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Abstract1

Ecologists differ in the degree to which they consider the linear Type I functional response to2

be an unrealistic versus sufficient representation of predator feeding rates. Empiricists tend to3

consider it unsuitably non-mechanistic and theoreticians tend to consider it necessarily simple.4

Holling’s original rectilinear Type I
::::::
model

:
is dismissed by satisfying neither desire, with most5

compromising on the smoothly saturating Type II response for which searching and handling are6

assumed to be mutually exclusive activities. We derive a “multiple-prey-at-a-time” functional7

response reflecting
::::
and

::
a

::::::::::::::
generalization

::::
that

:::::::::
includes

::::
the

:::::
Type

:::
III

:::
to

:::::::
reflect predators that can8

continue to search when handling an arbitrary number of already-captured prey. The multi-prey9

model clarifies the empirical relevance of Holling’s two Type I forms and
:::::
linear

:::::
and

::::::::::
rectilinear10

:::::::
models

::::
and

:
the conditions under which linearity can be a mechanistically-reasoned description11

of predator feeding rates, even when handling times are long. We find information-theoretic12

support for the linear Type I and multi-prey responses in 26
::::::::
presence

:::
of

::::::::
linearity

:::
in

:::
35% of13

2,598
:::
591

:
compiled empirical datasets, and find evidence that larger predator-prey body-mass14

ratios permit predators to search while handling greater numbers of prey. Incorporating the15

multi-prey response into the Rosenzweig-MacArthur population-dynamics model reveals that16

a non-exclusivity of searching and handling can lead to coexistence states and dynamics that17

are not anticipated by theory built on linear Type I or Type II responses
::::::::
Holling’s

:::::::::::
traditional18

:::::::
models. In particular, it can lead to bistable fixed-point and limit-cycle dynamics with long-term19

crawl-by transients between them under conditions where abundance ratios reflect top-heavy20

food webs and the functional response is effectively linear. We conclude that Type I responses21

::::::::::
functional

::::::::
response

:::::::::
linearity

:
should not be considered empirically unrealistic and that

::::
but

::::
also22

::::
that

:::::
that

:
more bounded conclusions should be drawn in theory presuming the linear Type I to23

be appropriate.24

Keywords: type 0 functional response,
::::::::::
generalized

::::::::
Holling

:::::::
model,

::::::::::::::
predator-prey

::::::::::
body-mass25
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:::::
ratio,

:
consumer-resource cycles, long transients, alternative states, predator-prey body-mass26

ratio, top-heavy food webs27
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Introduction28

The way that predator feeding rates respond to changes in prey abundance, their functional29

response, is key to determining how species affect each other’s populations (Murdoch & Oaten,30

1975). The challenge of empirically understanding and appropriately modeling functional re-31

sponses is therefore central to myriad lines of ecological research that extend even to the pro-32

jection of Earth’s rapidly changing climate (DeLong, 2021; Rohr et al., 2023).33

The simplest functional response model, the Holling Type I response, describes feeding rates34

as increasing linearly with prey abundance. Interpreted to represent an analytically-tractable35

first-order approximation to all other prey-dependent functional response forms (Lotka, 1925;36

Volterra, 1926), its simplicity has caused the Type I response to become foundational to the-37

ory across Ecology’s many sub-disciplines. Nonetheless, there is a common and persistent be-38

lief among empirically-minded ecologists that the Type I response is unrealistic and artifac-39

tual. Indeed, it is typically dismissed a priori from both empirical and theoretical efforts to40

“mechanistically” characterize predator feeding rates (e.g., Baudrot et al., 2016; Kalinkat et al.,41

2023). This dismissal is similarly levied at the rectilinear model (e.g., Koen-Alonso, 2007)42

:::::::::
piecewise

::::::::::
rectilinear

:::::::
(a.k.a.

::::::
Type

:::
0)

:::::::
model,

::::::::::
originally

:::::::::
depicted

:::
by

:::::::::::::::
Holling (1959)

::
as

::::
the

::::::
Type43

:
I
::::::::::::::
(Denny, 2014)

:
,
:
in which feeding rates increase linearly with prey abundance up to an abrupt44

maximum and by which Holling (1959) originally depicted the Type I response (Denny, 2014)45

. Supportive evidence
::::::::::::::::::::::::
(e.g., Koen-Alonso, 2007)

:
.
:::::::::
Support

:
comes from syntheses that indicate46

the linear Type I
::::::::::
concluding

::::::::::
functional

:::::::::
response

:::::::::
linearity

:
to be rare, with feeding rates more47
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consistent with smoothly saturating Type II responses being by far the more frequently inferred48

(Dunn & Hovel, 2020; Jeschke et al., 2004).49

Countering justifications for the continued use of the linear Type I response in theory relate50

to the challenge of extrapolating the inferences of mostly small-scale experiments to natural field51

conditions (see also DeLong, 2021; Griffen, 2021; Jeschke et al., 2004; Li et al., 2018; Novak & Stouffer, 2021b; Novak et al., 2017; Uiterwaal et al., 2018)52

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(DeLong, 2021; Griffen, 2021; Jeschke et al., 2004; Li et al., 2018; Novak & Stouffer, 2021b; Novak et al., 2017; Uiterwaal et al., 2018)53

. For example, prey abundances in the field may vary relatively little
::::
over

::::::::
relevant

::::::
scales, making54

linearity a sufficiently good approximation for how species affect each other (Wootton & Emmer-55

son, 2005). Further, prey abundances in nature are often
:::::::::
typically much lower than those used56

in experiments to elicit predator saturation (Coblentz et al., 2023), which may consequently be57

rare in nature (but see Jeschke, 2007). Functional responses could thus be effectively linear in58

their dependence on prey abundances
::::::::
therefore

:::
be

:::::::::::::::
approximately

::::::
linear

:
even for predator-prey59

interactions having very long handling times (e.g., Novak, 2010).60

Here, our goal is to offer a further way of resolving ecologists’ views on the linear and recti-61

linear models by considering an additional reason for functional responses to exhibit effectively
:
a62

::::::
reason

:::
for

::::::::
feeding

:::::
rates

:::
to

:::::::
exhibit linear prey dependence

::::
over

:
a
::::::
large

::::::
range

::
of

:::::
prey

:::::::::::
abundances.63

This reason is not one of experimental design or variation in species
:::::
prey abundances per se, but64

rather is attributable to the mechanics of predator-prey biology: the ability of predator individu-65

als to handle and search for more than just one prey individual at a time (i.e. the non-exclusivity66

of handling and searching). Although it is straightforward to show how the linear Type I can67
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emerge when handling times are
::::::::
assumed

::
to

:::
be

::::::::
entirely

:
inconsequential, and although functional68

response forms that could result from a non-exclusivity of handling and searching have been con-69

sidered before (Jeschke et al., 2002; 2004; Mills, 1982; Sjöberg, 1980; Stouffer & Novak, 2021), we70

contend that the empirical relevance and potential prevalence of such “multiple-prey-at-a-time”71

feeding (henceforth multi-prey feeding) are not sufficiently understood due to an inappropri-72

ately literal interpretation of the “handling time” concept (see also Jeschke et al., 2002; 2004)73

::::::::::
parameter

::
of

::::::::::
functional

:::::::::
response

:::::::
models

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see Discussion and DeLong, 2021; Jeschke et al., 2002; 2004)74

. Likewise, the potential implications of multi-prey feeding for predator-prey coexistence and75

population dynamics have not, to our knowledge, been assessed.76

We begin by providing a derivation of a simple multi-prey functional response model for77

a single predator population feeding on a single prey species that relaxes the assumption of78

searching and handling being exclusive activities. This derivation helps clarify the empirical79

relevance of Holling’s linear and rectilinear Type I forms
:::::::
models and the conditions under which80

these can be good descriptions of feeding rates in the presence of long handling times (Jeschke81

et al., 2004). We then fit
::::::
further

:::::::::::
generalize the multi-prey model to

::::::
include

::::
the

:::::::::::::
Holling-Real82

:::::
Type

:::
III

:::::::::
response

::::
and

:::
fit

:::
all

::::::::
models

:::
to a large number of datasets assembled in a new version83

of the FoRAGE compilation (Uiterwaal et al., 2022).
::::::
This

::::::
allows

:::
us

:
to quantify the potential84

prevalence of multi-prey feeding and to test the hypothesis that larger predator-prey body-mass85

ratios permit predators to handle and search for more prey at a time.
:::
We

::::
also

::::::
assess

::::
the

:::::::::
predicted86

::::::::::
association

:::::::::
between

::::::
larger

:::::::::::
body-mass

::::::
ratios

::::
and

::::::
more

:::::::::::
pronounced

::::::
Type

:::
III

::::::::::
responses.

:
Finally,87
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we incorporate the multi-prey response into the Rosenzweig & MacArthur (1963) “paradox88

of enrichment” population-dynamic model to assess its potential influence on predator-prey89

coexistence and dynamics.90

With our statistical analyses demonstrating that many datasets are indeed consistent with91

linear and effectively-linear multi-prey feeding , and that larger predator-prey body-mass ratios92

are indeed more conducive to multi-prey feeding
:::::
(and

:::::
more

::::::::::::
pronounced

::::::
Type

::::
III

::::::::::
responses),93

our mathematical analyses demonstrate that even small increases in the number of prey that a94

predator can handle at a time can lead to dynamics that are not anticipated by theory assuming95

linear Type I and Type II
::::::::
Holling’s

:::::::::::
traditional

::::::::::
functional

:
response forms.96

A functional response for multi-prey feeding97

Holling’s Type II response98

The multi-prey model may be understood most easily by a contrast to Holling’s Type II model99

(a.k.a. the disc equation). There are several ways to derive it
:::
the

::::::
Type

::
II

:
(Garay, 2019), but the100

most common approach takes the perspective of a single predator individual that can either be101

searching or handling
:::::::::::
“handling”

:
a single prey individual at any point in time: In the time TS102

that a predator spends searching it will encounter prey at a rate proportional to their abundance103

N , thus the number of prey eaten is Ne = aNTS where a is the attack rate. Rearranging we104

have TS = Ne/aN . With a handling time h for each prey, the length of time spent handling105

all eaten prey will be TH = hNe. Given the presumed mutual exclusivity of the two activities,106

TS = T − TH where T is the total time available. Substituting the second and third equations107
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into the fourth, it follows that Ne = aNT/(1 + ahN). We arrive at the predator individual’s108

feeding rate by dividing by T , presuming steady-state predator behavior and constant prey109

abundances.110

An alternative derivation on which we build to derive the multi-prey model considers a111

temporal snapshot of a predator population composed of many identical and independent indi-112

viduals (see also Real, 1977)
:::
(see

::::
also

:::::::::::::
Real (1977)

:::
and

::::
the

:::::::::::::::
Supplementary

:::::::::
Materials

:
). Assuming113

constant prey abundance and steady-state conditions, the rate at which searching individuals114

PS become handling individuals PH must equal the rate at which handling individuals become115

searching individuals such that aNPS = 1
hPH , visually represented as116

PS

N
a
1/h

Ne

PH .117

Given the mutual exclusivity of searching and handling, PS = P − PH , where P is the total118

number of predators. Substituting this second equation into the first, it follows that the
::::
total119

number of handling predators PH = ahNP/(1+ahN). Since eaten
::::::
Eaten

:
prey are generated at120

rate 1
hPH by

::
all

:
these predators as they revert back to searching, we .

