Submit a preprint

Direct submissions to PCI Ecology from bioRxiv.org are possible using the B2J service

23

Inferring macro-ecological patterns from local species' occurrencesuse asterix (*) to get italics
Anna Tovo, Marco Formentin, Samir Suweis, Samuele Stivanello, Sandro Azaele, Amos MaritanPlease use the format "First name initials family name" as in "Marie S. Curie, Niels H. D. Bohr, Albert Einstein, John R. R. Tolkien, Donna T. Strickland"
2019
<p>Biodiversity provides support for life, vital provisions, regulating services and has positive cultural impacts. It is therefore important to have accurate methods to measure biodiversity, in order to safeguard it when we discover it to be threatened. For practical reasons, biodiversity is usually measured at fine scales whereas diversity issues (e.g. conservation) interest regional or global scales. Moreover, biodiversity may change across spatial scales. It is therefore a key challenge to be able to translate local information on biodiversity into global patterns. Many databases give no information about the abundances of a species within an area, but only its occurrence in each of the surveyed plots. In this paper, we introduce an analytical framework to infer species richness and abundances at large spatial scales in biodiversity-rich ecosystems when species presence/absence information is available on various scattered samples (i.e. upscaling). This framework is based on the scale-invariance property of the negative binomial. Our approach allows to infer and link within a unique framework important and well-known biodiversity patterns of ecological theory, such as the Species Accumulation Curve (SAC) and the Relative Species Abundance (RSA) as well as a new emergent pattern, which is the Relative Species Occupancy (RSO). Our estimates are robust and accurate, as confirmed by tests performed on both in silico-generated and real forests. We demonstrate the accuracy of our predictions using data from two well-studied forest stands. Moreover, we compared our results with other popular methods proposed in the literature to infer species richness from presence-absence data and we showed that our framework gives better estimates. It has thus important applications to biodiversity research and conservation practice.</p>
https://stri.si.edu/You should fill this box only if you chose 'All or part of the results presented in this preprint are based on data'. URL must start with http:// or https://
https://github.com/annatovo/Inferring-macro-ecological-patterns-from-local-species-occurrencesYou should fill this box only if you chose 'Scripts were used to obtain or analyze the results'. URL must start with http:// or https://
You should fill this box only if you chose 'Codes have been used in this study'. URL must start with http:// or https://
species occurrence; species distributions; inference; upscaling;
NonePlease indicate the methods that may require specialised expertise during the peer review process (use a comma to separate various required expertises).
Macroecology, Species distributions, Statistical ecology, Theoretical ecology
No need for them to be recommenders of PCIEcology. Please do not suggest reviewers for whom there might be a conflict of interest. Reviewers are not allowed to review preprints written by close colleagues (with whom they have published in the last four years, with whom they have received joint funding in the last four years, or with whom they are currently writing a manuscript, or submitting a grant proposal), or by family members, friends, or anyone for whom bias might affect the nature of the review - see the code of conduct
e.g. John Doe [john@doe.com]
2018-08-09 16:44:09
Matthieu Barbier