
Hierarchizing multi-scale environmental effects on agricultural pest population dynamics: a case 1 

study on the annual onset of Bactrocera dorsalis population growth in Senegalese orchards 2 

 3 

 4 

Authors: Cécile Caumette1,2,3, Paterne Diatta4, Sylvain Piry1, Marie-Pierre Chapuis1,2, Emile Faye3, 5 

Fabio Sigrist5, Olivier Martin6, Julien Papaïx6, Thierry Brévault7, Karine Berthier8 6 

 7 

 8 

Addresses: 9 

1CBGP, Montpellier SupAgro, INRAE, IRD, CIRAD, University of Montpellier, Montpellier, France 10 

2CIRAD, CBGP, Montpellier, France 11 

3CIRAD, UPR Hortsys, F-34398, Montpellier, France 12 

4ISRA/CRA de Djibélor, Ziguinchor, Sénégal 13 

5Seminar for Statistics, ETH Zurich, Switzerland 14 

6INRAE, BioSP, 84914 Avignon, France 15 

7CIRAD, UPR AIDA, F-34398, Montpellier, France. 16 

8INRAE, Pathologie Végétale, F-84140, Montfavet, France 17 

 18 

 19 

Corresponding author: cecile.caumette@cirad.fr  20 

mailto:cecile.caumette@cirad.fr


2 

 

ABSTRACT 21 

Implementing integrated pest management programs to limit agricultural pest damage requires an 22 

understanding of the interactions between the environmental variability and population demographic 23 

processes. However, identifying key environmental drivers of spatio-temporal pest population dynamics 24 

remains challenging as numerous candidate factors can operate at a range of scales, from the field (e.g. 25 

agricultural practices) to the regional scale (e.g. weather variability). In such a context, data-driven 26 

approaches applied to pre-existing data may allow identifying patterns, correlations, and trends that may not 27 

be apparent through more restricted hypothesis-driven studies. The resulting insights can lead to the 28 

generation of novel hypotheses and inform future experimental work focusing on a limited and relevant set 29 

of environmental predictors. In this study, we developed an ecoinformatics approach to unravel the multi-30 

scale environmental conditions that lead to the early re-infestation of mango orchards by a major pest in 31 

Senegal, the oriental fruit fly Bactrocera dorsalis (BD). We gathered abundance data from a three-year 32 

monitoring conducted in 69 mango orchards as well as environmental data (i.e. orchard management, 33 

landscape structure and weather variability) across a range of spatial scales. We then developed a flexible 34 

analysis pipeline centred on a recent machine learning algorithm, which allows the combination of gradient 35 

boosting and grouped random effects models or Gaussian processes, to hierarchize the effects of multi-scale 36 

environmental variables on the onset of annual BD population growth in orchards. We found that physical 37 

factors (humidity, temperature), and to some extent landscape variables, were the main drivers of the spatio-38 

temporal variability of the onset of population growth in orchards. These results suggest that favourable 39 

microclimate conditions could provide refuges for small BD populations that could survive, with little or no 40 

reproduction, during the mango off-season and, then, recolonize neighbouring orchards at the beginning of 41 

the next mango season. Confirmation of such a hypothesis could help to prioritize surveillance and preventive 42 

control actions in refuge areas. 43 

 44 

Keywords: Bactrocera dorsalis, mango crop, weather, landscape, agricultural practices, GPBoost, population 45 

dynamics, abundance time series, ecoinformatics, machine learning  46 
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INTRODUCTION 47 

Limiting pest damage is a major challenge for agriculture that has been mainly addressed through chemical 48 

and curative control methods, leading to socio-economic, environmental and human health issues (Brévault 49 

& Clouvel 2019; Chaplin-Kramer et al., 2011; Deguine et al., 2023; Mutamiswa et al., 2021). The need to 50 

develop sustainable forms of agriculture has led to the emergence of the concept of Integrated Pest 51 

