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ABSTRACT 10 

Artificial reefs (ARs) have been used to support fishing activities. Sessile invertebrates are essential 11 

components of trophic networks within ARs, supporting fish productivity. However, colonization by 12 

sessile invertebrates is possible only after effective larval dispersal from source populations, usually in 13 

natural habitat. We tested the relevance of geographic location, duration of immersion and depth on 14 

ARs colonization processes in the Gulf of Lion. Five species sessile invertebrates species, with 15 

contrasting life history traits and regional distribution in the natural rocky habitat, were inventoried 16 

on ARs deployed during two immersion periods (1985 and 2000-2009) and at different depths. At the 17 

local level, neither depth nor immersion duration differentiated ARs assemblages. At the regional 18 

scale, colonization patterns differed between species, resulting in diverse assemblages. 19 

This study highlights the primacy of geographical positioning over immersion duration and depth in 20 

ARs colonization, suggesting it should be accounted for in maritime spatial planning.  21 
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INTRODUCTION 27 

The decline of fish stocks and natural marine habitat degradation resulting from human exploitation 28 

have been documented worldwide for decades (Claudet and Fraschetti, 2010; Jackson, 2001; Pauly et 29 

al., 2002).  30 

Artificial reefs (ARs) have been primarily implemented to reduce the pressure of fisheries in coastal 31 

areas, complementing other management tools such as marine protected areas or regulatory 32 

measures such as fishing licenses (Claudet and Pelletier, 2004; Seaman, 2007; Wilson, 2002). 33 

Moreover, ARs could provide economic benefits linked to recreational activities such as recreational 34 

fishing and scuba diving (Chen et al., 2013). Beneficial effects such as fish biomass and capture 35 

efficiency increase near ARs have been reported (reviewed by Bohnsack and Sutherland, 1985; Tessier 36 

et al., 2014). However, the quick colonization by fish and mobile invertebrates (Powers et al., 2003; 37 

Relini, 2002; Santos and Monteiro, 2007) led to a debate opposing attraction vs production regarding 38 

the effects of ARs on fishery  (Grossman et al., 1997). The fish production argument is based on the 39 

hypotheses of a better protection against predators and an increase in available substrate area for 40 

larval establishment thanks to habitat complexification and an increase of available trophic resource 41 

(Bohnsack, 1989). In natural rocky habitats, benthic invertebrates play an essential role in fish trophic 42 

networks (Ardizzone et al., 1996; Martens et al., 2006), and ARs trophic network showed similarity 43 

with natural rocky habitat one, with dominance of filter-feeders using phytoplanktonic primary 44 

production and  fish predation on crustacean colonizing the ARs (Cresson, 2013). Moreover, AR 45 

deployed in sandy areas are expected to enhance fish productivity given that epifauna secondary 46 

production per ARs unit surface has been estimated to be 30 times greater than that of natural sandy 47 

infauna (Steimle, 2002). However, those estimates were made shortly after immersion and do not 48 

prove the long-term fish production in ARs and supporting this argument would require extending, in 49 

the long-term, data on colonization by benthic invertebrates (Svane and Petersen, 2001). Indeed, the 50 

age since deployment has been described as a key factor to explain ARs coverage by benthic 51 

invertebrates (Svane and Petersen, 2001). The assemblages of benthic communities are expected to 52 
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change over time in a succession between pioneer and specialist species (Connell and Slatyer, 1977). 53 

In contrast with pioneer species, specialist ones have slower colonization dynamics, because of their 54 

lower fecundity (Fava et al., 2016). However, after colonization, specialists are expected to 55 

outcompete pioneer species due to their more efficient use of environmental resources (Connell and 56 

Slatyer, 1977). Among these, light availability is an essential factor shaping marine benthic 57 

communities across the water depth gradient (Odum, 1971). Several studies have shown a decrease 58 

in the density of benthic invertebrates with depth on ARs (Lewbel et al., 1986.; Moura et al., 2007; 59 