::::
We

:::::
thus

:
obtain Holling’s121

Type II (per-predator) model by multiplying the proportion of all predators that are handling122

::::::::
handling

::::::::::
predators, PH/P , by 1

h .123

The multi-prey response124

The derivation of the multi-prey response follows the same logic but assumes that searching and125

handling are not mutually exclusive activities until an arbitrary count of n prey individuals are126

being handled .
::::
(see

::::
the

:::::::::::::::
Supplementary

::::::::::
Materials

::
for

::
a
::::::
more

::::::::
explicit

::::::::::::
derivation);

: ::::::::
handling127
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::::
need

::::
not

:::::::
reflect

::::::
literal

:::::::::
handling

::::
but

:::::::
rather

:::::
could

:::::
also

::::::
reflect

::
a
::::::::
process

::
of

:::::::::
digestion

::::
and

:::::::::
stomach128

::::::::
fullness.

:
129

With constant prey abundance and steady-state conditions as before, we assume that preda-130

tors continue to handle each prey with handling time h and that predators handling less than131

n prey continue to search for and encounter prey at rate aN . The rate at which searching132

individuals PS become PH1 individuals handling one prey is then equal to the rate at which they133

revert back to being searching individuals with no prey, thus PH1 = ahNPS . Likewise, the rate134

at which PH1 individuals become PH2 individuals handling two prey must equal the rate these135

revert back to handling just one prey, thus PH2 = ahNPH1 = (ahN)2PS . That is,136

PS

N
a
1/h

Ne

PH1

N
a
1/h

Ne

PH2

N
a
1/h

Ne

. . .
N

a
1/h

Ne

PHn .137

Generalizing by induction, the number of predators PHi handling i prey will be (ahN)iPS for138

i ∈ {1, 2, 3, . . . , n}. The proportion of predators handling i prey at any point in time will then139

be140

PHi

P
=

(ahN)iPS

PS + PH1 + . . .+ PHn

=
(ahN)i

1 +
n∑

i=1
(ahN)i

(1)141

(Fig. S.1). With each of these groups generating eaten prey at rate 1
hPHi , the per predator142

feeding rate of the population is obtained by a summation across all groups, giving143

f(N) =

1
h

n∑
i=1

(ahN)i

1 +
n∑

i=1
(ahN)i

(2)144

(Fig. 1). This is the multi-prey model for integer values of n. However, because the geometric145

series
∑n

i=1 x
i = x(1 − xn)/(1 − x) for x ̸= 1, we can also write the model more generally for146
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arbitrary values of n as147

f(N) =
aN(1− (ahN)n)

1− (ahN)n+1
(3)148

to reflect predator populations capable of searching while handling a non-integer (e.g., average)149

number of prey individuals.150

We note that Sjöberg (1980) derived equivalent formulations in Michaelis-Menten enzyme-151

kinematics form with parameters having correspondingly different statistical properties (Novak152

& Stouffer, 2021a; Rohr et al., 2022). We also note that despite the appearance of two summa-153

tions in eqn. 2 and the unusual appearance of subtractions in eqn. 3 (see Supplementary Materi-154

als), the model has only three parameters .
:::
and

:::::
thus

::::
has

:
a
:::::::::::
parametric

:::::::::::
complexity

:::
no

:::::::
greater

:::::
than155

::::
that

::
of

::::
the

::::::::::::
Holling-Real

::::::
Type

:::
III

::::::
model

::::
and

::::::
many

::::::
others

:::::::::::::::::::::::::::::::::::::::
(see Table 1 of Novak & Stouffer, 2021a)156

:
.
:::
In

:::::
fact,

:::
for

:::::::::::
subsequent

::::::::::::::
model-fitting,

:::
we

::::
will

:::::::::
combine

:::
the

:::::::::::
multi-prey

::::
and

:::::::::::::
Holling-Real

:::::::
models157

::
to

::
a

:::::::::::::::
four-parameter

::::::::::::::
generalization,

:
158

f(N) =
aNϕ(1− (ahNϕ)n)

1− (ahNϕ)n+1
,

:::::::::::::::::::::::::::

(4)159

::::::
which

:::
can

:::
be

::::::::::
simplified

:::
to

:::
the

::::::
other

:::::::
models

::::::
when

::::::
ϕ = 1.

:::::::::::
Parameter

::
ϕ
:::::::
(a.k.a.

::::
the

::::
Hill

::::::::::
exponent)160

:::
can

::::
be

:::::::::::
interpreted

:::
as

::::
the

::::::::
number

:::
of

::::::
prey

:::::::::::
encounters

::
a

:::::::::
predator

::::::
must

:::::::::::
experience

:::::::
before

:::
its161

:::::::
feeding

:::::::::
efficiency

::
is
:::::::::::
maximized

:::::::::::::
(Real, 1977).

:
162

Relevance of the Type I response163

The conditions under which Holling’s Type I and
::::::
linear,

:::::::::::
rectilinear,

:::::
and

::::::
Type

:
II models can164

be good descriptions of predator feeding rates are clarified by observing that both
:::
the

:
multi-165
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prey formulations simplify
::::::::
response

:::::::::
simplifies

:
to the Type II when n = 1 and approach the166

rectilinear Type I
::::::::::
approaches

::::
the

:::::::::::
rectilinear

::::::
model

:
as n increases (Fig. 1). Further, the linear167

Type I is obtained when n = ∞ (Fig. 1) because the infinite power series
∑∞

i=1 x
i = x/(1−x) for168

|x| < 1. Incorporating this infinite power series into eqn. 1 shows that the expected proportion169

of predators handling prey at any given time will be ahN
:::::
under

::::
the

::::::
Type

:
I. Importantly, this170

proportion differs from that which
:::
the

::::::::::::
expectation

::
of

:::::
zero

::::
that

:
would be inferred to emerge by171

letting h → 0 in the way the linear Type I is typically obtained
:::::::
derived (e.g., Rohr et al., 2022).172

In other words, the multi-prey model shows that handling times need not be inconsequential for173

the functional response to appear linear
:::::::
exhibit

::::::
linear

:::::::
density

::::::::::::
dependence

:
(Jeschke et al., 2004).174

Rather,
::::
even

:
the Type I can be a very good approximation of feeding rates so long as

:::::
when

:
n175

is high and not all
:::
less

:::::
than

::::::
100%

:::
of predators are handling prey (i.e. ahN < 1), which requires176

that prey abundances remain less than 1/ah. (For comparison, note that
::::::
under

:::
the

::::::
Type

::
II

::::
the177

::::::::
quantity

:
1/ah is equivalent to the half-saturation parameter of the Michaelis-Menten version of178

the Type II response for which it reflects the prey abundance at which 50% of predators will be179

handling prey (i.e. the per predator feeding rate is at half its maximum of 1/h);
::
it
:::
is

::::::::::
equivalent180

::
to

::::
the

:::::::::::::::
half-saturation

::::::::
constant

:::
of

::::
the

:::::::::::::::::
Michaelis-Menten

::::::::::::
formulation.)181

Empirical support for multi-prey feeding182

The multi-prey model shows that a spectrum of functional response forms can exist between183

the extremes of the Type I and Type II when handling and searching are not assumed to be184

mutually exclusive (Fig. 1). This motivated us to test two empirical
:::::
main

:
hypotheses using185
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Figure 1: The potential forms of the multi-prey response. The multi-prey model diverges from
the Holling Type II model (for which n = 1) and approaches Holling’s

:::
the

:
rectilinear Type I

model as the number n of prey individuals that a predator can handle while continuing to search
increases. When n = ∞ it reduces to the linear Type I model which can remain a biologically
appropriate description of predator feeding rates so long as ahN < 1 (indicated by non-dashed
region of the black line). Parameter values: attack rate a = 0.1 and handling time h = 4.

the large number of
::::::::
empirical

:
functional response studies that exist in the literature. The first186

hypothesis was that prior syntheses indicating the linear Type I response to be rare (Dunn &187

Hovel, 2020; Jeschke et al., 2004) were biased against the Type I despite its potential
:::::::::
empirical188

appropriateness. That is, feeding rates may have had response shapes between the Type II189

and rectilinear Type I
:::::
model

:
(close to the linear Type I at low prey abundances

:::::
Type

:
I
::::
for190

::::
prey

::::::::::::
abundances

::::::::
< 1/ah) but were classified as Type II due to the lack of a sufficiently simple191

rectilinear-approaching model in prior analyses. The second hypothesis was due to Sjöberg192

(1980) who motivated parameter n by considering it to be a measure of food particle size193

relative to a zooplankter’s gut capacity, with low n reflecting capacity for few large prey and194

high n reflecting capacity for many small prey. We thus expected predator-prey pairs with195

larger body-mass ratios to exhibit larger estimates of n when their functional responses were196
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assumed to follow the multi-prey model.
:::
For

:::::::::::
generality

::::
and

:::
to

:::::::::::
safeguard

:::::::
against

::::::::::
potential197

:::::::::
statistical

::::::::::::::::::
model-comparison

::::::
issues

:::::
(see

:::::::
below),

::::
we

::::::::
included

::::
the

::::::
Type

::
I,

:::
II,

::::
III,

:::::::::::
multi-prey,

::::
and198

:::
the

:::::::::::
generalized

::::::
(eqn.

::
4)

:::::::
model

::
in

::::
our

:::::::::::::
comparisons.

::::
We

:::::
were

:::::
thus

::::
also

:::::
able

:::
to

::::
test

:::
an

::::::::::
additional199

:::::::::::
hypothesis,

::::
due

:::
to

:::::::::::::::::::
Hassell et al. (1977)

:
,
:::::
that

::::::
larger

:::::::::::
body-mass

::::::
ratios

::::
are

::::::::::
associated

::::::
with

:::::
more200

:::::::::::
pronounced

::::::
Type

:::
III

::::::::::
responses

::::
(i.e.

::::::
larger

:::::::
values

::
of

::::
ϕ).