Management (IPM), which aims to integrate a range of alternative pest control techniques (e.g. biological 52 

control, landscape manipulation, changes in cultural practices, use of resistant varieties). However, and 53 

despite decades of research in agroecology, IPM implementation often still lacks careful consideration of the 54 

spatio-temporal heterogeneity of ecological processes occurring in agroecosystems (Deguine et al., 2021). 55 

Indeed, demographic parameters of pest populations, although dependent on their intrinsic characteristics 56 

(e.g. dispersal and reproductive capacities), are also strongly dependent on numerous environmental factors 57 

that determine the spatio-temporal availability, accessibility and quality of resources, such as agricultural 58 

practices, host plant diversity and phenology, natural enemies, landscape structure and weather (Kennedy & 59 

Storer 2000; Veres et al., 2013). Understanding the key environmental drivers of spatio-temporal pest 60 

population dynamics remains then challenging, especially in agroecosystems that are often highly labile 61 

through space and time, notably due to the diversity and phenology of crops and wild hosts as well as farming 62 

practices, and where different environmental variables influence demographic processes across a range of 63 

spatial scales, from the field to regional scales or beyond (Brévault & Clouvel 2019; Kennedy & Storer 2000). 64 

Therefore, extensive sampling efforts are required to achieve both population monitoring and environmental 65 

data collection, at the relevant spatio-temporal scales and with the appropriate precision. 66 

 In this context, a valuable first step in investigating the ecological processes underlying pest 67 

population dynamics is to create a composite set of pre-existing data, which may have been collected through 68 

various research or management programs, in order to perform correlative statistical analyses. For example, 69 

stakeholders often record longitudinal data on pest abundance, crop yields and farming practices, in order 70 

to inform real-time pest management decisions (e.g. Rosenheim & Meisner 2013). Open access databases or 71 

repositories providing raw or pre-processed data on the variability of environmental variables derived from 72 

remote sensing technologies or mathematical modelling are also increasingly available (e.g. landscape 73 

typologies, weather variables). Such a research framework, termed “ecoinformatics” since the era of big data 74 

(Rosenheim & Gratton 2017), can capture multi-year data over large spatial extents and under environmental 75 

conditions directly relevant to agriculture and management operations. For example, ecoinformatics 76 

research has provided important insights on the dependencies between spatio-temporal population 77 

dynamics and environmental heterogeneity for several agricultural insect pests such as aphids (Stack 78 

Whitney et al., 2016), locusts (Veran et al., 2015) or plant bugs (Rosenheim & Meisner 2013). These studies 79 

also provide an opportunity to inform future hypothesis-driven experimental research by (i) narrowing down 80 

a large number of candidate environmental variables to a limited set of variables that are relevant to pest 81 
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population dynamics and amenable to experimentation and (ii) formulating more focused hypotheses on 82 

causal relationships between environment and pest dynamics that can be further tested (Hochachka et al., 83 

2007; Kelling et al., 2009; Rosenheim et al., 2011).  84 

 The main objective of the present study was to unravel the environmental conditions that may favour 85 

rapid seasonal re-infestation of mango orchards by the oriental fruit fly, Bactrocera dorsalis (Hendel, 1912) 86 

(Diptera: Tephritidae), in Senegal. This invasive species, native from tropical Asia, has emerged as a major 87 

pest of mangoes and other tropical fruit crops in Africa in the early 2000 (Ekesi et al., 2006). Direct crop losses 88 

are caused by larval feeding in the fruit, but significant indirect losses occur when market access 89 

opportunities are lost due to quarantine regulations (Ekesi et al., 2011; Mutamiswa et al., 2021; Vayssières 90 

et al., 2008). B. dorsalis (BD) has a holometabolous development that goes from egg (1-2 days), larva (~7-10 91 

days) in fruits, to pupa (~10–14 days) that form in the soil, before reaching adulthood and reproductive 92 

maturity (~7 days) (Mutamiswa et al., 2021). Females have a high reproductive capacity with an average 93 

lifetime fecundity of around 1200–1500 eggs in the field (Liu et al., 2011). Like most tephritid fruit flies, adults 94 

rely on food sources such as nectar, honeydew, pollen and rotting fruits. The species has a wide host range 95 

including cultivated and wild host plants (Allwood et al., 1999; Clarke et al., 2005; Ekesi & Billah 2006; Ndiaye 96 