Shinn and Wicklund, 1989; van der Stap et al., 2016) explained by  the decrease in light intensity (Relini 60 

et al., 1994).  The structural complexity has also been put forward as important characteristics linked 61 

to ARs efficiency in ecological restoration (Strain et al., 2018). Structural complexity increases available 62 

surface for colonization and niches diversity with various shelter and light exposure conditions, the 63 

latter being related to different benthic assemblage compositions (Glasby, 2000; T. M. Glasby, 1999) 64 

and higher productivity (Vivier et al., 2021). The recent 3D printing techniques using concrete, allow 65 

the design of ARs mimicking natural habitats (Ly et al., 2021). However, those studies concerned short-66 

term colonization (<3.5 years) (Wendt et al., 1989) hence based on pioneer species  with high dispersal 67 

capacities which colonization is likely mainly regulated by post-settlement processes such as 68 

competition, predation and physical disturbance (Todd, 1998).  In contrast to mobile species, 69 

sessile benthic invertebrates can only colonize reefs after larval dispersal which is limited by 70 

reproduction frequency (Thorson, 1950). Colonization implies thus an effective dispersal between 71 

natural areas and ARs, which depends on source population spatial distribution, species fecundity, 72 

dispersive larval traits and ocean circulation. Nevertheless, until now dispersal drivers have been 73 

disregarded while colonization disparities among ARs may result from differences in both larval 74 

connectivity (which in turn depends on fecundity, dispersal capacities and adult distribution in the 75 

natural habitat) and post-recruitment processes.   76 

The objective of the present study was to test the hypothesis that the geographical location of ARs 77 

deployment with respect to the natural habitat can condition ARs colonization in the long term. To this 78 
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aim we investigated the effects of local (depth and immersion duration) and regional (geographic area) 79 

factors on the presence and abundance of five species of sessile invertebrates with different life history 80 

traits, endemic to the Gulf of Lion (GDL) (Northwestern Mediterranean Sea) and frequently found on 81 

natural hard substrates. Data were collected on ARs immersed for more than 10 years in the GDL and 82 

assemblage composition analysis at three nested spatial scales (~ 1kms; ~5kms; >30 kms) were 83 

combined. 84 

 85 

MATERIALS AND METHODS 86 

 87 

Study area and spatially stratified sampling design 88 

The study area extended along 160 km of the GDL coastline (Figure 1). The GDL is a wide micro-tidal 89 

continental shelf dominated by soft-bottom habitat with few small rocky habitat patches of less than 90 

20 km2. The GDL is a homogeneous and isolated hydrodynamic unit (Rossi et al., 2014), delimited by 91 

the northern current (Millot, 1990).  92 

Between 1985 and 2009, 763 ARs with different shapes or material and a total volume of 37 575 m3 93 

(Tessier et al., 2015) have been deployed along the GDL coastline over 66 km² of state concessions  94 

(Cepralmar, 2015) between 10 and 35 m depth (Figure 1, Blouet et al., 2021). The ARs deployed in GDL 95 

represent 40% of the total AR volume in France (Tessier et al., 2015).  96 

Deployment was performed during three major time periods: 1985, 1992-1999 and 2004-2009, but for 97 

the present study we examined only the oldest (1985) and the youngest (after 2000) ones. For the 98 

analysis of data, we followed a stratified sampling design. To this aim, the GDL coastline was regularly 99 

divided into 6 geographical sectors separated by a distance ranging from 12 to 117 km, with a median 100 

value of 49 km (AGM, AGD, VLR, GRU, LEU, CST, Figure 1). Each sector included ARs deployed during 101 

either the first (1985, CST geographical sector), the last (2004-2009, AGM, VLR, GRU, LEU geographical 102 

sectors) or both periods of immersion (AGD). In each sector, two sites separated by a distance ranging 103 

from 2.1 to 11.7 km (median value of 7.5 km) were defined, except in AGD where 5 sites were defined. 104 
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In each site, three sampling units separated by a distance between 4m and 3.6 Km (median distance 105 

of 251 m) were set out by pooling neighboring ARs reaching a minimum surface of 89 m2 per sampling 106 

unit and totalling a minimum developed surface of 306 m2 per site. Such large continuous sampling 107 

units in each site aimed at limiting the effect of recruitment spatial variability over distances from 100s 108 

meters to kilometers arising from the non-uniformity of the flow of larvae (Daigle et al., 2014; Glasby, 109 

2000; Simpson et al., 2017; Smale, 2012). Such a spatial scale is consistent with the spatial scale of flow 110 

homogeneity obtained in simulations over GDL soft-bottom habitat (Briton et al., 2018). This inventory 111 

methodology enabled us to test for the existence of structuring factors at the local and regional scale. 112 

