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Abstract

Species distribution models (SDM) are widely used to describe and explain how species relate to their environment,
and predict their spatial distributions. As such, they are the cornerstone of most of spatial planning efforts worldwide.
SDM can be implemented with wide array of data types (presence-only, presence-absence, count...), which can either be
point- or areal-based, and use a wide array of environmental conditions as predictor variables. The choice of the sampling
type as well as the resolution of environmental conditions to be used are recognized as of crucial importance, yet we
lack any quantification of the effects these decisions may have on SDM reliability. In the present work, we fill this gap
with an unprecedented simulation procedure. We simulated 100 possible distributions of two different virtual species
in two different regions. Species distribution were modelled using either segment- or areal-based sampling and five
different spatial resolutions of environmental conditions. The SDM performances were inspected by statistical metrics,
model composition, shapes of relationships and prediction quality. We provided clear evidence of stochasticity in the
modelling process (particularly in the shapes of relationships): two dataset from the same survey, species and region
could yield different results. Sampling type had stronger effects than spatial resolution on the final model relevance.
The effect of coarsening the resolution was directly related to the resistance of the spatial features to changes of scale:
SDM failed to adequately identify spatial distributions when the spatial features targeted by the species were diluted by
resolution coarsening. These results have important implications for the SDM community, backing up some commonly
accepted choices, but also by highlighting some up-to-now unexpected features of SDM (stochasticity). As a whole,
this work calls for carefully weighted decisions in implementing models, and for caution in interpreting results.

Keywords: change of support, grain size, spatial resolution, GAM, grid-based model, segment-based sampling, point-
based sampling, Modifiable Areal Unit problem

1 Introduction1

Species distribution models (SDMs) are techniques widely used to describe and explain how species relate to their envi-2

ronment, often with the alongside goal of predicting their spatial distributions (Elith & Leathwick, 2009; Franklin, 2010).3

Thanks to the rapid growth of modelling techniques during the past decades, SDMs can today draw the best out of a4

wide array of data types, from presence-only data collected through citizen science to presence-absence data collected with5

standardised protocols (Guillera-Arroita et al., 2015). SDMs can be built on both direct (visual, acoustic, movement) or6

indirect (faeces, tracks) observations.7

Henceforth, we have a good understanding of the statistical aspects underlying the various SDM methods available.8

We know how SDMs are sensitive to the number of observations underpinning a model (Hernandez et al., 2006; Virgili9

et al., 2018), how the temporal resolution of the environment conditions the success of a SDM in identifying the drivers of10

species distribution (Scales et al., 2016; Mannocci et al., 2017) and the various strengths and weaknesses associated with11
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particular data types and particular methods. All these technical studies have permitted fine tuning high quality models12

providing reliable estimations of species distributions under both current and future environmental conditions. As such,13

SDMs outputs are today the cornerstone of most of spatial planning efforts worldwide, and most particularly in the marine14

realm (Franklin, 2013; Guisan et al., 2013; Marshall et al., 2014).15

Yet, SDM accuracy rely on some technical choices for which we still lack a clear understanding of their impacts on the16

reliability and efficiency of the final model. The first choice relates to the spatial resolution of the environmental conditions17

the species distribution will be assessed against. Most of the time, this choice is constrained by technical aspects and data18

availability. Although the catalogue of environmental products is today wider than ever, with virtually most of physical19

and biological processes relevant to species distributions quantified and described at various scales throughout the Earth,20

trades-off must often be made between spatial and temporal resolutions, the finer temporal scale being most of the time21

associated with coarser grain size.22

The choice of the spatio-temporal resolution of environmental conditions to be used must be motivated by the ultimate23

goal of the study and a good knowledge of the relevant ecological processes. All SDMs are based on the association24

of observation points with environmental variables, and the scale of these variables directly conditions the scale of the25

ecological processes identified. When the interest of a SDM lies in large scales, such that global description of species26

ranges, the coarser grain size (both spatially and temporally) of bioclimatic variables is often to be preferred (Scales et al.,27

2016; Mannocci et al., 2017; Manzoor et al., 2018). On the opposite, when the interest lies in describing the relationship28

of individuals to their direct habitat (be it through occurrence, presence probability or movement), finer resolutions of29

variables describing the small-scale features of habitats are more relevant (Scales et al., 2016; Manzoor et al., 2018). The30

literature provides evidence for poorer quality of model fit and overall degradation of model performances when coarsening31

the resolution of environmental variables (Guisan et al., 2007; Gottschalk et al., 2011; Connor et al., 2017), mostly due32

to the fact that coarsening results in homogenizing the various features composing a land or seascape, ultimately pruning33

information from the data. This, however, seems to be less acute for heterogeneous landscapes and specialist species, for34

which even degraded data contains sufficient signals for the model to find it (Hernandez et al., 2006; Lauzeral et al., 2013;35

Connor et al., 2017).36

Most of this literature relates to terrestrial species with small home range sizes, or to plants, and is based on areal-37

based approaches (see Moudrỳ et al., 2023, for a recent review). Although the issue of temporal resolution has been38

subject of several studies in the marine domain (Fernandez et al., 2017; Mannocci et al., 2017; Lambert et al., 2022),39

we still poorly understand the effects of spatial resolution on the performances of SDM for wide ranging mobile species.40

Large marine predators for example (cetaceans, elasmobranchs, seabirds, turtles, large teleosts) distribute over ranges41

covering thousands of kilometres square, often performing basin-scale migrations. For such species, SDMs are often built42

from aerial or ship-based standardised large-scale surveys following systematic transect designs, where any animals sighted43

around the transect are recorded (Lambert et al., 2019). Most of the time, the status and behaviour of sighted individuals44

are unknown. Given the extent of their range and their extreme mobility, individuals might be seen within a sub- or45

non-optimal ocean patch, while on their way between two places of interest (i.e., two swarms of prey). This discrepancy46

substantially complicates matters and identifying the most relevant resolution can be particularly challenging: in that case,47

choosing too fine a resolution might result in individuals being associated with a certain environmental feature while they48

actually are targeting a more distant one.49

Another crucial, yet understudied, aspect of SDM implementation is the choice of the sampling resolution. Standardised50

surveys can be either plot-, transect- or point-based and permit the collection of presence-absence data (Buckland et al.,51

2023). Transect-based surveys may be split subsequently into smaller-sized sampling units, generally of homogeneous52

detection conditions. The size of the splitting can be arbitrary, but must be informed based on the ecological processes of53

interest. For example, for aerial-based marine surveys, observation transects, which often exceed the hundreds of kilometres54

in size, can be split into 10, 5 or even 1 km long segments depending on the process of interest (see for example, among55

many others: Mannocci et al., 2014a; Lambert et al., 2022). For SDM purpose, the environmental conditions are generally56

retrieved to the segment centroids, so that the choice of the sampling resolution is related to the environmental products57

used and the two scales are chosen as being as similar as possible. Classical presence-absence or count-based analysis58

workflows with such data then collate sighting information on segment centroids, thereby ignoring the true position of the59

observation relative to the segment and effectively transforming transect data into point data.60
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Figure 1. Conceptual workflow of the study. Four different species were built (two in two different study areas), and for each
species the spatial distribution of individuals was generated 100 times. The observation survey was carried out over each simulated
distribution, and observation data were formatted following segment-based and areal-based approaches. Each dataset was then
associated with five different spatial resolutions of environmental variables, and all were analysed following the same analytical
workflow.

