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Abstract 13 
Tracking and understanding the movements of animals in the wild is a fast-growing area of 14 
research, known as movement ecology. However, tracking small animals such as flying insects, 15 
which cannot easily carry an electronic tag, remains challenging as existing field methods are 16 
costly either in terms of equipment or tracking effort (e.g. VHF radio-tracking, scanning 17 
harmonic radar). Here we attempted to record the movements of free-flying butterflies from an 18 
unmanned aerial vehicle (UAV), maintaining a static position in the sky and recording video 19 
vertically downwards. With an appropriate flight height and image filtering algorithm, we 20 
recorded 166 flight tracks of Pieris butterflies (P. brassicae and P. rapae), with a median tracking 21 
length of 40 m (median flight duration 13 s), and a high temporal resolution of 30 positions per 22 
second. Average flight direction varied significantly over the course of the flying season, from a 23 
northward azimuth in June and early July, to a southward azimuth in September, congruent 24 
with a trans-generational migratory behaviour that has previously been documented by field 25 
observations or experiments in flight cages. In addition, UAV imagery unlocks the possibility to 26 
measure high-resolution flight movement patterns (e.g. path tortuosity and transverse 27 
oscillations), which will possibly help understand perceptual and locomotor mechanisms 28 
underlying spatial behaviour. We explore the technical details associated with UAV tracking 29 
methodology, and discuss its limitations, in particular the biases associated with a 2D 30 
projection of 3D flight movements, the limited spatial scale, and the difficulty to distinguish 31 
between visually similar species, such as P. brassicae and P. rapae. 32 
 33 
Keywords: UAV image-based tracking, insect flight, insect migration, movement ecology. 34 
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Introduction 36 

Tracking the movements of an animal in the wild provides insights on its ecology, such as 37 
habitat use (e.g. Da Silveira et al 2016), dispersal and migration behaviours (Whitfield et al. 2024, 38 
Rotics et al. 2016). When the movement data are detailed enough, both spatially and 39 
temporally, it is also possible to extract biological information on the animal's locomotor 40 
biomechanics (Sherub et al. 2016, Hedrick et al. 2018, Ruaux et al. 2023), its spatial search 41 
strategies (Shepard et al. 2011, Hernandez-Pilego et al. 2017, de Margerie et al. 2018), and more 42 
broadly the perceptual and cognitive processes involved in movement (Kashetsky et al. 2021). 43 
All of these biological and ecological aspects of animal movement have been advantageously 44 
integrated into a synthetic movement ecology framework (Nathan et al. 2008, Abrahms et al. 45 
2017, Joo et al. 2022), that is progressively articulated with other major fields of biological 46 
research (e.g. community ecology: Schlägel et al. 2020; animal physiology: Hetem et al. 2025). 47 

However, not all animal species are easy to track. Large-enough animals (approx. > 100 g) 48 
can carry GPS receivers (Cagnacci et al 2010, Wilmers et al  2015), which are now often enhanced 49 
with additional sensors (accelerometers, barometers, cameras) to better infer the animal's 50 
behaviour along its route (Kays et al 2015, Joo et al. 2022). To track the movements of smaller 51 
species such as flying insects, tracking tags need to be much lighter, and alternative 52 
technologies to GPS are employed. Beacons emitting simple VHF radio beeps have been used 53 
successfully for decades to track the movements of flying and non-flying insects (Kissling et al. 54 
2014). Yet, VHF radio-tracking involves following the animal with one or multiple antennae (or 55 
deploying a fixed antennae array; e.g. Knight et al. 2019), and the spatio-temporal resolution is 56 
inferior to GPS tracking. Even lighter, passive tags (of a few mg, without any battery) can be 57 
used to track the movements of flying insects (Ovaskainen et al. 2008, Lihoreau et al. 2012, 58 
Maggiora et al. 2019). The downside of these passive tags is that a scanning harmonic radar 59 
(SHR) - a heavy and expensive device - has to be deployed in the field. The tracking range of SHR 60 
is near 1 km, and the temporal resolution of the data is one position every 3 s (Ovaskainen et al. 61 
2008). Other shorter-range, passive-tag tracking systems also exist (portable harmonic radar, 62 
RFID tags; see Kissling et al. 2014, Batsleer et al. 2020, Rhodes et al. 2022 for reviews). 63 

For all animal-borne tracking systems, whether GPS receivers or other types of tags, the 64 
impact of the tag on the animal's movements is a matter of concern. The carried mass, but also 65 
the drag, the position, or the method of attachment of the tag must be carefully considered. 66 
Impact studies are often necessary, both from an ethics point of view and in terms of the 67 
reliability of the collected movement data (Wilson & McMahon 2006, Batsleer et al. 2020). 68 

There are other routes to track flying insects, without having to place tags on animals. First, 69 
the classic mark-recapture method allows to demonstrate the movement of an individual from 70 
one point to another, and was thus used for studying insect dispersal and migration (e.g. 71 
butterflies; Chowdhury et al. 2021, 2022). Trapping techniques along flight routes, sometimes 72 
combined with isotope analyses to determine the geographical origin of individuals, can also 73 
provide information on large scale movements (e.g. dragonflies; Knoblauch et al. 2021, Oelman 74 
et al. 2023). At a finer, local scale, if the insect flies slowly enough, in an open environment where 75 
it remains visible, it can be followed by foot and its passed positions can be drawn on a map 76 
(Brussard & Ehrlich 1970) or recorded by a GPS receiver carried by the observer (Delattre et al. 77 
2013, Fernandez et al. 2016). Tracking butterflies crossing a body of water from a small boat is 78 
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another possible technique (Srygley & Oliveira 2001).  Also, when flying insects move in swarms 79 
of many individuals, radars (weather surveillance radars or smaller scale biological radars) can 80 
be used to detect and measure the direction of these flights (e.g. Stefanescu et al. 2013). With 81 
biological  radars, individual movement variables such as flight direction, height and ground 82 
speed can be extracted (Bauer et al. 2024). 83 

To complement these “tagless” tracking approaches, sometimes called “passive sensing” 84 
(Rhodes et al. 2022), we wondered whether flying insects could be tracked in video images 85 
filmed from a UAV (Unmanned Air Vehicle, or drone) positioned above them in the sky. 86 

Image-based tracking from ground-based cameras is a known technique to reconstruct the 87 
2D and 3D trajectories of animals, and in particular flying insects, with a high sampling 88 
frequency (> 1 Hz). It can be used in laboratory settings (e.g. Lihoreau et al. 2016a), semi-natural 89 
outdoor insectaries (Kitamura & Imafuku 2015, Le Roy et al. 2021, Kleckova et al. 2024) or even 90 
natural environments (Stürzl et al. 2016, Jackson et al. 2016). Most often used to address 91 
biological questions related to perception, cognition or locomotion, image-based tracking 92 
techniques, which are less invasive, are also attracting growing interest in ecology (Dell et al. 93 
2014). Hybrid techniques tracking tagged animals in videos are also being developed (Crall et 94 
al. 2015, Walter et al. 2021). 95 

On the other hand, in the last decade, commercial UAVs have greatly improved in terms of 96 
compactness, stability and image resolution, while decreasing in cost, making them valuable 97 
tools for wildlife inventory and conservation (Wang et al. 2019, Charbonneau & Lemaître 2021). 98 
Tracking animal movements using videos recorded from a UAV is a next logical step, and it has 99 
already been achieved for a variety of large species (e.g. reef shark: Rieucau et al. 2018,  wild 100 
dog: Haalck et al. 2020, zebras and geladas: Koger et al. 2023). For flying insects, UAV-image-101 
based tracking has been proposed previously (Ivosevic et al. 2017), but remains to be tested 102 
and validated. Most recently, Vo-Doan et al. (2024) successfully tracked a honey bee from a 103 
special UAV-borne optical system (Fast Lock-On), but this technique requires that the insect 104 
carries a reflective marker. 105 

