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Abstract 10 

Urbanization is a major human-induced environmental change which can impact not only 11 
individual species, but also the way these species interact with each other. As a group, terrestrial 12 
molluscs interact frequently with a wide diversity of parasites, yet the way these interactions vary 13 
across space and in response to environmental pressures is poorly documented. In this study we 14 
leveraged a recently discovered defence mechanism, by which snails trap parasitic nematodes in 15 
their shells, to explore how snail-nematodes interactions may vary in response to city life. We 16 
examined shells from the generalist snail Cepaea nemoralis sampled in three urban areas in 17 
Belgium for trapped nematodes, and attempted to link this to urbanization and shell phenotypic 18 
traits. We found that even a small degree of urbanization led to large decreases in the rates of 19 
shell encapsulation, and that larger snails were more likely to contain trapped nematodes. 20 
However, we found no evidence that shell colour, which had been previously linked to immune 21 
function, was correlated to encapsulation rates. We discuss how between-population variation in 22 
encapsulation rates can result from urbanization-induced changes on the nematodes side, the 23 
snail side, or both, and suggest potential tests for future studies aiming to disentangle these 24 
mechanisms. 25 
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Introduction 28 

Urbanization is a major and all-encompassing human-induced environmental change, leading to 29 
changes in land use, local climate, soil imperviousness, light and chemical pollution… (Parris, 30 
2016). The (often negative) impacts of these multivariate changes on biodiversity are increasingly 31 
well-documented: many species decline in cities, while some become successful “urban 32 
adapters”, leading to major restructuring of biological communities along urbanization gradients 33 
(e.g. McKinney, 2008; Piano et al., 2020; Fenoglio et al., 2020; Liang et al., 2023). In parallel, 34 
urbanization can also cause within-species phenotypic and genetic changes (Alberti et al., 2017; 35 
Szulkin et al., 2020; Diamond & Martin, 2021). Urbanization may also have second-order impacts 36 
by reshaping ecological interactions, if tightly connected species respond to environmental 37 
change in different ways (Theodorou, 2022). Such urbanization-induced changes in ecological 38 
interactions, in both positive and negative directions, have been recorded for plant-pollinator 39 
interactions (Liang et al., 2023), plant-herbivore and prey-predator interactions (Eötvös et al., 40 
2018; Valdés-Correcher et al., 2022; Gámez et al., 2022; Korányi et al., 2022), as well as host-41 
parasite interactions (Murray et al., 2019; Korányi et al., 2022). 42 

Terrestrial molluscs (snails and slugs) are potentially valuable models in urban ecology and 43 
evolution, in part because of their limited movement abilities, which means they often cannot 44 
move to escape environmental changes. Like in many other taxa, urbanization can reshape 45 
molluscan communities (Lososová et al., 2011; Horsák et al., 2013; Barbato et al., 2017; Hodges 46 
& McKinney, 2018), and drive evolutionary responses in urban populations (Kerstes et al., 2019). 47 
Interestingly, in a comparative cross-taxon study of urbanization impacts, snail species richness 48 
were less negatively affected, compared to other more mobile groups (Piano et al., 2020). Land 49 
molluscs are hosts to a diverse array of metazoan parasites, including nematodes, flies, mites or 50 
trematodes (Barker, 2004; Segade et al., 2013; Żbikowska et al., 2020). How urbanization 51 
reshapes these interactions remains understudied, despite some of these parasites being of 52 
increasing veterinary interest (Aziz et al., 2016; Giannelli et al., 2016). 53 