However, point- and segment-based sampling can also be analysed as areal-based, where the number of observations61

and the amount of effort are summarized on spatial grids of arbitrary resolution, which is often that of the environmental62

variables (see for example Mannocci et al. (2014a,b) and Lambert et al. (2014) for a same dataset analysed both ways).63

The main advantage of this approach is to reconcile the spatial resolutions of both the predictor and the response variables64

(Moudrỳ et al., 2023), thereby increasing the rate of observation per sampling unit (i.e., reducing the number of zeros in65

the model), but we lose the information related to the fine-scale spatial patterns of the species.66

The choice of the sampling resolution and type is recognized as crucial within the community, yet we lack any quan-67

tification of the actual effects these choices may have. Most of the time, the choice is made arbitrarily based upon the68

knowledge of the system at hand. In the present study, we aimed to fill this knowledge gap and to provide clues as to how69

these choices may affect the final ability of SDMs to successfully identify the relationship of a species to its environment,70

and how do these models fare in mimicking the true species distribution.71

Given the impracticality of studying these aspects into natural environment and wide ranging species, we set up72

a simulation framework with two putative marine species within two regions characterized by different environmental73

forcings (Figure 1). For each species and region, we simulated 100 possible distributions of individuals based on species-74

specific environmental preferences. Virtual standardised strip-transect surveys were conducted over these simulations.75

The simulated survey data were subsequently formatted following either segment-based or areal-based (hereafter, raster-76

based) approaches, and each type was associated with five different spatial resolutions of environmental variables (0.083,77

0.17, 0.25, 0.50 and 1.00°). We analysed each version of the dataset using the same analytical workflow, from model78

selection to prediction. Statistical performances, model composition, shapes of identified relationships and predicted species79

distributions were finally compared across models, as well as confronted to the true species distributions and to the true80

relationships to the environment as to assess the ability of models to successfully identify ecological patterns.81

2 Methods82

All analyses were performed in R 4.0.4 (R Core Team, 2021).83
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2.1 Survey regions84

We focused on the Eastern North Atlantic (ENA; more specifically, the western European shelf seas) and the Western85

Indian Ocean (WIO; more specifically, the Mozambique Channel).86

The ENA region roughly corresponds to the Northeast Atlantic Shelves Province (Figure 2 and Supplementary Infor-87

mation S1 Figures 1–2; Longhurst, 2007), which is characterised by wide continental shelves and mega-tidal regimes.88

Oceanographic processes are dominated by tidal activity in the west, by freshwater inputs in the east, with wind mixing89

occurring throughout, generating an important spatio-temporal variability of local currents (Koutsikopoulos & Le Cann,90

1996). The shelf edges are steep with strong slope currents flowing northwards, generating eddies in the southern Bay of91

Biscay (Pingree & Le Cann, 1992; Caballero et al., 2014). Tidal, freshwater and shelf edge fronts are thus dominating the92

marine region and sustaining its high productivity, even in winter.93

The WIO is an oceanic area (Figure 2 and Supplementary Information S1 Figures 2–3) mostly dominated by a strong94

mesoscale activity with a train of anticyclonic and cyclonic eddies flowing south through the Mozambique Channel from the95

anticyclonic cell around the Comoros (Schouten et al., 2003; de Ruijter et al., 2004). This meso-scale activity sustains most96

of the productivity in the area. The river plumes and relatively wide shelves off Mozambique and western Madagascar also97

induce important productivity along the coast, and probably participate in fuelling the biological enhancement associated98

with the eddies (Longhurst, 2007). In the north, the South Equatorial Current northern branch rounds Madagascar and99

interacts with the shallow banks of the Comoros to enhance productivity. In the south, the Mozambique eddies merge100

with those from eastern Madagascar to feed the Agulhas Current (Longhurst, 2007). Upwellings are also induced at the101

southern tip of Madagascar by the persistent anticyclonic eddy trapped there by topographic features.102
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Figure 2. Study areas considered in the analysis: the Eastern North Atlantic (ENA, left) and Western Indian Ocean (WIO, right).
Top panels display the survey strata and transects, the bottom panels display the bathymetric chart of both areas.
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2.2 Oceanographic conditions103

We extracted seven oceanographic variables from the Copernicus Marine Service (marine.copernicus.eu) in the study104

areas: sea surface temperature (Temp), sea surface height (SSH, mixed layer depth (MLD), euphotic depth (ZEu) and105

seawater velocity from the Global Ocean Physics Reanalysis (daily means). From the latter, we derived the current106

speed (CurrentSpeed) from the northward and eastward sea water velocities (computed as sqrt(U2 + V 2), where V is the107

northward velocity and U the eastward velocity), and the Eddy Kinetic Energy (EKE; cm2.s-2; computed as 0.5×(U2+V 2)).108

The net primary production (NPP) was extracted from the Global Ocean Low-Mid Trophic Level Biomass Hindcast109

(SEAPODYM; daily mean). These variables were all extracted at the native 0.083° spatial resolution. For the purpose of110

this work, we made the choice of focusing on a single day, and arbitrarily choose the 2019, 1st February.111

The GEBCO 2020 database was used to extract the bathymetry (hereafter, Bathy), from which we derived the Slope112

using the terrain function (from the raster package; Hijmans et al., 2014). These two variables were resampled at113

0.083° to match the seven others.114

We then aggregated all variables to coarser grain size by computing the mean of contiguous cells, aggregating them115

by factors 1.5, 3, 6 and 10 to obtain resolutions of 0.17, 0.25, 0.50 and 1.00°, respectively.116

2.3 Simulating virtual species117

We simulated two different species per region, whose distributions were driven by different environmental forcingsolely by118

their fundamental niches. That is, their distributions were driven by environmental forcings alone, without any effects119

of biological factors like inter- and intra-specific interactions nor dispersal limitations. These environmental forcings were120

different for each species: one species distribution was driven by fine-scale processes (0.083° oceanographic conditions),121

the other by meso-scale processes (0.25° conditions). Response functions to four environmental conditions were built for122

each species, then combined to estimate environmental suitability maps further converted to occurrence probabilities, all123

using the virtualspecies package (Leroy et al., 2015).124

All four species were built using a different set of variables and different response functions. In the ENA, the 0.083°125

species responded to Temp (with a Cauchy distribution), ZEu, SSH and NPP (with logistic distribution for all three).126