Here we explore the validity of a UAV as a platform for remote, passive observation of the 106 
movements of untagged insects in flight. The motivation for this exploration is the many 107 
potential benefits of such an approach, namely (1) non-invasiveness, i.e. tracking of animals 108 
moving freely, without tags and associated capture procedures, (2) in an open natural 109 
environment, over distances greater than in an insectary, (3) with a spatio-temporal resolution 110 
superior to VHF, SHR or GPS tracking. If this type of fine movement data in natural conditions 111 
can be collected easily, it could be very useful for bridging the gap between laboratory studies 112 
on perceptual, cognitive and locomotor mechanisms, and movement patterns observed in the 113 
natural environment at the local scale (daily routine movements) or beyond (insect dispersal or 114 
migration). 115 

To begin this methodological exploration with a relatively simple case, we have focused on 116 
Pieris butterfly species (large white Pieris brassicae and small white Pieris rapae) because of 117 
their relatively slow flight, good visibility and abundance in the field. We limited the present 118 
study to the simple situation of a single, static UAV in the sky, filming vertically downwards (Fig. 119 
1A) to reconstruct flight trajectories in only 2 horizontal dimensions.  We also chose to record 120 
flights accross areas with low ecological resources, which are likely to promote simple directed 121 
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movements rather than highly tortuous, resource-searching movements (Schtickzelle et al. 122 
2007, Fernandez et al. 2016, Schlagel et al. 2020). 123 

Material and Methods 124 

This section describes the general methods we used to film butterflies in the field, 125 
reconstruct their flight trajectories and describe their movements. We later explored and 126 
validated these data using diverse specific methods and statistics, which are detailed at the 127 
start of each results sub-section, for ease of reading. 128 

 129 

Figure 1 – UAV field of view (FOV). (A) Video recording geometry, showing the influence 130 
of UAV flight height (H) and camera angular horizontal FOV (hFOV) on ground horizontal 131 
FOV (ghFOV) and ground pixel pitch (gPP). (B) Aerial view of the study site, showing FOV 132 
over western (WF) and eastern field (EF). Source for aerial photography: geoportail.gouv.fr 133 
(C) Variation of ghFOV and gPP, as functions of H. These linear relationships depend on 134 
camera angular hFOV and recorded image width IW (see equations 1-2). (D-E) Examples 135 
of video frames recorded on July 8th 2021, over WF and EF, respectively. White arrows 136 
identify 2 reference crosses painted 20 m apart on the road, and used for image scaling. 137 

Study site 138 

We recorded butterfly flights from June to September 2021, in an agricultural area near the 139 
city of Rennes, France (coordinates 48.105444, -1.560029). The local landscape is covered with 140 
cultivated fields, few tree patches, small roads and farms, with the closest urbanized area 141 
situated 1.7 km away. We filmed butterflies flying above 2 fields situated on each side of a 142 
narrow road (Fig.1B). The western field (WF) contained an organic mixed crop (mainly wheat, 143 
fava and lucerne) which was harvested in August, whereas the eastern field (EF) contained 144 
forage grass, which was cut in June and August. We chose to record butterflies above two 145 
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different fields (filmed in alternance) to test our image filtering method above various 146 
backgrounds, and also control whether the flight trajectories could be influenced by ground 147 
vegetation: while EF crop was devoid of any identified ecological ressource, WF contained a few 148 
nectar-bearing flowers that might attract butterflies, and hence influence their flight trajectory. 149 

On the central road were the UAV takeoff/landing area, the UAV pilot (EDM), the technical 150 
assistant (KM), and an ultrasonic anemometer (Gill Maximet 501) recording wind speed and the 151 
direction from which the wind originates every second, at 2 m height. We painted two 152 
permanent red crosses 20 m apart along the central road (Fig.1D, E), as a reference line segment 153 
for positioning the UAV, and later for scaling the video frames. The ground slope in the recorded 154 
area was less than 2°. 155 

UAV video recording 156 

We used a Mavic Air 2 UAV (DJI, Nanshan, Shenzhen, China), which is a small commercial 157 
quadricopter (takeoff weight 570 g, retail price ~1000 € in 2021). This UAV has a CMOS sensor 158 
(6.4 ´ 4.8 mm) which can record 3840 × 2160 pixel videos (i.e. “4K” images, with 16:9 aspect 159 
ratio). According to the UAV manual, the camera lens has an f/2.8 aperture and an 84° field of 160 
view. As most recent UAVs can record with various aspect ratios and resolution levels (which 161 
may involve sensor cropping, i.e. digital zoom), we prefered to measure FOV in the lab, by 162 
placing the UAV camera at a known distance from a wall, and measuring the horizontal distance 163 
along the wall that is effectively included in the UAV camera image. The “horizontal” FOV (hFOV, 164 
i.e. along image width), was measured at 68.3° in the default “4K wide” recording mode, that 165 
we used throughout the present study. This angular hFOV value was used to choose a flight 166 
height. We computed the horizontal field of view on the ground (ghFOV, in meters) when the 167 
UAV camera aims vertically downwards: 168 

(1) 𝑔ℎ𝐹𝑂𝑉 = 2𝐻 tan ,
!"#$
% - 169 

where H is the UAV height (m), and hFOV is the horizontal angular FOV (°). 170 
 171 
Proportional to ghFOV is the corresponding pixel pitch on the ground, i.e. the distance on 172 

the ground covered by a single pixel side (gPP, m): 173 

(2) 𝑔𝑃𝑃 = 𝑔ℎ𝐹𝑂𝑉 𝐼𝑊⁄  174 

where IW is the video image width, in pixels. 175 
 176 
The total recorded ground area (gaFOV, m2), can also be of interest: 177 

(3) 𝑔𝑎𝐹𝑂𝑉 = &'
&(
𝑔ℎ𝐹𝑂𝑉%  178 

where IH is the video image height, in pixels. 179 
 180 
Based on these relations, we chose a 45 m UAV flight height, which covers a ghFOV of 61 m 181 

(gaFOV = 2096 m2), and corresponds to a gPP of 16 mm (Fig. 1C). This pixel pitch value was 182 
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voluntarily chosen at a fraction of the body size of the Pieris species we wanted to track, which 183 
have a forewing length around 30 mm.  184 

We performed preliminary tests in the field that confirmed that at H = 45 m, Pieris butterflies 185 
flying near the ground were projected in recorded images as pixel “blobs” with an area around 186 
10 pixels, which is large enough to be reliably tracked from frame to frame (see Fig. 2A, C). 187 
Higher camera height would allow larger FOV area on the ground, and hence longer tracking 188 
durations, but automatically tracking smaller blobs would become less reliable. 189 

Note that at H = 45m, the butterflies are not visible to the UAV pilot through the live video 190 
feedback on the UAV controller screen. The video feedback has lower resolution (IH = 720 or 191 
1080 pixels) than the recorded video, and the controler screen (Ipad Mini 5, Apple, Cupertino, 192 
USA) also has limited magnification and contrast in outdoor conditions. Butterflies in UAV 193 
footage were only detectable a posteriori, when playing recorded videos at full resolution on a 194 
computer screen in the lab. 195 

All videos were recorded at “30 fps” (29.97 video frames per second), which in 4K resolution 196 
produced video data at a rate of 13 MB/s. The UAV firmware automatically cut videos lasting 197 
more than 5 min in multiple 4 GB files, which can be stitched in post-processing, but with the 198 
loss of one video frame between files (this may depend on the UAV model). For simplicity, we 199 
decided to keep each video duration below 5 min. Recording at 60 fps was another possible 200 
option, but with a 15 MB/s data rate, this implied less data collected per video frame. We sticked 201 
to 30 fps, aiming to obtain the best possible image quality per video frame. 202 

