ISAAC Nick's profile
avatar

ISAAC NickORCID_LOGO

  • Biodiversity, UK Centre for Ecology & Hydrology, Wallingford, United Kingdom
  • Biodiversity, Conservation biology, Macroecology

Recommendations:  0

Review:  1

Areas of expertise
statistical models; biodiversity indicators; insect time-series;

Review:  1

07 Oct 2024
article picture

Guidance framework to apply best practices in ecological data analysis: Lessons learned from building Galaxy-Ecology

Best practices for ecological analysis are required to act on concrete challenges

Recommended by based on reviews by Nick Isaac and 1 anonymous reviewer

A core challenge facing ecologists is to work through an ever-increasing amount of data. The accelerating decline in biodiversity worldwide, mounting pressure of anthropogenic impacts, and increasing demand for actionable indicators to guide effective policy means that monitoring will only intensify, and rely on tools that can generate even more information (Gonzalez et al., 2023). How, then, do we handle this new volume and diversity of data?

This is the question Royaux et al. (2024) are tackling with their contribution. By introducing both a conceptual ("How should we think about our work?") and an operational ("Here is a tool to do our work with") framework, they establish a series of best practices for the analysis of ecological data.

It is easy to think about best practices in ecological data analysis in its most proximal form: is it good statistical practice? Is the experimental design correct? These have formed the basis of many recommendations over the years (see e.g. Popovic et al., 2024, for a recent example). But the contribution of Royaux et al. focuses on a different part of the analysis pipeline: the computer science (and software engineering) aspect of it.

As data grows in volume and complexity, the code needed to handle it follows the same trend. It is not a surprise, therefore, to see that the demand for programming skills in ecologists has doubled recently (Feng et al., 2020), prompting calls to make computational literacy a core component of undergraduate education (Farrell & Carrey, 2018). But beyond training, an obvious way to make computational analysis ecological data more reliable and effective is to build better tools. This is precisely what Royaux et al. have achieved.

They illustrate their approach through their experience building Galaxy-Ecology, a computing environment for ecological analysis: by introducing a clear taxonomy of computing concepts (data exploration, pre-processing, analysis, representation), with a hierarchy between them (formatting, data correction, anonymization), they show that we can think about the pipeline going from data to results in a way that is more systematized, and therefore more prone to generalization.

We may buckle at the idea of yet another ontology, or yet another framework, for our work, but I am convinced that the work of Royaux et al. is precisely what our field needs. Because their levels of atomization (their term for the splitting of complex pipelines into small, single-purpose tasks) are easy to understand, and map naturally onto tasks that we already perform, it is likely to see wide adoption. Solving the big, existential challenges of monitoring and managing biodiversity at the global scale requires the adoption of good practices, and a tool like Galaxy-Ecology goes a long way towards this goal.

References

Farrell, K.J., and Carey, C.C. (2018). Power, pitfalls, and potential for integrating computational literacy into undergraduate ecology courses. Ecol. Evol. 8, 7744-7751.
https://doi.org/10.1002/ece3.4363

Feng, X., Qiao, H., and Enquist, B. (2020). Doubling demands in programming skills call for ecoinformatics education. Frontiers in Ecology and the Environment 18, 123-124.
https://doi.org/10.1002/fee.2179
 
Gonzalez, A., Vihervaara, P., Balvanera, P., Bates, A.E., Bayraktarov, E., Bellingham, P.J., Bruder, A., Campbell, J., Catchen, M.D., Cavender-Bares, J., et al. (2023). A global biodiversity observing system to unite monitoring and guide action. Nat. Ecol. Evol., 1-5. 
https://doi.org/10.1038/s41559-023-02171-0
 
Popovic, G., Mason, T.J., Drobniak, S.M., Marques, T.A., Potts, J., Joo, R., Altwegg, R., Burns, C.C.I., McCarthy, M.A., Johnston, A., et al. (2024). Four principles for improved statistical ecology. Methods Ecol. Evol. 15, 266-281.
https://doi.org/10.1111/2041-210X.14270
 
Coline Royaux, Jean-Baptiste Mihoub, Marie Jossé, Dominique Pelletier, Olivier Norvez, Yves Reecht, Anne Fouilloux, Helena Rasche, Saskia Hiltemann, Bérénice Batut, Marc Eléaume, Pauline Seguineau, Guillaume Massé, Alan Amossé, Claire Bissery, Romain Lorrilliere, Alexis Martin, Yves Bas, Thimothée Virgoulay, Valentin Chambon, Elie Arnaud, Elisa Michon, Clara Urfer, Eloïse Trigodet, Marie Delannoy, Gregoire Loïs, Romain Julliard, Björn Grüning, Yvan Le Bras (2024) Guidance framework to apply best practices in ecological data analysis: Lessons learned from building Galaxy-Ecology. EcoEvoRxiv, ver.3 peer-reviewed and recommended by PCI Ecology. 
https://doi.org/10.32942/X2G033

avatar

ISAAC NickORCID_LOGO

  • Biodiversity, UK Centre for Ecology & Hydrology, Wallingford, United Kingdom
  • Biodiversity, Conservation biology, Macroecology

Recommendations:  0

Review:  1

Areas of expertise
statistical models; biodiversity indicators; insect time-series;