Submit a preprint

87

Pathogen community composition and co-infection patterns in a wild community of rodentsuse asterix (*) to get italics
Jessica Lee Abbate, Maxime Galan, Maria Razzauti, Tarja Sironen, Liina Voutilainen, Heikki Henttonen, Patrick Gasqui, Jean-François Cosson, Nathalie CharbonnelPlease use the format "First name initials family name" as in "Marie S. Curie, Niels H. D. Bohr, Albert Einstein, John R. R. Tolkien, Donna T. Strickland"
2023
<p style="text-align: justify;">Rodents are major reservoirs of pathogens that can cause disease in humans and livestock. It is therefore important to know what pathogens naturally circulate in rodent populations, and to understand the factors that may influence their distribution in the wild. Here, we describe the occurrence and distribution patterns of a range of endemic and zoonotic pathogens circulating among rodent communities in northern France. The community sample consisted of 713 rodents, including 11 host species from diverse habitats. Rodents were screened for virus exposure (hantaviruses, cowpox virus, Lymphocytic choriomeningitis virus, Tick-borne encephalitis virus) using antibody assays. Bacterial communities were characterized using 16S rRNA amplicon sequencing of splenic samples. Multiple correspondence (MCA), multiple regression and association screening (SCN) analyses were used to determine the degree to which extrinsic factors (study year and site; host habitat, species, sex and age class) contributed to pathogen community structure, and to identify patterns of associations between pathogens within hosts. We found a rich diversity of bacterial genera, with 36 known or suspected to be pathogenic. We revealed that host species is the most important determinant of pathogen community composition, and that hosts that share habitats can have very different pathogen communities. Pathogen diversity and co-infection rates also vary among host species. Aggregation of pathogens responsible for zoonotic diseases suggests that some rodent species may be more important for transmission risk than others. Moreover we detected positive associations between several pathogens, including Bartonella, Mycoplasma species, Cowpox virus (CPXV) and hantaviruses, and these patterns were generally specific to particular host species. Altogether, our results suggest that host and pathogen specificity is the most important driver of pathogen community structure, and that interspecific pathogen-pathogen associations also depend on host species.</p>
https://doi.org/10.5281/zenodo.7092812You should fill this box only if you chose 'All or part of the results presented in this preprint are based on data'. URL must start with http:// or https://
https://doi.org/10.5281/zenodo.7092812You should fill this box only if you chose 'Scripts were used to obtain or analyze the results'. URL must start with http:// or https://
https://doi.org/10.5281/zenodo.7092812You should fill this box only if you chose 'Codes have been used in this study'. URL must start with http:// or https://
16S rRNA amplicon high throughput sequencing; Disease Ecology; Microbial Interactions; Pathobiome; Rodent reservoirs; Zoonoses
Biodiversity, Coexistence, Community ecology, Eco-immunology & Immunity, Epidemiology, Host-parasite interactions, Population ecology, Species distributions
No need for them to be recommenders of PCIEcology. Please do not suggest reviewers for whom there might be a conflict of interest. Reviewers are not allowed to review preprints written by close colleagues (with whom they have published in the last four years, with whom they have received joint funding in the last four years, or with whom they are currently writing a manuscript, or submitting a grant proposal), or by family members, friends, or anyone for whom bias might affect the nature of the review - see the code of conduct
e.g. John Doe [john@doe.com]
2020-02-11 12:42:28
Francois Massol