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5Department of Zoology & the Biodiversity Research Centre, University of British Columbia,14

Vancouver, BC, Canada15

16

Keywords: biomass production
::::::
spatial

::::::::
patterns, landscape structure, local vs. regional17

scales, species-area relationships, trophic interactions
::::::::
dispersal18

Abstract19

Ecology is a science of scale, which guides our description of both ecological processes and20

patterns, but we lack a systematic understanding of how process scale and pattern scale are21

connected. Recent calls for a synthesis between population ecology, community ecology, and22

ecosystem ecology motivate the integration of phenomena at multiple levels of organization.23

Furthermore, many studies leave out the scaling of a critical process: species interactions,24

which may be non-local through mobility or vectors (resources or species)
:::::::::
movement

::
or25

:::::::
foraging

:
and must be distinguished from dispersal scales. Here, we use simulations to ex-26

plore the consequences of
::::
three

:
different process scales (i.e. species interactions, dispersal,27

and the environment) on emergent patterns of biodiversity, ecosystem functioning, and their28

relationship, in a spatially-explicit landscape
::::
and

:::::
stable

:::::::::::
equilibrium

::::::
setting. A major result29

of our study is that the spatial scales of dispersal and species interactions have opposite30

effects: a larger dispersal scale homogenizes spatial biomass patterns, while a larger in-31

teraction scale amplifies their heterogeneity. We find that an interesting interplay between32

process scales occurs when the spatial distribution of species is heterogeneous at large scales,33

i.e., when the environment is not too uniform and dispersal not very strong. Interestingly,34

the specific scale at which scales of dispersal and interactions
:::::::
dispersal

::::
and

::::::::::
interaction

:::::
scales35

begin to influence landscape patterns depends on the environmental heterogeneity of the36

landscape
::::
scale

:::
of

:::::::::::::
environmental

:::::::::::::
heterogeneity – in other words, the scale of one process37

allows important scales to emerge in other processes.
::::
This

::::::::
interplay

::::::::
between

::::::
process

::::::
scales,38

:::
i.e.,

::
a
::::::::
situation

::::::
where

:::
no

::::::
single

:::::::
process

::::::::::
dominates,

::::
can

::::
only

::::::
occur

:::::
when

::::
the

:::::::::::
environment39

:
is
:::::::::::::
heterogeneous

::::
and

::::
the

::::
scale

:::
of

::::::::
dispersal

::::::
small.

:
Finally, contrary to our expectations, we40

observe that the spatial scale of ecological processes is more clearly reflected in landscape41

patterns (i.e.
:
,
:
distribution of local outcomes) than in global patterns such as Species-Area42

Relationships or large-scale biodiversity-functioning relationships.
::::::
Overall

:::
we

::::::::
conclude

::::
that43

:::::::::
long-range

:::::::::::
interactions

:::::
often

::::
act

::::::::::
differently

::::
and

:::::
even

::
in

::::::::
opposite

::::::
ways

::
to

:::::::::
dispersal,

::::
and44

::::
that

:::
the

::::::::::
landscape

::::::::
patterns

:::::
that

:::::::
emerge

:::::
from

:::
the

:::::::::
interplay

:::
of

:::::::::::
long-ranged

:::::::::::
interactions,45

::::::::
dispersal

::::
and

:::::::::::::
environmental

::::::::::::
heterogeneity

:::
are

::::
not

::::
well

::::::::
captured

:::
by

::::::::::
often-used

:::::::
metrics

:::
like46

:::
the

::::::::::::
Species-Area

::::::::::::
Relationship.

:
47

Introduction48

Scale is fundamental to ecology, from the spatial and temporal scales at which we observe49

and manage ecosystems [1, 2, 3] to the intrinsic scales at which processes occur within50

and across ecosystems [4]. Much of current research efforts describe ecological patterns51

across scales, such as species-area or biodiversity-ecosystem functioning
:::::::::::
Species-Area

::
or52

::::::::::::::::::::
Biodiversity-Ecosystem

:::::::::::
Functioning

:
relationships [5, 3]. However, the scaling of ecological53

patterns is largely phenomenological – we can describe how patterns scale but not why54

[6, 5]. Although links between scales of patterns and processes have been explored in recent55

years [7, 8, 9], as we will discuss, a systematic and unified treatment of scale in ecology is56

incomplete. Thus, a
:
A

:
critical question remains: how is the scaling of ecological patterns,57
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such as patterns of biodiversity and ecosystem functioning, related to
:::::::::
generated

:::
by

:
scales58

of specific processes, and why?59

In answering this question, a crucial process is often overlooked: the spatial scale of60

species interactions. While dispersal and environmental variation are often understood to61

operate at various spatial scales, existing research generally assumes that species only inter-62

act locally [10, 11, 12] .
:::::::::
(although

::::::::::
exceptions

:::::
exist,

::::
e.g.,

:::::::
studies

:::::
using

::::::::::
multi-layer

::::::::
networks63

::
to

::::
link

::::::::::
interaction

::::::::
networks

:::
at

:::::
local

:::::
scales

:::
to

:::::
their

:::::::::
realization

:::
at

:::
the

::::::
global

:::::
scale

::::::::
[13, 14]).64

Yet many species move, forage, or otherwise interact with each other at a range of spatial65

scales [15]
::::::
[16, 17], even in the absence of population fluxes (dispersal).

::::::::
dispersal.

::
A

::::::
simple66

:::::::::
distinction

::
is
:::::
that

:::::::::
dispersing

:::::::
species

::::::::
establish

:::::
new

:::::::
“home”

::::::
ranges

::::::
when

::::
they

:::::
move

::::::
across67

:::
the

::::::::::::
environment,

:::::
while

:::::::
mobile

:::::::
species

::::::
always

:::::::
return

::
to

:::::
their

::::::::
“home”

::::::
range.

:
Many move68

daily across multiple habitat types(e.g.,
:
,
::::
such

::
as

:
seabirds connecting marine and terrestrial69

ecosystems), for some species even at scales which exceed dispersal (e. g., salmon returning70

to their natal streams).
:::::

[16],
:::
or

:::::::::
predatory

:::::::
insects

:::::::
moving

::::::::
between

::::::::
different

::::::::
habitats

::
in71

:::
the

:::::::::
landscape

:::::
[17].

:
Non-local competition arises

:::
can

:::::::::
therefore

:::::
arise from foraging across72

multiple localities [15].
:
.
::::::::::::
Additionally,

:::::::
species

:::::::
interact

:::::::::
indirectly

::::::
across

:::::
long

::::::::
distances

:::
via73

:::::::::::
intermediary

:::::::
species,

:::::
(e.g.,

:::::::
plants

::::::::::
interacting

:::::::::
indirectly

:::
via

::::::::::
pollinators

:::
or

:::::::::::
herbivores),

:::
and74

:::::
many

::::
such

::::::::::::
intermediary

:::::::::::
interactions

:::
are

::::
not

::::::::
explicitly

::::::::
studied,

::::
thus

::::::
being

::::
best

::::::::::
represented75

::
by

:::::
long

::::::
range

:::::::::::
interactions.

::
As a result, scales of species interactions, such as compe-76

tition, likely have consequences for population persistence, affecting the spatial distribu-77

tion of biodiversity and ecosystem functioning in ways that are distinct from other process78

scales [18, 19].79

How do the spatial scales of dispersal, environmental heterogeneity, and species inter-80

actions interactively influence ecological patterns? Answering this question is unlikely to81

be achieved via observational studies, as different combinations of ecological processes may82

generate identical patterns, but computational models can explore patterns that emerge as83

processes interact across scales. Indeed, the scale of dispersal relative to the environment84

has been studied most extensively, in particular within a metacommunity context [20, 7, 21].85

These studies generally find that high rates of dispersal blur differences between local com-86

munities, leading to losses of biodiversity and ecosystem functioning. Although there are87

reasons to expect increased scales of dispersal and species interactions to have similar conse-88

quences, as both processes are influenced by some
:::::
many

:
of the same variables (e.g., animal89

mobility) and serve to spread out the effects of species interactions, there are also reasons90

to expect the opposite [22]. A key difference is that large dispersal scales can allow popu-91

lations to permeate through whole landscapes over a few generations, whereas individuals92

with large interaction scales are still bound to specific localities. As a result, increasing93

scales of interactions may amplify spatial heterogeneity in an ecological system [23], counter94

to the blurring effect of larger dispersal scales.95

In addition to scales of species interactions, we will address an additional major gap96

which is preventing
::::::::
prevents

:
a complete knowledge of scaling in ecology: consideration97

of a wider range of ecological patterns within a single study than has been examined98

previously. Two well-recognized ecological patterns are species-area
:::::::::::
Species-Area

:
(SAR)99

and biodiversity-ecosystem functioning
:::::::::::::::::::::
Biodiversity-Ecosystem

::::::::::
Functioning

:
(BEF) relation-100

ships. The species-area
:::::::::::
Species-Area

:
relationship is the earliest and most widely-examined101

ecological pattern to explicitly consider scale [5, 24]. Although SARs have been described102

as one of “ecology’s few universal regularities”
:
” [25], accumulating evidence reveals consid-103

erable variation within and among biological systems [26, 5, 27]. Likewise, BEF theory has104

revealed consistent patterns, typically a saturating relationship between community diver-105

sity and biomass production [28], but most work has focused on BEFs at local scales, with106

only recent work highlighting the importance of scale [3]. Previous studies have examined107

how one pattern or the other are affected by process scales [29, 27, 30], but no study has108

examined how SAR and BEF relationships change in tandem and if effects that are masked109

through one pattern are apparent through
::
in the other. As a consequence, it is unclear110

how both SAR and BEF relationships are affected by the interplay of processes acting at111

different scales, making it difficult to assess how process scales affect the overall behavior of112

ecosystems as different measures highlight different aspects of ecosystems. These
::::::::
Resolving113

::::
these

:
issues will be useful to resolve, as they link

::
for

:::::
both

:
basic and applied biodiversity114

problems, for the preservation of productive, biodiverse landscapes
::::::::
instance

:::::::
allowing

:::
us

::
to115

::::
scale

:::
up

:::
to

:::::::::
landscape

:::::
scales

::::
our

::::::::::
predictions

:::
of

:::::::::::
biodiversity

::::
loss

:::
and

:::
its

::::::
effect

::
of

:::::::::
ecosystem116

:::::::::::
productivity,

:::::
that

:::
are

:::::
often

:::::
based

:::
on

:::::
local

::::::
scales [31].117

Here, we use a modified Lotka-Volterra metacommunity model to explore the conse-118

quences of the scaling of ecological processes for biodiversity, ecosystem functioning, and119

their relationship across spatial scales. Our simulations consist of species interacting in a120

spatially-explicit landscape, with “patches”
:
”
:

emerging from the environmental structure121

of the landscape.
:::::::::
Although

::::::::::::::::
metacommunities

::::
tend

:::
to

:::
be

::::::::
modelled

:::
as

::::::::
systems

::
of

:::::::
discrete122

:::::::
patches

:::::::::
embedded

:::::::
within

:::
an

::::::::::::
inhospitable

:::::::
matrix,

::::::
Chase

:::::
and

:::::::
Leibold

::::::::::::
[32] describe

::::
this123
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::::::::
approach

::
as

::::::
useful

:::::::
(easing

:::::::::::
computation

::::
and

:::::::::::::
interpretation)

::::
but

:::::::
limited

:
–
:::::
they

::::::::::
foreshadow

:
a124

::::::::
“coming”

:::
in

:::::::
ecology

::
in

::::::
favour

::
of

:::::::
models

::::
that

:::::
allow

::::::::::
“patches”

::
to

:::::::
emerge

:::::
from

:::
the

::::::::
structure125

::
of

:::
the

::::::::::::
environment,

::::::
which

::::
our

::::::
model

:::::::::
achieves.