Snails and slugs can defend themselves against metazoan parasites through a variety of 54 
behavioural (Wilson et al., 1999; Wynne et al., 2016; Rae, 2023) or immune responses (Furuta & 55 
Yamaguchi, 2001; Scheil et al., 2014; Coaglio et al., 2018). Among the latter, it has been discovered 56 
that land molluscs can use their shells to trap parasitic nematodes, killing them and fusing them 57 
to the inner shell surface (Rae et al., 2008; Williams & Rae, 2015; Rae, 2017). This ability seems 58 
phylogenetically widespread, even present in slugs with vestigial shells (Rae et al., 2008; Rae, 59 
2017), and could therefore provide a relatively easy to access record of ecological interactions. 60 
Following anecdotal records of mites and trematodes encapsulated in shells, it has further been 61 
suggested that this shell encapsulation might extend to other metazoan parasites (Dahirel et al., 62 
2022; Gérard et al., 2023). However, given how rare these non-nematode records are, they may 63 
be merely by-products of a defence mechanism targeted towards nematodes, rather than 64 
evidence of a more generalized defence response (Gérard et al., 2023). The few snail species in 65 
which this phenomenon has been studied across multiple populations show that the prevalence 66 
of individuals trapping nematodes can vary widely between sites (Rae, 2017; Rae, 2018; 67 
Cowlishaw et al., 2019), but there has been no attempt, to our knowledge, to assess whether this 68 
variation could be non-random with respect to environmental context. 69 



 

 

To that end, we combine here publicly available and standardized urbanization metrics with 70 
observations of field-collected snails across three cities in Belgium, using the grove snail Cepaea 71 
nemoralis (Gastropoda, family Helicidae) as a model. Like other helicids, C. nemoralis can 72 
encapsulate and trap parasitic nematodes in its shell (Williams & Rae, 2016; Rae, 2017; Dahirel et 73 
al., 2022; Gérard et al., 2023). This snail is also common both outside and within cities (Kerstes et 74 
al., 2019), and therefore a very suitable model to study variation in encapsulation rates, whether 75 
it is due to urbanization or to spatial (between-cities) differences. Furthermore, the shell colour 76 
variation that made Cepaea species iconic models in evolutionary biology (Jones et al., 1977; 77 
Ożgo, 2009) may also influence their immune response, with some evidence that darker morphs 78 
mount better defences against nematodes (Dahirel et al., 2022; but see Scheil et al., 2014). On 79 
the other hand, this morph variation in resistance might not translate to shell encapsulation 80 
(Williams & Rae, 2016; Dahirel et al., 2022). However, existing comparisons were either limited 81 
to one type of colour variation (banding pattern only, Dahirel et al., 2022), or analysed 82 
experimental infections by one model nematode (Williams & Rae, 2016); we here test whether 83 
this remains true when analysing naturally occurring snail-nematode interactions and accounting 84 
for more dimensions of shell colour variation. 85 

Methods 86 

Site selection and sampling 87 

We searched for Cepaea nemoralis snails from early October to mid-November 2022 in and 88 
around the urban areas of Brussels, Ghent and Leuven in Belgium (Fig. 1). Potential sites were 89 
selected based on pre-existing online crowdsourced records (iNaturalist contributors & 90 
iNaturalist, 2024) combined with personal observations and virtual fieldwork using Google 91 
StreetView to identify suitable habitats (based on Falkner et al., 2001). We visited 36 sites chosen 92 
to be roughly balanced between the three cities (including their surrounding areas; Brussels: 13 93 
sites, Ghent: 13 sites, Leuven: 10 sites). In each site, we sampled living snails by hand during visual 94 
search, in a radius of up to 50 m around a designated site centroid (though search was de facto 95 
mostly concentrated within a 20 m radius). Individuals were mainly searched in known favourable 96 
micro-habitats, i.e. on tall herbs and shrubs, under piled wood and cardboard or loose rocks, or 97 
on fences, walls, and tree trunks (Falkner et al., 2001). Field identification of Cepaea nemoralis 98 
snails is easy based on shell shape, size and colour (Cameron, 2008). We only collected adults, 99 
which can easily be separated from subadults by the presence of a reflected shell lip marking the 100 
end of shell growth (Cameron, 2008). Each site was visited by 1 to 3 people (mean: 2.03) for a 101 
duration of 5 to 30 person-minutes (mean: 15). We collected a total of 298 snails from 28 of the 102 
36 sites visited (Brussels: 9 sites, Ghent: 10 sites, Leuven: 9 sites). However, 2 shells were lost 103 
before examination for parasites due to handling errors, and another shell was accidentally 104 
broken for parasite examination before photographs or size measurements could be done; this 105 
led to a final complete dataset of 295 snails in 28 sites. For each of these 28 sites, the nearest 106 
neighbouring site with snails found was between 153 and 1516 m away (mean: 768 m), which is 107 
in any case farther than the maximal dispersal distances (Kramarenko, 2014), indicating that even 108 
nearby sites could be considered separate populations.  109 