In the geographical sector GRU, in one of the two sites, only two sampling units could be defined given 113 

the ARs shapes, yielding a total surface of 600 m2 (Supplementary Material Table 1). Developed reef 114 

surface was calculated on the basis of technical specifications data present in the state concession 115 

documents taking into account only the colonizable surface (surfaces in contact with the sediment 116 

were excluded).  117 

 118 

Colonization assessment 119 

Assessment of ARs colonization was carried out by autonomous scuba-diving in 2020 by counting the 120 

number of individuals of the five target species in the 44 sampling units (Supplementary Material 121 

Table1, totalling 80 ARs fully inventoried). Among the species listed in previous ARs inventories in the 122 

GDL, we selected five species that were present in most inventories, easy to identify by scuba diving 123 

and spanning different phyla with contrasting life-history traits (Créocean, 2003 & 2004; Table 1).  We 124 

selected two gorgonians Eunicella singularis (Esper, 1791) and Leptogorgia sarmentosa (Esper, 1789), 125 

one bryozoan Pentapora fascialis (Pallas, 1766), one annelida Sabella spallanzanii (Gmelin, 1791) and 126 

one ascidian Halocynthia papillosa (Linnaeus, 1797) (Figure 2). The five species have a similar wide 127 

natural repartition area along European coasts ranging from 1m to 250m depth (Giangrande et al., 128 

2005; Gori et al., 2011; Ponti et al., 2019; Turon, 1990; Weinberg and Weinberg, 1979). In addition, S. 129 
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spallanzanii has been recorded along the coasts of Brazil, Australia and New Zealand where it is 130 

classified as an invasive non-indigenous species (Currie et al., 2000). 131 

The five species are present in the rocky habitat of the NW Mediterranean Sea (Laubier, 1966; True, 132 

1970; Hong, 1980). However, in the GDL, where natural rocky habitat covers uneven surfaces within 133 

the 6 geographical sectors (from 3,123 107 m2 for the AGM sector to 5 105 m2 for the LEU sector), the 134 

five species display different spatial distributions (Dutrieux et al., 2005; Dalias et al., 2011; Padron et 135 

al., 2018; S. Blouet personal observation). E. singularis is frequently observed and abundant 136 

throughout the GDL (from the AGM sector to the CST sector), while L. sarmentosa, less abundant, is 137 

present mainly in the center of the GDL (AGD, VLR, LEU, CST). P. fascialis is abundant in the west of the 138 

GDL (AGD, LEU, CST, and south of CST). The distribution of H. papillosa is not well known, however the 139 

species has been observed in all the rocky areas of the GDL. S. spallanzanii is present but rare in natural 140 

rocky habitat. Nevertheless, S. spallanzanii is very abundant in lagoons, ports and marinas of the GDL 141 

(S. Blouet personal observation) which have been indicated as preferred habitat of the species (Currie 142 

et al., 2000). 143 

 144 

The five species display different life-history traits. All five species reproduce once a year in different 145 

seasons and with different strategies (Table 1).  146 

S. spallanzani reproduces in January-February, when water temperature is the coldest. The species 147 

displays multiple reproductive strategies: internal fertilization, with larvae brooded either inside or 148 

outside the mineral tube secreted around the body, and external fertilization broadcast spawning 149 

(Giangrande et al., 2000). In addition, asexual reproduction by fission has been reported (Read et al., 150 

2011). S. spallanzani releases lecithotrophic larvae with a planktonic larval duration (PLD) of about 4 151 

weeks (Giangrande et al., 2000). It’s life span can exceed 5 years, with sexual maturity after one year 152 

(Giangrande and Petraroli 1994; Giangrande et al., 2000). Like most gorgonians, E. singularis releases 153 

lecithotrophic larvae in early summer (June to August). Even though larval competency period can 154 

reach up to 2 months (Guizien et al., 2020; Zelli et al., 2020), PLDs ranging from 7 to 14 days best 155 
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explain gene flow among E. singularis natural populations dwelling in the fragmented rocky habitat of 156 

the GDL  (Padron et al. 2018). E. singularis life span can reach 25-30 years with sexual maturity before 157 

6 years (Gori et al., 2007; Weinberg and Weinberg, 1979) (Weinberg and Weinberg 1979, Gori et al. 158 

2007).  159 

The other gorgonian, L. sarmentosa also releases lecithotrophic larvae but in the late summer 160 

(September to October) and the PLD is unknown (Rossi and Gili 2009). L. sarmentosa life span can 161 

reach 20 years with female sexual maturity within 2-3 years after settlement (Rossi and Gili 2009). 162 