:
201

We used the FoRAGE database of published functional response datasets to assess these202

hypotheses (Uiterwaal et al., 2022). Our v4 update contains 3013 different datasets representing203

1015 unique consumer-resource pairs (i.e. not just predator and prey species, though we continue204

to refer to them as such for simplicity). For our analyses, we excluded datasets having a sample205

size less than 15 observations as well as structured experimental studies that implemented less206

than 4 different treatment levels of prey abundance . (See
::::
(see

:::
the

:
Supplemental Materials for ad-207

ditional details.)
:
).

:
Our model-fitting procedure followed the approach used by Stouffer & Novak208

(2021) and Novak & Stouffer (2021b), assuming one of two statistical models for each dataset: a209

Poisson likelihood for observational (field) studies and when eaten prey were replaced during the210

course of the experiment, and a binomial likelihood when eaten prey were not replaced. Exper-211

imental data available in the form of treatment-specific means and uncertainties were analyzed212

by a parametric bootstrapping procedure in which new datasets were created assuming either a213

treatment-specific Poisson or binomial process as dictated by the study’s replacement of prey.214

In cases where measures of the uncertainty around non-zero means were not available, we inter-215

polated them based on the global log-log-linear relationship between means and standard errors216
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across all datasets following Uiterwaal et al. (2018); for zero means, we interpolated missing un-217

certainty values assuming a linear within-dataset relationship. Unlike in Stouffer & Novak (2021)218

and Novak & Stouffer (2021b), we
:::::
added

::
a
::::::::
penalty

::
to

::::
the

:::::::::::
likelihoods

::
to

:::::::::::
discourage

:::::::::::::
exceptionally219

:::::
large

:::::::::
estimates

:::
of

::
n

::::
and

::
ϕ
:::::
(see

::::
the

::::::::::::::
Supplementary

::::::::::
Materials

:
)
::::
and

:
bootstrapped data available220

in non-summarized form as well, using a non-parametric resampling procedure that maintained221

within-treatment sample sizes for treatment-structured datasets. While replacement data were222

bootstrapped 1000 times,
::::
Both

::::::::::::
replacement

:::::
and non-replacement data were bootstrapped only223

100 times due to the substantially-higher computational burden of having to, in these cases,224

numerically integrate the multi-prey model for which no sufficiently-simple Lambert W solution225

could be obtained.
::
50

::::::
times

:::::::
which

::::
was

:::::::
enough

:::
to

:::::::
obtain

:::::::::
sufficient

::::::::::
precision

:::
on

:::
the

:::::::::::
parameter226

:::::
point

::::::::::
estimates.

:
227

Frequency of multi-prey feeding228

We used the Bayesian Information Criterion (BIC) to test our first hypothesis, counting the num-229

ber of datasets whose bootstrapped mean BIC score supported the multi-prey
:
a

:::::
given

:
model over230

the other two models by more than two units (∆BIC > 2). Our choice to use BIC was motivated231

both by its purpose of selecting the generative model (rather than the best out-of-sample pre-232

dictive model, as per AIC) and by its generally stronger penalization of parametrically-complex233

models (thereby favoring simpler models, relative to AIC). Conclusions regarding evidence in234

support of the multi-prey model were thereby made more conservative
:
,
:::::
with

::::
our

:::::::::
inclusion

:::
of235

:::::::
models

:::::::
having

:::::
equal

:::
or

:::::::
greater

:::::::::::
parametric

:::::::::::
complexity

::::::::
helping

::
to

::::::
guard

::::::::
against

:::
an

:::::::::::::
inappropriate236
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:::::::
reliance

:::
on

::::
the

:::::::::::
asymptotic

:::::::
nature

:::
of

::::::
BIC’s

:::::::::::
consistency

:::::::::
property.237

Considering
::::
The

::::::
result

::
of

::::
this

:::::
first

::::::::
analysis

::::
was

:::::
that,

::::::::
overall,

:::
912

:::::::
(35%)

::
of

:::
all

::::::
2,591

::::::::
datasets238

::::::::
provided

::::::::
support

::::
for

::::::::::
functional

:::::::::
response

::::::::
linearity

:::::
(i.e.

:::
the

::::::
Type

:
I
:::::
and

::::::::::
multi-prey

:::::::::
models),

:::::
with239

:::
990

:::::::
(38%)

::
of

:::
all

:::::::::
datasets

:::::::::
providing

::::::::
support

::::
for

::::::::::
multi-prey

::::::::
feeding

:::::
more

:::::::::
generally

:::::
(i.e.

:::
the

::::::
Type240

:
I,
::::::::::::
multi-prey,

::::
and

:::::::::::
generalized

:::::
eqn.

::
4

::::::::
models).

:::::::
When

:::::::::::
considering

:
only those datasets that could241

differentiate among the performance of the three models, the results of this first analysis were242

that 20
:::
all

:::
five

:::
of

:::
the

::::::::
models,

::
7

::::::
(5.3%)

:
of 203 (9.9%)

:::
132

:
replacement datasets and 551

:::
153

:::::::
(9.7%)243

of 2395 (23%)
::::
1575

:
non-replacement datasets identified the multi-prey model

:::::
(eqn.

:::
3) as the sole244

best-performing model (Fig. 2a-2b). An additional 37 (18
::
36

::::
(27%) replacement and 459 (19

:::
433245

:::
(18%) non-replacement datasets identified the multi-prey model as performing equivalently well246

to either the Type I or Type II model
:::::
their

::::::::::::
best-ranked

:::::::::
model(s). Although the linear Type I247

was the
:::::
Type

::
I
::::
and

::::
the

:::::::::::
generalized

:::::::
model

:::::
were

::::
the

:
least frequently sole-supported model (15248

of replacement and 94 of non-replacement datasets), it was
::::::::
models,

:::::
they

:::::
were

:
supported by249

datasets representing all four of the most common predator taxonomic groups that constituted250

90% of all datasets in FoRAGE (insects, arachnids, crustaceans, and fishes; Fig. S.2).251

Effect
::::::::
Effects

:
of predator-prey body-mass ratio on n

::::
and

::
ϕ252

To test the second hypothesis
:::
and

::::::
third

:::::::::::
hypotheses, we excluded datasets for which the linear253

Type I had alone performed best and regressed the remaining datasets’ bootstrapped median254

point estimates of n
::::
and

::
ϕ

:
against their study’s predator-prey body-mass ratio (ppmr), these255

having been compiled in FoRAGE for most datasets. Although almost
:::::::::
(Datasets

::::
for

::::::
which

:::
all256
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:::::
other

:::::::
models

:::::::::::
performed

::::::
better

:::
or

:::::::
equally

::::
well

::::::
could

:::
be

:::::::::
included

::::::::
because

:::
for

:::::
them

::
n
::::
and

::
ϕ
::::::
could257

:::::
equal

:::
1.)

::::::::::
Although

::::::::
roughly 90% of these datasets had estimates of n ≤ 8 (Fig

::::
and

::::::
ϕ ≤ 2

:::::
(Figs. S.3258

), both variables exhibited variation over several orders of
::::
and

:::::
S.4),

:::
all

::::::
three

:::::::::
variables

:::::::::
exhibited259

::::::::::
substantial

::::::::::
variation

::
in

:
magnitude. We therefore performed linear least-squares regression using260

log2(n) and :::::::
log2(ϕ) ::::::

versus
:
log10(ppmr).261

Our analysis supported the hypothesis that predator-prey pairs with larger body-mass ratios262

tend to exhibit larger estimates of n (log2(n) = 0.64 + 0.16 · log10(ppmr)
::::
Fig.

:::
2c;

:::::::::::::::::::::::::::::::::
log2(n) = 0.55 + 0.15 · log10(ppmr),263

p < 0.01, Table S.1), but the predictive utility of this relationship was extremely poor (R2 = 0.02,264

:::::::::::
R2 = 0.03).

::::
We

::::
also

::::::
found

::::::::
support

:::
for

::::
the

::::::::::
hypothesis

:::::
that

::::::
larger

:::::::::::
body-mass

:::::
ratios

::::
are

::::::::::
associated265

::::
with

:::::::
larger

::::::
values

:::
of

:::
ϕ,

::::::::::
although

::::
the

:::::::::::
magnitude

::
of

:::::
this

::::::
effect

::::
was

::::::::
weaker

:::::
than

:::
it

::::
was

::::
for

::
n266

:
(Fig. 2c) .

:::
S.5;

:::::::::::::::::::::::::::::::::::
log2(ϕ) = 0.27 + 0.06 · log10(ppmr),

:::::::::
p < 0.01,

:::::::
Table

::::
S.2)

:::::
and

::::
was

:::
of

:::::::::
similarly267

::::
poor

::::::::::
predictive

:::::::
utility

:::::::::::::
(R2 = 0.02).

:
268

To assess the sensitivity of this result
:::
our

:::::::
result

::::
for

::
n

:
to variation among datasets, we269

performed additional regressions that restricted the considered datasets to (i) those having270

estimates of n > 1 (Fig. 2c, Table S.1), (ii) those with sample sizes exceeding the median sample271

size of all datasets (Fig. S.6, Table S.3), and (iii) the four most common predator taxonomic272

groups (insects, arachnids, crustaceans, and fishes), including for this last regression a two-way273

interaction term between predator group identity and predator-prey body-mass ratio (Fig. 2d,274

Table S.4). Each of these
::::::
These

:
analyses evidenced statistically clear, albeit predictively poor,275

positive relationships between n and predator-prey body-mass ratios for all predators in general276
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and for each predator group individually as well.277

Population-dynamic effects of multi-prey feeding278

Given the empirical evidence that multi-prey feeding may indeed be common and a viable way279

to describe functional responses, we next investigated its potential consequences for predator-280

prey dynamics. Our goal was to understand how assuming either a linear Type I or a Type II281

response could lead to incorrect conclusions regarding these dynamics. We used the well-studied282

Rosenzweig & MacArthur (1963) “paradox of enrichment” model to achieve this goal, employing283

both graphical (i.e. isocline) analysis and simulations.284

The model describes the growth rates of the prey N and predator P populations as285

dN

dt
= rN

(
1− N

K

)
− f(N)P (5a)

dP

dt
= ef(N)P −mP , (5b)

where r and K are the prey’s intrinsic growth rate and carrying capacity, f(N) is the functional286

response, and e and m are the predator’s conversion efficiency and mortality rate. Logistic287

prey growth and Holling’s Type II response have become the component parts of the canonical288

Rosenzweig-MacArthur model for which enrichment in the form of an increasing carrying ca-289

pacity causes the populations’ dynamics to transition from a regime of monotonically-damped290

stable coexistence to damped oscillations to sustained limit cycles (Rosenzweig, 1971). Other291

prey growth and Type II-like functional response forms affect a similar destabilization sequence292

(e.g., Freedman, 1976; May, 1972; Rosenzweig, 1971; Seo & Wolkowicz, 2018). The location293
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Figure 2: Empirical support for multi-prey feeding. Figs. 2a and 2b depict Venn diagrams
categorizing the datasets of FoRAGE by their support for one or more of the three