 

 

 110 

Figure 1. Location of study sites within western Europe and central Belgium. The Functional Urban Areas 111 
(roughly corresponding to commuter zones, Schiavina et al., 2019; Moreno-Monroy et al., 2021) that were 112 
used to link each site to a city are also displayed as solid black lines, while the corresponding core urban 113 
areas (Urban Centres sensu Eurostat (European Commission), 2021; Schiavina, Melchiorri, et al., 2023) are 114 
displayed with dashed lines. 115 

Urbanization metrics 116 

It is well-known that urban environmental changes are complex and multivariate (e.g. Parris, 117 
2016); however, given our relatively low number of sites, and the risk of collinearity between 118 
urban metrics, we decided to use simple overarching metrics focused on building presence and 119 
human population density. We assessed urbanization at each site using raster layers from the 120 
Global Human Settlement Layer project for the year 2020 (https://ghsl.jrc.ec.europa.eu/, Joint 121 
Research Centre (European Commission), 2023). We first used built-up surface (GHS-BUILT-S) and 122 
population density (GHS-POP) at 100 m and 1000 m resolutions (Pesaresi & Politis, 2023; 123 
Schiavina, Freire, et al., 2023). The former spatial scale matches the scale of maximal dispersal 124 
movements over timespans of up to a couple years in helicid snails, while the latter is closer to 125 
the scale of longer term (over several decades) population spread (Kramarenko, 2014). As an 126 
additional categorical metric, we also used the Degree of Urbanization as recorded in the 127 
Settlement Model layer (GHS-SMOD, available only at 1000 m resolution, Eurostat (European 128 
Commission), 2021; Schiavina, Melchiorri, et al., 2023). At the highest level of classification, the 129 
standardized Degree of Urbanization methodology mainly uses population density and contiguity 130 
rules to classify grid cells as either part of a continuous high-density Urban Centre, as low-density 131 
rural cells or as intermediate peri-urban/suburban cells. For each site and urbanization metric, 132 
we recorded the value of the corresponding grid cell. Interestingly, Degree of Urbanization 133 
classes, primarily based on population density, divide our sites in almost the same non-linear way 134 
as another, independent, three-level classification based on built-up surfaces used in previous 135 
urban ecology studies in the study region (e.g. Piano et al., 2020) (Supplementary Material S1). 136 

https://ghsl.jrc.ec.europa.eu/


 

 

Snail shell analysis 137 

Snail size was measured using a caliper as the shell greatest diameter (to the nearest 0.1 mm). 138 
Snail shell colour morphs were scored following e.g. Cain (1988) for background colour (from 139 
lighter to darker: yellow, pink or brown), number of dark bands (0 to 5 bands) and on the presence 140 
or absence of band fusions (which increase the proportion of the shell covered by dark bands). 141 
Snails were killed by first inducing dormancy at 6°C, then by freezing at -20°C. We removed bodies 142 
from shells with forceps and lightly cleaned shells with water (bodies were stored in ethanol for 143 
separately planned studies). We then broke each shell into fragments using forceps, examined 144 
fragments under a binocular microscope, and recorded all animals found encapsulated within the 145 
shell as in e.g. Gérard et al. (2023). A total of 606 nematodes were found in 104 shells (Fig. 2); we 146 
found no mites, trematodes or other parasites in any of the shells. Shells with nematodes 147 
contained 5.83 nematodes on average (SD: 9.95, range: 1-58). As this method is destructive, we 148 
took standardised photographs of the shells beforehand (dorsal and apertural views following 149 
Callomon, 2019) for archival and potential future studies.  150 