H. papillosa is a simultaneous hermaphrodite which releases larvae in late summer (September-163 

October; Becerro and Turon, 1992), presumably lecithotrophic. The PLD of H. papillosa larvae is 164 

unknown but PLD shorter than 12 hours has been consistently reported for other solitary ascidian 165 

species (Ayre et al., 1997). We did not find any data about the age at sexual maturity and the life span 166 

of H. papillosa. However, the ascidians are considered as highly invasive, particularly because of their 167 

rapid growth and early sexual maturity (Zhan et al., 2015), with some species such as  Ciona 168 

intestionalis complex and Ciona savigniy, reaching sexual maturity at the age of 2 months (Zhan et al., 169 

2015) and continuous spawning  (Carver et al. 2003).  170 

P. fascialis displays both sexual and asexual reproduction. During sexual reproduction, most bryozoans 171 

release lecithotrophic larvae which settle after a few minutes or a few hours, rarely beyond several 172 

days (Keough, 1983). P. fascialis larval release has been inferred to happen in June based on 173 

recruitment observations (Cocito et al., 1998a). Asexual reproduction happens by colony 174 

fragmentation or budding extension (Cocito et al., 1998b). Individual life span is estimated to be about 175 

10 years with early sexual maturity after 2 years (Cocito et al., 1998b). 176 

 177 

Statistical   analysis 178 

We examined to which extent ARs colonization is affected by the location and timing of deployment. 179 

To do so, we tested the effect of 4 factors (geographical sector being the regional factor, site being the 180 

local factor, depth and age) on the presence/absence of the five species and on the dissimilarity 181 
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between their co-occurrence assemblages. In all analyses, site was a random factor, nested either in 182 

year, age or the geographical sector factor. Due to AR deployment set up, the effect of factors age (2 183 

levels, 1985, 2002-2009) and depth (2 levels, >20 m, <20 m depth) was tested within the AGD 184 

geographical sector only. Factor age was tested in 3 sites at <20m and factor depth was tested in 4 185 

sites deployed in 2009. To avoid any confounding effect due to age or depth, the regional factor vs 186 

local factor were tested on the 5 geographical sectors where AR were deployed during the 2002-2009 187 

immersion phase and at <20 m depth only (AGM, AGD, VLR, GRU, LEU: 5x2 levels). A Jaccard similarity 188 

matrix was built on presence/absence data across all pairwise sampling units. Two multivariate 189 

analyses were performed. Non-parametric multivariate analysis of variance with permutation was 190 

applied to test for the effects of age, depth and geographical sector on species assemblages (NP-191 

manova:  Anderson, 2001; Zar, 1999). Another multivariate analysis was performed to cluster most 192 

similar species assemblages in the sector of AGD (SIMPROF :  Clarke et al., 2008). 193 

When significant differences between the five species co-occurrence assemblages were detected for 194 

a factor, a non-parametric univariate analysis (ANOVA Kruskall-Wallis) was performed for each species 195 

independently to detect the species driving the difference. Fisher post-hoc test was used to identify 196 

the site where the difference arose. A same p-value of 0.05 was taken for detecting significant 197 

differences. Analyses were performed with Matlab software using the Fathom package for multivariate 198 

analyses (Jones, 2014) and the Matlab statistics toolbox for univariate analyses. 199 

 200 

RESULTS 201 

Artificial reefs colonization by the five target species at regional scale  202 

Among the five target species, S. spallanzanii was the only one whose presence was recorded in all the 203 

sampling units and geographical sectors (Figure 4). In only one out of 15 sites, it was the only species 204 

detected. H. papillosa was detected in all geographic sectors but not in all the sampling units. L. 205 

sarmentosa was detected in five of the six geographical sectors (not present in AGM) and P. fascialis 206 

was detected in 3 of the 6 geographical sectors (CST, LEU and AGD). Finally, E.singularis was the least 207 
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frequently observed species, being detected in only three geographical sectors (AGM, AGD and LEU). 208 

In all geographical sectors, at least three of the five target species were detected. Assemblages of two 209 

species were found in only one site out of 15 (sector AGD), assemblages of three species were found 210 

in 8 sites, assemblages of four species were found in 2 sites and assemblages of five species were found 211 

in 3 sites. 212 

 213 

Age and depth effects on five target species at local scale 214 

Despite all five target species being detected on ARs in the AGD sector, assemblage composition 215 

among sites differed (Figure 3). Clustering of sampling units within the 5 sites (A, B, C, D, E) in AGD 216 

identified 2 clusters (SIMPROF:  P <0.05; Figure 4). The two sites (B and C) with same age (2009), depth 217 

range (less than 20 m) and reef shape (pipe) were attributed to different clusters. 218 