::::
five models

as evaluated using a cut-off of 2 BIC units. Figs. 2c and 2d depict the observed relationship
between estimates of n and the body-mass ratio of the studies’ predator-prey pairs, excluding
datasets for which the Type I model alone performed best. Regression lines in Fig. 2c reflect
all considered datasets or only those with estimates of n > 1 (Table S.1). Regression lines in
Fig. 2d reflect the identity of the four most common predator groups (n ≥ 1, Table S.4).
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of the Hopf bifurcation between asymptotic stability and limit cycles is visually discerned in294

the model’s P vs. N phase plane (Fig. 3) as the point where the vertical N∗ predator iso-295

cline intersects the parabolic P ∗ prey isocline at its maximum
:
,
:::::::::
half-way

::::::::
between

::::::::
−1/ah

::::
and296

::
K

:
(Rosenzweig, 1969; Rosenzweig & MacArthur, 1963). That is, the coexistence steady state297

entails a globally-stable fixed point when the isoclines intersect to the right of the maximum298

and entails a locally-unstable fixed point with a globally-stable limit cycle when they intersect299

to the left of the maximum (Seo & Wolkowicz, 2018). Graphically, increasing K destabilizes300

dynamics by stretching the prey isocline, moving its maximum to the right while the position of301

the vertical predator isocline remains unchanged. In contrast, when logistic growth and a linear302

Type I are assumed, the prey isocline is a linearly-decreasing function of prey abundance (Fig. 3)303

and predator-prey coexistence entails a globally-stable fixed point for all levels of enrichment.304

Graphical analysis305

For our analysis we insert the multi-prey response (eqn. 3) for f(N) in eqn. 5. Solving dP/dt = 0306

for the N∗ predator isocline then requires solving307

m

e
= f(N∗) =⇒ N∗ =

m
(
1− (ahN∗)n+1

)
ae (1− (ahN∗)n)

. (6)308

This leads to a solution for N∗ that is independent of the predator’s abundance (i.e. remains309

vertical in the P vs. N phase plane) but is unwieldy for n > 2 (see Supplementary Materials).310

Nonetheless, it represents a generalization of the predator isocline obtained for the Rosenzweig-311

MacArthur model with n = 1, N∗ = m
a(e−mh) , and converges on N∗ = m/ae as n → ∞ when312

ahN∗ < 1, just as obtained assuming the Type I. In fact, N∗ transitions smoothly from the313
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Figure 3: Predator and prey isoclines of the Rosenzweig-MacArthur model modified to include

the multi-prey response correspond to those observed with the linear Type I and Type II re-

sponses when n = ∞ and n = 1 respectively. As the number n of prey that a predator can

handling while searching increases, the prey abundance at which the predator’s growth rate is

zero (i.e. the vertical predator isocline, N∗) decreases from its value under the Type II response

(m/a(e−mh)) and converges rapidly on the value expected under the Type I response (m/ae).

In contrast, predator abundances at which the prey’s growth rate is zero, P ∗, converge on those

expected under the Type I response only at low prey abundances to affect a second region of

asymptotically stable dynamics; the “hump” does not flatten as it would if the handling time

were presumed to be inconsequential (i.e. h = 0). Limit cycles occur when the predator and prey

isoclines intersect on the left flank of the hump. With increasing n, the inflection point between

the low-prey region of stability and limit cycles approaches the prey abundance where all preda-

tors are busy handling predators under the rectilinear model, 1/ah (indicated by non-dashed

region of the black prey isocline). Other parameter values: attack rate a = 0.02, handling time

h = 2, prey growth rate r = 0.5, prey carrying capacity K = 100, conversion efficiency e = 0.25,

predator mortality rate m = 0.08.

former to the latter as n increases (Fig. 3) because eqn. 6 is a monotonically declining function314

of n for ahN∗ < 1.315
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Solving dN/dt = 0 for the P ∗ prey isocline leads to the solution316

P ∗ =
rN

f(N)

(
1− N

K

)
=

r(K −N)
(
1− (ahN)n+1

)
aK (1− (ahN)n)

. (7)317

This too represents a generalization of the Rosenzweig-MacArthur model’s prey isocline, P ∗ =318

r(K − N)(1 + ahN)/aK, which is itself a generalization of the isocline P ∗ = r(K − N)/aK319

obtained with the Type I as n → ∞. Between these the prey isocline under the multi-prey320

response transitions from a parabolic dependence on the prey’s abundance to having a second321

region within which it is a declining function of prey abundance (Fig. 3). This second region322

has a slope of −r/aK at its origin regardless of n and is limited to low prey abundances of323

N < 1/ah; as n increases, the region’s upper extent approaches the prey abundance at which324

all predators are busy handling prey under the rectilinear model. That is, for 1 < n < ∞ the325

“hump” shape
::
of

:::
P ∗

:
does not flatten out as it does when one assumes handling times to become326

negligible. Rather, the
:::::::
similar

::
to

::::::
what

::::
can

::::::
occur

:::
for

::::
the

::::::
Type

:::
III

:::::::::
response

:::::::::::::::::::
(Uszko et al., 2015)327

:
,
:::
the

:
prey isocline exhibits two regions of negative prey dependence (where dP ∗

dN < 0) that flank328

an intermediate region of positive prey dependence (where dP ∗

dN > 0).329

Implications for coexistence and dynamics330

The emergence of a second prey abundance region where the slope of the prey isocline is neg-331

ative means that a second asymptotically-stable coexistence equilibrium — one having a high332

predator-to-prey abundance ratio — is possible should the two isoclines intersect within it. The333

fact that this may occur is discerned by noting that N∗ (eqn. 6) is independent of r and K,334

and that P ∗ (eqn. 7) is independent of m and e; the positions of the two isoclines are thus335
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independent except via the functional response parameters a, h, and n. In fact, because N∗
336

decreases while the upper limit of the low prey abundance region of P ∗ increases towards 1/ah337

as n increases, it is readily possible — conditional on the values of the other parameters — to338

observe a stable state at n = 1 to first transition to limit cycles and then return to fixed-point339

stability as n alone is increased. This is illustrated by Fig. 4 in the context of the paradox of340

enrichment for values of K between approximately 75 and 115. Multi-prey feeding may thus be341

seen as another potential mechanism with which to resolve the paradox
:::::::::::
mechanism

::::::::::::
contributing342

::
to

::::::::
stability

:::
at

:::::
high

::::::::::::
productivity

:
(Roy & Chattopadhyay, 2007). Indeed, in addition to rescuing343

predators from deterministic extinction at low levels of enrichment where a single-prey-at-a-time344

predator could not persist (20 < K < 40 in Fig. 4), sufficiently large values of n can preclude345

the occurrence of limit cycles altogether (n > 9 in Fig. 4).346

Notably, however, the just-described high-predator low-prey steady state is only a locally347

stable fixed point and coexists with a stable limit cycle that surrounds it (Figs. 4 and 5). The348

high-predator low-prey state thus exhibits bi-stability. The consequences of this bi-stability are349

that predator-prey interactions with multi-prey feeding are destined to exhibit (i) transitions to350

persistent limit cycles when subjected to large perturbations that send abundances beyond the351

domain of attraction of the fixed-point steady state (Fig. 5a,c), and (ii) transient dynamics that352

are prone to damped oscillations (rather than monotonic damping) in response to small per-353

turbations within the domain of attraction. These transient oscillations occur for substantially354

lower levels of enrichment than is the case for single prey-at-a-time predators (Fig. 4). Moreover,355
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Figure 4: The destabilization with enrichment that is seen under the classic Rosenzweig-

MacArthur model (where n = 1) is altered when predators can search for and handle multiple

prey at a time (n > 1). At low prey carrying capacities (K < 40), multi-prey feeding rescues

predators from deterministic extinction. At intermediate carrying capacities (40 < K < 110),

low levels of multi-prey feeding destabilize dynamics by causing perturbation responses to tran-

sition from a transient regime of monotonic damping to one of damped oscillations or from

damped oscillations to a persistent limit cycle regime. Further increases in multi-prey feeding

can have a qualitatively stabilizing influence on dynamics, with sufficiently high n precluding a

transition to limit cycles altogether so long as perturbations are sufficiently small. Large per-

turbations, on the other hand, will cause a transition to an alternative stable state consisting of

limit cycle dynamics (see Fig. 5). Other parameter values as in Fig. 3.

their temporal duration can be exceedingly long (Fig. 5b) because the limit cycle acts akin to a356

crawl-by attractor (Hastings et al., 2018) that impinges upon the steady state’s local resilience.357

Thus, when subjected to continual perturbations in an explicitly stochastic setting (Barraquand358
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et al., 2017), the system can readily transition between the stable fixed-point attractor and the359

stable limit cycle attractor that surrounds it (Fig. 6), resulting in dynamical epochs of irregular360

duration that appear
:::
are

:
characteristic of many empirical time-series (Blasius et al., 2020; Rubin361

et al., 2023). Multi-prey
:::::::::
Therefore,

:::::::::::
multi-prey

:
feeding does not , therefore, provide a robust362

resolution to the paradox of enrichment
::::::::::
mechanism

::::::::
against

::::::::::
instability

:::
at

:::::
high

::::::::::::
productivity

:
but363

rather leads to a richer range of population dynamics and coexistence states than can result364

from the Type Iand Type II
:::::
Type

::
I,

::
II

:::
or

:::
III

:
responses alone.365

Discussion366

Our study was motivated by the apparent disconnect that exists between the way that many367

empirically-minded ecologists perceive the Type I functional response model and the way that368

many modelers and theory-minded ecologists justify its use in their representations of consumer-369

resource interactions. While the former are prone to dismiss the Type I as being overly simplis-370

tic and hence unsuitable for describing predator feeding rates, the latter are prone to rely on371

and justify its sufficiency for the sake of computational ease and analytically-tractable insight.372

Since the potential for predators to feed on multiple prey at a time (i.e. the non-exclusivity of373

handling and searching activities) has been little considered by either group, we set out to ad-374

dress three aspects of this disconnect: (i) deriving a multiple-prey-at-a-time functional response375

model that mechanistically connects the linear and piecewise-linear Type I forms
::::::::::
rectilinear376

:::::::
models

:
to the more empirically palatable Type II model, (ii) assessing the extent to which377

published datasets provide support for the Type I, II, and multi-prey models
:::::::
feeding, and (iii)378
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Figure 5: Because of the system’s bi-stability at high predator-to-prey abundance ratios, even

small differences in the size of a perturbation to the steady state can affect a large change in

the duration of the system’s transient response (compare panels a and b with c and d) and

can even cause the system to become entrained in a stable limit cycle (illustrated in panels e

and f ). The only difference between each of the above panel rows is that the predator’s initial

population size P (0) is perturbed away from its P ∗ steady state as: (a, b) P (0) = P ∗−6; (c, d)