2009) but mango is the preferred cultivated host fruit (Drew et al., 2005; Ekesi et al., 2006; Motswagole et 97 

al., 2019; Vayssières et al., 2009).  98 

 In the Niayes area, one of the main mango production basins in Senegal, the annual variation in BD 99 

abundance is extremely marked, with a striking demographic bottleneck at the end of the mango season 100 

raising questions about how orchards get re-infested at the beginning of the next production season. A key 101 

factor could be the survival of small demes during the dry season that would constitute discreet sources to 102 

initiate local population growth and rapid re-infestation of orchards at the beginning of the production 103 

season. Overwintering of groups of adults in patches providing shelter and food has long been reported for 104 

different species of tropical fruit flies (Bateman 1972). For BD in Senegal, many abiotic and biotic factors have 105 

been identified as potentially critical for the survival of the species during the mango off-season in Senegal, 106 

including temperature, precipitations, relative humidity, irrigation as well as the abundance, diversity and 107 

phenology of alternative host plants within and around orchards (Boinahadji et al., 2019; Diallo et al., 2021; 108 

Diatta et al., 2013; Dieng et al., 2019; Konta et al., 2015; Ndiaye et al., 2008; Ndiaye et al., 2012; Vayssières 109 

et al., 2015). Population survival under unfavourable conditions has mostly been assumed to rely on 110 

continuous reproduction, which explains why alternative host fruits have been the focus of many studies. 111 

However, recently, Clarke et al. (2022) have suggested that BD may actually undergoes adult reproductive 112 

arrest resulting in extending life span allowing population survival during unfavourable periods (e.g. scarcity 113 

of host fruits).  114 

 Here, we first built a composite dataset from a three-year monitoring of abundance previously 115 

collected in 69 mango orchards in the Niayes region (Diatta 2016) and environmental data on a large number 116 
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of candidate predictors at different spatial scales, including cropping systems (Diame et al., 2015; Grechi et 117 

al., 2013), landscape structure (Jolivot 2021), and weather variability (Didan 2015; Karger et al., 2021). We 118 

then used this dataset to assess the possible source (or sink) effects of environmental variables, by 119 

investigating their relationship with the onset of annual population growth of BD within orchards. There are 120 

specific analytical challenges related to the use of a large number of candidate environmental variables, such 121 

as the heterogeneity in both their nature (i.e. qualitative and quantitative) and their relationship to pest 122 

population dynamics (e.g. nonlinearity), as well as multicollinearity (i.e. high correlations between two or 123 

more variables). Thus, we developed a flexible analysis pipeline centred on a recent machine learning 124 

algorithm, GPBoost (Sigrist 2022), to integrate multi-scale candidate environmental factors and hierarchize 125 

their effects. The results provided insights into the environmental conditions that may favour the rapid 126 

annual re-infestation of mango orchards at the beginning of the mango production season, which can inform 127 

on the favourable conditions for BD survival during the dry season. Formulated hypotheses on causal 128 

relationships are discussed in relation to published experimental studies and confronted to competing 129 

interpretations, in particular the potential influence of suspected confounding parameters that could not be 130 

included in the study. Deciphering the relative role of environmental variables on the earliness of the re-131 

infestation process can help to prioritize future research, but also to adapt possible surveillance and 132 

preventive actions for BD control. 133 

 134 

 135 

MATERIALS AND METHODS 136 

 137 

Figure 1 provides a schematic view of the analysis pipeline detailed in this section. All analyses were 138 

performed using the R Statistical Software, version ≥ 4.1.2 (R Core Team 2023). 139 