In fact, one cluster grouped ARs of different age at a same depth (1985 in site A and 2009 in site B) 219 

while the other cluster grouped ARs of the same age but at different depths (less than 20 m in site C 220 

and more than 20 m in sites D and E). In both clusters, different AR shapes were found (steel cage and 221 

pipes in one cluster, pipes, Comin and Bonna in the other cluster, Figure 4). The geographic distance 222 

between the two clusters (A-B) and (C-D-E) was 7.5 km and the median value of the intra-cluster 223 

geographic distance was 3 km. 224 

Multivariate analysis of variance confirmed that neither age (NP-MANOVA, F=1.43 P<0.05  ; Table 2) 225 

nor depth (NP-MANOVA, F=1.37 P<0.05 ; Table 3) explained site differences in the five species 226 

assemblages found on ARs in AGD (P<0.05 ; Tables 2 and 3).  Differences among the five sites in AGD 227 

were due to different ARs colonization by three species (Kruskall-wallis: E. singularis, P. fascialis, H. 228 

papillosa: all P<0.05; Table 4). Site C differed from other sites by the presence of E. singularis, and sites 229 

D and E differed from sites A and B due to the presence of P. fascialis and H. papillosa (Post-hoc tests). 230 

 231 

Geographical effect on five target species at local and regional scales 232 
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The five species co-occurrence assemblages on ARs deployed in the same period and at same depth 233 

were significantly different at both regional and local scales (NP-MANOVA : geographical sector F=3.19 234 

P<0.05; site (geographical sector) F=3.64 P<0.05; Table 5). These differences were due to different 235 

colonization of ARs by three of the five species, E. singularis, L. sarmentosa and P. fascialis. For the 236 

latter two species, regional differences (Kruskall-wallis: geographical sector P=0.0002) were more 237 

significant than local differences (Kruskall-wallis: site P=0.001 for L. sarmentosa and P=0.003 for P. 238 

fascialis; Table 6). Both species were not detected in the north of the GDL (AGM). In contrast, for E. 239 

singularis, local differences (Kruskall-wallis: site P=0.01) were more significant than regional ones 240 

(geographical sector P=0.036; Table 6), the species being detected in geographical sectors in the north, 241 

center and south of GDL. 242 

 243 

DISCUSSION 244 

The study of effective integration of ARs into the rocky habitat network through their colonization by 245 

species building up their natural biodiversity is essential to assess their ecosystem functions, prior and 246 

after deployment. In the present study, we showed that ARs spread along the GDL coastline had been 247 

colonized by five species found in the natural rocky habitat of the region, ten years after their 248 

deployment. However, spatial colonization patterns differed among species, resulting in diverse 249 

assemblages in different geographical sectors of the GDL. Locally, neither age, immersion depth or reef 250 

shape significantly affected colonization patterns. 251 

Colonization of ARs are expected to evolve toward a stable state comparable to that of the natural 252 

environment, through the succession of opportunistic species (wide dispersal,  high fertility, low 253 

tolerance of reduced resource levels, short life-spans, minimal dietary specialisation) followed by 254 

specialized species (limited dispersal, slow growth to a large size at maturity, delayed and limited 255 

reproduction, optimization to reduced resources and long life-spans; (Platt and Connell, 2003; Faurie 256 

et al., 2003). Monitoring of ARs short-term colonization (<3 years) have indeed shown a dominance of 257 

pioneer species (hydroids, serpulids, barnacles and bivalves), most of them having life history traits 258 
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typical of opportunistic species (Fariñas-Franco et al., 2013; T. Glasby, 1999; Moura et al., 2007; 259 

Pamintuan and Ali, 1994; Ponti, 2015; Relini et al., 1994; Spagnolo et al., 2014; Toledo et al., 2020).  260 

Long-term studies confirmed successions in ARs colonization (Burt et al., 2011; Nicoletti et al., 2007; 261 

Perkol-Finkel and Benayahu, 2005; Whomersley and Picken, 2003), but none have described saturation 262 