P (0) = P ∗ − 7.0645; and (e, f ) P (0) = P ∗ − 7.065. For all cases N(0) = N∗. Parameter values

as Fig. 3 with n = 10.
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Figure 6: When subjected to continually-occurring stochastic perturbations, the high-predator

low-prey coexistence state can exhibit time periods during which its dynamics are influ-

enced primarily by the stable fixed-point attractor and time periods during which dynam-

ics are primarily influenced by the alternative stable limit cycle attractor, switching be-

tween these on an irregular basis. Simulation implemented using an Itô integral process as

dN = rN(1 −N/K) − f(N)P dt + σNdW and dP = ef(N) −mP dt − σPdW , with f(N) as

in eqn. 3 and Gaussian white environmental noise dW (t) of volatility σ = 0.04 (cf. Barraquand,

2023). Other parameter values and initial population sizes as in Fig. 5c-d.

investigating how multi-prey feeding and the linearity
:::::
linear

::::::::
density

:::::::::::
dependence

:
it can impose379

on functional responses
:::::::
feeding

:::::
rates

:
can alter our understanding of predator-prey coexistence.380

Because they bear additional insight with which to elaborate on the circumstances under which381

linear functional responses
::::::::
linearity

:
may be empirically relevant, we structure the discussion of382

our work by considering the latter two aspects first.383

Empirical support384

Our information-theoretic
:::::::::
statistical

:
analysis of the datasets compiled in FoRAGE demonstrates385

that both the linear Type I and the multi-prey model
::::::
models

:
are viable descriptions (sensu386

Skalski & Gilliam, 2001) of the feeding rates that predators have exhibited in many single-prey387
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experiments (Figs. 2a-2b). This result is consistent with handling and searching being non-388

exclusive activities for a substantial number of predator-prey pairs. Although this contrasts with389

the prior syntheses of Jeschke et al. (2004) and Dunn & Hovel (2020), these (i) did not consider390

models capable of response forms in between the strictly linear Type I and Type II forms and391

(ii) either relied on the conclusions reached by each studies’ original authors (who used varied392

model-fitting and comparison approaches) or visually assessed functional response forms from393

plotted data. One might argue that many of the datasets providing sole support to the Type394

I in our analysis came from experiments using prey abundances that were insufficient to elicit395

saturation (see also Coblentz et al., 2023), but the point can be made that, from an information-396

theoretic perspective, the linear Type I performed best across the range of prey abundances397

that the original authors considered empirically reasonable (and logistically feasible). The even398

greater number of datasets that provided sole support to the multi-prey model, along with the399

result that many of the point estimates for parameter n (the maximum number of prey eaten at a400

time) were sufficiently large to affect a response approaching a piecewise-linear Type I
::::::::::
rectilinear401

::::::::
response

:
(cf. Figs. 1 and 2c), indicates that feeding rates exhibited effectively linear responses402

:
a
:::::::::::
significant

::::::
region

:::
of

::::::::
linearity

:
for many predator-prey interactions having long handling times403

as well. Moreover, the statistically-clear positive relationships we observed in our subsequent404

regression analyses of n and predator-prey body-mass ratios (Figs. 2c-2d) confirm Sjöberg’s405

hypothesis regarding a proximate reason for this effective linearity, indicating that linearity in406

feeding rates is more likely
::::::::
linearity;

:::
it

::::::
being

:::::
more

::::::
likely

:::
to

::::::
occur

:
for larger predators feeding407
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on small prey because handling is less preclusive of searchingfor these interactions.408

Unfortunately, the amount of variation in n that was explained by body-mass ratio alone was409

extremely low, making the relationship of little predictive utility relative to several other body-410

mass relationships (e.g., Brose et al., 2006; Coblentz et al., 2023; Hatton et al., 2015; Rall et al.,411

2012). That said, the relationship’s low explanatory power is not unsurprising given that none412

of the experiments in FoRAGE was designed with the multi-prey model in mind. In particular,413

and although most estimates of n were of a seemingly reasonable magnitude (Fig. S.3), we414

caution against giving too much credence to the very large-valued estimates we observed. This415

is for two primary reasons. First, given that a given dataset’s ability to distinguish between416

possible values of n diminishes rapidly as n increases (Fig. 1), datasets exhibiting saturation at417

high prey abundances but having few or no observations near the inflection point of 1/ah will418

have been sensitive to issues of parameter identifiability. Low identifiability will have caused an419

inflation of estimates despite our effort to guard against it by removing datasets with fewer than420

4 prey abundance levels. Second, given that initiating experiments with predator individuals421

having empty guts is a common protocol (Griffen, 2021; Li et al., 2018), many experiments422

will have strictly violated the assumption of predator behavior being at steady state. This will423

also have inflated estimates of n by causing transient rates of prey ingestion to exceed rates424

of handling completion (i.e. aN > 1/h) to affect faster-than-steady-state feeding, especially at425

prey abundances below 1/ah. We therefore suggest that the very large estimates of n observed426

in our analyses be better interpreted as qualitative (rather than quantitative) support for the427
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non-exclusivity of searching and handling and encourage future experiments and analyses with428

additional covariate predictors to better understand the biological sources of variation in n.429

::::::::
(Similar

::::::
issues

:::::::
pertain

:::
to

::::
the

:::::::::::
estimation

::::
and

::::::::::::::
interpretation

::
of

::::
ϕ.)

:
430

Mechanistic approximations431

The multi-prey model may be considered a mechanistic model in that its derivation and each432

of its parameters has at least one biologically-specific interpretation. However, it is also rather433

phenomenological in that it encodes only an essence of the biologically possible non-exclusivity434

of searching and handling processes. For example, the model’s derivation assumes that both435

the attack rate and handling time remain constant and independent of the number of prey that436

predators are already handling (below the maximum number n). Although this assumption may437

result in a very good approximation to feeding rates, it is unlikely to reflect biological reality438

particularly as the number of prey being handled by a given predator approaches n. In such439

circumstances either or both searching and handling process rates are likely to become dependent440

on the feeding rate and thereby
::
on

:
prey abundance (see also Okuyama, 2010; Stouffer & Novak,441

2021).442

Functional responses where such dependence is important may be better and more mech-443

anistically described by more flexible models (see also Novak & Stouffer, 2021a). Prominent444

among these is the extended Steady State Saturation model (SSS1) of Jeschke et al. (2004) in445

which handling and digestion are explicitly distinguished (see Supplementary Materials). In this446

1We would be remiss not to point out that all functional response models of which we are aware assume steady
state conditions at the behavioral foraging scale. The SSS model’s name does not, therefore, reflect a limitation
that is unique to it.

28



four-parameter model, searching and handling are mutually exclusive, but searching and diges-447

tion are not because the predator’s search effort depends on its gut fullness (i.e. hunger level)448

and is thus dictated by the digestion rate. A phenomenological shape parameter controls the449

non-linearity of the search-effort hunger-level relationship. For high values of this shape param-450

eter (reflecting predators that search at their maximum rate even when their guts are quite full)451

and inconsequential handling times, the model approaches the rectilinear Type I
::::::
model, just like452

the multi-prey model at high n, while for consequential handling times it retains a saturating453

curvature at low prey abundances (see Figs. A1 and A2 of Jeschke et al., 2004).454

Population-dynamic effects455

The population-dynamic consequences of the extended SSS model remain unstudied, but our456

analysis of the simpler multi-prey model reveals the relevance of it and other models for under-457

standing how the effective linearity of multi-prey feeding can impact predator-prey dynamics.458

These other models are the arctangent and hyperbolic tangent functional responses
:::::::
models459

because for these it has been more rigorously shown that two limit cycles — one stable and460

the other unstable — can co-occur with a locally-stable fixed point at low prey abundances461

(Seo & Kot, 2008; Seo & Wolkowicz, 2015; 2018), just as we observed for the multi-prey model462

:::::::::::::::::::::::::
(see also Freedman, 1980). The key feature common to all three models is that they affect a prey463

isocline that decreases from a finite-valued origin at zero prey abundance. This differs from the464

Type II and other functional responses that exhibit saturating curvature at low prey abundance.465

For these the prey isocline increases from a finite-valued origin, the low-prey fixed point is unsta-466
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ble, and only the stable limit cycle is thus of relevance under logistic prey growth. It also differs467

from functional responses that accelerate at low prey abundances (e.g., the Type III) and from468

consumer-resource models more generally in which, for example, prey have a physical refuge,469

exhibit sublinear density-dependence, or experience density-independent immigration. For these470

the prey isocline decreases from an origin that approaches infinity and the low prey steady state is471

a stable fixed point around which limit cycles do not occur
:::::::::::::::::::::::::::::::::::
(e.g., Case, 2000; Uszko et al., 2015)472

. We surmise that the effective linearity brought about by the non-exclusivity of searching and473

handling in the multi-prey model is (i) replicated by the more phenomenological arctangent and474

hyperbolic tangent models, and that (ii) it is the cause of the greater range of dynamical out-475

comes that these functional responses affect as compared to responses having a more nonlinear476

form
::::::::::
exhibiting

::::::::::::
nonlinearity

:
at low prey abundances.477

The broader implication of our analysis is that population-dynamic theory that relies on the478

linear Type I may not be as globally relevant from a biological perspective as its mathematics479

would suggest. In particular, it shows that the stabilization which the Type I contributes to480

dynamics is dependent on perturbation magnitude. More specifically, the relevance of theory481

that relies on the linear Type I is limited to perturbations that are small enough to preclude482

the influence of the attracting stable limit cycle that will exist when the functional response is483

more realistically described as having a potentially unobserved maximum feeding rate.484

Our consideration of the paradox of enrichment
:::::::::::
enrichment

:::::::
effects illustrates a specific ex-485

ample of this. When the functional response is assumed to be linear Type I, the fixed point is486
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globally-stable and perturbations to it decay monotonically. In contrast, when the functional487

response is only effectively linear
::::::
linear

:::::
only

::
at

::::
low

:::::
prey

:::::::::::
abundances, as when multi-prey feeding488

occurs, the fixed point is only locally stable and perturbations can elicit cycles that may persist489

for many generations or even indefinitely. In fact, as indicated by Rubin et al. (2023) in their490

analysis of a stochastic implementation of the Rosenzweig-MacArthur model, the dynamics will491

additionally be influenced by the crawl-by inducing origin (dual extinction) and prey-only (car-492

rying capacity) steady states that will extend the lifetime of long-term transients even further.493

This influence, too, will not be observed when a linear Type I is assumed because these
::::::::
unstable494

steady states will rarely if ever be approached.495

Relevance revisited496

As discussed above (see Relevance of Type I response), the multi-prey model shows that handling497

times need not be inconsequential to observe an effectively linear functional response
:::::
linear498