Constant, manual exposure was tested initially, but proved unpractical as the ground 203 
luminance could vary by several exposure values (Ev) when cloud shadows crossed the FOV. 204 
Hence, we used auto-exposure with an exposure compensation of -0.7 to -1.3 Ev, as it improved 205 
the contrast between the white butterflies and the background. 206 

Time distribution of UAV flights 207 

In order to distribute observations accross the Pieris flight season (which in France can span 208 
from April to October; Lafranchis et al. 2015), we chose to collect videos once a week, over the 209 
months of June, July and September 2021. Each week, we chose a day that was favorable for 210 
butterfly flight, i.e. with a weather forecast as warm, sunny and not very windy as possible. We 211 
went on site in the afternoon (14:00-16:30). After takeoff, the UAV was positioned at H = 45 m 212 
above the EF. The UAV camera was tilted to a vertically-downward position, and the pilot used 213 
the video feedback to place the scale points on the road to the left margin of the FOV (see Fig. 214 
1E). The pilot started the video recording, and the UAV then relied on its own sensors (GPS, 215 
altimeter, etc.) to maintain its position without any pilot input, for about 4 min 30 s. Then the 216 
video recording was stopped, the UAV was relocated to the WF, height and scale alignment (now 217 
on the right margin of the FOV, see Fig. 1D) were checked, and another 4 min 30 s video was 218 
recorded. Repeating these steps, we could record a second EF video and a second WF video 219 
before the UAV battery dropped to 20-30% of capacity, inciting landing the UAV and swapping 220 
its battery. With this sequence, each UAV battery (rated at 11.6 V, 3500 mAh, 40.4 Wh) allowed 221 
to record about 18 min of video. As we used 3 fully charged batteries per field session, we were 222 
able to collect about 1 hour of video per field session. Weather allowing, 3 field sessions could 223 
take place in June (1st, 9th, 15th), 4 field sessions in July (1st, 8th, 15th, 22nd) and 4 in September 224 
(6th, 16th, 22nd, 29th), for a total video duration of 10.7 hours (48.8% over WF, 51.2% over EF). 225 
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Video processing 231 

In order to automate the tracking of butterflies in videos, pixels corresponding to the 232 
butterfly should be easily distinguished from the background. In the present case, Pieris 233 
butterflies appear in the raw video as blobs of bright pixels, but the background formed by the 234 
vegetation also has multiple bright areas (Fig. 2A), which rules out a simple detection of the 235 
butterfly by thresholding the raw video luminance levels. In addition, as the UAV is not perfectly 236 
static, and the wind can cause vegetation on the ground to move slowly, the background is 237 
moving, which does not favour background subtraction approaches (Piccardi 2004). We found 238 
a solution to this issue by designing a custom filter that selects the pixels that blink in the video: 239 
when a butterfly passes over an area, the pixels in that area become brighter for only 1 frame, 240 
and then revert to the background luminance. To apply this filter, we first transformed the RGB 241 
video frames into greyscale. Each pixel then has a single luminance value (v) in the range [0, 242 
255]. Then the “blink” filter script performs the following calculations: 243 

 244 
Pixel value variations from current frame (t) to next (t+1) and previous (t-1) video frames: 245 

(4) ∆𝑣) = 𝑣*+, − 𝑣*  246 
(5) ∆𝑣- = 𝑣*., − 𝑣*  247 

If both variations have the same sign, there was a luminance peak (positive or negative), and 248 
a blink value (b) is computed. On the contrary, if variations have different signs, there was no 249 
blinking, only monotonous pixel value variation. 250 

(6) if 𝑠𝑔𝑛(∆𝑣)) = 𝑠𝑔𝑛:∆𝑣-;  ®  𝑏* = −𝑠𝑔𝑛(∆𝑣)) ∗ min	(|∆𝑣)|, C∆𝑣-C) 251 
(7) else  ®  𝑏* = 0 252 

Note that b can be positive (bright blob passing over darker background) or negative (dark 253 
blob passing over brighter background). 254 

 255 
Interestingly, when going through a series of successive video frames, keeping memory of 256 

extreme b values for each pixel (notated B) can be used to reveal flight trajectories as a series 257 
of blobs, in a synthetic, diachronous image. 258 

(8) if |𝑏*+,| > |𝑏*| ®  𝐵 = 𝑏*+, 259 
(9) else  ®  𝐵 = 𝑏*  260 

For easy display of b frames (and B synthetic images), pixel blink values are rescaled from [-261 
255, 255] to [0, 255].  262 

(10) 𝑏 = (𝑏 + 255)/2 263 

As a result, background appears as medium grey (b = 128), with blinking pixels as lighter or 264 
darker gray blobs. Fig. 2 shows example results of the blink filter. 265 
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 266 

Figure 2 – Video frame filtering. (A) Magnified view of an original video frame, 267 
containing a Pieris brassicae image (as identified after butterfly capture). (B) Same view 268 
after applying the blink filter (i.e. b frame). (C) A hypothetical 30 mm forewing length 269 
Pieris, with wings fully stretched, projected onto a pixel grid with a 16 mm gPP. If all 270 
partially covered pixels appear brighter, the pixel blob area would be around 12 pixels. 271 
(D) Merging successive b frames reveals P. brassicae flight trace in a synthetic, 272 
diachronous image (i.e. B image). (E) Example trace of Pieris rapae. (F) Example trace of 273 
a dark-coloured species, either Vanessa atalanta or Aglais io (contrast ×2.0). (G) Example 274 
trace of Melanargia galathea. (H) Example trace where the shadow of a Pieris butterfly is 275 
also visible (contrast ×1.5). 276 
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We used the blink filter in two processing steps. For the initial exploration of our videos, we 277 
cut each video into 20 s bouts, and generated a single B image summarising each bout. This 278 
enabled us to quickly detect which video bouts contained butterfly tracks. On this basis, the 279 
FOV entry and exit times of each butterfly were precisely noted by playing the original videos 280 
on a large screen. Based on these time limits, we then generated for each butterfly track a new 281 
greyscale, uncompressed video file, containing the series of b frames. This filtered greyscale 282 
video was then used to automatically track the blobs. 283 

We used DLTdv8 (Hedrick 2008) to extract blob coordinates (in pixels) in successive video 284 
frames. The blob was manually digitized (i.e. mouse clicked) in the first few frames, and then 285 
DLTdv8 uses a Kalman filter and 2D cross-correlation to find the blob in following frames 286 
(without thresholding). As blob size and contrast can vary, and filtered b frames still contain 287 
some noise in the background, the automatic tracking process needed human supervision and 288 
frequent manual corrections, but with a convenient user interface to navigate through video 289 
frames, DLTdv8 offered vast time savings compared to a fully manual digitization. The average 290 
time spent on screen to process the videos was approximately 15 min per track. There are 291 
numerous alternative options to DLTdv8 for tracking blobs through video frames (e.g. Sridhar 292 
et al. 2019, Lauer et al. 2022, Chiara & Kim 2023). Regardless of the tracking software used, 293 
starting from the blink-filtered video will help solve the natural, moving background issue. 294 

For scaling the butterfly track to real-world coordinates, we measured pixel coordinates of 295 
the two painted reference crosses in one video frame (at mid-duration of the track), and fitted 296 
a geometrical transformation (combining rotation, scaling and translation; fitgeotrans function 297 
in Matlab) that resulted in (0, 0) and (0, -20) coordinates in real-world meters. This same 298 
transformation was then applied to the whole butterfly coordinate series, transforming 299 
coordinates in pixels to meters. We had measured with a compass in the field that the central 300 
road had a 6°E azimuth. We checked and refined this value in a GIS software 301 
(https://www.geoportail.gouv.fr), and thus applied a 5.83° CW rotation to all butterfly 302 
coordinates, so that in all graphical representations, y axis has a 0°, northward azimuth. 303 