(Svane and Petersen, 2001). In the Tyrrhenian Sea, Nicolleti et al., (2007) described colonization in 5 263 

distinct phases: (i) A first recruitment by pioneer species (hydroids, serpulids, barnacles and bivalves) 264 

during the first months after immersion, followed by phases of (ii) cover dominance, (iii) regression 265 

and (iv) absence of Mytilus galloprovincialis for more than 10 years.The installation of diverse bio-266 

builders bryozoans characteristic of the natural environment was recorded after 20 years only (v). Our 267 

study shows that bio-builder engineering species such as bryozoans (P. fascialis) and gorgonians (E. 268 

singularis, L. sarmentosa) colonized ARs as early as 10 years after their deployment, without significant 269 

difference between 10 years and 35 years old ARs. However, the presence of S. spallanzanii described 270 

as an opportunistic species (sexual precocity, various reproduction modes, rapid growth, short lived; 271 

Giangrande et al., 2000) on all ARs independently of their age of deployment suggests that ARs did not 272 

yet reach a stable state comparable to the natural environment. Thus, the presence of bio-builders is 273 

not a sufficient indicator of the ARs naturalization to the local biodiversity. 274 

The GDL’s ARs being located in the sandy coastal zone are likely regularly disturbed by sediment 275 

deposits due to river delivery or/and their resuspension by either trawling activities or the mechanical 276 

action of the swell (Dufois et al., 2014; Durrieu de Madron et al., 2005; Ulses et al., 2008).  Testing the 277 

impact of swell and sediment deposit on ARs requires exploring the colonization of ARs along a 278 

gradient of depth and distance from the coast (van der Stap et al., 2016). However, current ARs 279 

deployment in the GDL ranged from 15 to 30 m depth and within 3 miles from the coast and did not 280 

allow testing for differential effect of sediment disturbances as swell impact occurs every year in this 281 

area (Guizien, 2009). Testing the impact of sediment disturbance on ARs colonization would require 282 

exploring reefs deployed deeper than 50 m, such as the anchorages of the floating wind farm that will 283 

be placed in the GDL in the next future (https://info-efgl.fr/le-projet/le-parc/#). Light is also expected 284 
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to be an important factor structuring benthic assemblages, along a depth gradient in natural and 285 

artificial environments (T. Glasby, 1999a; T. M. Glasby, 1999b; Svane and Petersen, 2001)  . Absence 286 

of depth effect in the present study, although in the GDL light intensity strongly attenuates within the 287 

upper 30 m of the water column (Durrieu de Madron et al., 2011) was potentially a bias due to the five 288 

species selected in the present study whose distributions are not strongly structured by light intensity.  289 

Another factor which has been shown to drive the intensity of ARs colonization is structural complexity 290 

(see Bohnsack and Sutherland, 1985 for a review). Nevertheless, there is no consensus about the 291 

relationship between complexity and subtidal benthic invertebrates abundance, due to potential bias 292 

in controlling the surface and scale in ARs of different complexity (Rouse et al., 2019; Strain et al., 293 

2018). The similarity in the 5 species co-occurrence between different reef shapes at the same depth 294 

found in the present study suggests structural complexity is less important than the geographical 295 

location in AR colonization by benthic invertebrates. 296 

Benthic invertebrate assemblages result from complex processes that operate at multiple spatial and 297 

temporal scales (Smale, 2012). At the regional scale, larval availability can become a major factor 298 

explaining colonization success. Change in the composition of assemblages during the early 299 

colonization of artificial substrates by benthic invertebrates has been attributed to the availability and 300 

abundance of larvae during the seasons rather than a sequence of distinct succession (Bramanti et al., 301 

2003; Turner and Todd, 1993). The larval behaviour (buoyancy and motility) and the characteristics of 302 

the biological cycle of the species (spawning timing and PLD) can play a key role in determining the 303 

dispersal distance (Todd, 1998), and consequently the possibility to reach habitat suitable for 304 

settlement. Dispersion distance is generally correlated with PLD, thus, a species with a long PLD is 305 

supposed to colonize habitats further away than species with a shorter PLD (Shanks, 2009). In this 306 

study, the five species were chosen among different phyla known for their contrasting planktonic 307 

durations, swimming abilities and larval dispersal periods, although these larval traits are only known 308 

accurately for E. singularis (Guizien et al., 2020; Zelli et al., 2020). P. fascialis and H. papillosa, the two 309 

species with short PLD (<24h and <48h, respectively) colonized ARs located close to the natural habitat 310 
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where they are present (< 4.8 km and <10 km, respectively). The coastal circulation of the GDL allows 311 

such dispersal distance over periods of a few days (Guizien et al., 2012). S. spallanzanii, which has a 312 