::::
prey

::::::::::::
dependence

:
when the number of prey that a predator individual can handle at a time is499

relatively high and the maximum proportion of individuals in a predator population that are500

simultaneously handling prey remains sufficiently low. This is not to say that other factors and501

processes cannot cause functional responses to be far from linear
::::
very

::::::::::
nonlinear, but within the502

confines of our work’s assumptions the latter condition can be satisfied when
::
as

:::::
long

:::
as

:
prey503

abundances remain less than 1/ah.504

Our statistical and mathematical analyses add insight into where this condition on prey505

abundances is
:::::
when

:::
the

:::::::::::
conditions

:::
for

::::::::
linearity

::::
are more likely to be met. Specifically, functional506
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responses are more likely to be effectively linear when the
:::::::
exhibit

:::::::::
linearity

::::::
when predator-to-507

prey body-mass ratios are high (Fig. 2c), when predator-to-prey abundance ratios are high508

(Fig. 3), and thus, we predict, in top-heavy systems with high predator-to-prey biomass ratios.509

Top-heavy interactions and food webs more generally occur in all ecosystem types (McCauley510

et al., 2018), but are more likely for ectothermic and invertebrate consumers, in aquatic habitats,511

among higher trophic levels, and in ecosystems of low total biomass (Brose et al., 2006; Hatton512

et al., 2015; Perkins et al., 2022). The development of methods for gauging the non-linearity513

:::::::::::
nonlinearity

:
of functional responses in diverse field settings (e.g., Novak et al., 2017; Uiterwaal514

& DeLong, 2024) will be useful for directly testing our prediction that these same systems515

should also exhibit more linear functional responses.
::::
New

:::::::::
methods

::::
that

::::::
make

::::
use

::
of

::::
the

:::::::
greater516

:::::::::::
information

::::::::
content

:::::::::::
associated

:::::
with

:::::::
counts

:::
of

::::
the

:::::::::
numbers

:::
of

:::::
prey

::::::
being

:::::::::
handled

:::::
(Fig.

:::::
S.1)517

::::::
should

:::
be

::::::::::::
particularly

:::::::
useful.

:
518

Importantly, our work also shows that predator-prey dynamics need not be destabilized by519

food web top-heaviness. Rather,
::::::::::
paralleling

:::::::
theory

:::::::::
assuming

:::::
Type

:::
III

::::::::::
responses

::::::::::::::::::::::::::::::::::::::::
(Kalinkat et al., 2013; Uszko et al., 2015)520

:
,
:
increases in top-heaviness can lead to greater food web stability — be it stable coexistence521

potential or perturbation resilience (Fig. S.7) — when multi-prey feeding occurs, provided that522

perturbations are small enough for population abundances to remain well within the local at-523

tractor of the stable fixed point (Fig. 5). This contrasts with existing theory on top-heavy food524

webs that has largely assumed Type II responses (McCauley et al., 2018). Indeed, our analy-525

ses show that even small departures from mutual exclusivity can lead to qualitatively different526
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coexistence states and dynamics than predicted by existing theory, including the possibility of527

long-term transients and the just-mentioned bi-stability of fixed-point and limit-cycle dynamics.528

Food web models that incorporate multi-prey feeding and how its prevalence may change with529

species- and system-level attributes will be useful for understanding just how much multi-prey530

feeding must occur within food webs as a whole to alter their structure and dynamics. A first531

step towards such food web models will be to extend the multi-prey model to multi-species532

formulations appropriate for generalist rather than single-prey-species predators.533

Conclusion
::::::::::::::
Conclusions

::::
for

:::::::::::
bridging

::::::::
theory

::::::
and

:::::::::::
empirical

:::::::::
insight534

Natural history observations show that diverse types of predators are capable of (literally) han-535

dling and searching for prey simultaneously: sea otters capture several snails on a dive; crabs536

process mussels with their mouthparts while picking up more with their claws; spiders cap-537

ture insects in their webs while processing others for later ingestion. Many more examples538

:::::::::
situations

:::::::::
relevant

::
to

:::::::::::
multi-prey

::::::::
feeding

:
become apparent and potentially relevant to the con-539

text of functional responses when it is recognized that the “handling time” parameter of most540

models represents not just the literal manipulation of prey
:::::
(e.g.,

:
that may be seen by an ob-541

server of the interaction
:
)
:
but rather reflects processes that limit steady-state feeding rates542

(DeLong, 2021; Jeschke et al., 2002).
:::
the

::::::::
feeding

::::::::
process

:::::
that

:::::::
limits

::
a

::::::::::
predator’s

:::::::::::
maximum543

:::::::
feeding

:::::
rate,

:::::::::
including

::::::::
possible

::::::
limits

::
to

:::::::::
stomach

:::::::
fullness

::::
and

:::::::::
digestion

:::::::::::::::::::::::::::::::::::::::::
(DeLong, 2021; Jeschke et al., 2002; 2004)544

:
.
::::::::
Sculpin

:::::::
fishes,

:::
for

::::::::::
example,

:::::
have

:::::
been

::::::::::
observed

:::::
with

:::::
over

::::
300

:::::::::::
identifiable

:::::::::
mayflies

:::
in

:::::
their545

:::::::::
stomachs

:::::::::::::::::::::
(Preston et al., 2018),

::::
the

::::::::
majority

:::
of

::::::
which

:::::
could

::::
not

:::::
have

:::::
been

:::::::::
captured

::::::::::::::
simultaneously546
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::::
and

:::
for

::::::
which

::::::
literal

:::::::::
handling

::::::
must

:::::::::
therefore

:::::
have

:::::
been

::::::::::::::::
inconsequential

:::::::
relative

:::
to

::::::::::
digestion.

:
547

The degree to which handling and searching
::::::::
searching

:::::
and

:::::::::
(general)

:::::::::
handling actually repre-548

sent mutually exclusive activities, and the degree to which each of the many processes potentially549

encapsulated by handling parameters
:
a
:::::::::
handling

:::::
time

:::::::::::
parameter

:
measurably contributes to a550

predator’s functional response, is nonetheless poorly discerned from observation alone. Know-551

ing that handling times are short or long, or that searching and literal handling do or do not552

overlap, is neither sufficient to dismiss or assume a given functional response model on a priori553

grounds. This is because all models are phenomenological approximations of biological process554

at some level. This applies as much to predator-prey interactions studied in controlled experi-555

ments as it does to those studied in natural settings, and is particularly true in the context of556

building understanding and theory when extrapolating the former to the latter across Ecology’s557

wide-ranging scales.558

We thus draw two overarching conclusions: that neither of the Type I response forms should559

::::::::::
functional

:::::::::
response

::::::::
linearity

::::::::
should

::::
not be dismissed by empiricists as irrelevant descriptions560

::
an

::::::::::
irrelevant

:::::::::::
description

:
of predator feeding rates, and that modelers and theoreticians should561

be more cautious in reaching empirical conclusions of system dynamics when presuming the562

linear Type I response to be appropriate. In
::::
even

:
broader terms, our research demonstrates563

how disagreements between different perspectives can be addressed by identifying and easing564

the fundamental assumptions that underpin them, and how improved communication between565

empiricists and theoreticians will benefit Ecology as a whole (Grainger et al., 2022).566
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Multi-prey functional response model

:::::::::::::
Derivations

:::::
More

::::::::
explicit

:::::::::::
derivations

::
of

::::
the

::::::
Type

::
II

::::
and

:::::::::::
multi-prey

:::::::
models

::::
are

:::
as

::::::::
follows.

:

::::::::
Holling

::::::
Type

:::
II

::::::::
model

:::::::::
Assuming

::
a
:::::::::
predator

:::::::::::
population

:::
P

::
of

:::::
fixed

:::::
size

::::
that

:::
is

::::::::::
composed

::
of

:::::
only

:::
PS::::::::::

searching
::::
and

::::
PH

::::::::
handling

:::::::::::::::::
sub-populations,

:::
let

::::
the

:::::
rate

:::
of

:::::::
change

:::
in

:::::::::::
abundance

:::
of

::::
the

::::
two

::::::::::::::::
sub-populations

:::
be

:::::::::
described

:::
by

:

dPS

dt
::::

= −aNPS + 1
hPH

::::::::::::::::

(S.1a)

dPH

dt
::::

= aNPS − 1
hPH .

::::::::::::::::

(S.1b)

::::::::::::::::
Correspondingly,

::::
the

::::
rate

:::
at

::::::
which

::::::
eaten

:::::
prey

::::
Ne :::

are
::::::::::
generated

::
is
:

dNe

dt
= 1

hPH .
::::::::::::

(S.2)

:::
As

::
in

::::
the

::::::
main

:::::
text,

::
a
:::
is

::::
the

::::
per

:::::::
capita

::::::
attack

::::::
rate,

::
h

::::
the

:::::::::
handling

::::::
time,

:::::
and

::
N

::::
the

:::::::
prey’s

::::::::::
abundance

:::::::
(which

:::
is

::::
also

:::::::::
assumed

:::::
fixed

:::
at

:::
the

:::::::::::
behavioral

:::::
time

:::::
scale

::::
we

:::
are

:::::::::::::
considering).

:

:::::::
Setting

:::::::::

dPH
dt = 0

::::
(i.e.

::::::::::
assuming

:::::::
steady

:::::
state

::::::::::::
conditions),

:::
we

::::::::::
substitute

::::::::::
(P − PH)

:::
for

::::
PS ::::

and

:::::::::
rearrange

:::
to

::::::::::
determine

::::
the

:::::::::::
proportion

::
of

::::
the

::::::
whole

:::::::::::
population

:::::
that

::
is

:::::
busy

::::::::::
handling:

:

aN(P − PH)
::::::::::::

= 1
hPH

::::::

(S.3a)

=⇒ aNP
::::::::::

= aNPH + 1
hPH

:::::::::::::::

(S.3b)

= (aN + 1
h)PH

::::::::::::::

(S.3c)

=⇒ PH

P
::::::::

=
aN

aN + 1
h

::::::::::

(S.3d)

=
ahN

1 + ahN
.

:::::::::::

(S.3e)

::::
The

:::::
total

::::::::
number

::
of

:::::::::
handling

::::::::::
predators

::
is
:::::
thus

:

PH =
ahNP

1 + ahN
.

:::::::::::::::

(S.4)

:::::
Since

::::
the

::::
rate

:::
at

::::::
which

:::::
each

::::::
these

::::
PH ::::::::::

predators
:::::::
finishes

::::::::::
handling

:::
its

:::::
prey

::
is

:::

1
h ,::

it
:::::::
follows

:::::
that

:::
the

:::::
rate

::
at

::::::
which

::::::
eaten

:::::
prey

::::
are

::::::::::::
“generated”

:::
by

::::
the

::::::
whole

:::::::::
predator

:::::::::::
population

::
is

:

dNe

dt
=

1

h
PH =

aNP

1 + ahN
:::::::::::::::::::::::

(S.5)
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::::
and

::::
thus

:::::
that

::::
the

::::
per

::::::::
predator

:::::::
feeding

::::
rate

:::::
(the

::::::::::
functional

::::::::::
response)

::
is

:

f(N) =
1

P

dNe

dt
=

1

h

PH

P
=

aN

1 + ahN
.