 140 

Study area 141 

 The study area encompassed the “Niayes” (Figure 2), a region under Sahelian climate characterized 142 

by the alternation of a short rainy season (July-September, 400-500 mm rainfall) and a long dry season 143 

(October-June)(see Supplementary material, Section 4, Fig. S4.1). The Niayes is the main region of vegetable 144 

and fruit production in Senegal (De Bon et al., 1997; Grechi et al., 2013). Mango is the main fruit production, 145 

grew either in intensive orchards dedicated to international export or in more traditional and diversified 146 

orchards for local markets (Ndiaye et al., 2012; Vayssières et al., 2011). The mango harvest season is mainly 147 

from June to August and coincides with the rainy season (Grechi et al., 2013; Vayssières et al., 2011). Natural 148 

vegetation is relatively scarce and forms a landscape mosaic with cultivated lands and urban areas.  149 

 150 



6 

 

Estimation of the starting date of BD population growth within orchards 151 

 In this study, we used BD abundance data from Diatta (2016), who monitored 69 mango orchards 152 

roughly distributed among six sites in the Niayes region, between December 2011 and December 2014 153 

(Figure 2). Within each orchard, an average of three traps were placed in different trees (1 to 2m height). 154 

Traps were baited with methyl-eugenol, an attractive parapheromone for BD males, combined with an 155 

insecticide (DDVP: dichlorvos). Male-lure has been routinely used to monitor BD populations. Manrakhan et 156 

al. (2017; 2019), who monitored the abundance of both sexes over a year in South Africa, attributed the 157 

earlier and higher male catches to the low attractiveness of non-specific (i.e. catching of non-target species) 158 

food-baited attractants for females compared to specific methyl-eugenol baited traps for males. Another key 159 

difference between methyl-eugenol and food-baited traps is the range of attraction, presumed to be about 160 

500m and 30m, respectively. Male trapping systems are generally recommended for early detection and 161 

estimation of BD abundance while food-based baits may be more indicative of the threat of female flies as 162 

the fruit ripens (Manrakhan et al., 2017; Manrakhan et al., 2019), and are closely linked to sexual maturity 163 

stage and degree of protein need (Epsky et al., 2014; Vargas et al., 2018). The traps were collected once a 164 

week and the number of flies caught was counted from each trap placed in each orchard. For each orchard 165 

and sampling date, the number of flies caught was averaged across all traps in order to obtain abundance 166 

time series.  167 

 Then, for each orchard and year, we estimated the starting date (as the number of weeks from first 168 

of January) of the demographic growth of local BD populations using the POPFIT mechanistic model (Soulsby 169 

& Thomas 2012; see details in Supplementary material, Section 1). Originally developed for butterfly species, 170 

POPFIT can be applied to others insect species with similar annual population dynamics, as observed from 171 

BD abundance time series: a phase of zero or almost zero abundance followed by a phase of rapid population 172 

growth to a peak and then a decline to zero abundance again (Figure 3). The initial hypotheses of the POPFIT 173 

model were relaxed as we were only interested in estimating the onset of the demographic growth phase 174 

(t0) regardless of the underlying demographic processes (adult survival from one year to the next, local 175 

eclosions, migration or a combination of these processes). A mechanistic-statistical framework was used to 176 

perform the parameter inference of the POPFIT  model (Papaïx et al., 2022)  within a Bayesian framework 177 

using Nimble (de Valpine et al., 2017) with the R package “nimble” v. 1.0.1 (see details in Supplementary 178 

material, Section 1). The Bayesian inference provided one posterior distribution of plausible t0 values given 179 

the data for each combination of orchard and year. Markov chain Monte Carlo (MCMC) convergence was 180 

checked based on both, a visual assessment of the trace plots of the chains and the computation of the 181 