Track selection 304 

When we explored the B images synthesizing our videos, we mainly found flight traces of 305 
Pieris butterflies (large white P. brassicae, small white P. rapae), appearing as clearly visible 306 
white dotted traces (fig. 2D, E). These two species were also the most easily observed from the 307 
ground during the field sessions. We also found a few flight traces of other species, that we had 308 
observed in the field, such as the marbled white (Melanargia galathea), the red admiral 309 
(Vanessa atalanta) or the peacock (Aglais io). However, as these traces were less frequent, and  310 
usually barely visible and discontinuous (Fig. 2F, G), we did not analyse them further. 311 

For some Pieris traces, the shadow of the butterfly formed a second, dark trace (Fig. 2H), 312 
which may potentially be used to determine the height of the butterfly relative to the ground 313 
(knowing the associated sun elevation angle). These shadows were only visible on almost bare 314 
ground (September videos, after crop harvest), and thus concerned a small number of Pieris 315 
traces. We have therefore not used this additional source of 3D data in the present study. 316 

 317 
Among the Pieris tracks, we applied the following exclusion criteria: 318 

https://www.geoportail.gouv.fr/
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• A 10 m wide strip, containing the road and the adjacent flowered ditches, was excluded 319 
from the analysis, so that each field (WF and EF) included a homogeneous area in terms 320 
of ground vegetation. 321 

• Many very brief tracks (< 5 s), often crossing just one corner of the FOV, were 322 
considered less informative and excluded from analysis.  323 

• We chose to focus on butterflies in continuous movement: Tracks marking one or more 324 
stops while crossing the FOV were excluded (a stop being defined as remaining for at 325 
least 1 s within a radius of 0.1 m). These tracks with stops were in the minority (~ 1 out 326 
of 6 tracks). 327 

• Tracks in which the butterfly interacted with another individual (e.g. flight inflection 328 
towards another butterfly, chases) were also excluded (~ 1 out of 13 tracks). 329 
 330 

In the end, our sample comprised N = 166 Pieris flight tracks. Despite our constant sampling 331 
efforts, these were not evenly distributed through the season: we recorded 12 tracks in June, 332 
125 in July and 29 in September. Taking all these tracks together, 70524 butterfly positions were 333 
recorded, representing a total of 39 min of flight time, and a flight distance of 7.4 km.  334 

When the tracks contained missing positions (caused by the absence of blob in some b 335 
frames), the (x, y) coordinates were linearly interpolated. These interpolated positions 336 
represented 2.2 % of the dataset (1544 positions). The interpolated positions were rarely 337 
contiguous, and the longest interpolated segment represented 7 successive positions (i.e. 0.23 338 
s). 339 

Track descriptive variables 340 

For this pilot study, we computed a small set of basic descriptive variables for each 2D track.  341 
• Track duration is the time the butterfly remained within the FOV (road zone 342 

excluded). 343 
• The change in 2D position from a frame to the next frame is named a step vector. Track 344 

length is computed as the sum of step vector norms. 345 
• Step speed is equal to step vector norm divided by the elapsed time (i.e. 1/29.97 s). 346 

Average speed is the arithmetic mean of the series of step speed values. It indicates 347 
how fast, on average, the butterfly flew along its 2D track. Average speed is also equal 348 
to track length divided by track duration. Note that average speed is a ground speed, 349 
not an air speed. 350 

• A “beeline” vector is defined as the vector from the first to the last recorded position 351 
of the butterfly. The beeline vector is equal to the vectorial sum of step vectors, and 352 
hence represents the butterfly’s resultant, directed movement across the FOV. Beeline 353 
azimuth was the direction of the beeline vector, a circular variable in the interval [0°, 354 
360°[, 0° corresponding to a northward azimuth. 355 

• Track straightness is computed as the ratio of the beeline vector norm to the track 356 
length. Straightness value is in the interval [0, 1]: 0 indicates that the butterfly 357 
performed a loop (i.e. had the same entry and exit positions), while 1 indicates a 358 
perfectly straight flight path. Straightness is inversely related to path tortuosity. Track 359 
straightness is also known as “Net to Gross Displacement Ratio” (NGDR, Buskey 1984). 360 
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• Beeline speed is the norm of the beeline vector divided by track duration. It reflects 361 
how fast the butterfly, on average, progressed in its directed movement. Beeline speed 362 
is also equal to average speed multiplied by straightness. Note that beeline speed is 363 
also a ground speed, not an air speed. 364 

• Wind speed and direction for each track were computed from the vectorial sum of the 365 
n wind vectors recorded during track duration, divided by n. 366 

Processing and statistics software 367 

Pixel blob tracking in videos was performed using DLTdv8 (Hedrick 2008; 368 
https://biomech.web.unc.edu/dltdv/). Other analyses, from video processing to statistics, were 369 
performed using Matlab R2018b (The MathWorks, Natick, MA, USA). We used the CircStat2012a 370 
toolbox for circular statistics (Berens 2009). For a small number of captured butterflies, 371 
forewing length measurement from field photographs were performed with ImageJ V1.54g 372 
(http://imagej.org). 373 

 374 

Figure 3 – Pieris flight tracks description. (A) Reconstructed 2D tracks over WF and EF. 375 
Black dots indicate last position of each track. (B-F) Distributions of descriptive variables: 376 
(B) track duration, (C) track length, (D) average speed, (E) track straightness and (F) 377 
beeline speed. 378 

https://biomech.web.unc.edu/dltdv/
http://imagej.org/
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Results  379 

Track general description 380 

Fig. 3 shows the reconstructed 2D tracks, and associated variable distributions. We collected 381 
66 Pieris flight tracks over WF, and 100 tracks over EF. Tracks had a median duration of 12.8 s 382 
(range 5.1 to 56.5 s, Fig. 3B), for a median track length of 40.0 m (13.4 to 134.9 m, Fig. 3C). The 383 
median value for average speed was 3.3 m.s-1 (1.9 to 9.2 m.s-1, Fig. 3D), and 2.9 m.s-1 for beeline 384 
speed (0.2 to 9.1 m.s-1, Fig. 3F). Straightness distribution was strongly skewed towards straight 385 
tracks, with a median value of 0.93 (range 0.10 to 0.99, Fig. 3E). High straightness values imply 386 
similar values for average speed and beeline speed in most tracks. 387 

We used two-sample Kolmogorov-Smirnov (KS) tests to assess distribution differences 388 
between WF and EF tracks, and found no significant difference for track duration (D(66,100) = 0.10, 389 
p = 0.78), track length (D(66,100) = 0.09, p = 0.86), average speed (D(66,100) = 0.09, p = 0.86), or beeline 390 
speed (D(66,100) = 0.18, p = 0.15). However, there was a significant difference between straightness 391 
distribution over WF and EF (D(66,100) = 0.26, p = 0.009), with straightness for EF tracks being even 392 
more skewed towards 1 (median 0.94) than WF tracks (median 0.90; see Fig. 3E). 393 

Beyond average speed and straightness, the 30 fps butterfly flight tracks extracted from UAV 394 
videos also contained fine-scale instantaneous information about flight speed and azimuth 395 
variation along the tracks. For example, Fig. 4 shows a track segment that depicts interesting 396 
movement patterns, in the form of meter-scale, sub-second transverse oscillations along the 397 
flight path. 398 

 399 

Figure 4 – Benefit of 30 Hz positional data. A 12 s flight track segment, reconstructed 400 
with the present method, showing all recorded 2D positions (+, 361 in total). The insert 401 
shows a magnified view. The 5 circles represent the positions that could have been 402 
recorded with a SHR tracking system, that has a 90-fold lower sampling frequency (1 403 
position every 3s.). Note that on the other hand, SHR benefits from a larger FOV, and 404 
hence longer tracking durations (see discussion). 405 
 406 