The 0.25° species responded to Temp, Bathy (with a Cauchy distribution for the two), NPP and Slope (with a logistic127

distribution for both). In the WIO, the 0.083° species responded to Temp, CurrentSpeed, ZEu and Bathy (all with a128

logistic distribution). The 0.25° species responded to SSH, MLD, NPP (with a logistic distribution) and Temp (with a129

Cauchy distribution).130

We derived the environmental suitability from these response functions by additively combining them with species-131

specific coefficients for each variable (Figure 3). In the ENA, the suitability for the 0.083° was defined as 0.4 × Temp +132

0.3×ZEu+0.15×SSH+0.15×NPP ; for the 0.25°, it was defined as 0.4×Temp+0.3×Slope+0.2×NPP +0.1×Bathy.133

In the WIO, the suitability for the 0.083° was defined as 0.5×Temp+0.2×ZEu+0.15×CurrentSpeed+0.15×Bathy134

(Figure 3); for the 0.25°, it was defined as 0.4 × SSH + 0.25 × MLD + 0.2 × Temp + 0.15 × NPP .135

The environmental suitability was converted to occurrence probability through logistic conversion with a species preva-136

lence of 10% (that is, the species occupy about 10% of the environment suitable to them; Figure 4). In the ENA, the137

0.083° species mostly occurred within the Irish Sea, northern Channel and in southern Brittany, while the 0.25° was present138

throughout the shelf from the Irish Sea to the Iberian shelf, with the highest probability of occurrence found along the139

shelf edge in the Bay of Biscay (Figure 4). In the WIO, the 0.083° species mostly occurred along the edge of the cyclonic140

eddy in the Mozambique Channel, along the eastern coast of Madagascar and east of the Comoros while the 0.25° only141

occurred south of the Mozambique Channel (Figure 4).142

We then generated 100 possible distributions for each species by building inhomogeneous Poisson point process (IPPP)143

using the species occurrence map as intensity parameter, and a population size of 100 000 individuals (using the spatstat144

package; Baddeley et al., 2015). This procedure permitted simulating the distribution of single individuals across the study145

area, with the number of individual per cell proportional to the occurrence probability (the actual position of individuals146

within each cell is random; Figure 4). We chose a population size for a common cetacean species. Using the same147

prevalence and population size for all four species avoided adding noise to our simulations, since the number of sightings148

directly affects SDM performance (Hernandez et al., 2006; Virgili et al., 2017, 2018).149
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Figure 3. Response functions used to define the environmental suitability of each species in the ENA (top) and WIO (bottom).
The weights of each variable in the species-specific additive equations are indicated in parenthesis. ENA: Eastern North Atlantic,
WIO: Western Indian Ocean, Temp: sea surface temperature, ZEu: euphotic depth, SSH: sea surface height, NPP: net primary
production, Bathy: bathymetry, MLD: mixed layer depth.
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Figure 4. Environmental suitability derived from response functions (left), occurrence probability (center) and simulated distribution
(one simulated survey; right) for each species in the ENA (top) and WIO (bottom). Grey points are simulated individuals, red points
are individuals recorded during the survey and used for the subsequent analyses. ENA: Eastern North Atlantic, WIO: Western Indian
Ocean.
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2.4 Simulating virtual surveys150

We simulated surveys following the Distance Sampling (DS) principles (Buckland et al., 2015), and the dssd package151

(Marshall, 2021). The overarching goal of DS surveys is to provide design-based density estimates; hence the survey design152

is a crucial step in their implementation. Given the size of our study areas, we used a multi-strata approach, with 14 strata153

in each region (each stratum was designed to be homogeneous in terms of bathymetry; Figure 2). The sampled transects154

followed a systematic design, assuming a maximum distance observation of 700 m, their position optimized to ensure a155

representative sample of the study regions and a uniform covering of each stratum (Figure 3). The transects were then156

divided into 10 km long segments.157

We used the two survey designs to simulate virtual surveys over the 100 simulated distributions of the four species.158

We considered the surveys to be conducted over the course of a single day, the position of individuals to be static within159

each simulation and all individuals to be available for detection (that is, all individuals were considered to be at the sea160

surface). All individuals located within the 200 m around transects were considered as recorded by the survey, following161

the principle of strip-transect methodology (Figure 4; Buckland et al., 2015).162

2.5 Sampling resolutions processing163

To test the effect of sampling resolution on SDM performance, we formatted our simulated surveys into five segment-based164

resolutions and four raster-based resolutions. The segment-based resolutions were built by summarizing the number of165

individuals sighted by segment and associating segment centroids to the underlying values of oceanographic conditions166

with increasing grain sizes: 0.083°, 0.17°, 0.25°, 0.50°, 1.00° resolutions.167

The raster-based resolutions were built by rasterising effort and observations of each simulation on the grids of oceano-168

graphic conditions: for each cell the total effort of segments whose centroid fell within was summed and the associated169

number of individuals sighted was summed for each species. This rasterisation was performed over the four coarser variable170

resolutions: 0.17°, 0.25°, 0.50°, 1.00°. The oceanographic conditions of the corresponding grid were then associated with171

each dataset. The 0.083° resolution being finer than that of survey segments (10 km), we did not construct raster-based172

dataset for this resolution.173

2.6 Modelling174

2.6.1 Single variable approach175

We adjusted single-variable Generalized Additive Models (GAM, with the mgcv package; Wood, 2006, 2011) to each176

variable, sampling resolution and simulation for the four virtual species. The models were fitted using a Tweedie distribu-177

tion for residuals, splines were bounded to 4 degrees of freedom maximum, and the sampled area was included as an offset178

(2 × segment length × 0.2m) The models used the number of individuals sighted per sampling unit as response variable.179

They assumed a Tweedie distribution of residuals and used thin plate regression splines whose complexity was constrained to180

three inflexion points maximum (i.e. four degrees of freedom maximum). This permits the GAM to adjust the complexity181

of the curve to the data, while avoiding overfitting. The number of individuals sighted per sampling unit was corrected by182

the area actually sampled within this unit by including this area as an offset in the model (2 × segment length × 0.2m).183

Predicted relationships between the number of individuals and each variable were stored for every simulation alongside184

summary statistics informing the quality of the model (explained deviance), the dispersion of residuals (RMSE) and the185

complexity of the fitted curves (estimated degrees of freedom).186

These parameters were then compared across sampling resolutions and types (rasters vs segments), variables, species187

and regions. The differences in explained deviance, estimated degrees of freedom and RMSE between sampling types were188

computed for each simulation, sampling resolution, species and regions.189

2.6.2 Model selection and prediction190

We implemented a regular model selection procedure for each simulation, sampling resolution, sampling type, species191

and region. The procedure tested every combination of up to four variables in the model, discarding all combinations of192

variables whose correlation was higher than 50%. Splines were bounded to four degrees of freedom maximum, and models193
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were fitted with the REML method and the Tweedie distribution, including the sampled area as an offset (as above). The194