Gelman-Rubin statistic. To further check whether the estimated model adequately fits the data, we visually 182 

compared the simulated data and the observations. Then, we completely removed orchards for which the 183 

MCMC convergence was not reached or the abundance time series appeared to be unreliable for at least one 184 

year. Finally, for each remaining orchard and year, we randomly resampled 500 values of the t0 parameter 185 
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from the posterior distributions. These values were then associated to build 500 sample sets of t0, each of 186 

them including a single value of t0 for each combination of orchard and year. This procedure, which contrasts 187 

with a more classical approach consisting in extracting a single point value of the posterior distributions 188 

(either mean, median or mode), allows to consider the range of plausible values of t0 given the data and, 189 

then, to account for the uncertainty of the estimation in further analyses in which this parameter is the input 190 

response variable (see Supplementary material, Section 5A, Fig. S5.1 for a graphic illustration of the building 191 

of the 500 sample sets of t0). 192 

 193 

Multi-scale environmental predictors  194 

Within orchards. Between 2010 and 2013, the cropping system of 86 orchards, including the 69 orchards 195 

monitored for BD abundance that we analysed in the present study, was characterized using the same 196 

methodology (Diame et al., 2015; Diatta 2016; Grechi et al., 2013). Mango producers were interviewed about 197 

the management of their orchard, particularly on practices that might affect early BD population growth 198 

within orchards: irrigation, sanitation (i.e. removal of aborted mangoes that can host BD larvae) and 199 

intercropping with vegetable crops as potential alternative hosts for BD (Diouf et al., 2022; Grechi et al., 2013; 200 

Vayssières et al., 2015). These factors were considered as qualitative variables: irrigation and sanitation as 201 

factors with three levels (null, moderate or intensive irrigation and null, occasional or regular sanitation) and 202 

inter-crops as presence/absence. In the Niayes, orchards can consist entirely of mango trees or be mixed 203 

with other fruit trees, such as citrus, papaya or guava, which are potential alternative hosts for BD (Grechi et 204 

al., 2013). Then, host diversity and frequency, which may also influence BD re-infestation dynamics 205 

(Boinahadji et al., 2019; Diallo et al., 2021; Diatta 2016; Grechi et al., 2013; Ndiaye et al., 2012; Vayssières et 206 

al., 2011), were estimated from a subset of around 100 fruit trees per orchard. Each selected tree was 207 

identified at the species level and for mango trees, the cultivar was also identified.  208 

 Here, agricultural practices (irrigation, sanitation, intercropping with vegetables) were kept as 209 

categorical variables. Due to the high number of fruit tree species and mango cultivars identified in the 210 

orchards and the bias in the representation of some categories (i.e. from only one sample for the rarest 211 

category to nearly 2000 for the most frequent category), we classified both the mango cultivars and the 212 

alternative host tree species according to their phenology, especially the period during which fruits are 213 

available and can potentially host BD larvae, based on data from literature and expert knowledge (from 214 

researchers and producers). For mango trees, we individualized the three main cultivars (Kent, Keitt, 215 

Boukodiekhal) and grouped the others in three phenological classes (early, medium, late). For other species, 216 

we grouped them into three classes according to their potential period of fruit availability: December to April 217 

(before the beginning of the mango season), April to November (during and after the mango season), and all 218 

year round. Then, for each orchard, we calculated the proportion of each phenological class by dividing the 219 
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number of trees in a class by the total number of trees sampled in the orchard (see details on host diversity 220 

and phenology in Supplementary material, Section 2, Tab. S2.1). 221 

 222 

Landscape. To quantify the effect of the landscape variables surrounding the monitored orchards on the 223 

onset of BD population growth, we used a pre-existing typology of 13 classes of land use (Figure 2) built using 224 

2010-SPOT6 satellite images and time series of 2018-Sentinel 2 satellite images (Jolivot 2021). The effect of 225 

landscape variables surrounding plots monitored to record population abundance is often investigated using 226 

nested circular buffers or rings of increasing radius, but such approaches have drawbacks such as the high 227 

level of correlation of landscape variables across the different radii considered and the rather unrealistic 228 

assumption that landscape effects are uniform within a given buffer and null outside (Carpentier & Martin 229 