Controlling UAV stability 407 

During video recording, the UAV was not perfectly static, and whether this could have an 408 
effect on the reconstructed flight tracks was an important issue. For a small random subset of 409 
tracking videos (N = 10), we digitized the two reference points painted on the road, describing 410 
a 20 m reference segment (RS), not only at mid-duration, but on every video frame (using 411 
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automatic tracking in DLTdv8), which allowed to monitor how the RS was transformed 415 
throughout the duration of tracking, due to UAV movements. We assumed that a combination 416 
of rotation, scaling and translation could affect the RS projection. Using the fitgeotrans function 417 
in Matlab, we obtained the geometric transformation matrix from the first frame’s RS to each 418 
following frame, which allowed to monitor rotation, scaling and translation movement 419 
components separately. 420 

Fig. 5 shows that the RS projected image was indeed affected by a combination of geometric 421 
transformations through time. Over the investigated tracking durations (13 to 40 s), rotation of 422 
the RS could attain 0.26° (Fig. 5A), and was on average 0.07° (root mean square, RMS). Scaling 423 
variation could attain ± 1.13 % (0.36 % RMS; Fig. 5C). Horizontal (x) or vertical (y) translation of 424 
the RS image (Fig. 5B) could reach ± 11.2 pixels (3.6 pixels RMS), which represents less than 0.3 425 
% of image width, or 0.18 m when projected on the ground. The amounts of transformation 426 
usually did not grow monotonically through time, reflecting that in the absence of pilot input, 427 
the UAV does not simply drift away from its initial position, but uses inputs from its onboard 428 
sensors to try and maintain position and azimuth. Digitizing the RS only once at track mid-429 
duration - i.e. assuming that the UAV is fully static during each track - resulted in a maximal 0.28 430 
m error (0.08 m RMS) on the butterfly reconstructed 2D position (Fig. 5D). For the present work, 431 
we considered these levels of error to be acceptable, which is why we used the single RS 432 
digitizing method for all the remaining tracks.  433 

 434 

 435 

Figure 5 – UAV movements. Reference segment transformation through time for 10 436 
tracking videos, decomposed into (A) rotation, (B) translation and (C) scaling 437 
components. (D) Resulting 2D error on the butterfly 2D position, when only a single 438 
digitization of the RS is performed at mid-duration. 439 
 440 

Controlling butterfly flight height 441 

With the present recording geometry, the flight tracks of all butterflies passing through the 442 
pyramidal FOV (Fig. 1A), regardless of their flight height, are projected on a single sensor plane. 443 
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We reconstructed these tracks in 2D by assuming that the butterflies moved in the same plane 444 
as our reference 20 m segment, i.e. flew at ground level. How this simplification departed from 445 
the 3D reality needed investigation. We were especially interested in the possibility that some 446 
butterflies might have crossed the FOV at a significant height (10-40 m), which would result in 447 
vastly overestimated flight speeds in our ground-projected reconstructions.  448 

During field work, we visually monitored the fields under the UAV, and noted each time we 449 
saw a Pieris butterfly passing at a low height (defined as below the observer visual horizon, i.e. 450 
less than ~2 m above the ground). By comparing our field notes with the timestamps of the 451 
reconstructed tracks, N = 45 out of 166 tracks (i.e. 27 %) corresponded to visually-detected 452 
butterflies flying at low height (LH group). The remaining tracks were qualified as “unknown 453 
height” (UH group, N = 121), and may correspond either to high-flying butterflies (visually 454 
undetected because of low contrast against the sky), or to low-flying butterflies that remained 455 
undetected (because the observer’s attention was regularly directed at the UAV rather than at 456 
the ground). 457 

We compared the beeline speeds of the low-height (LH) and unknown-height (UH) groups. 458 
Both groups had very similar speed distributions (Fig. 6A), as confirmed by statistical tests : LH 459 
(2.9 ± 1.0 m.s-1, mean ± SD) and UH tracks (3.1 ± 1.3 m.s-1) did not significantly differ for mean 460 
speed in a t-test (t(164) = 0.84, p = 0.40), and were not drawn from different distributions according 461 
to a KS test (D(45,121) = 0.11, p = 0.79). 462 

 463 

Figure 6 – Speed distribution and flight height. (A) Ground beeline speed distribution 464 
observed for low height (LH) and unknown height (UH) butterfly tracks. (B) Kernel 465 
probability density estimation for LH and UH tracks, and for simulated tracks with 466 
uniform height distribution (see text). 467 

In order to visualize what speed distribution would be obtained for butterflies flying far from 468 
the ground, we simulated 105 straight horizontal tracks, with flight speeds sampled from a 469 
normal distribution copied form the LH group (2.9 ± 1.0 m.s-1), but crossing the FOV at heights 470 
uniformly distributed between 0 and 45 m. Simulated tracks crossing the FOV, and with a track 471 
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duration of at least 5 s (to simulate comparable track selection), had a ground-projected speed 472 
distribution that was flatter and shifted towards high (i.e. overestimated) speeds when 473 
compared to both LH and UH tracks (see Fig. 6B). This further suggests that the UH group in our 474 
track sample mainly comprises low-flying butterflies that went visually undetected in the field. 475 
Still, we cannot exclude that a small number of tracks in the UH group (on the right tail of speed 476 
distribution, e.g. with reconstructed speed > 6 m/s) might correspond to high-flying butterflies. 477 
Using the pixel blob area as a proxy to measure flight height was not considered a valid option, 478 
as the blob area can vary considerably even for a single individual flying at low height (see next 479 
section). 480 

Exploring blob area as a specific signature 481 

We explored the possibility to discriminate P. brassicae from P. rapae tracks, based on pixel 482 
blob area in the videos. During field work we captured a small number (N = 8) of Pieris  483 
individuals that had just passed through the UAV’s FOV. Each individual, captured with a 484 
butterfly net, was briefly placed in a thin transparent box with a grid-patterned back, 485 
photographed with its wings stretched for later identification and size measurement, and then 486 
immediately released. Back in the lab, we measured each individual’s forewing length (from 487 
wing base to wing tip, Van Hook et al. 2012) using ImageJ. The UAV video recordings 488 
corresponding to these individuals were filtered and digitized with the same methods as 489 
previously described, but were later re-analysed to measure the blob size in each filtered video 490 
frame. As a simple approach, the blob was defined as connected pixels with grey level b > 138, 491 
i.e. departing by more than 10 grey level from the mean background grey of 128. Sometimes the 492 
simple thresholding approach detected no blob, but this method still allowed to obtain many 493 
(269 to 654) blob area values per individual, that could be compared to the animal’s real size. 494 
Note that 4 out of the 8 tracks used for the present blob area analysis were not part of the final 495 
flight track sample (N = 166), because these captured individuals had flown near the road, or 496 
performed stops along their flight (see Track selection section). 497 

Five captured individuals were identified as P. rapae (2 females + 3 males), with forewing 498 
length ranging from 22.8 to 28.0 mm. The 3 other captured individuals were P. brassicae (2 499 
females + 1 male), with longer forewing, ranging from 31.2 to 36.7 mm. These values were in line 500 
with the literature, with the largest P. rapae individuals being close in size to the smallest P. 501 
brassicae specimens (Cook et al. 2022). 502 

Fig. 7 shows the blob area distributions observed for all 8 captured individuals. When 503 
considering only the median blob area for each individual, it was positively correlated to the 504 
forewing length of the animal (Spearman rank correlation, r(6) = 0.73, p = 0.047). However, the 505 
relationship was not monotonically increasing (r < 1), and there was extensive overlap between 506 
blob area distributions. In other words, a smaller butterfly could often project as a larger pixel 507 
blob than a larger butterfly, depending on the compared video frames. As a result, we 508 
considered unreliable to use recorded pixel blob areas as a direct mean to discriminate P. rapae 509 
and P. brassicae flight tracks in the present work. 510 
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 511 