:
We first study the heterogeneity of local126

outcomes across the landscape: patterns of patch biodiversity, patch functioning, and rela-127

tionships between them (local BEF). We can then scale up to the whole landscape scale and128

every scale in between. By varying the spatial scales over which metacommunity processes129

(abiotic environment, competitive interactions, and dispersal) play out, we test the hypoth-130

esis that ecological patterns depend on how processes interact across scales, including scales131

of species interactions, and lead to different patterns from those generated by commonly-132

assumed hierarchical process scales (i.e., scales of interactions < environment < dispersal;133

Fig. 1).134

Species-Area relationships depend on spatial turnover in species composition, and com-135

positional turnover is driven by ecological processes [33]. Thus, we would expect that136

ecological processes should strengthen SARs in scenarios where they increase compositional137

turnover. We predict that the strongest slopes of the SAR will occur when scales of dis-138

persal < environment < species interactions, because (i) interactions are not constrained to139

abiotically suitable patches, and (ii) weaker dispersal prevents the homogenization of species140

composition across the landscape. Additionally, we predict that the consequences for BEF141

relationships will differ between local and regional scales. On local scales, we expect BEFs142

to weaken as interaction scales increase
::::::
relative

:::
to

:::
the

::::::
others, given that species that are143

locally absent but present in nearby areas can affect local function
::::::::::
functioning. On regional144

scales, we expect BEFs to strengthen as interaction scales increase, since regional competi-145

tion would only keep
::::
keep

:::::
only the most suitable species at a given location, and hence, .146

::::::
Hence, more species would mean that multiple species are productive within a given region.147

Interaction scale I

Dispersal scale D

Environment scale E

foraging

settlement

water

seeds
patch

distance

Classic landscape model: I<D<E 

neighborhood

landscape

niche

altitudinal gradientwater availability

I<E

D<E

species

sorting

mass

effects

ranged

interactions

Metacommunity

framework

(a) (b)

(c)

Spatial scales of ecological processes

D>E

I>E

distance

Figure 1: Conceptual diagram of spatial scales of ecological processes. (a) Illustration of
the spatial scale of species interactions I, dispersal D and environmental heterogeneity E relative
to the total size of the landscape (i.e., width of curves). (b) In the classic scenario, interactions take
place within a patch, while dispersal is thought to act within a neighborhood and environmental
factors vary broadly over the landscape. (c)

::::::::::
Comparison

::
of

:::::::::
ecological

::::::::
scenarios

:::::
along

:::::
scales

::
of

:
I,
::
D
::::
and

::
E.

::::::
Yellow

::::
and

:::::
green

::::::::
represent

::::
two

:::::::
different

:::::::
species,

::::
with

:::::
circle

::::
and

::
its

::::
rim

::::::::::
representing

:::
the

:::::::
resident

::::::
species

::::
and

:::
the

::::::::
favoured

::::::
species,

:::::::::::
respectively.

:
Metacommunity theory has explored

different scenarios for the relative scales of dispersal and environment (i.e.
:
, the ratio D/E), notably

distinguishing “species sorting” (
::::
local

:
environmental factors determine species distributionat the

landscape scale) and “mass effects” (population fluxes homogenize the landscape). Our work adds

::::::::
highlights the relative importance of species interactions scale (e.g.,

:
expressed through the ratio I/E,

which was previously considered only in particular ecological settings (e.g.
:
,
:
vegetation patterns or

territoriality). Ranged interactions may for instance induce exclusion of weaker competitors in a
neighboring patch, even without a population flux of a stronger competitor into that patch.
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Methods148

Model149

We use a modified Lotka-Volterra metacommunity model to explore the consequences of the150

spatial scaling of three ecological processes – abiotic environment, species interactions, and151

dispersal – for biodiversity and ecosystem functioning. Our specific assumptions and param-152

eters are motivated by two important choices. First, we focus on a classic setting of ecological153

assembly, i.e.
:
,
:
the patterns that arise when many species, originating from a regional pool,154

come together and reach an equilibrium state, with some species going locally or regionally155

extinct. Furthermore, we take species interactions in the pool to be disordered, that is, het-156

erogeneous but without a particular functional group or trophic level structure [34]. We do157

not exclude that different patterns could emerge for more ordered interactions (e.g.,
:
a realis-158

tic food web) , or for parameter values that lead to a more complex dynamical regime
::::::
regimes159

(e.g.,
:

population cycles or chaos, driven by stronger species interactions or environmental160

perturbations).
:::
We

::::
note

::::
that

::::
our

::::::::::::
communities,

::
in

:::
the

:::::::
chosen

:::::::::
parameter

:::::::
regime

::
of

::::::::
moderate161

:::::::::::
competition,

:::::::
contain

:::::
many

:::::::
species

::
in

:
a
::::::
stable

::::::::::
equilibrium

:::::
(i.e.,

:::
due

:::
to

:::
the

::::::::
assembly

::::::::
process).162

:::
Our

::::::::::::
methodology

:::::
thus

::::::
differs

::::
from

::::
the

::::::::
extensive

:::::::::
literature

::::
that

::::
has

:::::::::
considered

:::::::
models

::::
with163

:::::::
random

::::::::::
interactions

:::
in

:::::
order

::
to

:::::
study

::::::::::::::::::
stability-complexity

::::::::::::
relationships

::::
[35],

:::::::::
including

::::
more164

:::::
recent

::::::
works

::
in

::
a

::::::
spatial

:::::::
context

::::::::
[36, 37],

::
as

:::
we

::::::
rather

:::::
focus

::
on

::::
the

::::::::::
abundance

:::
and

::::::::
diversity165

:::::::
patterns

:::::::
arising

::::
from

:::::::::::
community

:::::::::
assembly.

:
166

Second, we consider the possibility of species interacting over large spatial scales. Con-167

ventional metacommunity models describe discrete local communities of habitat patches168

connected by dispersal, within which species interact [38]. In doing so, they implicitly169

assume that the spatial range of species interaction is smaller than the scale of dispersal170

and contained within a patch, for all species and types of interactions [18]. To relax these171

assumptions, we construct a metacommunity model where populations of species can dis-172

perse and interact at different spatial scales, without specifying the
:
a
:
mechanism underlying173

these ecological processes. Species interactions that manifest beyond local scales are ab-174

stracted from mechanisms such as individual foraging, vector species (e.g.
:
,
:
pathogens) [39],175

and spatial resource fluxes [40, 18].176

The model details the dynamics of S different species in a community
:::::::::
distributed

::::::
across

:
a177

::::::::::::::
spatially-explicit

::::::
lattice

:::::::::
landscape

:::
of

:::::::
320x320

::::
cells. The dynamical equation for the biomass178

Ni of species i at position ~x in the landscape at time t is given by a generalized Lotka-Volterra179

equation of the form180

∂

∂t
Ni(~x, t) = Ni(~x, t)

ri(~x) +

S∑
j

∫
d~yAij(~x, ~y)Nj(~y, t)

+ δi∆Ni(~x, t) (1)

where ~x and ~y represent vectors of spatial
::::
(x, y)

:
coordinates in the landscape. Equation181

(1) models the effects of three ecological processes on the abundance
::::::
biomass

:
of species i:182

its intrinsic growth rate ri(~x), which is influenced by abiotic environmental conditions at183

location ~x, dispersal to and from location ~x, which is controlled by the diffusion coefficient184

δi, and interactions with all other species j, including when they are located elsewhere185

in the landscape, Aij(~x, ~y).
::::::::
Although

:::
at

::::
face

:::::
value

:::::
cells

::
in

::::
our

::::::
model

::::::::
resemble

:::::::
patches

::
in186

:::::::::
traditional

:::::::::::::::
metacommunity

:::::::
models,

:::::
given

::::
that

:::::::
discrete

:::::::::::
populations

:::
are

:::::::::
necessary

::
to

:::::::
simulate187

:::::::::::::
Lotka-Volterra

:::::::::
dynamics,

::::
here

::
it
::
is
:::::
best

::
to

::::::::
interpret

:::::
cells

::
as

:::::::::::::
neighborhoods

:::
on

::
a

:::::::::
landscape.188

::::
Each

:::::::::::::
neighborhood

::::
may

::::
take

:::
on

::
a
::::::
unique

:::::::::::::
environmental

:::::
value

::::
and

:::::
hold

::::::
unique

::::::::
densities

::
of189

::::::::::
individuals

::
of

::::::::
different

:::::::
species.

::::::::
Viewed

::
in

::::
this

:::::
way,

:::::::::
landscape

:::::::::
dynamics

::::
can

::
be

:::::::::
simulated190

::::
more

::::::::::::
continuously,

:::::
with

:::
the

:::::::::
numerical

::::::::::
limitation

::
of

:::::::
needing

:::
to

::::::::
discretize

:::::::::
dynamics

:::
at

::::
their191

:::::
finest

:::::::::
resolution.

::::::
While

:::::::::
“patches”

::::
can

:::::::
emerge

::
in

:::::::::::::
autocorrelated

::::::::::::
environments

:::::
(i.e.,

:
a
::::::
spatial192

::::::::
clustering

:::
of

::::
cells

:::::
that

:::
are

::::::::
suitable

::
to

::
a
::::::
given

::::::::
species),

:::
our

:::::::
model

::
is

::::
also

::::::::::::
generalizable

::
to193

:::::::::
landscapes

:::::
with

::
a

::::::::
diversity

::
of

:::::::::::::
environmental

::::::::::
structures.

:
194

Environment195

Abiotic conditions in each location are encoded by an environmental variable V (~x). This196

variable is continuous and varies smoothly over space, with parameters allowing one to tune197

the typical spatial scale of this variation [41]. For more details on the construction of the198

environment, see the Appendix
::::::
section

:::
A2.199

Each species has a Gaussian fundamental niche that determines its abiotic fitness in each200

location, with an optimal environmental value Hi and abiotic niche width ωi201

fi(~x) = exp

[
− (V (~x)−Hi)

2

2ω2
i

]
(2)

Each fitness value is bound between 0 and 1 and reaches its maximum at an optimal envi-202

ronmental condition (i.e., when V (~x) = Hi). We take the growth rate as ri(~x) = fi(~x). In203

4



other words, V (~x) sets the actual structure of environmental conditions across the landscape,204

whereas ri(~x) is how species experience the environment and its structure.205

Interactions206

We choose to limit ourselves to competitive interactions, defined by the matrix Cij , which207

represents the per-capita competitive effect of species j on species i. The diagonal of the208

matrix (the impact of a species on itself) is set to 1, whereas all other interactions are209

taken independently from a random uniform distribution between 0 and c̃. We choose c̃ = 1210

to allow for moderate interactions between different species (inter-specific competition is211

always weaker than intra-specific), suggesting that pairwise coexistence is often possible212

for species with different growth rates ri, but the total impact of many competitors is213

still strong enough to allow for extinctions. Previous work has shown that, in disordered214

communities, the outcomes of ecological assembly are robust to many details such as the215

nature of interactions (e.g.,
:

mutualism, predation), and depend only on a few statistical216

properties such as the mean and variance of interaction effects [34].217

Furthermore, interactions are assumed to occur over a characteristic spatial scale encoded218

by a spatial kernel K.
::::
This

::::
scale

:::::
may

::::::::
represent

:::
the

::::::::
distance

:::
an

::::::
animal

:::::::
forages

:::::
from

::
its

::::
nest219

::::::::
(without

::::::::::
establishing

::
a
::::
new

:::::
nest),

::::
the

:::::
scale

::
at

:::::
which

:::::
trees

::::::
gather

:::::::::
resources

::::
with

:::::
their

:::::
roots,220

::
or

:::
the

::::::::
effective

:::::::
distance

:::
an

:::::::::
immobile

::::::
species

::::::::
interacts

:::::
with

::
its

:::::::::
neighbors

:::
via

:::
an

:::::::::::
intermediary221

::::::
species

::::::
(where

::::
the

::::::::::::
intermediary

:
is
::::
not

:::::::::
explicitly

:::::::::
modeled).

:
We use a Gaussian kernel whose222

standard deviation defines the interaction range such that223

K(~x, ~y|γ) = k0exp

[
−||

~x− ~y||2

2γ2

]
(3)

where ||~x − ~y|| indicates the norm of (distance between) the vectors ~x and ~y, and γ is the224

spatial range (scale) of the interactions.
:::
We

:::::
note

::::
that

:::::
while

::::
this

:::::::::
modeling

::::::::
strategy

::
is

:::
not225

:::::::
physical

:::
as

::
it

:::::::
implies

::::
that

:::::::::::
interactions

::::::
occur

::::::::::::::
instantaneously

::::::
across

::::::::::
distances,

::::
this

::
is

:::
not226

::::::::
expected

::
to

::::
bias

::::
our

:::::::
results

:::::
since

:::
we

:::
are

::::::::
focusing

:::
on

:::
the

:::::::::::
equilibrium

:::::
state

:::
of

:::
the

:::::::
system,227

:::::
where

::::::::::::
hypothetical

:::
lag

::::::
effects

::::::
should

:::
be

::::::::
minimal.