2021; Chandler & Hepinstall-Cymerman 2016). In this work, we used the recent Siland method (Carpentier & 230 

Martin 2021), which allows to estimate the spatial scale of influence of a landscape feature on a response 231 

variable (here t0), without any a priori of distance. The method also allows to consider local explanatory 232 

variables: here we included the sampling year and site. The spatial influence function (SIF), which models the 233 

decreasing influence with distance from the observation points of the landscape variables, was a Gaussian 234 

function with a mean distance 𝛿, estimated with Siland independently for each of the 13 land use classes. 235 

Based on the estimated value of 𝛿, Siland provided the cumulative influence of each land use class at each 236 

observation point, i.e. the land contribution, hereafter denoted as lc.  237 

 We first carried out a sequential tuning step of the Siland hyperparameters: the raster resolution wd 238 

and the initialisation value for the maximum likelihood optimization procedure init (see Supplementary 239 

material, Section 3). Then, lc values were computed independently for each of the 500 sample sets of t0. 240 

Analyses were performed using the R package “siland” v. 3.0.2 (Carpentier & Martin 2021). 241 

 242 

Regional weather variability. The spatio-temporal variability of physical factors was analysed over the study 243 

area and the period of sampling using two data sources. First, we used raster data of monthly minimal, 244 

maximal and mean temperatures (Tmin, Tmax, Tmean), as well as precipitations, obtained from the CHELSA 245 

model v. 2.1 (Karger et al., 2017; Karger et al., 2021) with a spatial resolution of 30 arc-seconds 246 

(approximately 1 km). Second, we used rasters of bi-monthly Normalized Difference Water Index (NDWI), an 247 

indicator for vegetation water content (Gao 1996; Gu et al., 2007) that we calculated using MODIS/Terra 248 

Vegetation Indices 16-Day L3 Global 250m SIN Grid data (Didan 2015; Didan et al., 2015) according to the 249 

formula of NDWI2130 defined in Chen et al. (2005). NDWI data were averaged monthly and combined with 250 

CHELSA data to obtain monthly raster time series of 1 km² spatial resolution covering the entire study area. 251 

We only kept the rasters for the time period between December and May, which covers the low demographic 252 

phase preceding population growth for each sampling year (i.e. Dec 2011–May 2012, Dec 2012–May 2013 253 

and Dec 2013–May 2014, thereafter named 2012, 2013 and 2014 for the sake of simplicity). The final dataset 254 

was composed of 30 variables (6 months x 5 variables: Tmin, Tmax, Tmean, precipitations and NDWI), 255 
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computed for each of the 2863 cells (1 km²) of the spatial raster and for each year; i.e. a matrix of size 30 x 256 

8589. Data were normalized and reduced in a smaller dimensional space using a principal component analysis 257 

(PCA). For each monitored orchard and each of the main principal components (PC), selected using the 258 

Broken Stick model (MacArthur 1957), we extracted the PC scores of the grid cell corresponding to the spatial 259 

location of the orchard in the study area (three values, one per year). The analyses were performed using the 260 

R packages “ade4” v. 1.7-19 (Dray & Dufour 2007) and “PCDimension” v. 1.1.13 (Wang et al., 2018). 261 

 262 

Effect of multi-scale environmental factors on the onset of local BD population growth 263 

 To hierarchize the effects of the multi-scale environmental predictors on the onset of demographic 264 

growth of BD populations in orchards (t0), we used the recent tree-boosting method GPBoost (Sigrist 2022). 265 

Boosting methods can handle high-dimensional data, i.e. number of variables larger than the number of 266 

observations (Bühlmann & Hothorn 2007; Rosset et al., 2004). Tree-boosting also generally provides the 267 

highest prediction accuracy among machine learning methods (Grinsztajn et al., 2022; Johnson & Zhang 2013; 268 