Figure 7 - Forewing length vs. pixel blob area distribution for 8 tracked and captured 512 
Pieris butterflies. Blue: P. brassicae (N = 3); Green: P. rapae (N = 5). Distributions are 513 
displayed as Kernel probability density estimates. Circles indicate the median blob area 514 
value for each butterfly. 515 

 516 
 517 

Effect of advancing season on flight azimuth. 518 

By observing the tracks at different times in the flight period, it appeared visually that the 519 
flight azimuths have varied over the season (Fig. 8). 520 

To further quantify seasonal variations in azimuth distributions, we computed the beeline 521 
azimuth of tracks crossing a 30 m diameter disc located at the centre of the camera's FOV (Fig. 522 
8). Indeed, the rectangular shape of the camera FOV is less likely to record trajectories parallel 523 
to the longer side of the FOV (see Fig. S1), and this bias can be corrected by considering only an 524 
area enclosed by a circle inside the FOV. When a track did not cross this central disc, it was 525 
therefore removed from the sample for circular statistics. When a tortuous track crossed this 526 
disc more than once, only the longest segment inside the disc was considered. This restriction 527 
of the FOV to a central disc had the effect of reducing our sample from N = 166 to N = 119 (for 528 
this section only). 529 



2025 April 24th . Revised manuscript. 

a supprimé: nd

 530 

Figure 8 – Pieris flight tracks broken down by flight period (vertically) and field 531 
(horizontally). Black dots indicate last position of each track (N = 166). 30 m diameter 532 
circles represent the area considered for azimuth statistical comparisons (N = 119). 533 

We tested the effects of period (June to September) and field (WF vs. EF) on beeline azimuth, 534 
using a two-factor ANOVA for circular data (Harrison & Kanji 1988, in Berens 2009). As we 535 
observed many more trajectories in July, we subdivided the month of July: early July (field 536 
sessions on July 1st and 8th) and late July (July 15th and 21st ). We then tested the uniformity of 537 
the azimuth distributions for each period, using Rayleigh tests (Fisher 1995, in Berens 2009). 538 

 539 
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 540 

Figure 9 – Circular distributions of Pieris beeline azimuth, broken down by period 541 
(vertically), and field (horizontally). Arrows represent mean resultant vectors. The right 542 
column shows azimuth distributions for both fields pooled (WF + EF), with red arrows 543 
representing significant directional preference according to a Rayleigh test. The Rayleigh 544 
test asks how large the mean resultant vector length R must be to indicate a non-uniform 545 
distribution (Fisher 1995, in Berens 2009). 546 

The ANOVA for circular data detected a significant effect of period on azimuth (X2(6) = 43, p = 547 
1.2 × 10-7), but no effect of field side (X2(2) = 0.51, p = 0.77), and no interaction between the two 548 
factors (X2(3) = 5.5, p = 0.14). The distribution of azimuths during the 4 periods is shown in Fig. 9. 549 
In June, the butterflies flew most often to the north-east (Rayleigh test, N = 7, R = 0.65, p = 0.04; 550 
mean azimuth 24°). In early July, they flew most often to the north-west (N = 51, R = 0.56, p = 4 551 
× 10-8; mean azimuth 317°). In late July, tracks in all directions were observed, without any 552 
dominant azimuth, so that the azimuth distribution was not significantly different from a 553 
homogeneous distribution (N = 42, R = 0.15, p = 0.41). Finally, in September, tracks were most 554 
often oriented to the south (N = 19, R = 0.59, p = 0.001; mean azimuth 173°). 555 

Although our data was collected in low wind conditions (median wind speed 1.9 m.s-1), wind 556 
could still influence the butterflies’ trajectory. To verify if the above results were influenced by 557 
wind, we first tested whether butterfly beeline azimuth was correlated with wind direction, 558 
using a circular-circular correlation test (Jammalamadaka & Sengupta 2001, in Berens 2009). 559 
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The test returned no significant correlation (c = - 0.01, p = 0.95; Fig. 10A). We also assessed 561 
whether butterfly preferentially flew downwind, crosswind or upwind, by computing the 562 
angular difference between beeline azimuth and wind direction, and testing whether this 563 
“angle to wind” variable departed from a uniform distribution. Results suggested that 564 
butterflies did not preferentially fly at a specific angle to wind (Rayleigh test, N = 119, R = 0.15, p 565 
= 0.06; Fig. 10B), but the test was close to statistical significance, despite a small resultant vector 566 
(i.e. small effect size). Therefore, as a supplementary verification, we focused on tracks 567 
recorded during stronger winds (> 2 m.s-1, N = 64), as these butterflies were expected to be the 568 
most affected by a possible wind influence. Both circular-circular correlation (c = - 0.04, p = 0.75) 569 
and Rayleigh test on angle to wind (N = 64, R = 0.08, p = 0.67) returned non-significant results 570 
(Fig. 10C, D). This comforted the conclusion that wind direction did not significantly bias 571 
butterfly flight azimuth in our data.  572 

 573 

Figure 10 – Wind and Pieris flight azimuth. (A) Beeline azimuth vs. wind direction for N 574 
= 119 tracks. (B) Angle to wind for N = 119 tracks. 0° corresponds to upwind flight, 180° to 575 
downwind flight. (C-D) Same graphics for the N = 64 tracks where wind speed exceeded 576 
2 m.s-1.  577 

Discussion 578 

Butterfly tracking method validation, strengths and limits 579 

We show that UAV-image-based tracking can be used to reconstruct free-flying butterfly 580 
paths. With light, affordable and easily-deployed gear in the field, we were able to track 581 
numerous wild, untagged Pieris butterflies, over an area of 2100 m2, with track lengths 582 
averaging 40 m. Given an average flight speed of about 3 m.s-1, this translates to tracking 583 
durations most often near 10-20 s (Fig. 3B-D), depending on each butterfly’s flight speed and 584 
straightness. This scale of recorded movement is larger than what can be achieved in most 585 
insectaries (e.g. Kleckova et al. 2024: 15 m2; Le Roy et al. 2021: 36 m2; Kitamura & Imafuku 2015: 586 
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182 m2; Lihoreau et al 2016b: 880 m2), but remains modest compared to other open field 587 
methods such as SHR (Ovaskainen et al. 2008: 2.5 km2; Lihoreau et al. 2012: 1.5 km2; Maggiora 588 
et al. 2019: 0.7 km2) or human-held GPS tracking (e.g. Fernandez et al. 2016: 100 m average track 589 
length).  590 

The spatial scale of the present method is directly constrained by the UAV camera FOV, 591 
which was voluntarily limited to 61 × 34 m (from a 45 m UAV height). This was needed to 592 
maintain a butterfly blob area around 10 pixels, for reliable blob tracking throughout video 593 
frame series (see Methods section). A first possible way to enlarge FOV would be to use an UAV 594 
with higher camera resolution (e.g. 6K or 8K sensor, with matching optics quality), which could 595 
potentially fly higher and record a wider ground area, while maintaining a centimetric pixel 596 
pitch on the ground. Moreover, a higher signal-to-noise ratio in video frames (e.g. from larger 597 
sensors and/or less compressed video file formats) might allow to reliably detect smaller blobs 598 
throughout frame series, which in turn would allow larger pixel pitch values, and even higher 599 
UAV flight height. A FOV exceeding 100 m in side length (i.e. ~5000 m2) is probably already 600 
possible with current high-end commercial UAVs, which might be a large enough area to record 601 
routine flight movements in some species with limited home ranges (e.g. Fernandez et al 2016). 602 