:
228

We normalize the interactions by k0 such that the overall effect of the kernel is always229

the same (i.e.
:
,
:
the integral over K always equals 1). This normalization means that for large-230

scale interactions, local competition becomes weaker. However, some amount of (especially231

intra-specific) competition must remain locally strong to prevent species densities from232

growing exponentially and exploding. Therefore, we define interactions as partially local233

and partially regional, with β governing the fraction of interactions that are regional:234

Aij(~x, ~y) = −βCijK(~x, ~y|γ)− (1− β)Cij . (4)

We choose β to ensure that the effect of interactions changes with I
::::
their

:::::::
spatial

::::
scale

::::
(see235

:::::
scales

::::::::::
subsection

::::::
below), but local competition is never negligible .

:::
(see

:::::
more

:::::::
details

::
in

:::
the236

:::::::::
Appendix,

::::
Fig.

:::::
S12).

:
237

Dispersal238

Finally, dispersal is modeled by the diffusion (Laplace) operator,239

δi∆Ni(~x, t), (5)

where δi is the diffusion or dispersal coefficient of the species. For simplicity, we set the240

dispersal coefficient to be the same for all species.241

Contrary to interactions, we do not use an explicit spatial kernel here, because intensity242

and spatial scale are unavoidably entangled in the case of dispersal (see Discussion). Thus,243

as will be seen, the
:::::::::
Appendix

:::::::
section

:::::
A1).

:::::
The coefficient δi sets the spatial scale over244

which dispersal impacts ecological dynamics. We note
::::
Note

:
that two aspects of our modeling245

choices mean that our choice of dispersal by diffusion will not be
:
is

:::
not

:
qualitatively different246

from applying a large dispersal kernel: our focus on the equilibrium state, and having initial247

conditions where all species are introduced to every point in the landscape. The former248

aspect of equilibrium means that any potential non-equilibrium dynamics driven by species249

moving quickly across space due to a large dispersal kernels do not apply
:::
are

::::
not

:::::::::
applicable.250

The latter aspect means that there is no dispersal limitation
::::
limit

:::
to

::::::::
dispersal, i.e.

:
, a short251

or long-ranged dispersal kernel does not affect which parts of the landscape can be reached252

by a species.253

Scales254

In this study we are concerned with spatial scales of three ecological processes:255
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1. E: environmental heterogeneity256

2. D: dispersal257

3. I: species interactions258

To properly compare the interplay of different process scales, we must first compute259

their values for a given set of model parameters (Table 1). The scale of the environment260

(spatial autocorrelation) is controlled by two parameters
::::::::
combines

:::
two

::::::::
features

:::::
often

::::
used

::
in261

:::
the

:::::::::
literature

::
to

::::::::
generate

::::::::
realistic,

::::::::::::::::::::::
spatially-autocorrelated

::::::::::
landscapes

::::
[42]: spectral color262

ρand
:
,
::::::
which

::::::::
indicates

::::
the

::::::::
relative

::::::::::
importance

:::
of

::::::::::
long-range

::::
and

:::::::::::
short-range

:::::::::
variations263

::
in

:::
the

::::::::::::
environment,

::::
and

:
spectral cutoff kc. :

,
::::::
which

::::::::
indicates

::::
the

:::::
finest

::::::
grain

::
of

::::::::
variation264

:::::::::
(Appendix

:::::::
section

:::::
A2).

:::::
The

::::::::
effective

::::::::::::::
environmental

:::::
scale

::
E

::
is
::::::::::

controlled
:::
by

:::::
these

::::
two265

::::::::::
parameters.

:
266

In the main text, we focus on a single value for the environment scale E = 32, and vary267

the other two scales on a logarithmic scale, with values of 1, 3.2, 10, 32 and 100, where the268

system itself has the scale (length) of 320
::::
cells.

:::::
Our

:::::::::::
distribution

:::
of

:
I
::::

and
:::
D

:::
are

:::::::
equally269

::::::
spaced

:::::
along

::
a
:::
log

:::::
scale

::::
and

:::::
allow

:::
us

::
to

:::::
have

:
a
:::::
clear

::::::::::
separation

::::::::
between

:::
the

::::::
scales

::
of

::::
each270

::::::::
ecological

::::::::
process,

:::::
while

:::::
also

:::::
being

::::::::::::
substantially

:::::::
smaller

:::::
than

::::
the

:::::::
system

::::
size

::::
(320

:::::
cells)271

:::
and

::::::
larger

:::::
than

:::
the

::::::::
smallest

::::
scale

:::
in

:::
the

:::::::
system

::
(1

:::::
cell).

:::::::
Details

:::
on

:::
the

::::::::::::
construction

::
of

:::
the272

:::::::::::
environment

:::
are

:::::
given

::
in

::::
the

:::::::::
Appendix

::::::
section

::::
A2.

::::
We

::::::
choose

:
a
:::::
value

:::
of

::::::
E = 32

::::::::::
specifically273

::
as

::
it

::
is

::::
the

:::::
most

::::::::::::::
straightforward

::
to

::::::::::::
demonstrate

:::
our

:::::::
results

::::
(see

:::::::::
Appendix

:::::::
section

:::
A3

:::
for274

:::::
other

::::::
values). See the Appendix for calculations and discussion of other values of E. The275

scale of interactions is set by, and coincides with, the width of the Gaussian kernel γ, such276

that I = γ. The scale of dispersal is mainly determined by the diffusion coefficient δi,277

and it is expected to scale as D ∼
√
δi (see, e.g., [43]). The normalization constant is,278

however, not trivial, and as we show in the Appendix
::::::
section

:::
A1, it is approximately 10.279

We therefore use: D = 10
√
δi. ::::::

Fixing
::::
the

:::::::::::::
environmental

:::::
scale

::::
and

:::::::
varying

::::
the

:::::
scale

::
of280

::::::::::
interactions

::::
and

:::::::::
dispersal

::::::
allows

::
us

:::
to

::::::
isolate

::::
the

::::::
effects

::
of

::::::::::
interaction

::::
and

:::::::::
dispersal

::::
scale281

:::::::
without

:::::::::::
confounding

::::
the

:::::::
effects

::
of

::::::::
different

::::::::::
landscape

::::::::::
structures

::
or

::::::::::
differences

::::::::
between282

:::::::
species.283

Parameterization and simulations284

To initialize our simulations, we first add environmental structure to a two-dimensional285

landscape of size 320x320
::::
cells (see the Appendix

::::::
section

:::
A2

:
for details). We do not define286

patches explicitly, but rather allow them to emerge from the spatial structure of the envi-287

ronment.
:::
We

::::
then

:::::
seed S = 20 species are initially seeded onto the landscape, with initial288

abundances
:::::::
biomass

:
at each location drawn from a uniform distribution between 0 and 1,289

resulting in roughly equal abundances
:::::::::
biomasses at the landscape scale. For simplicity, we290

use periodic boundary conditions for the two-dimensional system (i.e.
:
,
:
a torus topology),291

for both dispersal and interactions. We do not expect this choice to impact the results, due292

to the large size of the system considered.293

We use 20 replicate landscapes, allowing environmental structure to vary among repli-294

cates while keeping the environmental scale constant(E = 32, see Appendix for other values295

). Each replicate
:
.
::::::::::

Replicates
:::::
with

:::::
other

:::::::
values

::
of

:::::::::::::
environmental

:::::
scale

::::
are

:::::::::
presented

::
in296

:::
the

:::::::::
Appendix

:::::::
section

:::
A3.

::::::
Each

:::::::::
landscape

::::::::
replicate

::::
uses

::
a
::::::::
different

:::
set

::
of

:::::::
species

::::
and

::::
their297

:::::::::::
interactions,

::::::
chosen

:::
at

::::::::
random.

:::::
Each

::::::::
replicate

:
landscape was used to systematically vary298

the spatial scale of interactions I and dispersal coefficient D. Doing so allows us to isolate the299

effects of interaction and dispersal scales within any one replicate without the confounding300

effects of different landscape structures.The ,
:::::
with

::
25

::::::::
different

:::::::::::::
combinations

::
(5

::::::
values

::
of

::
D301

:::
and

::
5
::::::
values

::
of
:::
I,

::
as

::::::
given

::
in

::::
Fig.

:::
2),

::::::
giving

::
a
:::::
total

::
of
::::

500
:::::::::::
simulations.

::::
We

:::::::::
ascertain

:::
the302

generality of our findings are ascertained by comparing across replicates.303

We run each simulation, where a simulation is defined as a model run with a unique304

combination of process scales and replicate landscape, to a maximum time of T = 1000, or305

until equilibrium is reached. For practical purposes, we define an equilibrium as when the306

maximal change in biomass of any species in any location over a time-span of T = 1 is less307

than 10−5. A full list of parameter values can be found in Table 1. The value of δi was308

changed to control the dispersal scale D, the values of ρ and kc were changed to control309

the environment scale E, and the value of γ was changed to control the interaction scale I.310

Values of I and D were chosen along a logarithmic scale. All simulations were performed311

using MatLab 2019a.312

Measurements313

For each simulation we measure individual and total community biomass, species richness,314

and sample the landscape to calculate species-area relationships
:::::::::::
Species-Area

::::::::::::
Relationships315
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Parameter Interpretation Baseline value [Range]
General

S species number 20
L landscape size (pixels

:::
cells) (area = L2) 320

δi dispersal coefficient [0.01, 100]

Environment
Hi optimal environment value ∼ uniform(20, 80)
ωi abiotic niche width ∼ normal(10, 2)
ρ spectral color 0.95
kc spectral cutoff 0.04

K(~x) local abiotic conditions [0, 100]
k0 normalization constant -

Interactions
c̃ max interaction strength 1.0
β fraction of regional interactions 0.9
γ spatial scale of interactions [1, 100]
Cij interaction matrix ∼ uniform(0, c̃)

Table 1: Parameters, default values and ranges.

(SAR curves) as well as biodiversity-ecosystem functioning
::::::::::::::::::::
Biodiversity-Ecosystem

:::::::::::
Functioning316

relationships (BEF curves). For species richness, SARs, and BEFs, we define a species to317

be extinct at a given location if its biomass is below than a threshold of 10−3.318

To calculate SAR curves, we use
::::::
sample

::
at

:
40 different spatial scales from 1x1 (single319

pixels
::::
cells) to 320x320 (the entire landscape) on a logarithmic scale, and computed the320

species richness at each. For a given scale, we randomly choose 100 locations in the land-321

scape, and sampled a region centered around the location chosen. We averaged over the322

100 estimates of the species richness
::::::::
locations to obtain the mean richness value for a given323

scale.324

We calculate both local and regional BEF curves, based on random sampling of the325

system, on average measuring each pixel once
::::::::
landscape. We do this in a similar way to the326

SAR curves, but also measure
:::::::::
measuring

:::::::
species

:::::::
richness

::::
but

::::
also total community biomass.327

For the local BEF, we use a 1x1 pixel
:::
cell

:
area with 102,400 random locations chosen, while328

for the regional BEF we use an intermediate area of size 10x10 with 1024 locations sampled.329

Thus, on average, we measure every location in the system once, for
::
In

::::
this

::::
way

::::
the

::::
BEF330

::::::::::::
measurement

:
is
:::::
done

:::::::::::
consistently

:::
for

::::::::
different

::::::
region

:::::
sizes.