PLD of 3 weeks, colonized all the inventoried ARs, in line with a dispersal distance of 40 km after 3 313 

weeks (Guizien et al., 2012). In contrast, E. singularis did not colonize all ARs within geographical 314 

sectors of 30 km width where the species is present in the natural habitat, although a 2-week PLD was 315 

expected to enable such dispersal (Padron et al., 2018). The other gorgonian species, L. sarmentosa 316 

colonized more ARs located within distances of less than 30 km from its natural habitat than E. 317 

singularis while the PLD of the two species are presumably the same. This suggests that other factors 318 

influence the colonization failure of E. singularis.  319 

Reproductive traits are another key to the success in colonising new settings (Stearns, 2000). In this 320 

regard, E. singularis colonization potential could be limited by its low fecundity (~25-40 larvae.cm-1 of 321 

colony branch, Ribes et al., 2007; Theodor, 1967) compared to that of L. sarmentosa (~75 larvae.cm-1 322 

of colony branch, (Rossi et al., 2011; Rossi and Gili, 2009). The wide colonization of ARs by S. 323 

spallanzanii is in line with its reproductive traits typical of opportunistic species (early sexual maturity, 324 

high fecundity with more than 50 000 eggs per female, Currie et al., 2000, a fertilization close to 100%, 325 

Giangrande et al., 2000). Since arriving in the Pacific Ocean, S. spallanzanii has been declared one of 326 

the ten priority pest species in the marine environment by the Australian authorities and classified as 327 

an invasive species (Hayes et al., 2005). Similarly to S. spallanzanii, H. papillosa colonized nearly all ARs 328 

located within its 10-km dispersal distance from the natural habitat. Within the ascidian class, a wide 329 

disparity in species fecundity has been reported (Pandian, 2018). This suggests H. papillosa 330 

reproductive traits would be close to those of invasive ascidians (Zhan et al., 2015).  331 

Ultimately, understanding ARs colonization requires a precise mapping of source populations in the 332 

natural environment. To this respect, the abundance of S. spallanzani on ARs is surprising, as the 333 

species is not abundant in the natural rocky habitat of the GDL. For this species, other sources of larval 334 

supply than natural settings should be considered, such as the numerous ports and marinas along the 335 

coast of the GDL, as S. spallanzanii is very tolerant to environmental conditions (Currie et al., 2000). In 336 
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this case of intense colonization by an endemic benthic invertebrate species, ARs apparently extended 337 

its metapopulation, acting as stepping stones for further larval dispersal beyond its natural current 338 

colonization limits (Bishop et al., 2017; Wang et al., 2020). In the GDL, the 14 500 m3 of ARs deployed 339 

30 years ago are now decommissioned and the relevance of their removal is currently debated. 340 

Connectivity between natural populations has been shown to support species resilience after 341 

disturbances in fragmented habitat, and could be extended to ARs (Fahrig, 2003). However, ARs may 342 

also facilitate the spread of non-indigenous species introduced with maritime traffic in ports (Glasby 343 

et al., 2007). The present study advocates accounting for the geographical arrangement in planning 344 

ARs deployment to enhance fish productivity while avoiding the spread of invasive species. 345 
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Figure captions: 691 

Figure 1: Map showing the layout of the 6 geographical sectors and 15 sites where artificial reef 692 

sampling was carried out. 693 

Figure 2: Photographs of the five species inventoried on AR a) Sabella spallanzanii b) Eunicella 694 

singularis c) Leptogorgia sarmentosa d) Halocynthia papillosa e) Pentapora fascialis; all © Blouet 695 

sylvain 696 

Figure 3: Map showing the five species co-occurence assemblages inventoried on ARs in the 15 sites 697 

in the Gulf of Lion. 698 

Figure 4: Composite showing in the upper part the diversity of species assemblage in the sampling 699 

units of the five sites (A, B, C, D, E) in AGD sector together with the type of AR, depth and years of 700 

deployment and in the lower part, the dendrogram obtained by group average clustering based on 701 

the Jaccard dissimilarity index using the presence /absence of species (P=0.04 at 62% of dissimilarity). 702 

The red dotted line delineates the two clusters identified by the analysis. 703 
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Figure 1 : 724 
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Figure 2 : 738 
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Table captions 765 