An alternative way to greatly increase recorded movement length would be to try and follow 603 
butterflies with the UAV. This would necessitate (1) that the video feedback to the UAV pilot is 604 
of sufficient magnification for a live view of individual butterfly blobs and (2) a different 605 
approach to video frame filtering (accounting for quickly moving image background), but these 606 
are interesting perspectives for future methodological developments, that might allow 607 
recording butterfly movements at a much larger spatial scale, closer to the real scale of 608 
dispersal or migration movements.  609 

 610 
On the other hand, a strength of the movement data we collected is the 30 Hz temporal 611 

resolution, which is orders of magnitude higher than non-image-based field tracking methods 612 
applicable to flying insects: 1 Hz for human-held GPS tracking (Fernandez et al. 2016), 0.33 Hz 613 
for SHR (Ovaskainen et al. 2008), and lower (usually < 0.01 Hz) for automated radio-tracking 614 
(Kays et al. 2011). Here, with one location every ~10 cm along the flight path, the reconstructed 615 
tracks reveal fine-scale movement patterns (see Fig. 2, 4, 8), and offer access to flight speed and 616 
tortuosity in the wild, with improved accuracy. Such refined movement data may provide 617 
interesting insights on biomechanical and/or orientation processes at work during butterfly 618 
flight. More detailed analyses focused on the effect of wind on flight speeds, and the oscillation 619 
patterns along Pieris flight paths are envisaged, but as they imply many additional analyses (e.g. 620 
Srygley & Oliveira 2001), they were beyond the scope of the present UAV methodology 621 
presentation. Note that in environments richer in ecological resources (e.g. patches of host 622 
plant or nectariferous flowers) and conspecifics, having fine access to flight speed and 623 
tortuosity will be useful to study less directed, routine flight behaviours, such as foraging or 624 
mate searching (Schtickzelle et al. 2007, Fernandez et al. 2016). 625 

 626 
Another limitation of the present method is the projection of the FOV, a pyramidal 3D air 627 

volume that butterflies can cross at various height, onto a virtual 2D surface at ground level. For 628 
a UAV at height H and a butterfly flying at height h, this 2D projection at ground level causes an 629 
overestimation of flight speed by a factor of H / (H-h). For example, the speed of a butterfly flying 630 
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at h = 15 m under our UAV at H = 45 m would be overestimated by a factor of 1.5. In our dataset, 631 
we were able to verify by direct observation that at least 27 % of tracked butterflies flew at less 632 
than 2 m above ground level. For these tracks, the 2D ground projection implies only a small 633 
error on flight speed (overestimation factor £ 1.05). For other butterflies, for which we were 634 
unable to confirm flight height, we showed that their projected flight speeds are no higher than 635 
confirmed “low flyers”, and thus conclude that they probably also crossed the FOV at low height 636 
(Fig. 6). This remains indirect evidence, and we cannot exclude that for a small minority of 637 
tracks, we might have significantly overestimated flight speed because the butterfly crossed 638 
the FOV at a higher height.  639 

Note that, in the hypothetical situation where butterflies move mainly in horizontal planes, 640 
but at various heights, the reconstruction of flight speeds will be heterogeneously 641 
overestimated, but the angular and temporal variables (e.g. variation of azimuth through time) 642 
remain unaffected by flight height.  643 

Beyond the average flight height, all the vertical (z) movements of the butterflies are lost 644 
when projected onto a (x, y) horizontal plane. For following studies, it is therefore important to 645 
observe the 3D flight behaviour of butterflies beforehand, depending on the species, the type 646 
of investigated movement (e.g. foraging, patroling, dispersal or migration), the relief of the 647 
terrain and vegetation, and to assess from these necessary preliminary behavioural 648 
observations whether a 2D projection might overlook relevant information about the animals' 649 
movements. If the investigated movement is mainly in the horizontal plane and at low height, 650 
then the present method can be appropriate. In the case where the 3D flight trajectory or 651 
elevation relative to the ground are necessary data for a study, one should either find a zone 652 
where the butterfly's shadow is also visible in the image (Fig. 2H) and derive 3D track data, or 653 
opt for other natively 3D optical methods, based on multiple views of the flight volume 654 
(Theriault et al. 2014, de Margerie et al. 2015). 655 

 656 
When the UAV receives no command from the pilot, its flight control algorithm seeks to 657 

maintain its horizontal position, height and azimuth, using sensory-motor regulation loops 658 
based on many on-board sensors (GPS, barometric altimeter, magnetic compass, 659 
accelerometers, gyroscopes, downward vision system). Commercial UAVs have made 660 
spectacular progress on stability in the last decade, and we were able to verify that, at least over 661 
the tracking durations used here (< 1 min), the movements of our UAV were indeed very limited 662 
(Fig. 5). This allowed us to assume that the drone was static in the sky, at the cost of a drift under 663 
30 cm in the reconstructed position of the butterfly, which we found acceptable for the question 664 
posed here (i.e. the measurement of the beeline azimuth over several tens of meters). Still, note 665 
that most UAVs use barometric sensors for regulating flight height, and that atmospheric 666 
pressure might vary significantly across flight times longer than a few minutes.  667 

For studies requiring lower error caused by the drone's position, it is possible to perform a 668 
continuous measurement of the reference segment on every video frame (by auto-tracking the 669 
2 reference points), or even to perform a more refined calibration of the projected image by 670 
continuously tracking multiple points on a grid to fully monitor any complex image 671 
transformation or distortion. If the drone's movements really need to be more closely 672 
controlled, more advanced commercial drones are available, using positioning technologies 673 
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such as Differential GPS (DGPS) or Real Time Kinematic (RTK), which can monitor the UAV 678 
position with centimeter accuracy. 679 

 680 
Our video tests suggest that other butterfly species are potentially detectable using the 681 

present method, whether they appear light against a dark background (resulting in white blobs 682 
in filtered video frames) or dark against a light background (black blobs, Fig. 2F). The blink filter 683 
proved efficient for erasing background textures, while also tolerating a fair amount of 684 
background movement, caused either by the slow drift of the UAV, or vegetation being blown 685 
over by the wind. Hence, we hope to see following studies tracking other butterfly species in 686 
various open landscapes. In more cluttered landscapes, where the butterflies can fly through 687 
or below vegetation, the present optical method will not be appropriate.  688 

Unfortunately, depending on the location and the flight season, it is possible to run into the 689 
issue that two (or more) species with similar sizes and colors get filmed simultaneously, and 690 
this is the problem we encountered here with two Pieris species. This problem of distinguishing 691 
species and individuals is often encountered with tagless, image-based or radar-based tracking 692 
(Schlagel et al. 2020). We were not able to discriminate P. brassicae from P. rapae based on pixel 693 
blob area (Fig. 7). The wide, overlapping distributions of blob areas for each individual butterfly 694 
is not surprising: Flying butterflies can have any posture, from fully stretched to fully closed 695 
wings on different video frames, as a result of (1) flapping wing movement and (2) variable roll 696 
and pitch angles of the body along the flight path. Moreover, pixel blob area can also be affected 697 
by other factors such as (3) contrast with the local background, (4) “blob-clipping” (i.e. when 698 
the distance covered between two consecutive frames is less than the body length, which 699 
interferes with the filtering method), and (5) flight height. Note also that the relationship 700 
between butterfly size and blob area is expected to follow discrete steps (pixels), especially 701 
when the pixel pitch is close to animal body size (Fig. 2C). 702 

Provided that some of these sources of blob area variation can be better controlled, we do 703 
not rule out that pixel blob area could help discriminate butterfly species in future studies 704 
(and/or monitor flight height), but this would need more refined blob classification processes 705 
than what we implemented here. 706 