:::
For

:
both local and regional BEF331

::::::
curves,

:::
we

::::::::
measure

:::::
every

::::
cell

::
on

::::::::
average

::::
once.332

A striking pattern we observe
::::::::
outcome

::::::::
observed

:
in our results are

:
is

:::::
that spatial pat-333

terns of biodiversity and functioning in landscapes that are not well captured by summary334

variables
::::::::
landscape

:::::::::
summary

:::::::::
measures, such as SARs. To capture

:::::::
explain these patterns,335

we calculate how correlated the biomass is of a given species as distance between sampling336

locations increases (i.e., ’spatial correlation’
::::::
spatial

::::::::::
correlation), which can be used to quan-337

tify the properties of spatial patterns we observe. To calculate species’ spatial correlations,338

we do the following: 1) We
::
we

:
normalize the species’ distribution by subtracting its average339

biomass (taken over the whole system).
:
;
:
2) We

::
we

:
obtain a correlation map by calcu-340

lating the convolution of a spatial distribution with itself, using a two-dimensional Fast341

Fourier Transform.
:
; 3) We

::
we

:
normalize the correlation map by dividing the resulting two-342

dimensional map by its maximum value (i.e., we set a correlation value of 1 at the origin). ;343

:::
and

:
4) We

::
we

:
define the one-dimensional correlation function as the average between a ver-344

tical and horizontal transects through the correlation map. To define the scale of correlation345

for a given species, we locate the distance at which the correlation function reaches half its346

height, i.e., the distance from the origin where its value is the average of the maximum value347

(which is always 1) and its minimal value (typically around 0).
::
A

:::::::::::
step-by-step

::::::::::
illustration348

::
of

::::::::::
calculating

:::
the

:::::::
spatial

::::::::::
correlation

::
is

::::::::
provided

::
in

::::
the

:::::::::
Appendix,

::::
Fig.

:::::
S13.

:
349

Results350

Local outcomes: functioning and diversity across localities351

Our first major result is that, although they can arise from similar biological mechanisms352

(e.g., individual mobility), dispersal and interaction scales have opposite impacts on biodi-353

versity and functioning patterns across the landscape (Fig. 2 and S9). We start from the354
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case of weakly-connected communities with local interactions where all landscape patterns355

result from environmental variation (top-left panel, Fig. 2). Increasing the spatial scale of356

dispersal leads to a blurring of total community biomass over the landscape (from left to357

right, Fig. 2). In contrast, increasing the scale of species interactions leads to a sharpening358

of spatial patterns, amplifying underlying environmental heterogeneity (top to bottom, Fig.359

2). The antagonism between these two effects can be seen by the fact that they counteract360

each other when increasing both scales at once, leading to similar-looking outcomes (along361

the diagonal, Fig. 2), but dispersal eventually wins out – the states along the right column362

are virtually identical, whereas the same is not true across the bottom row. Critically, it363

is not until the scales of dispersal or interactions exceed the scale of environmental hetero-364

geneity (i.e., outside the dashed-lined boundary in Fig. 2) that the scale of either process365

significantly alters spatial patterns in biomass (see also Fig. S4). Larger emergent scales366

of total community biomass due to high D, and the opposite due to high I, can also be367

seen in Fig. 5, which shows how quickly patterns among locations become dissimilar as the368

distances between them increase.369
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Figure 2: Distribution of total community biomass across the landscape as we change dispersal
D (columns) and interaction I (rows) scales. Dashed black line shows where the environment scale
E = 32 is larger than both D and I. Black frames around panels designate parameter values that
we further examine in other figures. For better legibility, biomass levels above 3 are not shown.

We then focus on a subset of our scenarios above to show how process scales impact not370

only total biomass but also individual species distributions (Fig. 3). We observe that in-371

creasing dispersal scale predictably makes larger, more coherent domains (i.e., fairly defined372

areas with similar characteristics) with typically higher local diversity. Increasing interaction373

scale creates a more granular landscape with a broader range of diversities, including many374

low-diversity patches and a few high-diversity ones. Indeed, large interaction scales lead to375

more spotty species distributions, with rare species persisting in some locations where they376

would not in other scenarios (Fig. 3 bottom row). Two notable examples include species 1377

(red patches) persisting only when interactions are large and dispersal is small, and species378

2 (cyan patches,
:::::::::::
individually

::::::
green,

::::
but

::::
here

:::::
cyan

:
due to its coexistence with species 3,379

::::
blue) taking on a more clumped distribution with large interaction scales.380

Regional outcomes: functioning and diversity at the landscape scale381

The outcomes described above allow us to identify spatial patterns in local outcomes in382

the landscape, but what are outcomes for the landscape as a whole? Given the additive383

nature of biomass across localities, two regions could have identical biomass at the land-384

scape scale even if one region has high variation among localities that span extremes of385

high and low values, whereas another varies little with biomass values that are intermedi-386
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Figure 3: Species distribution patterns for five selected parameter sets, representing differ-
ent scales of dispersal (D) and interaction (I), as designated in Fig. 2. Top row: total community
biomass. Middle row: local species richness. Bottom row: distribution of three of the 20 species
in original species pool (their abundances

:::::::
biomass are encoded in the red, green and blue color

channels, respectively; thus, cyan regions corresponds to coexistence of species 2 and 3). For better
legibility, biomass levels above 3 are not shown.

ate. Here, we see that biomass is highest when interaction scales are large (Fig. S10), an387

effect that is quickly eroded as dispersal scales increase. Interestingly, these high-biomass388

landscapes had extreme variation in biomass among localities, including areas of extremely389

low biomass (dark blue in Fig. 2) and extremely high biomass (red in Fig. 2). Therefore,390

high biomass is driven by a disproportionate subset of local communities in a landscape.391

Furthermore, these high biomass landscapes were unremarkable in regional species richness392

in the landscape , and actually had fewer species per locality on average than other scenar-393

ios (Fig.S4a).
:::::
S11).

::::
For

:::::
those

:::::
who

::::
may

:::
be

:::::::::
interested

:::
in

:::::::::
comparing

::::
our

::::::::
findings

::
to

:::::
those394

::::::::
typically

::::::::
reported

::
in

::::::::::
traditional

::::::::::::::
metacommunity

:::::::
models

:::::
more

:::::::::
explicitly

:::::
(e.g.,

::::
[44],

:::
we

::::
note395

::::
that

:::
the

:::
left

::::
and

:::::
right

:::::
plots

::
in

::::
Fig.

::::
S11

:::::::::
essentially

:::::
show

:::::
local

:::::
(i.e.,

::::::
alpha)

::::
and

:::::::
regional

::::
(i.e.,396

:::::::
gamma)

:::::::::
diversity,

:::::::::::
respectively,

::::::::
whereas

::::::::::::
compositional

:::::::::
turnover

::::::
among

::::::::
localities

:::::
(i.e.,

::::
beta397

::::::::
diversity)

::
is
::::::::::
essentially

::::::::::
differences

:::::::
between

::::::
them.

:
398

Cross-scale outcomes: BEF and SAR399

Next, we turn to two types of cross-scale outcomes (Fig. 4). First, we consider the rela-400

tionship in BEF curves (i.e.
:
, total biomass vs. species diversity) , which we compute at401

local and regional scales. At the regional scale, we are unable to distinguish between the402

scenarios investigated in
::
at

::::::::::::
neighborhood

:::::
(i.e.,

:::::
single

:::::
cell)

::::::
scales.

:::
In

:::::
doing

:::
so,

:::
we

::::
find

::::
that403

::::
BEF

::::::
curves

::
(Fig. 3. By contrast, local BEF relationships better reflect the

::
4,

:::
left

::::::
panel)404

:::::
reflect

:
underlying process scales. In particular, they exhibit a hump-shaped relationship for405

large interaction scales, suggesting that patches with the largest total biomass are not the406

most diverse, but rather have a few high-performance
::::::::::::::
high-performing

:
species. This result407

ties into our previous observation that the interaction scale tends to amplify environmental408

heterogeneity, and may thus put more weight on selection effects, where abiotic conditions409

select the best-performing species at the exclusion of others.
:::
We

::::
also

:::::::::
examined

::::
BEF

::::::
curves410

::::::::
measured

:::
at

:::::
larger

::::::
scales,

::::
i.e.,

:::::
when

::::::::
spatially

::::::::::
aggregating

:::::::
100-cell

::::::::::::::
neighborhoods,

::::
and

:::::
found411

:::::::::::
qualitatively

::::::::
identical

::::::::
patterns

:::::
(Fig.

::
4,

::::::
middle

:::::::
panel).

:
412

We also look at a pattern aggregated over continuously increasing spatial scales – the413

SAR .
::::
(Fig.

::
4,
:::::
right

:::::::
panel).

:
We would expect that changes in the slope or shape of the SAR414

as the aggregation scale (x-axis) exceeds the spatial scales of our ecological processes, as has415

been demonstrated for the Stability-Area Relationships [8]. However, we do not observe a416

clear link between process and pattern scales, beyond the fact that the inflection point (in417

particular,
:
for low D and I) corresponds to the environmental scale E (vertical gray line in418

Fig. 3). The main impact of process scale is that, by amplifying landscape heterogeneity, a419

large interaction scale I leads to a stronger SAR
::::
when

:::::
large

::::::::::
interaction

::::::
scales

:::
are

:::::::
coupled420

::::
with

:::::
short

::::::::
dispersal

::::::
scales. Specifically, as predicted, at the smallest scale the D < E < I421

scenario (magenta curve) yields the lowest species richness compared to all other scenarios,422

whereas at the scale of the entire landscape, its richness is very high.423
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Figure 4: BEF and SAR relationships. Solid lines show average values over 20 replicates, dotted
lines

:::::
small

:::::
circles

:
show curves

:::::
values

:
for individual replicates. Colors correspond to five selected

parameter sets, representing different scales of dispersal (D) and interaction (I), as designated in
Fig. 2. Local and regional BEF curves are measured at regions of size 1 and 100, respectively.
Vertical gray line shows the area corresponding to the environmental scale E = 32.

:::::::
Although

:::
our

:::::
model

::
is

:::::::::::
deterministic

:::::
(i.e.,

::::
each

::::::::
replicate

:::
has

::::
only

::::
one

:::::::
possible

::::::::
outcome,

:::::
given

::
a

::::::
specific

:::
set

::
of

::::::::
parameter

::::::
values

:::
and

:::::
initial

::::::::::
conditions),

:::::::::
differences

::::::
among

::::::::
replicates

:::::
reflect

:::::::::
differences

::
in

::::::::
parameter

:::::
values

::::::
caused

::
by

::::::::
sampling

:::::
those

::::::
values

::::
from

:::::::::::
distributions

::::::
(Table

::
1).

:

However, aggregated
::::::::::
Aggregated

:
measures of biodiversity and functioning at regional424

scales miss much of the information captured by local measures, such as the distribution425

and turnover in biomass (Fig. 2 and Fig. 3). Yet these local patterns can be quantified.426

Figure 5 presents the results of the spatial correlation of species biomass distributions,427

which measures how the biomass of a species correlates over the distance between sampling.428

We observe clear trends in scale, with consistent patterns of growing (shrinking) correlation429

with higher dispersal (interaction) scales.430
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Figure 5: Spatial correlation of each species’s biomass distribution, for three scenarios. Left:
I = 100, D = 1; Middle: I = 1, D = 1; Right: I = 1, D = 100. Recall that E = 32. Each of the
20 species is represented by a different color, with black showing the average correlation function,
all for a single replicate. For this simulation run, the scale of correlation X is given, and is shown
by gray vertical lines. The correlation scale averaged over the 20 replicates, X̄, is also noted.