AIC and explained deviances were retrieved and stored for each tested model. Delta AIC and Akaike weights were then195

computed on models sorted by AIC (using the akaike.weights function from qpcR package; Spiess, 2018), and the first196

ranking model was selected as best model for that combination of simulation, sampling resolution and type, species and197

region. The variables selected in the best models were then compared to the original set of variables used to define the198

species distribution.199

Species abundances were predicted from the selected best models. As to assess their reliability in reproducing the true200

species distribution, we used Pearson’s correlation coefficient (using the rcorr function from the Hmisc package; Harrell201

Jr et al., 2020) to compare each prediction to the distribution of true presences rasterised at the prediction resolution.202

As to visually assess the predicted spatial pattern, we standardised every single prediction (by its maximum predicted203

density) before averaging them for each region, species, sampling resolution and type. We also summarised the true density204

of individuals on grids of the five resolutions (0.083°, 0.17°, 0.25°, 0.50°and 1.00°) for each simulation, and averaged them205

for visualisation purposes.206

3 Results207

3.1 Virtual surveys208

The virtual surveys totalised 77 271 km of effort in the ENA, with an average over the 100 simulations of 1129 (sd 36.5)209

and 1107 individuals (sd 32.6) detected for the 0.083° and 0.25° species, respectively. In the WIO, a total of 79 959 km210

was sampled, for an average over the 100 simulations of 1475 (sd 38.1) and 1375 individuals (sd 37.4) detected for the211

0.083° and 0.25° species, respectively.212

When converted into 10 km-long segments, the number of sampling units for the segment-based models was 7819 in213

the ENA, and 8070 in the WIO. The rasterisation of sightings and efforts into target resolutions resulted in a sharp drop of214

the number of sampling units for raster-based models, alongside a sharp increase of the number of sightings per sampling215

unit (from an average of 16% to an average of 54% of sampling units with sightings, for all species and regions combined;216

Figure 5).217

When rasterised, the observed densities still displayed correctly the spatial patterns of occurrences for the ENA species218

(see Supplementary Information S1 Figure 4). However, part of the spatial pattern was distorted for the WIO 0.083° species219

at the largest resolutionsin particular in the northern part of the area (around Comoros and west of Madagascar). The220

spatial pattern of the WIO 0.25° species occurrence was mostly preserved as the resolution was enlarged, but the rasterised221

maps displayed medium densities in the northern and central parts of the study areadespite the occurrence probably there222

being close to zero that were larger than in the original occurrence map, actually reflecting the scarce presences occurring223

in the area.224
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Figure 5. Proportion of sampling units with at least one individual detected for each sampling type and resolution, in both regions
and species. ENA: Eastern North Atlantic, WIO: Western Indian Ocean.

3.2 Single-variable models225

Segment-based and raster-based sampling yielded consistent results in terms of overall relative importance among variables226

(as of explained deviance, Figure 6A). In the ENA, NPP, ZEu, MLD, SSH and Bathy achieved the highest deviances for227

the 0.083° species; Temp, SSH and NPP followed by Slope, MLD and ZEu for the 0.025° species. In the WIO, Temp,228

NPP, CurrentSpeed, EKE, Bathy and ZEu had the highest deviances for the 0.083° species; Temp, SSH, then NPP and229

ZEu for the 0.25° species. The deviances were systematically larger for the raster-based sampling, but the deviances were230

also largely more variable compared to segment-based sampling (wider boxplots).231

Computing the difference in deviance between the two sampling types for a single simulation and a single variable232

highlighted that the difference increased with increasing sampling resolutions, for all but the 0.25° species in the WIO233

(Figure 6B). The differences reached up to a 38% higher deviance for raster-based sampling compared to segment-based234

sampling with the 1.0° resolutions.235

These higher deviances obtained with raster-based sampling and larger resolutions were probably linked to the higher236

sighting-to-effort ratio (Figure 5), and to a simplification of the fitted curves (Figure 6C): the difference of estimated degrees237

of freedom highlighted a large and positive differences for larger resolutions (0.25 and 1.0°), whatever the species and238

regions, with an increasing proportion of linear curves for raster-based sampling at these resolutions. On the opposite, raster-239

based and segment-based sampling yielded similar curve estimations for the smaller sampling resolutions. Interestingly, the240

curve complexity was quite variable across simulations.241

Accordingly, the RMSE was always larger for raster-based sampling, in particular for the 0.25 and 1.0° resolutions,242

indicating larger residuals and a poorer fit for raster-based than segment-based sampling at these resolutions.243
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Figure 6. A - Distribution of explained deviances for single-variable models fitted to raster-based (black) and segment-based
sampling (gold), for the two species and regions, whatever the sampling resolution (boxplots are constructed with each simulation
occurring five times, one per resolution). B - Difference in explained deviances, C - curves complexity (estimated degrees of freedom)
and D - RMSE between segment-based and raster-based sampling for each resolution and region. The differences are computed
by simulations: one point behind the boxplots is the difference for a single simulation and a single variable between the dataset
processed as segment-based vs raster-based (each simulation occur 9 × 2 times, one per variable and species). ENA: Eastern North
Atlantic, WIO: Western Indian Ocean, ZEu: euphotic depth, Temp: sea surface temperature, SSH: sea surface height, NPP: net
primary production, MLD: mixed layer depth, EKE: eddy kinetic energy, Bathy: bathymetry.
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3.3 Model selection244

3.3.1 Overview245

The best models yielded quite variable results across simulations and within specific resolutions and types (Figure 7). Most246

of models were composed of two to four covariates for segment-based models, with some simulations selecting one variable247

only (0.50° and 1.00 ° resolutions for the 0.083° species in the ENA). Raster-based models were more variable in their248

composition across sampling resolutions, with several simulations selecting the null model as best one: 0.25° resolution for249

the 0.083° species in the ENA (53% of simulations), and the 0.17° resolution for the 0.083° species in the WIO (82% of250

simulations).251

The levels of explained deviances remained medium for most species and resolution (Figure 7; Supplementary Infor-252

mation S1 Figure 5), but with a large variability (ranging from 0 to 89%) mostly due to differences of performance across253

sampling types. Segment-based models explained deviances were quite stable across sampling resolutions, and did not254

vary according to the number of predictors in the model, suggesting that one or two main covariates sustained most of255

the explained deviance.256

The raster-based explained deviances however showed wide variability across resolutions (Figure 7). Overall, the257

deviances tended to be higher for larger resolutions. For some species and resolutions, raster-based models had higher258

deviances than segment-based models (0.50 and 1.00° for both species in both ENA and WIO). In other cases, the selected259

raster-based models resulted in null explained deviances. This was mostly the case for simulations where the null model260

was selected, but also for some models selecting up to four predictors: 0.25° for the 0.083° species in the ENA; 0.17° for261

both species in the WIO. In the latter case, simulations with similar numbers of selected covariates were separated into two262

bulks of explained deviances, suggesting a variable model composition. Such bimodal distribution of simulations explained263

deviances within a single resolution also occurred for models reaching high deviances with large number of covariates (1.00°264

resolution for the 0.083° species in the ENA and the 0.25° resolution for the 0.25° species in the WIO).265

