Submit a preprint


Being a tree crop increases the odds of experiencing yield declines irrespective of pollinator dependenceuse asterix (*) to get italics
Marcelo A. Aizen, Gabriela Gleiser, Thomas Kitzberger, and Rubén MillaPlease use the format "First name initials family name" as in "Marie S. Curie, Niels H. D. Bohr, Albert Einstein, John R. R. Tolkien, Donna T. Strickland"
<p>Crop yields, i.e., harvestable production per unit of cropland area, are in decline for a number of crops and regions, but the drivers of this process are poorly known. Global decreases in pollinator abundance and diversity have been proposed as a major driver of yield declines in crops that depend on animals, mostly bees, to produce fruits and seeds. Alternatively, widespread tree mortality has been directly and indirectly related to global climate change, which could also explain yield decreases in tree crops. As tree crops are expected to be more dependent on pollinators than other crop types, disentangling the relative influence of growth form and pollinator dependence is relevant to identify the ultimate factors driving yield declines. Yield decline, defined here as a negative average annual yearly change in yield from 1961 to 2020, was measured in 4270 time series, involving 136 crops and 163 countries and territories. About one‑fourth of all time series showed declines in crop yield, a characteristic associated with both high pollinator dependence and a tree growth form. Because pollinator dependence and plant growth form were partially correlated, we disentangled the effect of each of these two predictors using a series of generalized linear mixed models that evaluated direct and indirect associations. Our analyses revealed a stronger association of yield decline with growth form than with pollinator dependence, a relationship that persisted after partialling out the effect of pollinator dependence. In particular, yield declines were more common among tree than herbaceous and shrub crops in all major regions but in Africa, a continent showing a high incidence of yield declines irrespective of growth form. These results suggest that pollinator decline is not the main reason behind crop productivity loss, but that other factors such as climate change could be already affecting crop yield.</p> should fill this box only if you chose 'All or part of the results presented in this preprint are based on data'. URL must start with http:// or https:// should fill this box only if you chose 'Scripts were used to obtain or analyze the results'. URL must start with http:// or https://
You should fill this box only if you chose 'Codes have been used in this study'. URL must start with http:// or https://
agriculture - climate change - growth form - pollination crisis - pollinator decline - pollinator dependence - tree crops - tree mortality - yield decline
NonePlease indicate the methods that may require specialised expertise during the peer review process (use a comma to separate various required expertises).
Agroecology, Climate change, Community ecology, Demography, Facilitation & Mutualism, Life history, Phenotypic plasticity, Pollination, Terrestrial ecology
Ramiro Aguilar <>, Lorena Ashworth <>, Juan Arroyo <>, Ingolf Steffan-Dewenter <>, Tom Veblen <>, Alfonso Valiente <> No need for them to be recommenders of PCIEcology. Please do not suggest reviewers for whom there might be a conflict of interest. Reviewers are not allowed to review preprints written by close colleagues (with whom they have published in the last four years, with whom they have received joint funding in the last four years, or with whom they are currently writing a manuscript, or submitting a grant proposal), or by family members, friends, or anyone for whom bias might affect the nature of the review - see the code of conduct
e.g. John Doe []
2023-05-02 18:54:44
Ignasi Bartomeus