 151 

Figure 2. Fragment of a Cepaea nemoralis shell (A) containing encapsulated nematodes (B, C). The arrow 152 
in (B) points to the nematode shown in (C). 153 

 154 



 

 

Statistical analysis 155 

All analyses were done in R version 4.3.2 (R Core Team, 2023), with the help of the tidyverse 156 
(Wickham et al., 2019) and sf (Pebesma, 2018) packages for data processing, as well as additional 157 
packages detailed below for model fitting and exploration. 158 

We analysed the probability a shell contained nematodes as a binary yes/no response at the 159 
individual level, using Generalized Linear Mixed Models (GLMMs) (binomial family, logit link). We 160 
ran six models; the first five all included shell size, shell morph traits (background colour, band 161 
number and fusion), urbanization and city identity (Brussels, Ghent or Leuven) as fixed effects, 162 
only differing by which urbanization metric they used (among the five described above in 163 
Urbanization metrics). Given our sample size, we did not include interactions between our 164 
explanatory variables, especially as we had no a priori hypotheses regarding these (but see 165 
Discussion). Numeric predictors were centred and scaled to unit 1 SD. Sampling site was included 166 
as a random intercept. The sixth model was a “null” model, identical to the other ones except 167 
that it did not include an urbanization metric. We ran our models using the glmmTMB package 168 
(Brooks et al., 2017), and then used AICc to compare them. As one model largely outperformed 169 
the others (see Results), we did all further analyses on that best model. 170 

We checked for residual spatial autocorrelation using a spline correlogram (ncf package, 171 
Bjornstad, 2022), and found no evidence of spatial structure in the best model. We then used the 172 
car (Fox & Weisberg, 2019) and emmeans (Lenth, 2023) packages to test for overall effects of our 173 
variables in the best model and to run (Tukey-corrected) pairwise comparisons, respectively. 174 
Finally, we estimated the marginal and conditional 𝑅2 (Nakagawa & Schielzeth, 2013) as measures 175 
of the proportion of variation explained by fixed effects (𝑅𝑚

2 ) and both fixed and random effects 176 
(𝑅𝑐

2) respectively (using the delta method, Nakagawa et al., 2017). 177 

Results 178 

The model using the categorical Degree of Urbanization (GHS-SMOD) as an urbanization metric 179 
outperformed all other models based on AICc (Table 1). Fixed effects and random effects 180 
explained similar amounts of variance (𝑅𝑚

2 = 0.19; 𝑅𝑐
2 = 0.38). The probability that a shell had 181 

trapped nematodes was dependent on urbanization level (𝜒2 = 15.97, df = 2, 𝑝 = 3.40 × 10−4) 182 
but did not vary significantly between cities (𝜒2 = 3.89, df = 2, 𝑝 = 0.14). Snails from rural sites 183 
were more likely to contain nematodes than snails from intermediate and Urban Centre 184 
populations (Fig. 3; rural - intermediate difference on the logit scale ± SE: 3.71 ± 0.95 ; rural - 185 
Urban Centre difference: 2.34 ± 0.77). Larger shells were more likely to contain nematodes (𝜒2 =186 
4.17, df = 1, 𝑝 = 0.04 ; standardised coefficient 𝛽 = 0.35 ± 0.17). There was no clear evidence 187 
that any of the shell colour traits affected encapsulation rates (background colour: 𝜒2 = 2.17, 188 
df = 2, 𝑝 = 0.34; band number: 𝜒2 = 1.90, df = 1, 𝑝 = 0.17 ; fusion: 𝜒2 = 0.17, df = 1, 𝑝 =189 
0.68). 190 
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Table 1. Model selection table for the effect of urbanization on shell encapsulation rates. All models 192 
otherwise include effects of city identity, shell size and shell morph (background colour, number of bands 193 
and band fusion). 194 

Urbanization variable in model df 
log-
likelihood AICc 𝛥 

AICc 
weight 

Degree of Urbanization categories (SMOD, 
1000 m resolution grid) 