Figure 7. Relationships between explained deviances and numbers of covariates selected in best models fitted to raster-based (black)
and segment-based sampling (gold), at the different resolutions for the two species and regions. ENA: Eastern North Atlantic, WIO:
Western Indian Ocean.
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3.3.2 Composition of best models266

Overall, similar predictors tended to be selected across sampling resolutions for a same sampling type (i.e. the same267

predictors were the most often selected across resolutions; Figure 8), but the predictors selected in raster-based models268

were not necessarily the same as for segment-based models. The model composition was variable across simulations, with269

few predictors being unanimously selected for a same resolution and type (few variables selected in > 70% of simulations),270

and the models were often mostly supported by two predictors, with a more or less variable set of supplementary predictors271

providing complementary information.272

In the ENA, the 0.083° species segment-based models mostly selected the same predictors whatever the resolution273

(Figure 8), with ZEu and SSH were the two most often selected variables (> 70% of simulations), followed by Slope and274

CurrentSpeed (> 40% of simulations, except for the 0.083° resolution). Raster-based models were more variable in their275

composition, although NPP was selected in about 50% of simulations for all resolutions except the 0.50°, for which it was276

the sole predictor always selected. SSH, ZEu Temp, Slope and CurrentSpeed were also commonly selected in 0.17, 0.25277

and 1.00° resolutions.278

Similarly, for the 0.25° species in the ENA the segment-based models had similar compositions across resolutions279

(Figure 8), with Slope, NPP and SSH always being the three most selected predictors (> 70% of simulations for Slope280

and NPP, > 40% for SSH). A similar composition was found for raster-based models at the 0.17 and 0.50° resolutions,281

although for the latter, Bathy was often selected, unlike in the segment-based models. The composition of models for 0.17282

and 1.00° were quite different however, with Temp and Slope always being selected, followed by ZEu (0.17°) and NPP283

and EKE (1.00°).284

In the WIO, the segment-based models for the 0.083° species selected Temp whatever the resolution (Figure 8), with285

CurrentSpeed, EKE, Slope often selected as well (20–50% depending on resolutions). Bathy was also selected in most286

simulations for the 0.50 and 1.00° resolutions (90-100%). NPP was often selected as well (40–50%) but only for the lowest287

resolutions (0.083, 0.17 and 0.25°). For this species, raster-based models failed to find any informative predictors for all288

simulations at 0.17° resolution (which relates to the null explained deviances, Figure 7). At 0.25%, raster-based models289

were fairly variable across simulations, with Temp being the only selected in half the simulations, all other predictors being290

selected less than 25% of the time. At 0.50 and 1.00° Temp was systematically selected, but the remaining composition291

varied across simulations. Interestingly, Bathy was never selected at 0.50°, but was the second most selected covariate at292

1.00° (> 50% of simulations).293

As for the WIO 0.083° species, the segment-based models for the 0.25° species ended up with similar compositions294

at the five resolutions (Figure 8): Temp and SSH were the most selected predictors (40–50%) for all resolutions but the295

1.00°, for which Temp, Slope, EKE and Bathy were selected in most of the models (> 50% of simulations for all four296

variables). Raster-based models all selected Temp and SSH as well, the number of simulations for which they were selected297

increasing with the resolution (up to 100% for the 1.00° resolution). The remaining composition of models were more298

variable across simulations, with all predictors being selected at some points.299
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Figure 8. Number of simulations including each predictor in the selected best model fitted to raster-based (black) and segment-
based sampling (gold), contrasting species and resolution, for (A) the ENA and (B) the WIO region. ENA: Eastern North Atlantic,
WIO: Western Indian Ocean, ZEu: euphotic depth, Temp: sea surface temperature, SSH: sea surface height, NPP: net primary
production, MLD: mixed layer depth, EKE: eddy kinetic energy, Bathy: bathymetry.
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3.3.3 Relationships to environmental variables300

Surprisingly, the relationships between the number of individuals (response variable) and the environmental conditions301

varied substantially across simulations in many cases. Yet, the shapes of the relationships were consistent across sampling302

resolutions and types for a same simulation.303

The ENA 0.083° species displayed the most consistent relationships to environmental conditions across resolutions and304

types, with the least variable shapes across simulations (Supplementary Information S1 Figure 6). The selected best models305

all identified the same relationships to Temp, SSH, NPP, MLD and ZEu whatever the resolution and type. Although the306

shapes were broadly consistent for CurrentSpeed and EKE (except for raster-based 0.25 and 0.50° resolutions), the curves307

displayed more variability in their edges (where the relationships were supported by a lower amount of data). Relationships308

to Slope were the most variable of all environmental conditions, with no overall pattern emerging from the simulations.309

The ENA 0.083° species was defined from Temp, ZEu, SSH and NPP (Figure 3): all simulations selecting them found310

similar relationships to these four predictors, and their shapes were consistent with the true relationships. The modes of311

Temp and ZEu were successfully identified, but those of SSH and NPP were identified at lower values than the actual312

ones.313

The ENA 0.25° species selected best models yielded a bit more variability across simulations, but the shapes remained314

consistent across resolutions and types (Supplementary Information S1 Figure 7). CurrentSpeed, MLD and EKE had the315

largest variability in identified relationships. This species was defined from Bathy, Temp, NPP and Slope. The relationship316

to Temp was successfully identified for all simulations selecting it, both in terms of shape and mode location. Although317

Bathy was not often selected by raster-based models, the overall shape was correctly identified when it was, despite a318

mode at higher depths than the actual value (-1000 m instead of -800 m). Two broad shapes of relationships to NPP319

were identified, one bell-shaped and one almost linear. The bell-shaped relationships were close to the true relationships,320

but the inflection values (of both types of relationships) were associated with lower values than what defined the species321

distribution (500–800 instead of about 1500). Finally, the relationships to Slope also displayed two types of shapes, one322

mostly linear and one alternating a minimum at low slope values and a maximum at large slope values. The second type323

was closer to the true relationship in its shape, but failed to identify the plateau and inflection points.324