Discussion431

This study focuses on a critical question: how is the scaling of ecological patterns, such as432

patterns of biodiversity and ecosystem functioning, related to scales of specific processes,433

and why? We have modelled how intrinsic scales of ecological processes align with the434

emergence of ecological patterns in a metacommunity, where we control the spatial scale of435

environmental heterogeneity, dispersal, and species interactions. We further focused on the436

regime where many species may coexist in a stable equilibrium. Under these assumptions,437

we have arrived at the following answer:
::
In

::::::
doing

:::
so,

::::::
below,

:::
we

::::::::
highlight

:::
the

::::::::
following

:::::
three438

:::::::::
take-home

::::::::
messages

:::
of

:::
our

:::::::
results:

:
439

•
:::
the

:::::
scale

::
of

::::
one

:::::::
process

::::::
(here,

:::::::::::::
environment)

:::
can

::::::
cause

::::
the

:::::::::
emergence

:::
of

:
character-440

istic scales of biodiversity and functioning, as summarized by the inflection point of441
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species-area relationships, are set by scales of environmental heterogeneity. Scales442

of dispersaland species interactions do not affect those inflection points. Rather,443

they have opposing effects on the magnitude of differences between small-scale and444

large-scale patterns .
:::::
other

::::::::
processes

::::::::::
(dispersal,

::::::::::::
interactions)445

•
:::
two

::::::::::
interlinked

::::::::::
ecological

::::::::
patterns

::::::::::::
(biodiversity

::::
and

:::::::::
ecosystem

:::::::::
function)

::::
and

:::::
their446

::::::::::
relationship

::
to

:::::
each

:::::
other

:::
are

:::::::::
oppositely

::::::::
affected

::
by

::::
two

:::::
forms

::
of

::::::::::
organismal

:::::::::
movement447

448

•
::::::::
averaging

::::::::::
ecological

::::::::
patterns

:::
at

::::
any

::::
one

:::::
scale

:::::::
misses

::
a

::::
rich

::::::::::
patterning

:::
of

::::::
spatial449

:::::::
variance

:::::
that

::
is

::::::
closely

::::
tied

::
to

:::::::
process

::::::
scales

:
450

Below, we expand upon and place our findings
::::
each

:::::::
finding

::::
and

::::::
place

:::::
them

:
within451

existing knowledge, examine the mechanisms that underlie our findings, contrast results452

among ecological variables, and end by placing our results within a context of ecosystem453

preservation.454

A main finding of our study is that the spatial scale of interactions amplifies environ-455

mental heterogeneity, sharpening observed spatial patterns, in contrast to dispersal scales.456

Importantly, observed spatial patterns did not reflect the absolute value of the spatial scale457

of each ecological process, but rather, their values relative to the environment; decreasing458

the spatial scale of the environment shifts the boundary of blurring/sharpening effects of459

dispersal and species interactions (Fig. S4). We find this effect because environmental con-460

ditions are quite literally the template upon which dispersal and species interactions mold461

species distribution. Large-scale (i.e., at scales above the template) processes are more462

important than small-scale ones in determining overall patterns, meaning that only when463

dispersal or interactions have large scales can they impact large-scale patterns.464

We examined the impacts of process scales on two classes of patterns: first, on the465

spatial scaling of patterns (SAR and BEF), and second, on the spatial structure of species466

abundances
:::::::
biomass

:
in the landscape. Unexpectedly, the latter class of patterns appears467

to better reflect the scale of ecological processes, such as the distribution and turnover of468

biomass and biodiversity across the landscape. These patterns would be lost by examining469

mean biodiversity and function at specific aggregation scales (e.g., local vs. regional; Fig.470

S4), but were well captured via spatial autocorrelation (Fig. 5). From these analyses, one471

take-home message is that increasing the scale of species interactions actually amplifies472

variation on small scales. In other words, large-scale processes do not necessarily beget473

large-scale patterns.474

The question of how process scales affect observed patterns can also be spun around:475

what information about process scales can be inferred from the various patterns we see?476

Considering the opposing effects that dispersal and interaction scales have on pattern scales477

(Fig.2), it is not clear that such an inference is possible. However, given that patterns scales478

change differently (compare Fig. 2 with Fig. S3, for instance), combining several measures479

together may provide an answer, for instance by finding when changes in spatial correlations480

of biodiversity and biomass no longer behave similarly. In this context, it is perhaps to be481

expected that no clear connection was found between well known patterns such as BEF482

and SARs, and process scales. Over the past few decades, ecologists have been cautioned483

from interring processes from patterns [45]. Our results demonstrate exactly why this is484

important: a lack of a 1:1 mapping between a pattern and any one specific process.485

Indeed, our finding that the SAR curves did not exhibit transitions at particular spatial486

scales, that would allow us to identify the typical scales of the underlying processes (other487

than the environment), runs counter to other contexts, such as the invariability-area rela-488

tionship [8]. In particular, we do not find a triphasic SAR curve that is often reported [46, 8],489

:
.
::::
This

::
is
::::
the

::::
case

:
since our model does not consider individual sampling and dispersal lim-490

itation, which typically lead to stronger SAR slopes at small and large scales, respectively.491

We thus see the strongest slopes at intermediate spatial scales, consistent with results under492

similar settings [47], and hinting that we are largely seeing community dynamics typical of493

species-sorting [38]. Centering on the average SAR slope itself, on the one hand, we found494

that large interaction scales may enhance the SAR by amplifying landscape heterogeneity495

and creating low-diversity strips along the edges of species ranges. On the other hand, this496

spatial heterogeneity could also promote coexistence as a weaker competitor might thrive497

in the margins [48]
:::
[49]. This suggests that edge effects may play a prevalent role in the case498

of long-range interactions, and deserves more extensive investigation. Overall, the scales of499

biotic processes (interaction and dispersal) are mainly reflected inasmuch as they change500

overall community properties, such as total diversity across the landscape.501

In line with our expectations, dispersal tends to homogenize spatial patterns and can502

thus hinder our ability to infer the properties of smaller-scale processes. However, it is503

important to note that this generic blurring effect may disappear in some specific ecological504

settings, such as the well-known Turing instability arising from interactions between two505
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reactants dispersing at different rates, an “activator” and an “inhibitor”. In this study we506

focused on many interacting species, so that finding these two very distinct behaviours of507

activator and inhibitor is not typical, and hence dispersal always leads to a smoothing effect.508

We can therefore reconcile this apparent discrepancy by noting that, within our framework,509

such Turing patterns [50] where regular spatial scales emerge due to dispersal and local510

interactions alone, appear when a fast-diffusing species induces an effective long-range511

self-competition for a slow-diffusing species. This has been discussed in the context of512

vegetation patterns, where plants compete at a range through fast-diffusing water [51, 52].513

Thus, it may be that dispersal in one species effectively creates a type of ranged interaction514

in another species, leading to the formation of heterogeneous spatial patterns that do not515

reflect the underlying environmental conditions.516

An interesting problem we encountered, which is worth expounding upon to aid future517

research in this area, is how to place dispersal on comparable scales to other processes.518

For both environmental factors and species interactions, we could separate the intensity of519

variation and the scale over which it takes place, for instance, by modelling interactions520

with a spatial kernel which defines the range of these interactions. For dispersal, however,521

this distinction does not hold in the continuum limit nor in the stable equilibrium regime522

that we consider in this study. This can be understood intuitively in a single dimension:523

organisms who disperse from site x to site x+ 1 at time t will be counted in those that524

disperse from site x+ 1 to site x+ 2 at a later moment in time. Therefore, dispersing525

twice as fast between neighboring sites can be equivalent to dispersing twice as far. This526

equivalence breaks down when the details of individual dispersal events matter, e.g. for very527

rare and long-ranged dispersal events [53]. But even then, the strength of each dispersal528

event would still play into the spatial scale over which dispersal impacts the dynamics over529

longer times. As a consequence, defining dispersal scale from a spatial kernel alone might530

seem more intuitive, but would actually hide the importance of intensity, and we prefer531

to simply model nearest-neighbor dispersal and acknowledge that intensity and scale are532

entangled. We detail in the Appendix how we ensure that our metrics of spatial scale are533

dynamically meaningful and comparable for all three processes.534

Knowledge of the spatial scale of ecological processes is critical to understanding the535

maintenance of ecosystems. To illustrate this argument, one can imagine a landscape man-536

ager interested in preserving some baseline level of functioning in a landscape at a specific537

spatial extent, for example, primary production. If the spatial scale of interest does not en-538

compass the intrinsic scales of processes that govern functioning, then landscape alteration539

beyond that scale might impact functioning in an unanticipated and undesirable manner;540

these scales will differ among ecosystems based on how species’
:
?
:

traits and the physical541

landscape affect how organisms experience scales of E, D, and I. In other words, the scales542

important to the maintenance of ecosystem function may be mismatched from the (typ-543

ically small) spatial scales at which ecosystem functioning is observed and managed, but544

the degree to which this is true depends on process scaling.
:::::::::
Predictions

:::
of

:::
our

::::::
model

:::::
could545

::
be

::::
best

:::::::
tested

::::::::::
empirically

::
in
:::::::::::

microcosm
::
or

::::::::::
mesocosm

::::::
setups

:::
or

:::::
using

:::::
data

:::::::::
syntheses,

:::
for546

::::::::
example,

:::
by

:::::::::
examining

::::
the

::::::
spatial

:::::::::
structure

::
of

:::::::
species

:::::::
richness

::::
and

::::::::
biomass

::::::::::
depending

::
on547

::::::
process

::::::
scales

::
of

:::::
focal

::::
taxa

:::::
(e.g.,

::::::
small

::
vs

:::::::::::
large-bodied

::::::::
animals

:::::
using

::::::::
remotely

::::::
sensed

:::::
data,548

:::::::::::
experiments

::::
with

:::::::
insects

:::::
where

::::::::
mobility

::
is
::::::::::
restricted).

:
549

Our results suggest that it will be difficult to manage landscapes to preserve biodiver-550

sity and ecosystem functioning simultaneously, despite their causative relationship, for two551

related reasons. First, the fact that increasing dispersal and interaction scales had opposing552

effects on either ecosystem property presents a unique management challenge, given that553

both scales are tied to organismal movement, albeit on distinct timescales (i.e., daily vs.554

once-per-generation). Second, ecosystems attained the highest biomass in scenarios which555

also led to the lowest levels of biodiversity, specifically, when interaction scales were large556

and dispersal scales were small. We note that this second issue may only be relevant when557

interactions are largely competitive, since our modeling, and thus results, did not consider558

mutualistic interactions which would likely change the observed trade-off between biodiver-559

sity and biomass. How would a manager plan a landscape to enhance interaction scales560

(preserving function) while simultaneously minimizing scales of dispersal (preserving biodi-561

versity)? This
::::
can,

:::
for

:::::::::
instance,

::
be

::::::::
relevant

:::
for

:::::::::
managing

::::::::::
predation

::
of

::::
pest

::::::::::
herbivores

::
in562

::::::::::
agricultural

::::::::::
landscapes

:::::
[17].

:::::
This

::::
type

::
of
::::::::::::

intervention might be most successful in species563

with body plans for long-distance movement, but that can remain philopatric for behavioural564

reasons (which can be environmentally determined; i.e., territorial hunters).565

Our
::::::::::::::
metacommunity

::::::
model

:::::::
differs

::::
from

::::::::::
traditional

:::::::::::::::
metacommunity

:::::::
models

:::
in

::::::
several566

:::::::::
important

:::::
ways.

:::::::::::
Traditional

:::::::::::::::
metacommunity

::::::
models

:::::
tend

::
to

:::::::
include

::::::::
discrete

::::
local

:::::::
patches567

:::::::::
embedded

::::::
within

:::
an

:::::::
implicit

:::::::::::
inhospitable

:::::::
matrix,

:::::::::::::
interconnected

:::
by

:::::
rates

::
of

:::::::::
dispersal,

::::
often568

::::
from

::
a
:::::::::::::::
spatially-implicit

::::::::
regional

:::::
pool

::
of

::::::::::
dispersers.

::::
By

::::::::
contrast,

:::::::::
“patches”

:::
in

:::
our

::::::
model569

::::::
emerge

:::::
from

::::
the

:::::::::::::
environmental

::::::::
template

:::::
(Fig.

::::
3),

:::
the

:::::::::
structure

::
of
::::::

which
:::::

may
:::
be

::::::
viewed570

:::::::::
differently

:::
by

:::::::
different

:::::::
species

:::::::::
according

::
to

:::::
their

::::::::::::
fundamental

:::::
niche.

::::::::
Further,

:::::
these

:::::::
patches571
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::::
may

::::
have

:::::
fuzzy

:::::::::::
boundaries,

:::::::::::
within-patch

:::::::::::::
heterogeneity,

::
as

::::
well

:::
as

:::::::
different

:::::::
shapes

:::
and

:::::
sizes.572

::::::::::
Individuals

::::
may

:::
be

:::
lost

:::
to

:::
the

::::::
matrix

:::::
(i.e.,

:::::::
habitat

::::::
falling

:::::::
outside

::
of

:::
the

::::::::::::
fundamental

:::::
niche)573

:
if
:::::
they

::::::::
disperse

:::::
there

:::
or

::::
may

:::::
form

::::::::
stepping

::::::
stone

:::::::::::
populations

::
to

::::::
reach

::::
new

::::::::
patches.

:::
In574

:::::
doing

:::
so,

::::::::
dispersal

:::::::::
limitation

::
is

:::::
more

:::::
likely

::
to

:::::::
emerge

::
as

:::
the

:::::::
spatial

:::::
grain

::
of

:::
the

:::::::::::
environment575

:::::::
exceeds

:::
the

:::::
scales

::
at

::::::
which

:::::::
species

::::::::
disperse,

:
a
::::::
major

:::::
result

::
of

::::
our

:::::
study.