Nielsen 2016). GPBoost has the further advantage of allowing a direct combination of gradient tree boosting 269 

with grouped random effects models or/and Gaussian processes to account for dependencies in the 270 

observations. The joint estimation of the Gaussian process and the mean function has notably been shown 271 

to be more efficient than the two-step approach required for the combination of random forest and Gaussian 272 

process (Sigrist 2022). Based on simulated and real data, Sigrist (2022) also showed that for mixed effect 273 

models, the GPBoost algorithm resulted in the highest prediction accuracy, compared to a range of statistical 274 

and machine learning methods such as linear models, gradient boosting with a square loss including the 275 

grouping variable as a categorical variable or random forest.  276 

 All environmental candidate factors were considered as fixed effects: i) the 12 orchard management 277 

variables (i.e. irrigation, sanitation, vegetable crops, and phenological groups of mango trees and alternative 278 

hosts), ii) the contributions (lc) of the 13 land use classes estimated with Siland and, iii) the scores for each 279 

orchard on the retained PCs of the PCA conducted on the physical variables (i.e. minimum, maximum and 280 

mean temperatures, precipitations and NDWI) (see Supplementary material, Section 5A, Tab. S5.1 for a more 281 

detailed description of these variables). Analyses were conducted using the R package “gpboost” v. 1.2.3 282 

(Sigrist 2023). We first tested seven GPBoost models considering various combinations of grouped random 283 

effects and Gaussian process (see details in Supplementary material, Section 5B). Based on model Mean 284 

Square Error (MSE) values, we retained the GPBoost regression model including the sampling site (S1 to S6) 285 

and year (2012, 2013 and 2014) as grouped random effects (see Model 1 in Supplementary material, Section 286 

5B). Considering this model, we performed 500 independent analyses on the 500 different sample sets of t0 287 

estimates as follows. For each sample set, GPBoost model hyperparameters (the learning rate, the minimum 288 

data number in tree leaves, the maximal depth of trees and the number of trees) were tuned using the grid 289 

search procedure implemented in the package “gpboost” and based on a 4-fold cross-validation (see details 290 
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in Supplementary material, Section 5B). For the number of trees, it was automatically optimized by setting 291 

the maximum number of iterations to 2000 and the early_stopping_rounds parameter to 5, i.e. the process 292 

stops if the model's performance on the validation set does not improve for five consecutive iterations. The 293 

model was then trained with the “gpboost” function using the best combination of hyperparameter values 294 

identified for the sample set in the tuning step, and the predictors were hierarchized according to their 295 

importance in the model expressed by the SHapley Additive exPlanation (SHAP) values (Lundberg & Lee 2017; 296 

Lundberg et al., 2018), computed using the R package “SHAPforxgboost” v. 0.1.1 (Liu & Just 2021). SHAP 297 

values provide the contribution of each predictor on the predicted values of individual observations. The 298 

overall contribution of a given predictor to the model output is obtained by averaging the absolute SHAP 299 

values of the observations (hereafter called Smean).  300 

 The predictors were then ranked in decreasing order by computing the median of their Smean values 301 

over all 500 analyses. Based on this ranking, the relationship of each of the most important predictors with 302 

the estimated t0 was investigated using a dependence plot built by fitting individual SHAP values from the 303 

500 analyses as a gam-smoothed function of the predictor values, using the R package “mgcv” v.1.9-1 (Wood 304 

2017).  305 

 Finally, as a validation step of the variable selection procedure, we assessed the predictive 306 

performance of the GPBoost model considering either all predictors or the top ranked predictors. In both 307 

cases, we performed 500 independent analyses on the 500 different sample sets as follows. First, partitioning 308 

of the sample set was done in a way to build random training and test datasets (80% and 20% of the data, 309 

respectively) while ensuring that all years and sites (i.e. groups of random effects) were represented at least 310 

once in the training dataset. Second, the GPBoost model was tuned and trained on the training dataset as 311 

previously detailed (see Supplementary material, Section 5B), and the resulting model was used to predict t0 312 

from the corresponding test dataset. Finally, model accuracy was assessed by computing the Pearson 313 

correlation coefficient between predicted and observed values of t0 as well as the Root Mean Square Error 314 

