Cite this recommendation as:
Emanuel Alexis Fronhofer (2019) From cognition to range dynamics: advancing our understanding of macroecological patterns. Peer Community in Ecology, 100014. 10.24072/pci.ecology.100014

From cognition to range dynamics: advancing our understanding of macroecological patterns

by Emanuel Alexis Fronhofer based on reviews by 2 anonymous reviewers

A recommendation of:
Aaron Blaisdell, Zoe Johnson-Ulrich, Luisa Bergeron, Carolyn Rowney, Benjamin Seitz, Kelsey McCune, Corina Logan. Do the more flexible individuals rely more on causal cognition? Observation versus intervention in causal inference in great-tailed grackles (2019), OSF preregistration, GCA5V v1.2 peer-reviewed by Peer Community in Ecology. 10.17605/OSF.IO/GCA5V
Submitted: 20 August 2018, Recommended: 31 January 2019

Understanding the distribution of species on earth is one of the fundamental challenges in ecology and evolution. For a long time, this challenge has mainly been addressed from a correlative point of view with a focus on abiotic factors determining a species abiotic niche (classical bioenvelope models; [1]). It is only recently that researchers have realized that behaviour and especially plasticity in behaviour may play a central role in determining species ranges and their dynamics [e.g., 2-5]. Blaisdell et al. propose to take this even one step further and to analyse how behavioural flexibility and possibly associated causal cognition impacts range dynamics.
The current preregistration is integrated in an ambitious long-term research plan that aims at addressing the above outlined question and focuses specifically on investigating whether more behaviourally flexible individuals are better at deriving causal inferences. The model system the authors plan on using are Great-tailed Grackles which have expanded their range into North America during the last century. The preregistration by Blaisdell et al. is a great example of the future of scientific research: it includes conceptual models, alternative hypotheses and testable predictions along with a sound sampling and analysis plan and embraces the principles of Open Science. Overall, the research the authors propose is fascinating and of highest relevance, as it aims at bridging scales from the microscopic mechanisms that underlie animal behaviour to macroscopic, macroecological consequences (see also [3]). I am very much looking forward to the results the authors will report.

[1] Elith, J. & Leathwick, J. R. 2009. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40: 677-697. doi: 10.1146/annurev.ecolsys.110308.120159
[2] Kubisch, A.; Degen, T.; Hovestadt, T. & Poethke, H. J. (2013) Predicting range shifts under global change: the balance between local adaptation and dispersal. Ecography 36: 873-882. doi: 10.1111/j.1600-0587.2012.00062.x
[3] Keith, S. A. & Bull, J. W. (2017) Animal culture impacts species' capacity to realise climate-driven range shifts. Ecography, 40: 296-304. doi: 10.1111/ecog.02481
[4] Sullivan, L. L.; Li, B.; Miller, T. E.; Neubert, M. G. & Shaw, A. K. (2017) Density dependence in demography and dispersal generates fluctuating invasion speeds. Proc. Natl. Acad. Sci. USA, 114: 5053-5058. doi: 10.1073/pnas.1618744114
[5] Fronhofer, E. A.; Nitsche, N. & Altermatt, F. (2017) Information use shapes the dynamics of range expansions into environmental gradients. Glob. Ecol. Biogeogr. 26: 400-411. doi: 10.1111/geb.12547