::::::
These

::::::::
features

::::
align576

::::
with

::::
the

::::::
recent

::::
calls

::::::::::
[54, 32] to

:::::::
develop

:::::
more

::::::::
realistic

:::::::::::::::
metacommunity

:::::::
models

:::::::::
applicable577

::
to

::
a

::::::
wider

:::::
range

:::
of

::::::::
systems,

:::::::
beyond

:::::::::
discrete,

:::::::
patchy,

::::::::::
island-like

::::::::
systems.

:::::::
Given

:::::
these578

:::::::::
strengths,

:::
the

:::::
next

::::
step

:::
is

::
to

:::::::
extend

::
a

::::::
model

::::
like

::::
ours

:::
to

::::::::::::
multi-trophic

::::::::
systems,

:::::::
beyond579

:::::::::::
“horizontal”

::::::
(sensu

:::::::
Vellend

::::
[55])

:::::::::::
competitive

::::::::::::
communities.

::::
Our

::::::
model

:
is
:::::::::
naturally

::::::::
amenable580

::
to

::::::::::::
multi-trophic

:::::::::
systems,

::
as

::::::::::
predators

:::::
often

::::::::
perceive

::::
the

:::::::::
landscape

:::
at

::
a
::::::::

different
:::::

scale581

::::
than

:::::
their

:::::
prey

:::::
(i.e.,

::
a
::::::::
different

:::::::::::
interaction

::::::
scale)

::::
and

::::::
would

::::::::
perceive

::::
the

:::::
scale

:::
of

:::
the582

:::::::::::
environment

:::
via

:::::::
spatial

::::::::::::
distributions

:::
of

:::::
their

::::::::::::::::
prey–additionally,

::::::
there

::
is

:::
an

:::::::::::
opportunity583

::
to

:::::
move

:::::::
beyond

:::::::::::::
Lotka-Volterra

:::::::::
dynamics

::::
for

:::::::::
modelling

::::::
species

::::::::::::
interactions,

:::::::
towards

:::::
more584

::::::::::
mechanistic

:::::::::::::::::
consumer-resource

:::::::::::
approaches

::::
[56].

::::::
Most

:::::::::::::::
metacommunity

:::::::
models

:::::
have

::::
been585

::::::
applied

:::
to

:::::::::
competing

:::::::
species

::::
[18],

:::::
with

::::::::::::
multi-trophic

:::::::::
extensions

:::::::::
becoming

:::::
more

::::::::
common

::
in586

:::::
recent

:::::
years

:::::
[57].

:
587

:::
Our

:
conclusions are twofold. First, we bring forward an important spatial scale – the588

range of species interactions – that has been largely neglected in previous analyses (e.g.,589

metacommunity theory). This interaction range can derive
::
be

:::::::
derived

:
from many of the590

same ecological mechanisms as dispersal, for instance
::::
such

::
as

:
individual mobility, yet these591

two scales
::::::::
processes lead to opposite ecological effects. This suggests that we must care-592

fully distinguish whether mobility actually leads to population dispersal or to large-range593

interactions, and re-evaluate possible consequences of evolution or environmental change in594

these processes. Finally, we saw that the spatial scale of ecological processes might not ap-595

pear clearly in the scale of resulting patterns such as Species-Area or Biodiversity-Ecosystem596

Functioning relationships, though they may sometimes be reflected in local outcomes. While597

we focused on a few important biodiversity and functioning patterns, our study paves the598

way for future work investigating systematically under which conditions various ecological599

pattern scales may or may not reflect the spatial scale of underlying processes.600
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Appendix757

Measurement of scales758

As mentioned
::::
This

:::::::::
appendix

::
is
::::::
made

::
of

:::::
four

::::::::
sections.

:::::
A1:

:::::::::::::
Measurement

::
of

::::::
scales;

::::
A2:759

::::::::::
Generating

:::
the

::::::::::
landscape;

::::
A3:

::::::::
Different

:::::::::::::
environmental

::::::
scales;

::::
A4:

::::::::::
Additional

::::::
plots.

:
760

A1
:::::::::::::::::::
Measurement

::::
of

:::::::::
scales761

::
As

:::::::::
explained

:
in the main Methods section, we explicitly measure and compare three spatial762

scales: environmental conditions (E), dispersal (D) and species interaction (I).
:::
We

::::
now763

:::::
detail

:::
the

:::::::::
definition

::
of

:::::
these

:::::
three

::::::
scales,

::::
and

::::::
finally

:::::
note

:::
the

::::::::::
peculiarity

::
of

::::::::
dispersal

::::::
scale.764

In our model,
:::::::::::::::
Environmental

::::::
scale

::
E

:
:
::::
The

::::::::::::
environment

:::::
itself

::
is

:::::::::
generated

::::::
using

:
a765

:::::::::::
combination

::
of

::
a

:::::::
spectral

:::::
color

::::
and

:::::
cutoff

::::::::::::
wavenumber

::::
(see

::::
next

::::::::
section),

::::
but

::::
this

::::
does

:::
not766

::::::::
explicitly

::::::
define

:::
the

::::::
scale.

:::
To

::::::::
measure

:
the species interactions are explicitly defined with767

a distance over which they occur – via the Gaussian kernel function. This naturally gives768

us the scale of interactions I, as the width of the Gaussian function , such that I = γ.
::
the769

:::::::::::
environment,

:::
we

::::::
follow

::::
the

:::::
same

::::::::
approach

:::
as

:::
for

:::
the

::::::::::
correlation

::::::::
function

::::
and

::::::::
measure

:::
the770

::::
scale

:::
for

::
a

::::::
species

::::::::
biomass

:::::::::::
distribution

::::::
(using

:
a
:::::::::::
convolution

:::::
based

:::
on

::::::
FFT),

::::::
except

:::::
that

::
we771

::
do

::::
this

:::
for

::::
the

:::::
value

::
of

::::::::
intrinsic

:::::::
growth

::::
rate

:::::
ri(~x),

:::
as

::
it

::
is

:::::::
directly

:::
set

:::
by

:::
the

::::::::::::
environment.772

:::
For

:::::
each

::
of

::::
the

:::
20

:::::::
species,

:::
we

::::
can

:::::::::
calculate

::
a

::::::::::
correlation

::::::::
function

:::
(in

::::
the

:::::
same

:::::::
manner773

::
as

:::::::::
explained

::
in

::::
the

::::::::::
methods),

::::
and

::::
from

::::
this

::::
we

::::::::
calculate

::::
the

::::::::::
correlation

:::::
scale

::::
(the

:::::
point774

::
of

::::::
middle

:::::::
height

:::
for

:::
the

:::::::::::
correlation

:::::::::
function).

::::
We

:::::::
average

:::::
this

:::::
value

::::
over

:::
all

:::
20

:::::::
species,775

::
to

::::::::
calculate

::::
the

:::::::::::::
environment’s

:::::
scale

:::
for

::
a
:::::
given

::::::::
system.

::::::
Since

::::
this

::::::
result

:::::::
depend

:::
on

:::
the776

:::::::::::::
randomization

::
of

:::
the

::::::::::::
environment,

:::
we

::::::
repeat

::::
this

:::
for

::::::
many

:::::::::
replicates,

::::
and

::::::
choose

::::::
values

::
of777

:
ρ
::::
and

::
kc:::::

that
::::
will

::
on

::::::::
average

::::
give

:
a
:::::
value

:::
of

::
E

:::
we

:::::
want

::
to

:::::
have.

:
778

:::::::::
Dispersal

::::::
scale

::
D

:
: To estimate the dispersal scale D, we compare the effect of changing779

the dispersal coefficient δ with changing γ. In Fig. S1 we show how changing δ and γ (and780

thereby D and I) affects the community biomass distribution. As seen in the left panel, with781

low δ and γ the difference from a null scenario of no dispersal and no interaction distance782

is very small, but increasing either δ or γ changes the community biomass distribution783

considerably. In the middle and right panels we see these differences, as we change only784

δ (middle) or only γ (right). This clearly shows three things: 1) The effect of interaction785

distance scales linearly with γ, as expected by its definition. 2) The effect of dispersal786

coefficient scales with
√
δ, as expected from dimensional considerations (e.g., [43]). 3) More787

specifically, to make these two effects comparable, the dispersal scale is missing a factor of788

10, i.e.,
:
D = 10

√
δ. This can be seen by the fact that for both δ = 1 in the middle panel789

and γ = 10 in the right panel, the y-axis values are roughly the same (10−1.2).790

The environment itself is generated using a combination of a spectral color and cutoff791

wavenumber (see subsection below), but this does not explicitly define the scale. To measure792

:::::::::::
Interaction

::::::
scale

::
I:

:::
In

::::
our

::::::
model,

::::
the

:::::::
species

:::::::::::
interactions

:::
are

:::::::::
explicitly

:::::::
defined

:::::
with

:
a793

:::::::
distance

::::
over

::::::
which

:::::
they

:::::
occur

::
–

:::
via

::::
the

::::::::
Gaussian

::::::
kernel

::::::::
function.

:::::
This

:::::::::
naturally

:::::
gives

::
us794

the scale of the environment, we follow the same approach as for the correlation function and795

measure the scale for a species biomass distribution (using a convolution based on FFT),796

except that we do this for the value of intrinsic growth rate ri(~x), as it is directly set by797

the environment. For each of the 20 species , we can calculate a correlation function (in the798

same manner as explained in the methods), and from this we calculate the correlation scale799

(the point of middle height for the correlation function). We average thisvalue over all 20800

species, to calculate the environment’s scale for a given system. Since this result depend801

on the randomization of the environment, we repeat this for many replicates, and choose802

values of ρ and kc that will on average give a value of E we want to have
::::::::::
interactions

::
I,

::
as803

:::
the

:::::
width

:::
of

:::
the

:::::::::
Gaussian

::::::::
function,

:::::
such

::::
that

::::::
I = γ.804

Generating the landscape805

:::::::::::
Peculiarity

:::
of

:::::::::
dispersal

::::::
scale:

::::
An

::::::::::
interesting

::::::::
problem

:::
we

::::::::::::
encountered,

::::::
which

::
is

:::::
worth806

::::::::::
expounding

:::::
upon

::
to

::::
aid

:::::
future

::::::::
research

::
in

::::
this

:::::
area,

::
is

::::
how

::
to

:::::
place

::::::::
dispersal

:::
on

::::::::::
comparable807

:::::
scales

::::
and

:::::::
strength

::
to

:::::
other

:::::::::
processes.

::::
For

:::::
both

:::::::::::::
environmental

::::::
factors

::::
and

::::::
species

:::::::::::
interactions,808

::
we

::::::
could

::::::::
separate

::::
the

::::::::
intensity

::
of

:::::::::
variation

::::
and

::::
the

:::::
scale

::::
over

::::::
which

::
it

:::::
takes

::::::
place.

::::
We809

:::::
could

:::
do

::::
this,

::::
for

::::::::
instance,

:::
by

:::::::::
modelling

::::::::::::
interactions

::::
with

::
a
:::::::
spatial

::::::
kernel

::::::
which

::::::
defines810

:::
the

:::::
range

::
of
::::::
these

:::::::::::
interactions.

::::
For

::::::::
dispersal,

:::::::::
however,

::::
this

:::::::::
distinction

:::::
does

:::
not

:::::
hold

::
in

:::
the811

:::::::::
continuum

:::::
limit

::::
nor

::
in

::::
the

::::::
stable

::::::::::
equilibrium

:::::::
regime

::::
that

:::
we

::::::::
consider

::
in
::::

this
::::::

study.
:::::

This812

:::
can

:::
be

::::::::::
understood

::::::::::
intuitively

::
in

::
a

:::::
single

::::::::::
dimension:

::::::::::
organisms

::::
who

::::::::
disperse

:::::
from

:::
site

::
x
::
to813

:::
site

:::::
x+ 1

:::
at

:::::
time

:
t
::::
will

:::
be

:::::::
counted

:::
in

:::::
those

:::::
that

:::::::
disperse

:::::
from

::::
site

:::::
x+ 1

:::
to

::::
site

:::::
x+ 2

::
at814

:
a
:::::
later

::::::::
moment

::
in

:::::
time.

::::::::::
Therefore,

::::::::::
dispersing

:::::
twice

:::
as

:::
fast

::::::::
between

:::::::::::
neighboring

:::::
sites

:::
can815

::
be

::::::::::
equivalent

::
to

::::::::::
dispersing

:::::
twice

::
as

::::
far.