:::::::::::::::::::::::::::::::::::

(S.6)

::::::::::::
Multi-prey

:::::::
model

::::::
Again

::::::::
assume

::
a

:::::::::
predator

:::::::::::
population

:::
P

:::
of

::::::
fixed

::::
size

:::::
that

:::
is

::::::::::
composed

:::
of

::::
PS :::::::::

searching
:::::
and

::::::::
handling

:::::::::::::::::
sub-populations,

:::::
but

::::
now

::::::
split

:::::::::
handling

::::::::::
predators

:::::
into

::::::
those

::::::::
capable

:::
of

::::::::::
searching

:::::
while

:::::::::
handling

::::
less

:::::
than

::
n
:::::
prey

:::::::::::
individuals

:::
at

::::
any

:::::::::
moment

:::::
time.

::::
We

:::::::::
therefore

:::::
have

:::::
that

:

P = PS + PH1 + PH2 + . . .+ PHn
:::::::::::::::::::::::::::::::

(S.7)

::::
and

::::::::
describe

::::
the

::::
rate

:::
of

:::::::
change

:::
for

:::::
each

::::::::::::::::
sub-populations

:::
by

:

dPS

dt
::::

= −aNPS + 1
hPH1

:::::::::::::::::

(S.8a)

dPH1

dt
:::::

= aNPS − 1
hPH1

:::::::::::::::

(S.8b)

dPH2

dt
:::::

= aNPH1 − 1
hPH2

:::::::::::::::::

(S.8c)

...
:

dPHn

dt
:::::

= aNPH(n−1)
− 1

hPHn .
:::::::::::::::::::::

(S.8d)

::::::::::::::::
Correspondingly,

::::
the

::::
rate

:::
at

::::::
which

::::::
eaten

:::::
prey

::::
Ne :::

are
::::::::::
generated

::
is
:::::
now

:

dNe

dt
= 1

h

n∑
i=1

PHi .

:::::::::::::::::

(S.9)

:::
By

:::::::
setting

:::::::::

dPHi
dt = 0

::::
for

:::
all

::::::::::::::::
sub-populations,

:::::::::::::
rearranging,

::::
and

:::::::::::
iteratively

:::::::::::::
substituting,

:::
we

:::::
have

S2



::::
that

:

aNPS = 1
hPH1 =⇒ PH1

:::::::::::::::::::::::

= ahNPS
:::::::::

(S.10a)

aNPH1 = 1
hPH2 =⇒ PH2

::::::::::::::::::::::::

= ahNPH1
::::::::::

(S.10b)

= ahN(ahNPS)
:::::::::::::::

(S.10c)

= (ahN)2PS
::::::::::::

(S.10d)

aNPH2 = 1
hPH3 =⇒ PH3

::::::::::::::::::::::::

= ahNPH2
::::::::::

(S.10e)

= ahN((ahN)2PS)
::::::::::::::::::

(S.10f)

= (ahN)3PS
::::::::::::

(S.10g)

...
:

aNPH(n−1)
= 1

hPHn =⇒ PHn
::::::::::::::::::::::::::::

= ahNPH(n−1)
:::::::::::::

(S.10h)

= ahN((ahN)n−1PS)
::::::::::::::::::::

(S.10i)

= (ahN)nPS ,
:::::::::::::

(S.10j)

::::
with

::::
the

:::::
last

:::::
lines

::::
for

:::::
PHn ::::::::

inferred
::::
by

::::::::::
induction.

::::::
The

:::::::::::::
proportional

:::::::::::
abundance

:::
of

:::::
each

::::
ith

::::::::::::::
sub-population

:::
is

::::
thus

:

PHi

P
::::

=
(ahN)iPS

P
::::::::::::

(S.11a)

=
(ahN)iPS

PS + PH1 + PH2 + . . .+ PHn
::::::::::::::::::::::::::::::

(S.11b)

=
(ahN)iPS

PS + ahNPS + . . .+ (ahN)nPS
::::::::::::::::::::::::::::::::

(S.11c)

=
(ahN)i

1 + ahN + . . .+ (ahN)n
::::::::::::::::::::::::::

(S.11d)

=
(ahN)i

1 +
n∑

k=1

(ahN)k
.

:::::::::::::::::

(S.11e)

:::::
Each

::
of

::::
the

::::::::::::::::
sub-populations

::::::::::
generates

::::::
eaten

:::::
prey

::
at

:::::
rate

:::

1
h ,:::::

thus
::::
the

::::
rate

:::
at

::::::
which

::::::
eaten

:::::
prey

S3



:::
are

::::::::::
generated

:::
by

::::
the

::::::
whole

:::::::::::
population

::
is

:

dNe

dt
::::

= 1
h

n∑
i=1

PHi

:::::::::::

(S.12a)

= 1
h

n∑
i=1

PHi

P
P

:::::::::::::

(S.12b)

= 1
h

n∑
i=1

(ahN)i

1 +
n∑

k=1

(ahN)k
P

:::::::::::::::::::::::

(S.12c)

=

1
h

n∑
i=1

(ahN)i

1 +
n∑

i=1
(ahN)i

P .

::::::::::::::::::

(S.12d)

::::
The

:::
per

:::::::::
predator

:::::::
feeding

::::
rate

::
is

:::::::::
therefore

:

f(N) =
1

P

dNe

dt
=

1
h

n∑
i=1

(ahN)i

1 +
n∑

i=1
(ahN)i

:::::::::::::::::::::::::::::::

(S.13)

::
as

::::::
given

::
in

:::::
eqn.

::
2

::
of

::::
the

:::::
main

::::::
text.

:
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Figure S.1: The expected proportions of predator individuals that will be observed not feeding

or handling i = 1, 2, 3 or 4 prey changes with prey abundance (here visualized for a predator

population whose individuals can handle up to n = 4 prey at a time). Individuals from each of

the handling groups consumes prey at rate 1/h, thus the predator population’s (i.e. the average

individual’s) functional response is the product of 1/h and the sum of these handling-predator

proportions. The prey abundance at which the expected proportions of individuals handling 0,

1, 2, 3 or 4 prey are all equal occurs at prey abundance 1/ah. Parameter values: the attack

rate is a = 0.1 and the handling time is h = 4.
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Equivalence of eqns. 2 and 3 for integer values of n

Letting n = 1, we have

f(N) =
aN(1− (ahN)n)

1− (ahN)n+1
=

aN(1− (ahN))

1− (ahN)2
=

aN(1− ahN)

12 − (ahN)2

=
aN(1− ahN)

(1 + ahN)(1− ahN)

=
aN

1 + ahN
.

Letting n = 2, we have

f(N) =
aN(1− (ahN)n)

1− (ahN)n+1
=

aN(1− (ahN)2)

1− (ahN)3
=

aN(1 + ahN)(1− ahN)

(1 + ahN + (ahN)2)(1− ahN)

=
aN(1 + ahN)

1 + ahN + (ahN)2

=

1
h

2∑
i=1

(ahN)i

1 +
2∑

i=1
(ahN)i

.

Letting n = 3, we have

f(N) =
aN(1− (ahN)n)

1− (ahN)n+1
=

aN(1− (ahN)3)

1− (ahN)4
=

aN(1 + ahN + (ahN)2)(1− ahN)

(1 + ahN + (ahN)2 + (ahN)3)(1− ahN)

=
aN(1 + ahN + (ahN)2)

1 + ahN + (ahN)2 + (ahN)3)

=

1
h

3∑
i=1

(ahN)i

1 +
3∑

i=1
(ahN)i

.

Their equivalence for higher integer values of n follows similarly.
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Analysis of FoRAGE datasets

Additional details
::::::
Data

:::::::::::::
exclusions

:::::
and

::::::::::::
re-scaling

The most recent version of FoRAGE (v.4) contains a total of 3013 datasets from which we
excluded 415

:::
422

:
for our analyses. Most of these were excluded because they entailed less than

4 prey-abundance treatment levels or because they had fewer than 15 data points (i.e. replicates)
overall, but we also excluded several datasets because they provided prey abundances as densities
for treatments that were implemented using arenas of varying size without specifying what
those arena sizes were; entailed feeding rates of a variable but unspecified number of predators
known to exhibit predator-dependent feeding rates; and/or entailed feeding rates of variable
but unspecified experimental duration. Two

::::
Nine

:
datasets were excluded because our models

failed to reach convergence, probably due to a lack of variation at low prey abundances and the
complete depletion of prey at the lowest abundances.

Our analyses required integer counts of prey abundance and eaten prey because we assumed
binomial and Poisson likelihoods

:::::::::
likelihood

:::::::::
functions

:
to accommodate the increasing variance

that accompanies an increase in the expected number of eaten prey (Novak & Stouffer, 2021b).
For most datasets in which prey abundances were expressed as prey densities and/or preda-
tion was expressed as feeding rates, integer counts of prey abundance and prey eaten could be
calculated using provided information on the area size(s) used (area or volume), the number
of predators per treatment, and experimental duration(s). For raw-data datasets where this
information was not provided, as well as datasets expressing densities and feeding rates on a
mass basis (e.g., micro-grams of prey available or eaten), we (i) multiplied prey densities by
the minimum scalar value necessary to obtain integer values across all prey densities (which we
then used as prey abundance counts), and (ii) multiplied prey feeding rates by the minimum
scalar value necessary to obtain integer values across all feeding rates (which we then used as
counts of prey eaten). We multiplied prey abundances by an additional minimum scalar value
for non-replacement datasets (reported as raw-data or as means) where the units in which den-
sities and feeding rates were measured caused there to be more prey eaten than were seemingly
available. Although these procedures will have altered the interpretation of the attack rate and
handling time parameters (i.e. our estimates of a and h are not comparable across datasets),
neither procedure will have affected our estimates of n for the multi-prey model (because it is
dimensionless) except, potentially, through an influence on the variance of the likelihood models
(larger counts of prey eaten being permitted a higher variance than low counts of prey eaten).
Although we did not observe any relationship between estimates of n and the magnitudes of
re-scaling across our datasets, its potential influence is worthy of future analytical study.

:::::::::::
Penalized

:::::::::::
likelihood

:::::
Many

:::::::::
datasets

:::::
were

::::
not

:::::::::::
sufficiently

:::::::::::
informative

:::
to

:::::::::
constrain

::::::::::
estimates

::
of

::
n
::::
and

:::
ϕ.