In the WIO, the inter-simulation variability in the shape of relationships was larger than for ENA species. In the325

case of the 0.083° species (Supplementary Information S1 Figure 8), the four variables from which it was defined (Temp,326

CurrentSpeed, Bathy, ZEu) were the only ones with similar shapes across simulations and resolutions (except for the raster-327

based 0.17° resolution which failed to select informative variables). The relationship to Temp and ZEu were successfully328

identified, with the inflection points correctly located, although the 0.25° raster-based models identified a bell-shaped329

curve instead of a plateau for Temp. The relationship to Bathy was close to the true one, but most simulations failed330

to identify the plateau. The raster-based models overall failed to select this variable, except at the 1.00° resolution. The331

relationship to CurrentSpeed was more or less correctly identified except for the segment-based 1.00° and the raster-based332

0.25° models, which identified linear relationships. For this variable, the bell-shaped curve was regularly identified as a333

plateau because the models did not sample all the range of values used to define the species distribution (compare x axis334

ranges in Figure 3 and Supplementary Information S1 Figure 8)335

The models for the WIO 0.25° species displayed the largest variability in the shapes of relationships identified across336

simulations (Supplementary Information S1 Figure 9). There was no consistent pattern in relationships for Bathy, Slope,337

NPP, MLD, CurrentSpeed and Zeu, with some relationships completely opposite for two different simulations at the same338

resolution and type (e.g. CurrentSpeed in segment-based models). Temp and SSH were the only two variables for which339

simulations all agreed upon the shape of relationship. These were two of the variables used to define the species, and the340

shapes were consistent with the truth, despite the left bell-shape often identified as a plateau and the inflection points341

identified at larger values than the actual ones. MLD and NPP were the other two variables used to define the species.342

Only some simulations broadly identified the overall shape of the relationship to MLD (raster-based models only), while343

all models failed to identify the relationship to NPP.344
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3.4 Model predictions345

3.4.1 Quality of predictions346

As the composition of best models were variable, so were the predicted distributions. In line with the more stable347

composition of segment-based models, the correlation of their prediction with the true distribution did not quite change348

across resolutions for the two ENA species (always larger than 50%), although correlations were somewhat higher for349

larger resolutions (Figure 9A). The corresponding raster-based models yielded better correlations in most cases, with the350

exception of the 0.17° resolution for the 0.083° species where some simulations fared badly due to poor quality models351

(null model selected as the best one). For this species, all other models whatever resolutions and types split into two bulks352

of correlation values, at 55–70% and at 80–90%, respectively. This splitting suggested that some simulations (i.e. some353

set of observations) were more informative than others, resulting in higher quality predictions.354

For the WIO species however, the best models were less successful in replicating the true distributions (Figure 9A).355

In the case of the 0.083° species, segment-based models had good correlation values for the 0.083–0.50° resolutions (80–356

96%), but the correlations drop at 1.00°, with a large variability. The raster-based models yielded very different results.357

In line with the very low to null deviances of selected models, the prediction poorly related to the true distribution for the358

0.17° resolution: most simulations yielded null correlations (null model selected as best one), and the few others which359

selected covariates in the best models performed very poorly (< 25%). The correlations were variable but higher for the360

0.25° resolution, and high for the 0.50 and 1.00°. For the latter resolution, the raster-based models fared clearly better361

than the segment-based ones.362

As models struggled to identify consistent relationships to environmental conditions, both segment-based and raster-363

based models struggled to replicate the true distribution of the WIO 0.25° species (Figure 9A). No segment-based models364

exceeded the 75% of correlation, and a non-negligible portion of simulations entirely failed to reproduce the distribution365

(correlations lower than 50%), for all resolutions but the 1.00° one. These low correlations were obtained by simulations366

for which models yielded aberrant predictions in some cells of the map (i.e. predicted extreme and unrealistic density; not367

shown). Raster-based models at the 1.00° resolution provided the best results (correlation larger than 80%), alongside368

a handful of simulations at the 0.17, 0.25 and 0.50° resolutions. For these, the variability in correlation values across369

simulations was the widest, denoting an overall poor quality of the models. Again, as for the 0.083° species in the ENA,370

this pattern indicated that some simulations were more informative than others for the model to reconstruct the species371

distribution.372
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Figure 9. Distribution of the Pearson’s correlation coefficient between the true and predicted abundance maps. Predicted
abundances were derived from best models fitted to raster-based (black) and segment-based sampling (gold), contrasting species
and resolution, for the ENA and the WIO regions. ENA: Eastern North Atlantic, WIO: Western Indian Ocean.

3.4.2 Predicted spatial distributions373

To get an overview of the predicted spatial patterns, we averaged together the predictions obtained for the 100 simulations374

for each region, species, type and resolution. It must be reminded that an extensive variability in predicted pattern across375

simulations might be masked by the averaging procedure (in particular, the aberrant and extreme pixels in individual376

predictions are buffered and not seen). For the particular cases of the 0.083° species in the ENA sampled at the 0.25°377

raster-based resolution, and of the 0.083° species in the WIO sampled at the 0.17° raster-based resolution, the maps378

displayed in Figure 10 included the 52 and 82 simulations (respectively) where the null model was selected as best one379

(predicting homogeneous maps of null density). Hence, we do not discuss these results in the following.380

In the ENA (Figure 10A), the true distribution pattern for the 0.083° species was mostly found for all resolutions and381

types (except for the above-mentioned raster-based 0.25°), despite too high densities often predicted along the English382

coast of southern North Sea. The models also underestimated There was also a tendency to underestimate the density383

in the central Irish Sea (especially for segment-based models), but the distribution patterns were well predicted in the384

Bay of Biscay shelf. Overall however, the models did not captured the small-scale low-density patterns occurring in385

offshore waters. For the 0.25° species (Figure 10A), the overall preference for the slope was correctly predicted whatever386

resolutions and types, but models were less successful in predicting the true distribution pattern over the shelf: medium387

densities were predicted in the southern North Sea and Eastern Channel while true occurrences there were close to null388

very low. Distribution pattern in the Irish Sea and Bay of Biscay were well predicted, but not in the Iberian shelf. Overall,389

models predicted too high densities in the oceanic areas (i.e., beyond shelf edge) but the patch of higher density over the390

seamount off Galicia was predicted for all resolutions and types. In average, the 0.25 and 1.00° resolutions provided the391

best predictions for both raster and segment-based types.392

In the WIO (Figure 10B), the segment-based models for the 0.083° species all found similar patterns, although they393

diluted as the resolution enlarged, resulting in the 1.00° resolution oversimplifying the pattern. For the other segment-394

based resolutions, the pattern was in average correctly identified. The large-scale latitudinal gradient as well as the large395

densities associated with oceanic features were well retrieved (eddies and filaments), despite overestimated densities along396

the western edge of the Mozambique Channel eddy for the 0.083, 0.17 and 0.25° resolutions. For the other segment-based397
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resolutions, models failed to correctly predict the distribution pattern in the northern part of the area (around the Co-398

moros), despite the many sightings occurring in the area, as well as in the extreme south. The density was over-estimated399

in the eastern central Mozambique Channel and west of the gyre, but the highest densities inside the gyre borders were400

successfully predicted, as well as along the eastern coast of Madagascar and along the filament developing south of the401

island. The raster-based models at 0.25 resolutions failed to find a consistent pattern across the simulations. At the402