Another option could be to discriminate species based on flight speed or flight behaviour 707 
(e.g. tortuosity). A first issue with this approach is that in studies aiming at describing the flight 708 
behaviour, it could lead to circular inference. Moreover, Kleckova et al. (2024) reported that 709 
different species (P. rapae and P. napi) can have smaller differences in their flight parameters 710 
(measured in an insectary) than spring and summer generations of the same species. 711 

Another route for reducing possible confusion between species could be a greater effort to 712 
identify each individual’s species (and sex) in the field, either by remote visual/photographic 713 
identification, or by systematically capturing butterflies after they crossed the UAV’s FOV. This 714 
would be limited to low-flying butterflies, and also implies greater human presence and 715 
movements in the field, which might affect the butterflies’ movement patterns. As well, 716 
capturing the butterflies before they cross the FOV, and tracking their movements once 717 
released was not retained as a valid option, as released butterflies do not immediately display 718 
their normal flight behaviour (Nikoleav 1974, Dudley & Srygley 1994). 719 
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Observed flight speed and straightness distributions 720 

Ground-based multi-camera settings can be used to measure butterfly flight speed in 3D, 721 
most often inside  insectaries (e.g. Kitamura & Imafuku 2015, Le Roy et al. 2021, Kleckova et al. 722 
2024). Unfortunately, many butterflies species tend to fly slower in insectaries than in the wild 723 
(Dudley & Srygley 1994), and captivity can also affect other flight parameters (e.g. glide 724 
duration: Le Roy et al. 2021). The present data offers a nice opportunity to measure Pieris flight 725 
speed in undisturbed, natural conditions, although in 2D only. The median average ground 726 
speed we report, at 3.3 m.s-1, comes out lower than some earlier measurements on smaller 727 
samples of Pieris performing directed flight in the field (e.g. 3.6 m.s-1 in P. brassicae, Nikolaev 728 
1974; 4.4 m.s-1 in P. rapae, Dunn 2024). More interestingly, across our relatively large sample 729 
from multiple field sessions, we observed a wide speed range (from 1.9 to 9.2 m.s-1 for track 730 
average ground speed, Fig. 3D), not even accounting for flight speed variations within each 731 
track. This again calls for a detailled (upcoming) analysis of instantaneaous ground and air 732 
speeds, taking wind into account, that might provide novel insights on the flight behaviour of 733 
Pieris (e.g. wind drift compensation; Gilbert & Singer 1975, Srygley & Oliveira 2001).  734 

Flight speeds over WF (mixed crop) and EF (grass) did not differ, and most tracks had a very 735 
high straightness value, compatible with a “directional, undistracted” flight behaviour that is 736 
often understood as migratory in butterflies (Chowdhury et al. 2021). Still, we measured that 737 
tracks over WF were not quite as straight as over EF (Fig. 3E), suggesting that the richer 738 
vegetation in WF might have attracted butterflies to some extent, favouring slightly less 739 
directed movement. Also, we note that some butterflies in our sample exhibited clearly 740 
tortuous rather than directional flight (see Fig. S2 for 14 tracks with straightness < 0.6, which 741 
were observed in equal numbers above WF and EF). Moreover, note that the speed and 742 
straightness distributions we report would be different if we had included butterflies marking 743 
stops along their flights. Thus, although most Pieris butterflies we observed in the field 744 
exhibited a directed, possibly migratory behaviour, a minority appeared to be rather engaged 745 
in undirected flight movements. 746 

The higher number of butterflies passing over EF (N = 100 vs. N = 66 for WF) was intriguing. 747 
After a close examination of sample sizes for each field session (see table S1), it appears that EF 748 
and WF butterfly numbers only differed significantly for 1 out of 11 field sessions, thus we do 749 
not conclude that EF consistently attracted more butterflies than WF. 750 

P. brassicae and P. rapae migratory behaviours 751 

In butterflies, migration often occurs over several generations, with successive generations 752 
following different flight azimuths to achieve a round-trip annual travel (Chowdhury et al. 2021). 753 
Within Pieridae, P. brassicae and P. rapae migratory behaviours have long been documented 754 
from the observation of mass migrations (Williams et al. 1942, Vepsalainen 1968). These mass 755 
migrations are now rarer due to the use of pesticides (Spieth & Cordes 2012), but see John et al. 756 
(2008) and Dunn (2024) for recent reports of group migrations in P. rapae (and see Bauer et al. 757 
2024 for radar-based studies on mass migrations in other insect species). Early attempts at 758 
quantifying Pieris migratory flights used methods such as visually estimating the flight azimuth 759 
in the field (e.g. Baker 1968), or difficult mark-recapture experiments (Roer 1959, 1961). More 760 
recently, Jones et al (1980) used an egg marking method to study the movements of individual 761 
australian P. rapae females, reporting directed flight with some northward bias. Gilbert & 762 
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Raworth (2005) observed  in the Pyrenees mountains that a portion of the P. rapae population 763 
migrated northward in spring and southward in autumn, in line with earlier observations in 764 
England (Baker, 1968). For P. brassicae, Spieth & Cordes (2012) collected eggs from several 765 
Western Europe regions, and later measured the spontaneous flight azimuth of adult female 766 
individuals, in a 2 m octogonal flight cage. They showed that the preferred flight azimuth 767 
depended on the season and the geographic origin: The first generation usually followed a 768 
northward azimuth (modulated by the precise geographic origin), whereas the last generation 769 
(2nd or 3rd depending on the region) flew southward. Using a similar flight cage, Larranaga et al. 770 
(2013) confirmed a mean northward azimuth in both females and males P. brassicae of the first 771 
generation. 772 

Here, for a mixed sample of P. brassicae and P. rapae individuals, we observed flights that 773 
were mainly directed northwards in the early season (June, early July), and a southward 774 
azimuth in the late season (September). This appears congruent with the existing literature on 775 
migration in P. brassicae (Spieth & Cordes 2012) and P. rapae (Gilbert & Raworth 2005). Hence, 776 
despite the limited spatial scale of our movement data, it is probable that the highly directed 777 
movements we recorded were segments of migratory flights. Note that the absence of a 778 
dominant azimuth for late July might be the result of P. brassicae already shifting to southward 779 
flight, with P. rapae still flying predominantly northward at this period (R. Baker, personal 780 
communication). 781 

Tracks recorded from a UAV allow an accurate measurement of flight azimuth, without the 782 
need to capture or mark the butterflies (which can affect spontaneous flight behaviour: 783 
Nikoleav 1974, Dudley & Srygley 1994), at an intermediate scale between a flight cage (or 784 
insectary) and mark-recapture experiments. As a plus, high sampling frequency trajectories 785 
contain previously unavailable fine-scale information on flight speeds, tortuosity of the flight 786 
path, and patterns of rapid azimuth variation (transverse oscillations). This refined data may be 787 
studied in greater detail and has the potential to reveal information on locomotor behaviour 788 
and the perceptual mechanisms underlying spatial behaviour. Two major limitations of our 789 
approach at this stage are (1) the limited spatial scale and (2) the confusion between P. rapae 790 
and P. brassicae, because of their similar sizes and colors, and their concurrent flight in our 791 
geographical area.  792 

Conclusion 793 

Our results reveal that video tracking of butterflies from a UAV is possible, and capable of 794 
providing movement data in fully natural conditions, at an unprecedented spatio-temporal 795 
resolution, and at a modest cost. This fine-scale data could prove precious for understanding 796 
the spatial behaviour of many butterfly species in open landscapes, and study their movement 797 
ecology in various contexts, from routine ressource-searching flights in the local habitat, to 798 
dispersal or even migratory flights. We hope that the present methodology exploration can 799 
serve as a starting point and motivate other works using UAVs to study spatial behaviour and 800 
movement ecology in flying insects. 801 
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