::::
We

:::::::::
therefore

::::::::::::
implemented

::
a
::::::::::
penalized

::::::::::
likelihood

:::::::::::
approach,

::::::::::::
augmenting

::::
the

::::
two

::::::::::::::::
aforementioned

::::::::::
likelihood

:::::::::
functions

:::::
with

::
a

::::::::
penalty

:::::
term

::::::::::::
proportional

:::
to

::::
the

:::::::
values

::
of

::
n
::::
and

:::
ϕ

::
to

:::::::::::
discourage

:::::
large

:::::::
values

::
of

::
n

::::
and

:::
ϕ.

::::::
More

:::::::::::
specifically,

:::
we

:::::::::::
performed

::::::
model

:::::::
fitting

::::::
using

Lp = L+ λ · ln(n) + λ · ln(ϕ)
:::::::::::::::::::::::::::

(S.14)

::
as

::::
the

::::
loss

::::::::::
function,

::::::
where

:::
L

::
is

::::
the

:::::::::
negative

::::::::::::::
log-likelihood

::::
and

::
λ
::::::::::::
determines

::::
the

::::::::
strength

:::
of

:::
the

::::::::
penalty

:::
for

:::::::
values

:::
of

::
n

::::
and

:::
ϕ.

::::::::::
Although

:::
it

::
is

::::::::
possible

:::
to

:::::
treat

:::
λ

::
as

::
a
:::::
free

::::::::::
parameter

:::::
that

:
is
:::::::::::
estimated

:::
for

:::::
each

:::::::::
dataset,

:::
we

::::
set

::::::::::::::
λ = 1/ ln(20).

:::
A
::::::
value

:::
of

::
n
:::
or

:::
ϕ

::::::
equal

::
to

::::
20

:::::::::
therefore

S7



:::::::::
penalized

::::
the

:::::::::
negative

:::::::::::::
log-likelihood

:::
by

::
1
:::::
unit

::::::::::::
(equivalent

::
to

::::
1/2

::::
the

::::::::
penalty

:::::::::::
associated

:::::
with

::::
each

:::::::::::
parameter

::
of

::
a
:::::::
model

::::::
under

::::::
AIC).

:
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Supplementary figures and statistical tables

(a) Insects (b) Arachnids

(c) Crustaceans (d) Fishes

Figure S.2: Venn diagrams categorizing the datasets of the four most common predator groups
by their support for one or more of the three

::::::::::
considered

:
models by

:::::
based

:::
on

::::::
their BIC

::::::
scores.
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Figure S.3: Cumulative probability distribution of the estimates of n
::::::::::
(assuming

:::
the

:::::::::::
multi-prey

:::::::
model)

:
from across all datasets excluding those for which the Type I model alone performed

best.
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Figure S.4:
:::::::::::
Cumulative

:::::::::::
probability

::::::::::::
distribution

::
of

::::
the

::::::::::
estimates

::
of

::
ϕ

::::::::::
(assuming

::::
the

::::::::::::
Holling-Real

:::::
Type

:::
III

::::::::
model)

:::::
from

:::::::
across

::::
all

::::::::
datasets

::::::::::
excluding

::::::
those

::::
for

:::::::
which

::::
the

::::::
Type

:
I
:::::::
model

::::::
alone

::::::::::
performed

:::::
best.

:
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Predator−prey body−mass ratio
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Figure S.5:
::::
The

::::::::::::
relationship

::::::::
between

:::::::
log2(ϕ)::::

and
::::::::::::::
log10(PPMR)

:::::::::
assuming

:::
the

:::::::::::::
Holling-Real

::::::
model

:::::::::
excluding

:::::::::
datasets

:::
for

::::::
which

::::
the

::::::
Type

:
I
:::::::
model

:::::
alone

:::::::::::
performed

:::::
best

::::::
(Table

::::::
S.2).
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Figure S.6: The regression of
:::::::::::
relationship

:::::::::
between

:
log2(n) on

::::
and

:
log10(PPMR)

:::::::::
assuming

::::
the

::::::::::
multi-prey

:::::::
model when considering only those datasets having a sample size greater than the

median sample size of all datasets excluding those for which the Type I model alone performed
best (Table S.3).
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Table S.1: Summary statistics (with 95% confidence intervals) for the least-squares linear re-
gressions of log2(n) of the multi-prey model on log10(PPMR) when considering all studies (n ≥
1) or only those studies for which n >1.

Estimates
n ≥ 1 n >1

Intercept 0.552∗∗∗ (0.459, 0.646) 1.997∗∗∗ (1.824, 2.170)
log10(PPMR) 0.154∗∗∗ (0.114, 0.193) 0.201∗∗∗ (0.132, 0.270)

Observations 2,133 719
R2 0.026 0.044
Adjusted R2 0.026 0.043
Residual Std. Error 1.368 (df = 2131) 1.353 (df = 717)
F Statistic 57.177∗∗∗ (df = 1; 2131) 32.927∗∗∗ (df = 1; 717)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S.2: Summary statistics (with 95% confidence intervals) for the least-squares linear re-
gressions of log2(ϕ) of the Holling-Real Type III on log10(PPMR) when considering all studies
(ϕ ≥ 1) or only those studies for which ϕ >1.

Estimates
ϕ ≥ 1 ϕ >1

Intercept 0.266∗∗∗ (0.227, 0.306) 1.075∗∗∗ (0.978, 1.172)
log10(PPMR) 0.057∗∗∗ (0.040, 0.074) 0.058∗∗∗ (0.020, 0.095)

Observations 2,133 518
R2 0.020 0.017
Adjusted R2 0.020 0.016
Residual Std. Error 0.583 (df = 2131) 0.655 (df = 516)
F Statistic 43.526∗∗∗ (df = 1; 2131) 9.162∗∗∗ (df = 1; 516)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table S.3: Summary statistics (with 95% confidence intervals) for the least-squares linear re-
gression of log2(n) of the multi-prey model on log10(PPMR) when considering only those studies
having a sample size greater than the median sample size of all studies.

Sample size >36

Intercept 0.429∗∗∗ (0.295, 0.563)
log10(PPMR) 0.247∗∗∗ (0.185, 0.310)

Observations 978
R2 0.058
Adjusted R2 0.057
Residual Std. Error 1.315 (df = 976)
F Statistic 60.509∗∗∗ (df = 1; 976)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S.4: Summary statistics (with 95% confidence intervals) for the multiple least-squares
linear regression of log2(n) of the multi-prey model on log10(PPMR) × predator group for the
four most common predator taxonomic groups.

Focal predators

Intercept (Insect) 0.523∗∗∗ (0.385, 0.660)
log10(PPMR) 0.194∗∗∗ (0.115, 0.272)
Arachnid −0.218 (−0.500, 0.065)
Crustacean 0.251∗ (−0.027, 0.528)
Fish −0.113 (−0.641, 0.415)
log10(PPMR):Arachnid 0.203∗ (−0.021, 0.427)
log10(PPMR):Crustacean −0.081 (−0.189, 0.026)
log10(PPMR):Fish −0.052 (−0.229, 0.125)

Observations 1,915
R2 0.034
Adjusted R2 0.030
Residual Std. Error 1.349 (df = 1907)
F Statistic 9.533∗∗∗ (df = 7; 1907)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Population-dynamic effects

Supplementary figures
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Figure S.7: The coexistence state is asymptotically stable when the real part of the dominant

eigenvalue Re(λ1) is negative. This occurs for n ≈ 1 where it is globally stable and for n > 5

where it is only locally stable. Post-perturbation dynamics towards the stable equilibrium exhibit

monotonic damping when the imaginary part Im(λ1) is zero as occurs for n ≈ 1, but exhibit

damped oscillations when Im(λ > 0) as occurs for higher n. Other parameter values as in Fig. 3.
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A reformulation of the extended Steady State Saturation model

Jeschke et al. (2004) introduced a functional response model that, like the multi-prey model, is
capable of exhibiting a continuum of shapes between the Type I and Type II response forms.
In its original formulation, their model is written as

e(1 + aN(b+ c))−
√
e (4acN + e(1 + aN(b− c))2)

2c(e(1 + abN)− 1)
, (S.15)

where N is the prey’s abundance, a is the attack rate, b is the handling time, c is the digestion
time, and e is a dimensionless shape parameter interpreted as affecting the trade-off between
search effort and hunger level (i.e. gut fullness). The model approaches the rectilinear Type
I

::::::
model

:
as e → ∞ when b = 0 (see Fig. A2 of Jeschke et al., 2004). For e = 1 it reduces

to the “Steady State Saturation” (SSS) model of Jeschke et al. (2002), written in its original
formulation as

1 + aN(b+ c)−
√

1 + aN (2(b+ c) + aN(b− c)2)

2abcN
. (S.16)

Both models may be expressed in a formulation more similar to the Holling form that eases
a comparison to other functional response models. This may be done by deriving them using
the citardauq formula. The SSS may thereby be rewritten as

2aN

1 + aN(b+ c) +
√
1 + aN (2(b+ c) + aN(b− c)2)

. (S.17)

(Note that the equation presented in the original version of Novak & Stouffer (2021a) is incor-
rect but has subsequently been corrected (Novak & Stouffer, 2024).) The extended SSS with
parameter e may be rewritten as

2aN

1 + aN(b+ c) + 1
e

√
e (4acN + e(1 + aN(b− c))2)

. (S.18)

With four parameters, the extended SSS model is capable of exhibiting more variation in shape
than the three-parameter multi-prey model. In particular, with sufficiently high e and appropri-
ately chosen non-zero values of b and c, it exhibits curvature at the low prey abundances where
the multi-prey model with high n is effectively linear (see Figs. A1 and A2 of Jeschke et al.,
2004).

S15


	Code and data availability
	Author contributions
	Acknowledgments
	Funding
	Conflict of interest disclosure
	Introduction
	A functional response for multi-prey feeding
	Holling's Type II response
	The multi-prey response
	Relevance of the Type I response

	Empirical support for multi-prey feeding
	Frequency of multi-prey feeding
	Effects of predator-prey body-mass ratio on n and 

	Population-dynamic effects of multi-prey feeding
	Graphical analysis
	Implications for coexistence and dynamics


	Discussion
	Empirical support
	Mechanistic approximations
	Population-dynamic effects
	Relevance revisited
	Conclusions for bridging theory and empirical insight

	
	
	
	 
	Multi-prey functional response model
	Derivations
	Holling Type II model
	Multi-prey model

	Proportion of predators feeding on 1 to n prey

	Equivalence of eqns. 2 and 3 for integer values of n
	Analysis of FoRAGE datasets
	Data exclusions and re-scaling
	Penalized likelihood
	Supplementary figures and statistical tables

	Population-dynamic effects
	Supplementary figures

	A reformulation of the extended Steady State Saturation model