11 -149.5 322.0 0.00 0.95 

None (“null” model) 9 -155.9 330.4 8.43 0.01 

Population density (1000 m resolution grid) 10 -155.2 331.1 9.11 0.01 

Built-up surface (1000 m resolution grid) 10 -155.4 331.5 9.49 0.01 

Population density (100 m resolution grid) 10 -155.4 331.6 9.61 0.01 

Built-up surface (100 m resolution grid) 10 -155.6 331.9 9.91 0.01 

 195 

Figure 3. Effect of the Degree of Urbanization in 1000 m grid cells on the probability a snail shell contained 196 
encapsulated nematodes. Grey dots are observed proportions per population, with the size of the dot 197 
proportional to the number of snails; white dots (and error bars) are estimated marginal means from the 198 
best model (and their 95% confidence intervals), with the effects of the other predictors averaged out. 199 



 

 

Discussion 200 

We found that the prevalence of Cepaea nemoralis snails encapsulating nematodes in their shell 201 
as a defence mechanism were partly driven by environmental conditions, with lower trapping 202 
rates in more urban sites (Fig. 3). This effect was better explained by a categorical classification 203 
of the Degree of Urbanization, rather than by linear effects of continuous urbanization variables. 204 
This indicates that the response to urbanization is non-linear, as the increases in population 205 
density/built-up rates needed to go from a rural to an intermediate area are much smaller than 206 
those needed to go from intermediate to Urban Centre, and most of the variation in density/built-207 
up is within Urban Centres rather than between categories (Supplementary Material S1).  208 

A difficulty for interpreting our results is that nematodes trapped in shells accumulate with time 209 
(Williams & Rae, 2015; Rae, 2017), meaning that as they may have endured more infections, older 210 
snails may be more likely to have them. If the urban heat island influences snail survival rates 211 
(Wolda, 1967, Manoli et al., 2019), then our urban-rural differences in nematodes trapped might 212 
merely reflect differences in average snail age/survival. Age estimation in terrestrial snails is 213 
challenging (Pollard et al., 1977; Williamson, 1979), and any age proxy is likely to be influenced 214 
by local conditions, making it useless to compare age between populations without thorough 215 
calibration studies. However, while there is substantial population variation, the number of 216 
nematodes found in infected shells does not decrease in more urbanized sites (Supplementary 217 
Material S2), contrary to what we would expect if variation in shell encapsulation was primarily 218 
explained by variation in time available to accumulate nematodes. 219 

If we assume that our results reflect differences in snail-nematodes interactions between urban 220 
and non-urban areas, several mutually non-exclusive mechanisms may explain why urban Cepaea 221 
nemoralis shells are less likely to trap nematodes. Each of these mechanisms directly suggests 222 
potential tests for future studies: 223 

• First, snail parasitic nematodes infecting C. nemoralis may be less abundant in cities. Many 224 
nematodes known to infect land snails have at least one free-living life stage in the soil, 225 
and some are facultative parasites (Morand et al., 2004; Pieterse et al., 2017). Increasingly 226 
impervious substrates in cities (Parris, 2016) may deprive these of habitat critical for their 227 
life cycle. Where habitat is available, soil nematode communities are profoundly altered 228 
by urbanization, like other taxa (Li et al., 2022; Gong et al., 2024). However, this does not 229 
lead to overarching declines in nematode abundance; rather, some trophic groups decline 230 
while others thrive (Li et al., 2022; Gong et al., 2024). Unfortunately, detailed information 231 
on nematodes parasitizing animals is typically lacking from these analyses; soil sampling 232 
specifically targeting parasitic nematodes (Jaffuel et al., 2019) would be here particularly 233 
useful. The few studies available are mixed on the effects of urbanization on the infection 234 
of land molluscs by parasitic nematodes. In Wales, urban and suburban slugs are more, 235 
not less, likely to be infected by Angiostrongylus vasorum compared to rural ones (Aziz et 236 
al., 2016). By contrast, data from Andrus et al. (2022) spanning urban and non-urban sites 237 
suggest that the prevalence of nematode infection may be slightly lower in urban 238 
molluscs, although they did not themselves analyze the effect of urbanization. Both 239 