:::::
This

::::::::::
equivalence

:::::::
breaks

:::::
down

:::::
when

::::
the

::::::
details

::
of816
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Figure S1:
:::::::::::
Comparison

::
of

::::::::
different

::::::::
diffusion

::::::::::
coefficient

::::
and

::::::::::
interaction

::::::::
distance

::::::::
scenarios

::
to

::::
the

::::
case

:::
of

:::
no

::::::::
dispersal

:::::
and

:::::
local

:::::::::::
interactions

::::::
alone.

:::::::::
Differences

::::
are

:::::::
squared,

:::::::
summed

:::
over

:::
all

:::::::
species,

:::
and

::::::::
averaged

::::
over

:::::::
domain.

::::
This

::
is

::::
done

:::::
along

:::
the

::::::::
diffusion

::::::::
coefficient

::::::::::
(interaction

:::::::
distance)

::::
axis

::
in

::::
the

:::
left

::::::
(right)

:::::
panel.

:::::::::::
Comparison

:::::
shows

::::
that

::::::::
diffusion

:::::
scales

::::
like

:
a
::::::
square

::::
root,

:::
and

::::
that

::
a
::::::::::::
normalization

::::::
factor

::
of

:::
10

::::::
should

:::
be

::::::
applied

:::
to

:::::
make

::
it
::::::::::

comparable
:::

to
:::::::::
interaction

:::::::
distance

::::
(i.e.,

:::::
d = 1

::
is

::::::::::
comparable

::
to

::
an

::::::::::
interaction

:::::::
distance

::
of

::::
10).

:::::::::
individual

::::::::
dispersal

::::::
events

:::::::
matter,

::::
e.g.,

:::
for

:::::
very

::::
rare

::::
and

:::::::::::
long-ranged

::::::::
dispersal

::::::
events

::::
[53].817

:::
But

:::::
even

:::::
then,

::::
the

::::::::
strength

::
of

:::::
each

::::::::
dispersal

::::::
event

::::::
would

::::
still

::::
play

::::
into

::::
the

:::::::
spatial

::::
scale818

::::
over

:::::
which

:::::::::
dispersal

:::::::
impacts

::::
the

:::::::::
dynamics

::::
over

:::::::
longer

::::::
times.

:::
As

::
a
::::::::::::
consequence,

:::::::
defining819

::::::::
dispersal

:::::
scale

::::
from

::
a
:::::::
spatial

::::::
kernel

:::::
alone

::::::
might

:::::
seem

:::::
more

:::::::::
intuitive,

::::
but

::::::
would

:::::::
actually820

::::
hide

:::
the

:::::::::::
importance

::
of

:::::::::
intensity,

:::
and

:::
we

::::::
prefer

:::
to

::::::
simply

::::::
model

:::::::::::::::
nearest-neighbor

::::::::
dispersal821

:::
and

::::::::::::
acknowledge

::::
that

::::::::
intensity

::::
and

:::::
scale

:::
are

::::::::::
entangled.

:
822

A2
::::::::::::::::
Generating

::::::
the

:::::::::::::::
landscape823

The landscape profile is defined by a spectral color (ρ) and cutoff (kc). A spectral color824

close to 0 corresponds to “white”
:
”

:
noise, i.e.,

:
noise that exhibits little or no spatial au-825

tocorrelation; a spectral color close to 1 indicates “red”
:
” noise – noise with high spatial826

autocorrelation [41]. The spectral cutoff creates a point of truncation in the frequency pro-827

file that prevents high variation between adjacent pixels
::::
cells, in effect smoothing the noise828

across the landscape. Together, color and cutoff control the degree of structural fragmen-829

tation of the landscape .
::::
(see

::::
Fig.

::::
S3).

:
More weight on higher frequencies (low ρ, high kc)830

entails smaller and less-connected fragments of similar environmental conditions. Weight on831

lower frequencies (high ρ, low kc) creates long bands of constant environmental conditions832

which can act as corridors for species favoring this value.833

To generate the environmental landscape K(~x), we prescribe a frequency profile for the
noise:

F (k 6= 0) =
1

kρ
e−k/kw , F (0) = 1

which is a power-law with color ρ (ρ = 1 corresponds to red noise) and an exponential834

cutoff with wavenumber kw = kcL/2 which removes high spatial frequencies, smoothing the835

landscape and avoiding strong variations between adjacent pixels.
::::
cells.

:::::
The

:::::::::::
construction836

::::::
process

::
is
:::::::::::::

demonstrated
:::
in

::::
Fig.

::::
S2.

:
Note that the cutoff wavenumber is simply the nor-837

malization of the spectral cutoff by the number of different frequencies represented by the838

chosen resolution of the domain, L/2, with L the number of pixels
::::
cells

:
along the x and y839

axes, such that in the spectral domain it represents the resolution of the landscape.840

Practically speaking, for a two-dimensional landscape, we generate a L × L matrix Rij
of uniform random numbers over [−1, 1] corresponding to amplitudes for each wave vector
(kx, ky). We then multiply these random numbers by the profile above

Mij = Rij F (
√
k2i + k2j )

with ki = i − L

2
where index i is a natural number running over [1,L]. We set the element841
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Figure S2:
::::::::::::::
Demonstration

::
of

::::::::::
landscape

::::::::::::
construction

:
.
::::
The

:::::
steps

::
of

:::::::::
landscape

::::::::::
construction

::
are

::::::
shown

::
in

::::
the

:::::::
different

::::::::
columns,

::::
with

:::
the

:::
top

::::::::
(bottom)

::::
row

::::::::::::
corresponding

::
to

::
a
::::::::
landscape

::::
with

::::::
E = 32

::::::::
(E = 10).

::::::
From

:::
left

::
to

:::::
right,

::::
the

:::
four

::::::::
columns

:::::::::
correspond

:::
to:

:::
1)

::::
The

:::::::
function

:::
M ,

:::::
which

:
is
::

a
:::::::::
power-law

:::::::
function

:::::
with

::::::::::
exponential

::::::
cutoff,

:::
on

:
a
::::::::::::::

two-dimensional
:::::::
spectral

:::::
map

::::
(i.e.,

:::::
where

::::
each

:::
cell

::::::::::
corresponds

::
to

::
a
:::::::
different

::::::
spatial

::::::::::
frequency),

::::
with

::::
the

:::::::
addition

::
of

:::::::
random

:::::
noise.

:::
2)

:::
The

:::::::::::
environmental

:::::::::
conditions

:::
V ,

:::::
which

:::::
result

::::
from

::::::::
applying

:::
the

::::::
Fourier

::::::::
transform

:::
on

:::
the

:::::::
previous

::::
step,

:::
and

::::::::::
normalizing

:::
the

::::::
values

::
to

:::::
range

::::::::
between

:
0
::::
and

::
1.

:::
3)

:::
The

:::::::::::
fundamental

::::::
niches

::
fi::

of
::
3
::::::
species,

:::::
where

:::
the

:::::
value

::
of

::
fi::

of
::::
each

::::::
species

:::
are

:::::::
encoded

::
in
::::

the
:::
red,

:::::
green

::::
and

::::
blue

::::
color

::::::::
channels.

:::
4)

:::
The

:::::
spatial

::::::::::
distribution

:::
of

::::::
species

:::::::
biomass

::
Ni:::

at
::::::::::
equilibrium,

::
of

:::
the

:::::
same

::
3

::::::
species

:::
and

:::::
with

:::
the

::::
same

::::
color

::::::
coding,

:::
as

:::
the

:::::::
previous

:::::::
column.

:::::
Note

::::
that

:::
the

:::::::
top-right

:::::
panel

::::::::::
corresponds

:::
to

:::
the

:::::::::
bottom-left

::::::
column

::
of

::::
Fig.

::
3.

:

ML/2,L/2 corresponding to the uniform trend (ki = kj = 0) to 5. Finally, we apply a Fast842

Fourier Transform on the matrix Mij to obtain the landscape matrix .
::
V .

:::
As

:::::::::
explained

::
in843

:::
the

:::::
main

::::
text,

::::
this

:::::::::
landscape

:::::::
matrix

::
V

::
is

::::
used

:::
to

:::::
define

::::
the

::::::
growth

::::
rate

::
ri:::::

using
::
a
::::::::
Gaussian844

:::::::
function

::::
(see

:::
eq.

:::
2),

::::::
which

::
in

::::
turn

::::::::::
determines

:::
the

:::::::
species

:::::::
biomass

:::::::::::
distribution

:::
Ni ::::

(see
:::
eq.

::
1).845

:::
We

:::::
show

::
in

::::
Fig.

:::
S3

:::
the

::::::::::::
environment

::
as

::
a
::::::::
function

::
of

::::::::
different

::::::
values

::
of

::
ρ
::::
and

:::
kc,:::

to
:::::
better846

:::::::
visualize

:::::
their

::::::
effect.

:
847

Additional plots848
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Figure S3:
::::
How

:
ρ
::::
and

:::
kc :::::

shape
::::
the

:::::::::
landscape

:::::::::
structure

:
,
:::::
shown

:::
by

::::
maps

::
of
::::
the

:::::::::::
environmental

::::::::
conditions

:::
V .

::::
We

::::
show

:::
an

:::::::
example

::
of
::::
how

::
a
::::::::
landscape

::
is
:::::::

affected
:::
by

:::::::
different

::::::
values

::
of

::
ρ

:::::
(rows)

:::
and

::
kc::::::::::

(columns).
:::
On

:::
top

::
of
:::::

each
:::::
panel

::
we

::::
also

::::
note

::::
the

::::::::::::
environmental

::::
scale

::
E

::::
that

::::::::::
corresponds

::
to

:::
the

:::::::::::
combination

::
of

:
ρ
::::

and
:::
kc.::::

We
:::
can

:::
see

:::::
that

::::::
smaller

::
kc::::::

values
::::
lead

::
to

::
a
:::::::::
landscape

::::
with

:::
less

::::
sharp

::::::::::
transitions

::::
(i.e.,

:::::::::
smoother),

::::::::
whereas

:
ρ
::::
has

:
a
:::::
more

:::::::::
significant

:::::
effect

::
on

::::
the

::::::
overall

:::::
scale.

::
In

::::
other

::::::
figures

::::
and

::
in

:::
the

:::::
main

::::
text

:::
we

::::::
choose

:
ρ
::::

and
:::
kc :::::::::::

concordantly,
::::
with

:::::
large

::
ρ

:::::
values

:::::::
together

::::
with

::::
small

:::
kc :::::

values
:::
for

::
a

::::
large

:::
E,

:::
and

:::::
small

::
ρ

:::::
values

:::::::
together

:::::
with

::::
large

::
kc::::::

values
:::
for

:
a
:::::
small

:::
E.
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A3
:::::::::::::
Different

:::::::::::::::::::::
environmental

:::::::::
scales849

We show below a few additional plots, to clarify issues discussed in the main text
:::::
which850

::::::
explore

::::
the

:::::::
impact

::
of

::::::::
different

::::::
values

:::
of

:::::::::::::
environmental

:::::
scale

:::
E. In Fig. S4 we show the851

overall difference
::
in

::::::::::
community

:::::
state,

:
between different sets of values of D and I to the case852

of no dispersal and local interactions, for two values of E.853
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Figure S4:
:::::::::::
Comparison

:::
of

::::::::
various

:::::::::
scenarios

:::
to

::::
the

:::::
case

:::
of

:::
no

::::::::::
dispersal

::::
and

:::::
local

:::::::::::
interactions

::::::
alone.

::::::::
Difference

::
is
:::::::::
measured

::
by

:::::::::
averaging

::::
over

:::
the

:::::::
squared

::::
sum

:::
of

::::
each

:::
cell

:::
for

:
a
:::::
given

:::::
value

::
of

::
I
::::
and

::
D,

:::::::
against

:::
the

:::::::
baseline

:::
of

::::::::::
D = I = 0.

:::::
This

::
is

::::
done

:::
for

:::
for

::::
5x5

:::::::
different

::::::::
parameter

::::
sets

::::
with

:::::::
different

::::::
values

::
of

::
D

:::
and

:::
I,

::
for

::::
two

:::::::
different

:::::
values

:::
of

::
E,

:::
32

:::
and

:::
10,

::
in

:::
the

:::
left

:::
and

::::
right

:::::::
panels,

::::::::::
respectively.