0.50° resolution, raster-based models provided similar results as segment-based models, while at the 1.00° resolution, they403

predicted spatial patterns strongly consistent with the true distribution, unlike segment-based models the models did not404

oversimplified the distribution as did the segment-based models, yet they did not predict the correct distribution pattern.405

Overall, most of the fine-scale structures in the distribution patterns of the species were lost for resolutions larger than406

0.25°.407

Although most models found the distribution patterns in the south of the WIO region for the 0.25° species (Figure408

10B), all models also predicted medium densities in the northern and central parts of the study area, as well as in between409

features hosting the largest densities, despite very low true densities occurrence probabilities there. Segment- and raster-410

based models predicted similar patterns for each resolutions, except at 1.00° resolution where the segment-based predictions411

were less accurate than the raster-based ones. Overall however, these averaged patterns might be largely influenced by the412

models whose performances were the lowest (Figure 9).413
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Figure 10. Species true and predicted distributions averaged over the 100 simulations for each sampling type and sampling
resolution (as relative density), for the 0.083° species (left) and the 0.025° species (right) in the ENA (A) and WIO (B). ENA:
Eastern North Atlantic, WIO: Western Indian Ocean. The true distributions correspond to the true density of individuals per cell
averaged over the 100 simulations.
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4 Discussion414

In the present work, we implemented an unprecedented simulation procedure to inspect the effects of two overlooked and415

misunderstood aspects of SDM: the choice of environmental condition resolution and the choice of sampling type (segment416

vs raster-based) used to fit the models. The performances of SDMs were inspected through various means, from statistical417

metrics to prediction quality. This study is, to our knowledge, the first to quantify the effect of sampling type on model418

performances, and our simulation approach allowed us to demonstrate for the first time the variability of the modelling419

process in curve complexity and model compositions. Thanks to the use of two different study areas and two different420

virtual species, we disentangled the effects of species selectivity, environmental heterogeneity, sampling types, sampling421

resolutions and survey stochasticity on the ability of a SDM to reliably estimate and reproduce the true species distribution.422

4.1 Methodological limitations423

This study was based on simulations built to match as much as possible real-life cases of species distribution modelling424

exercises. Yet, as all simulations, they came with several technical choices and limitations.425

First, we simulated a survey using a strip-transect protocol, hence assuming perfect detection of animals (Buckland426

et al., 2015). This is never the case in real life, where many factors alter detection probability. The detection probability of427

animals is directly dependent on natural factors affecting the observer ability to see items present within the surveyed area.428

Such factors are not specific to surveys carried out in the marine domain, and can range from sunlight intensity, sun angle,429

to cloud cover (for both terrestrial and marine surveys) or sea state (for marine surveys). In addition to natural factors430

pertaining to the environment in which the observations are carried out, the detection probability is also conditioned by the431

behaviour of the animals actually sighted (i.e. animals are not always available for detection). In terrestrial domain, hiding432

or burying behaviours hinder the detectability of animals by observers, while in the marine realm, it is the ability of animals433

to dive that do so. In real-life cases, these parameters are routinely taken into account in the analysis through correction434

factors. For example, the abundance estimated from aerial surveys for diving marine species can be corrected by the time435

they spend at the sea surface. Such process would reduce the actual number of sightings, potentially not homogeneously436

in space and time, and add some noise in the dataset that could potentially affect the ability of a modelling procedure to437

find relevant models.438

We simulated a very large-scale survey but ignored the logistical constraints associated with such. In particular, we439

ignored the need for refuelling, which would make the most remote parts of the study areas practically impossible to survey.440

Furthermore, we simulated a single-day survey, which is completely unrealistic given the size of the study areas. In real-life441

cases, surveys of that extent would necessitate a non-negligible number of aircraft and crews, and would take up to several442

months to be completed.443

This strong choice was made with the aim of simulating a simultaneous survey, with all segments observed at the444

same time. Doing this, we could ignore the movements of the target species. Indeed, large sized marine species, which445

are the main target of aerial and boat-based surveys in the marine domain, are extensively mobile and can move within446

very large home ranges during relatively short periods of time (shorter time period than survey durations). The effect this447

discrepancy between the scale of the individual home ranges and that of the survey can have on the output of SDMs is448

still misunderstood, so we chose to ignore the movement of animals in our simulation and used an IPPP, i.e. simulating449

individuals with static positions. In addition to ignoring animal movements, we also ignored the aggregative behaviour450

that most marine species exhibit by simulating single individual locations. However, we anticipate this choice did not have451

much of an impact on our results since the number of individuals sighted was summarized per segment, and this final452

number of individuals would be similar if they were sighted together or separately.453

The abundance and prevalence of species are known to have a considerable impact on the ability to build relevant454

and reliable SDMs (Hernandez et al., 2006; Virgili et al., 2018). The distribution of species with low abundance (i.e.455

"rare") is notoriously difficult to model, due to the very low proportions of sampling units with presences (the zero-inflation456

problem). Yet, the prevalence of a rare species is what really determines if a statistical model is able to identify the457

underlying drivers and patterns: a rare species with low prevalence and marked habitat preferences (high selectivity) will be458

more easily modelled and predicted (Virgili et al., 2018, 2019), in particular when occurring in heterogeneous environment459

(Connor et al., 2017), than a rare but widespread species. Here, we simulated four species with the same abundance and460

21



prevalence (moderate) so that the results were directly comparable across species. Our results would probably remain valid461

for more abundant species, but would probably be more variable if we were to simulate a truly rare species. The effect462

of the species prevalence however should be largely dependent on the characteristics of the study area, and in particular463

upon its environmental heterogeneity.464

4.2 The effect of sampling type465

The single variable modelling provided clear evidence that, for a single simulated dataset, using raster-based sampling466

yielded higher deviances, but this statistical performance improvement came at the cost of simplifying the identified467

relationships and decreasing predictive performance (lower RMSE). This held true for all the considered environmental468

conditions, species and regions and whatever the sampling resolution used. In addition, deviances explained by each469

environmental condition separately were highly variable depending on simulations when using raster-based sampling, while470

explained deviances remained consistent across simulations for segment-based sampling.471