 

 

studies however analyzed nematode prevalence in molluscs, not their 240 
abundance/availability in the urban environment. 241 

• Second, individual differences in behaviour, especially space-related behaviour, may lead 242 
to differences in the risk of encountering and then being infected by parasites (Barber & 243 
Dingemanse, 2010). Habitat loss and fragmentation associated with urbanization are 244 
expected to exert strong selection pressures on movement and space use (Cote et al., 245 
2017). If this results in lower movement in urban snail populations, this might then reduce 246 
their encounter rates with parasites. In the snail Cornu aspersum, urbanization does not 247 
lead to reduced habitat boundary-crossing behaviour (Dahirel et al., 2016), although that 248 
is only one component of mobility. Urbanization-induced increases in temperature may 249 
also alter the frequency at which snails hide into shelters or climb above the substrate 250 
(Rosin et al., 2018), and potentially again the risk of encountering parasites. The picture is 251 
complicated by behaviour-parasite feedbacks, where while host behaviour shapes 252 
infection risk, infection can then alter host behaviour in turn (Ezenwa et al., 2016). In 253 
Cepaea nemoralis, nematode infection itself might lead to reduced movement propensity, 254 
but only in some morphs (Dahirel et al., 2022). More studies of movement behaviour 255 
across urbanization gradients are here needed. 256 

• Third, shell encapsulation rates are not direct records of snail-nematode interactions, but 257 
rather informative on the host’s ability to mount a defence in such interactions. This 258 
defence is not always effective, as field-caught snails sometimes show active infections 259 
but zero shell-trapped nematodes (see e.g. data in Dahirel et al., 2022). If immune 260 
response declines with urbanization, then this alone could explain our results even in the 261 
absence of changes in nematode communities. In vertebrates, urban living can lead to 262 
both depressed or stimulated immune function, depending on taxon and context, 263 
especially food availability (Murray et al., 2019; Minias, 2023). In terrestrial molluscs, 264 
chemical pollutants seem to negatively impact many, but not all, physiological 265 
components of immune defence (Radwan et al., 2020). The exact physiological pathways 266 
involved in shell encapsuIation in land molluscs remain however unstudied, to the best of 267 
our knowledge. 268 

Interestingly, nematode encapsulation prevalence was seemingly more variable between Urban 269 
Centre populations than between populations in the other urban categories, with a few sites 270 
having observed prevalences largely above the predicted mean (Fig. 3). While this may 271 
merelysimply be due to somesampling variability as these populations having lowhave very small 272 
sample sizesizes, this suggests that there maycould be non-random within-city variability in snail-273 
nematode interactions. As a first post-hoc exploration, we have re-run the models with 274 
continuous urbanization variables as predictors, using only the Urban Centre subset of sites (see 275 
Data and code availability). After accounting for phenotype and city of origin, we found no 276 
indication that are not explained by built-up levels or population density. Cities are indeed levels 277 
influenced prevalence within the Urban Centre category. Nonetheless, cities remain highly 278 
heterogeneous environments, and even beyond built-up and population density; for instance, 279 
within-city variation in vegetation, mediated in part by neighborhood-level socio-economic 280 
differences, may shape biodiversity, including species interactions (e.g. Martin et al., 2024). Our 281 



 

 

abilityWhile we are not able to detect within-city patterns is hereidentify the causes of this 282 
heterogeneity in our current dataset, as we are hampered by our small number of sites per Urban 283 
Centre;, future studies focused ondesigned to target this within-city heterogeneity may uncover 284 
more on the fine-scale drivers of snail responses to parasites. 285 