Table 1: Larval traits (Planktonic larval duration (PLD), reproduction period, and larval trophic regime) 766 

for the five species inventoried on ARs. 767 

 768 

Table 2: Results of multivariate NP-Manova testing the interactive effects of the year (of deployment 769 

and site (nested in year) on the presence/absence assemblage. Significant (P<0.05) values in bold. 770 

 771 

Table 3: Results of multivariate NP-Manova testing the interactive effects of the depth (of 772 

deployment) and site (nested in depth) on the presence/absence assemblage. Significant (P<0.05) 773 

values in bold. 774 

 775 

Table 4: Results of univariate Kruskall_wallis testing the effects of year and depth of deployment on 776 

the presence/absence by species. Significant (P<0.05) values in bold. 777 

 778 

Table 5: Results of multivariate NP-Manova testing the interactive effects of geographical sector and 779 

site (nested in geographical sector) on the presence/absence assemblage. Significant (P<0.05) values 780 

in bold. 781 

 782 

Table 6: Results of univariate Kruskall_wallis testing the effects of geographical sector and site on the 783 

presence/absence by species. Significant (P<0.05) values in bold.  784 

 785 
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Table 1: 787 

Species Spawning period Larval type Larval duration Ref 

Leptogorgia sarmentosa June - August Lecithotrophic  ? ( supposed 1-4 weeks) (Rossi and 

Gili 2009) 

Eunicella singularis July - August Lecithotrophic 1-4 weeks (in aquarium) (Guizien et 

al. 2020) 

Pentapora fascialis June Lecithotrophic ? ( supposed <1 days) (Cocito et al. 

1998) 

Sabella spallanzani January - February Lecithotrophic 21 days (in aquarium) (Giangrande 

et al. 2000) 

Halocynthia papillosa September - October ? lecithotrophic  ? ( supposed <2 days) (Becerro and 

Turon 1992) 

 788 

Table 2: 789 

Multivariate measures 

Source Df SS Ms F Pvalue 

Assemblage (Presence/Absence)  

Year  1 0.4825 0.4825 1.4330 0.3330 

Site(Year) 1 0.3367 0.3367 7.5551 0.0130 

Residual 6 0.2674 0.0446   

Total 8 1.0866    

 790 

Table 3: 791 

Multivariate measures 

Source Df SS Ms F Pvalue 

Assemblage (Presence/Absence)  

Depth 1 0.2491 0.2491 1.3715 0.3280 

Site(Depth) 2 0.3633 0.1816 8.5969 0.001 

Residual 8 0.1690 0.0211   

Total 11 0.7816    
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Table 4: 797 

Univariate measures 

Presence/absence 

 Df SS Ms Chi_sq Pvalue 

Eunicella singularis      

 4 127.5 31.875 10.82 0.0287 

Leptogorgia sarmentosa 

 4 60 15 6.22 0.1832 

Pentapora fascialis 

 4 172.5 43.125 11.5 0.0215 

Sabella spallazanii 

 4 0 0 nan nan 

Halocynthia papillosa 

 4 150 37.5 11.2 0.0244 

 798 

 799 

Table 5: 800 

Multivariate measures 

Source Df SS Ms F Pvalue 

Assemblage (Presence/Absence) 

Geographical sector 4 1.9921 0.4980 3.1961 0.0380 

Site(Geographical 

sector) 

5 0.7791 0.1558 3.6434 0.0010 

Residual 19 0.8125 0.0427   

Total 28 3.5838    
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Table 6: 808 

 809 

Presence/absence 

Source Df SS Ms Chi_sq Pvalue 

Eunicella singularis 

Geographical 

sector 

4 447.08 111.77 10.28 0.036 

Site 9 937.66 104.18 21.56 0.0104 

Leptogorgia sarmentosa 

Geographical 

sector 

4 965.7 241.42 22.2 0.0002 

Site 9 1218 135.33 28 0.001 

Pentapora fascialis 

Geographical 

sector 

4 937.66 234.41 21.56 0.0002 

Site 9 1077.83 119.75 24.78 0.0032 

Sabella spallazanii 

Geographical 

sector 

4 0 0 nan nan 

Site 9 0 0 nan nan 

Halocynthia papillosa 

Geographical 

sector 

4 323.59 80.89 6.01 0.1985 

Site 9 561.87 62.43 10.43 0.3166 
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