The output of the model selection procedure proved to be surprisingly variable across simulations for both sampling472

types. Although all simulations were based on the same occurrence maps, the results sometimes differed greatly across473

datasets, highlighting a certain level of stochasticity in the modelling process, originating from the raw data. As was474

observed with single variable models, raster-based final models most often ended up in simpler (linear) relationships to475

environmental conditions, failing to identify complex features of the original species-condition relationship. Segment-based476

models were better at retrieving this original relationship, although the inflection points were often misidentified. This477

pattern was more striking at larger resolutions, which may be linked to the lower number of sampling units available to fit478

raster-based models at these resolutions compared to segment-based ones: the amount of data directly influences the spline479

parameter identification in the GAM (Wood, 2006). Additionally, we can observe a difference in the stochasticity of curve480

shapes between the two oceanographic regions, the WIO models having more variable curve shapes across simulations481

than the ENA ones.482

Interestingly, most of the deviance in final models was explained by one or two predictors (not shown here, but models483

with more variables did not achieve better correlation between true and predicted distributions). Yet, the variables selected484

in best models were not necessarily the ones used to simulate the species distribution. This is due to the GAMs being485

correlative models (Wood, 2006): the best models select predictors best reproducing the spatial distribution of the data,486

not that better explain it. The discarding of models including pairs of too correlated predictors when selecting best models487

might also be involved in this pattern. In some cases, one of the conditions used to simulate the species have been488

discarded because of their correlation with another one. This discarding of correlated variables may also underlie in drive489

the distribution of explained deviances into "bulks" of similar values (also true for correlation between prediction and true490

spatial distribution): one condition is selected against another in some simulations, while the selection pattern reverses for491

other ones, resulting in different model performances.492

Overall, our simulations clearly emphasized and confirmed the necessity not to over-interpret the environmental condi-493

tions selected as best predictors in final species distribution models.494

4.3 The effect of the environmental heterogeneity495

Surprisingly, and unlike what has been previously observed in the literature (Guisan et al., 2007; Connor et al., 2017), our496

simulation study highlighted no clear adequation between the performance of sampling resolution and the true resolution497

of environmental drivers: the spatial patterns of distribution predicted at the resolution closest to the one used to simulate498

the species did not stand out compared to models using either larger or smaller resolutions. Our simulated species and499

study areas were relatively resistant to the coarsening of resolution. Yet, as hinted by the larger stochasticity in curve500

shapes and prediction quality for the WIO region, the model sensitivity to the resolution of environmental conditions seems501

to depend on the oceanographic processes underlying species distributions.502

In the ENA, the oceanographic processes used to simulate the species at both 0.083° and 0.25° resolutions (tidal and503

slope-associated structures) remained identifiable at larger resolution. This resulted in the models being able to identify the504

distribution patterns whatever the resolution, and the inconsistencies between occurrence and predicted maps to mostly505

derive from the model abilities. On the contrary, in the WIO especially for the 0.083°species, the fine-scale processes506
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selected by the species (edges of meso-scale structures) were diluted when the resolution was increased , especially beyond507

0.50°. This has different implications depending on the sampling type considered. For segment-based sampling, the508

fine-scale processes disappeared from the environmental conditions maps as the resolution increase, so that the models509

lose informative any signal in the predictors and failed to identify reliable drivers (coarsening the resolution reduce the510

informative level of predictors). For raster-based sampling however, the models failed to identify environmental conditions511

successfully reproducing the spatial pattern because this very same spatial pattern in species distribution was altered by512

the rasterisation process. In this case, the low performances of models essentially lie in the low informative levels of the513

input data (response variable).514

These results thus shed a new light on the effect of sampling resolution on SDM performance. We knew this perfor-515

mance depends on the species prevalence, habitat selectivity (specialist vs generalist) and the environment heterogeneity516

(Hernandez et al., 2006; Gottschalk et al., 2011; Lauzeral et al., 2013; Connor et al., 2017), with the alterative effect of517

coarsening the resolution reduced for specialist species in heterogeneous environment. Yet, here, by controlling the species518

prevalence and abundance, we demonstrate that the effect of coarsening resolution is mostly linked to the resistance of the519

environmental features selected by the species to this coarsening, rather than to the intrinsic heterogeneity of the complete520

landscape. As a result, SDM would be less sensitive to the choice of sampling resolution when used for species targeting521

environmental features that are well-preserved when changing the spatial resolution. It could be advisable, then, to test522

for the preservation of the observed structures in species spatial patterns before choosing the resolution at which will be523

built the model will be built.524

Yet, the higher robustness of segment-based models on coarsening the resolution indicated that the choice of sampling525

type (segment- or raster-based) had more effects on the final SDM performance than the actual resolution used in the526

model, due to the risk of losing information when rasterising observation data (i.e. plummeting the information contained in527

the response variable). And, more importantly and surprisingly, our results demonstrated without ambiguity the potentially528

large effect of the stochasticity inherent to the raw dataset in the final performance of the models. Indeed, the across-529

simulation variability was often larger than that associated with the resolution or type chosen to model the species. This530

pattern might explain why, in some real-life cases, all approaches fail to fit successfully an adequate and relevant model.531

We therefore urge to caution when setting up modelling studies and interpreting their results.532

4.4 Take-home message533

Our simulation study provided clear evidence of stochasticity in the modelling process, thereby urging modellers to caution534

in fitting models and interpreting resulting outcomes. We also evidenced that classical statistical performance metrics535

(explained deviances, RMSE. . . ) are not good correlates of predictive quality (for spatial pattern). Despite raster-based536

modelling being faster in computation (thanks to the lower amount of data points), segment-based models seemed to be537

more robust to changes in predictor resolution, and segment-based are to be preferred as this approach also it avoids the538

potential loss of information that could occur when rasterising at scales larger than that of biological significance. However,539

this pattern is strongly dependent on how much the species distribution and/or environmental conditions are impacted by540

changes in scale. We therefore strongly advise checking for the resistance of spatial patterns to changes of resolution, both541

for (in both response and predictor variables,) before any analysis. To test for this, it may be considered to quantify the542

heterogeneity of both the environment and the species distribution, at different resolutions, with tools rooted in landscape543

ecology. Furthermore, if one decides to opt for deciding to go with raster-based analysis, we strongly recommend carefully544

checking that the spatial patterns observed with the segmented data are still clearly identifiable after the rasterisation545

process. Above and foremost, the final choice of sampling type and resolution must depend on the question at hand. This546

choice must be informed carefully, so that the scale is, as much as feasible, adequately tuned between the observation547

process and the environmental predictors.548

5 Supplementary information and data availability549

Supplementary Information, data and R codes used to complete the analyses presented in this paper are accessible in a550

dedicated repository on Zenodo, accessible at https://doi.org/10.5281/zenodo.7544441.551
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