In Fig.
::
S5

:::
we

::::::::
consider

::::::::
different

::
E
:::::::

values,
::::
and

::::
see

::::
how

::::::::
changing

::::::
either

::
I
:::
or

::
D

::::::
affects854

:::
the

::::::
overall

:::::::
change

:::
in

::::::
system

::::::
state

::::::::::
(compared

::::
with

::::
the

::::::::
baseline

::
of

:::
no

:::::::::
dispersal

::::
and

::::
local855

::::::::::::
interactions).

::
In

:::::
both

::::::
figures

:::
we

::::
can

:::
see

:::::
that

:::
big

::::::::::
differences

::
in

:::
the

:::::
state

:::
of

:::
the

:::::::
system

:::
due856

::
to

::::::
higher

::
I

::
or

:::
D

:::::
(seen

::
as

:::::
dark

:::::
blue

::::::
region

::
in

::::
Fig.

::::
S4,

::::
and

::::::
region

:::::
below

::::
the

::::::
dotted

::::
line

::
in857

:::
Fig.

::::
S5)

::::::
occur

:::
for

:::::
lower

:::::::
values

:::
for

::
I

::::
and

:::
D,

::::
and

:::::
only

:::::
when

:::
E

::
is

::::::::::
sufficiently

:::::
high.

:::::
This858

::::::::::::
demonstrates

::::
that

:::
the

:::::::::::::
environmental

:::::
scale

:::
E

::::::::::
determines

:::
the

:::::::::
threshold

:::::
scale

::
of

::
I

::::
and

::
D

::
in859

:::::
which

:::::
they

:::
can

:::::
have

::
a

::::::::::
substantial

:::::
effect

:::
on

:::
the

:::::::::::
community.

:
860

:::
We

::::
also

::::
test

::::
how

:::
the

:::::::::
inflection

:::::
point

::
of

:::::
SAR

::::::::::
(measured

::
in

:::
the

:::::
same

::::
way

:::
as

::
in

::::
the

::::
main861

:::::
text),

:::::::
changes

:::::
along

::
a
:::::
range

::
of

::
E

::::::
values

:::::
(Fig.

::::
S6).

:::
We

::::
can

:::
see

::::
that

:::
as

::::
long

::
as

::::::::
dispersal

::
is

:::
not862

:::
too

::::
high

:::::
(i.e.,

:::
the

::::::
three

:::::
cases

:::::
where

::::::::
D = 1),

:::
the

:::::::::
inflection

:::::
point

:::::::
follows

:::
the

:::::::::::::
environmental863

::::
scale

::
E

::::::
(seen

::
by

::::
the

:::::::
roughly

:::::::
parallel

:::::
lines

::
to

::::
the

:::
1:1

:::::
line).

:
864

::
In

::::
Fig.

:::
S7

:::
and

::::
Fig.

:::
S8

:::
we

:::::
show

:::
the

:::::::
spatial

:::::::::::
distributions

:::
of

:::::::
biomass

::::
and

::::::
species

::::::::
richness,865

::
for

::
a
::::::::
different

::::::::::
landscape,

:::
one

:::::
that

:::
has

:::
an

:::::::::::::
environmental

:::::
scale

::
of

::::::::
E = 10.

:
866
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Figure S5:
:::::::
Average

:::::::::
difference

:::::
from

::
a
:::::::::::
community

::::
with

:::
no

:::::::::
dispersal

::::
and

::::
local

:::::::::::
interactions

::::
only.

::::::::
Difference

::
is
:::::::::

measured
::
by

:::::::::
averaging

::::
over

:::
the

:::::::
squared

::::
sum

::
of

:::::
each

:::
cell

:::
for

:
a
:::::

given
:::::

value
::
of

:
I
:::
and

:::
D,

::::::
against

::::
the

:::::::
baseline

::
of

:::::::::
D = I = 0.

::::
Left

::::
half

::::::
shows

:::
the

:::::
effect

::
of

::
D

:::::
alone,

:::::
while

:::::
right

:::
half

:::::
shows

:::
the

:::::
effect

::
of

:
I
::::::

alone.
:
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Figure S6:
::::::::
Inflection

::::::
point

::
of

:::::
SAR

:::
for

:::::::
different

::::::::::
combination

::
of
::::::
scales.

::::
For

:::
four

::::
sets

::
of

:::::
values

::
of

:
I
:::
and

::
D
::::::::::::
(D = 1, I = 1

:
;
:::::::::::
D = 1, I = 10

:
;
:::::::::::::
D = 1, I = 100

:
;
:::::::::::::
D = 10, I = 1),

::
we

:::::
show

::::
how

:::
the

:::::::
inflection

::::
point

::
of
:::::
SAR

:::::::
changes

::::
along

::
a
:::::
range

::
of

:::
10

:::::
values

::
of

::
E
:::::
(with

::::::
values

:::::::
between

::
56

::::
and

:::
3).

:

FIG.S7 IS REMOVED SO AS TO MAKE THIS PDF SMALLER THAN
5MB. IT HAS NOT CHANGED FROM THE PREVIOUS VERSION.

Figure S7:
:::::
Total

::::::::::
community

::::::::
biomass

:
,
::
for

::::
the

:::
5x5

::::::::
scenarios,

:::::
with

:::::::
E = 10.

:::
For

::::::
better

:::::::
legibility,

::::::
biomass

:::::
levels

::::::
above

:::
3.0

:::
are

:::
not

::::::
shown.
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Figure S8:
:::::
Local

:::::::
species

:::::::
richness

:
,
:::
for

:::
the

:::
5x5

:::::::::
scenarios,

::::
with

:::::::
E = 10.

:
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A4
:::::::::::::::
Additional

::::::::
plots867

:::
We

:::::
show

:::::
below

::
a
::::
few

:::::::::
additional

::::::
plots.868

::
In

::::
Fig. S9 we show the spatial distribution of species richness, for 5x5 different parameter869

sets with different values of D and I, corresponding to Fig. 2. In Fig. S10 and Fig. S11 we870

show summary statistics for each of these 5x5 parameter sets, of total community biomass,871

average local diversity, and total diversity. In872

:::::::
Finally,

::
we

:::::::
explore

:::
in Fig. S7 and

:::
S12

::::
the

:::::::::
sensitivity

:::
of

:::
our

:::::::
results

::
to

:::
the

::::::::::
parameter

::
β,873

:::
and

:::::::::::
demonstrate

:::::
using

:
Fig. S8 we show the spatial distributions of biomass and speciesrichness,874

for a different landscape, one that has an environmental scale of E = 10
:::
S13

:::
the

::::::::::
calculation875

::
of

:::::::
species’

::::::
spatial

::::::::::::
correlations,

:::::
which

::
is
:::::
used

::
to

::::::::
estimate

::::
the

:::::::::::::
environmental

:::::
scale

::
E.876

Comparison of various scenarios to the case of no dispersal and local interactions877

alone. Differences are squared, summed over all species, and averaged over domain. This is878

done for for 5x5 different parameter sets with different values of D and I, for two different879

values of E, 32 and 10, in the left and right panels, respectively. Note the dark blue color880

representing scenarios where the combinations of D and I do not have a significant impact881

on pattern observed. In particular, for E = 32 (left) the top 3x3 area shows little effect,882

while for E = 10 (right) there is only a 2x2 area.883
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Figure S9: Species richness plots, corresponding to Fig.2, for the 5x5 scenarios (E = 32).
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Figure S10: Total community biomass, averaged over domain, for the 5x5 scenarios (E = 32).
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Figure S11: Diversity plots. Average local diversity of community (left) and total community
diversity, (right) for the 5x5 scenarios (E = 32).
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Figure S12: Total community biomass
:::::
Effect

::
of

:::::::::
changing

:::
the

::::::
value

::
of

::::
the

:::::::::
parameter

::
β, for

:::::
which

:::::::::
determines

:
the 5x5 scenarios

::::::
fraction

::
of

:::::::
regional

:::::::::::
interactions.

:::::
Each

:::::
panel

:::::
shows

:::
the

::::::
spatial

:::::::::
distribution

:::
of

::::
total

:::::::
biomass, with E = 10

:::::::
columns

:::::::
showing

::::::
results

:::
for

:::::::
different

::::::
values

::
of

:
I
::::
and

::
D,

::::
while

:::::
lower

::::
rows

:::::::
showing

:::::::::
increasing

::::::
values

::
of

::
β. For

:::
The

:::::::
number

::
in
:::::

each
:::::
panel

:::::
shows

:::
the

::::::
highest

::::::
biomass

:::::::
density

::::
seen

:::
in

:::
the

:::::
panel

::::::
(where

:::::
each

::::::
panel’s

::::::
colors

:::
are

::::::
scaled

::
to

::::
that

:::::
value

:::
to

:
better

legibility
::::
show

:::
the

::::::
spatial

:::::::::
structure).

::::
For

:::
low

::::::
values

::
of

::
β

::::
(top

:::
two

:::::
rows)

::::
scale

:::
of

::::::::::
interactions

:
I
:::
has

:::::::
minimal

::::
effect

:::::::
(clearly

::::
seen

:::
by

::::
right

:::::::
column

::::::
looking

:::
the

::::::
similar

::
to

:::::
other

:::::::::
columns).

:::
For

::::::
values

::
of

:
β

:::::::
(bottom

:::
two

:::::
rows)

:::
the

:::::
effect

::
of

::
I

:::::::
becomes

:::::
strong

::::
and

::::::
clearly

::::::
visible.

::::::::
However,

::
for

::::
very

::::
high

:::::
values

:
of
::
β
:::::::
(bottom

:::::
row)

:::
the

:::::
effect

:::
also

:::::::
includes

::::
very

::::
high

::::::::
densities

::
of biomasslevels above 3.0 are ,

:::::
which

:
is
:
not shown

::::
very

::::::
realistic.

::
We

::::::::
therefore

::::::
choose

:
a
::::
high

:::::
value

::
of

::
β
:::
but

::::
not

::
so

::::
high

::
as

::
to

::::
lead

::
to
::::

very

:::
high

::::::::
densities

:::::::
(leading

::
us

:::
to

:::
the

::::::
middle

::::::
ground

::
of
:::::::
β = 0.9.
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Figure S13: Local species richness
::::::::::::::
Demonstration

::
of

:::::::::::
calculation

::
of

:::::::::::
correlation

::::::::
function.

:::
The

:::::
steps

::
of

::::::::::
calculating

:::
the

:::::::::
correlation

:::::::
function

::::
are

:::::
shown

:::
in

:::
the

:::::::
different

:::::::
columns, for

:::
with

:
the

5x5 scenarios
::
top

::::::::
(bottom)

::::
row

::::::::::::
corresponding

::
to

::::
two

:::::::
different

::::::
species

:::
in

:::
the

:::::
same

::::::::
landscape

::::
used

::
in

:::
Fig.

::
2.

:::::
From

:::
left

:::
to

::::
right,

:::
the

:::
four

:::::::
columns

::::::::::
correspond

:::
to:

::
1)

::::
The

::::::
spatial

::::::::::
distribution

::
of

::::::
biomass

:
of
::

a
::::::

single
::::::
species

:::
Ni.::::

2)
::::::::::
Correlation

::::
map,

::::::
which

::
is
::::
the

:::::
result

::
of

::
a
::::::::::
convolution

::
of
::::

this
::::::

spatial

:::::::::
distribution

:
with E = 10

::::
itself.

::
3)

::::::::
Transects

::
of
:::
the

::::::::::
correlation

::::
map

:::::::::
(horizontal

::::
and

:::::::
vertical,

:::::
shown

::
in

:::::
green

:::
and

:::::::
black),

::::
also

::::::
marked

:::
in

:::::::
previous

:::::::
column

::
by

::::::
dotted

:::::
lines.

:::
4)

:::::::::
Averaging

:::
of

:::::::
transects

:::::::
resulting

::
in

:::
the

::::::::::
correlation

:::::::
function.

::::::::::
Horizontal

:::::
dotted

:::::
lines

::::
show

:::
the

:::::::
highest

:::
and

::::::
lowest

:::::
values

::
of

:::
the

:::::::::
correlation

:::::::
function,

:::::
along

::::
with

:::
the

:::::::
average

::
of

:::
the

:::
two

:::::
which

::
is
::::
used

::
as

::
a
::::::::
threshold

::
to

::::::::
determine

:::
the

::::
scale

::
of

::::::::::
correlation.

:
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