On the individual phenotype side, larger shells were more likely to contain trapped nematodes. If 286 
shell size also varied in response to urbanization, then this could open an indirect pathway linking 287 
urbanization to encapsulation mediated by snail size, potentially accentuating or dampening the 288 
direct effect we describe above. However, we found no clear effect of urbanization on C. 289 
nemoralis shell size (Supplementary Material S3). In addition and as a post-hoc exploration, we 290 
re-ran our model set adding size × urbanization interactions, and found no significant interaction, 291 
and no evidence that the urbanization effect changed in response (Supplementary Material S4). 292 
The relationship between size and nematode encapsulation could be the result of survivor bias 293 
alone, if larger snails are more likely to survive infection. However, and although we cannot 294 
exclude that other nematodes have larger effects, experimental nematode infections by 295 
Phasmarhabditis are almost never lethal in adult Cepaea nemoralis, contrary to other snail 296 
species (Wilson et al., 2000; Williams & Rae, 2016). Other potential explanations for this result 297 
can be sorted along three non-exclusive lines, similar to the mechanisms suggested above to 298 
explain the effect of urbanization: 299 

• Larger snails might harbour larger parasite infections (e.g. Daniels et al., 2013), which 300 
would increase the likelihood that some nematodes are trapped. However, there is no link 301 
between nematode abundance in active infections and snail size in C. nemoralis (Dahirel 302 
et al., 2022), and no clear effect of shell size on the number of nematodes trapped in the 303 
present study (Supplementary Material S2). 304 

• If large and small snails differ in their space use, they might also differ in their parasite 305 
exposure risk. Evidence for a link between shell size and space use is mixed in Cepaea 306 
nemoralis, and this may depend on the scale of the movements in question (short-term 307 
routine vs. dispersal movements; Oosterhoff, 1977; Dahirel et al., 2022). 308 

• Finally, small and large snails may differ in their immune defence abilities. Comparative 309 
studies suggest that large and small snail species and subspecies differ in their immune 310 
strategies at the physiological level (Russo & Madec, 2011, 2013). However, the range of 311 
body size and life history variation is much larger in these scenarios than among adults of 312 
C. nemoralis, limiting the transferability of these results. More physiological studies 313 
focused on within-, rather than among-species variation may help understand better this 314 
link between body size and encapsulation rates. 315 

In contrast to shell size, we found no relationship between any of the shell colour traits and 316 
nematode trapping rate. This confirms experimental results from Williams & Rae (2016) using 317 
infections by Phasmarhabditis hermaphrodita. However, colour morphs do differ in active 318 
infection rates or other aspects of immune response in C. nemoralis (Dahirel et al., 2022) and 319 
other polymorphic snails (Scheil et al., 2013, 2014). This discrepancy may indicate that shell 320 



 

 

encapsulation is driven by different physiological pathways than other components of snail 321 
immune defence. 322 

Beyond the effects of phenotype or environment, whether and how the prevalence of nematodes 323 
trapped in shells is correlated with rates of active parasite infections remains an open and 324 
complex question (which we could not tackle here as snail bodies were reserved for other 325 
investigations). If variation in snail-nematode interactions is driven by e.g. variation in nematode 326 
density in the environment, we may expect a positive correlation, as higher nematode densities 327 
should drive up rates of both shell encapsulation (Rae, 2018) and active infection (although if 328 
encapsulation is highly effective, it may end up suppressing dose-dependent effects on active 329 
infection, Williams & Rae, 2015). On the other hand, if variation is mostly driven by snail immune 330 
response, we may expect a negative correlation: snails with more effective immune systems may 331 
be more likely to successfully trap nematodes in shells while being less likely to harbour active 332 
infections. While this would need to be validated, the strength and direction of between- and 333 
within-sites correlations between active infections and shell-trapped nematodes may provide 334 
useful indicators of the main drivers of snail-nematodes interactions in response to city life. 335 

We acknowledge that the relatively small size of our sample does not allow us to draw firm causal 336 
conclusions. Nonetheless, we hope our results may encourage larger studies regarding host-337 
parasite interactions in land molluscs in the context of environmental change. As new technical 338 
developments such as micro-CT imaging allow non-destructive analyses of snail shells 339 
(Falkingham & Rae, 2021), these may extend to using museum and other natural history 340 
collections to understand how interactions vary in space and time (Cowlishaw et al., 2019), 341 
reaffirming their value for urban ecology and evolution (Shultz et al., 2020). 342 
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