene regulation (transcription factors, mobile elements, histone modifications and DNA methylation) appeared to be overrepresented in the Oman colonies, indicating possible epigenetic regulation. These results show that transcriptomic plasticity and frontloading can be co-occurring processes in corals confronted to highly variable thermal regimes.</p>
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA399069You should fill this box only if you chose 'All or part of the results presented in this preprint are based on data'. URL must start with http:// or https://
https://osf.io/s5y34You should fill this box only if you chose 'Scripts were used to obtain or analyze the results'. URL must start with http:// or https://
You should fill this box only if you chose 'Codes have been used in this study'. URL must start with http:// or https://
Gene expression plasticity, Frontloading, Coral holobiont, Pocillopora, Heat stress.
NonePlease indicate the methods that may require specialised expertise during the peer review process (use a comma to separate various required expertises).
Climate change, Evolutionary ecology, Marine ecology, Molecular ecology, Phenotypic plasticity, Symbiosis
e.g. John Doe john@doe.com
No need for them to be recommenders of PCIEcology. Please do not suggest reviewers for whom there might be a conflict of interest. Reviewers are not allowed to review preprints written by close colleagues (with whom they have published in the last four years, with whom they have received joint funding in the last four years, or with whom they are currently writing a manuscript, or submitting a grant proposal), or by family members, friends, or anyone for whom bias might affect the nature of the review - see the code of conduct
e.g. John Doe john@doe.com
2018-08-29 10:46:55
Staffan Jacob