(RMSE) of the model for each sample set. 315 

 An overview of the main analysis steps with GPBoost is presented in Supplementary material, Section 316 

5A, Fig S5.1. 317 

 318 

 319 

RESULTS 320 

 As described in Diatta (2016), the BD abundance time series showed an annual demographic kinetics 321 

consistent with the use of the POPFIT model (Figure 3). As for the Bayesian estimation of the start date of 322 

the population growth (i.e. t0 parameter), all but four orchards achieved MCMC convergence and displayed 323 

a good fit to the data for the three years (see details in Supplementary material, Section 1). These four  324 
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orchards were all located within site S2 (Figure 2) and discarded for further analyses. The distributions of the 325 

500 t0 samples drawn from the Bayesian posterior distributions for each of the 65 remaining orchards and 326 

for each of the 3 years (i.e. 195 combinations) showed an overall high precision of the estimation with the 327 

POPFIT framework (Supplementary material, Section 1, Fig. S1.1). The difference between the maximum and 328 

minimum values of the 500 samples of the t0 parameter for a combination of orchard and year was 0.7 weeks 329 

on average (i.e. over all combinations of orchard and year). 330 

 Results over the 500 independent analyses of the GPBoost model applied to the 500 sample sets 331 

showed that the median and range values for the error term and grouped random effects (i.e. year and site), 332 

were 0.4 [0; 1.72], 1.86 [0.72; 3.03] and 0.14 [0; 1.64] weeks, respectively. A significant proportion of the 333 

variance in t0 is then expected to be explained by fixed effects. Indeed, within-year variation of t0 between 334 

orchards was substantial, with a difference between the earliest and the latest orchard (i.e. the difference in 335 

the median of the within-orchard t0 values over the 500 sample sets) of 12, 17 and 15 weeks in 2012, 2013 336 

and 2014, respectively. This means that the earliest onset of BD population growth was in March (2013) or 337 

April (2012 and 2014) and the latest in June (2012) or July (2013, 2014). For a same orchard, the variation in 338 

the median of the t0 values (over the 500 sample sets) between years was, on average over all orchards and 339 

years, 3.4 weeks. The results of the SHAP-based ranking over the 500 sample sets for the 28 environmental 340 

predictors specified as fixed effects in the GPBoost model are presented Figure 4. From this ranking, two 341 

groups of predictors stand out as the most meaningful to explain the variability in the annual onset of BD 342 

population growth (t0) within orchards. The first group included the three first principal components 343 

(predictors PC3, PC2 and PC1) retained by the broken stick method, which explained 77.8% of the total 344 

variance in the PCA performed on the physical variables (i.e. temperatures, precipitations and NDWI; Figure 345 

5A), as well as the land use class LU13 (urban area). The second group of variables included two additional 346 

land use classes, LU7 (shrub savannah) and LU11 (sparsely vegetated ground) as well as an agronomic feature 347 

of the studied orchards, i.e. the proportion of potential alternative hosts producing fruits between April and 348 

November (AH3).  349 

 The top ranked predictor was the third principal component of the PCA (PC3), which was negatively 350 

correlated with the vegetation water content index (NDWI) from December to May, and mainly reflected fine 351 

spatial variation of NDWI values over these months (Figures 5A, 5B). The SHAP-dependence plot (Figure 6) 352 

showed a positive relationship between PC3 values and the individual SHAP values (i.e. negative SHAP values 353 

for the lowest PC3 values and positive SHAP values for highest PC3 values), meaning that earlier start dates 354 

of BD population growth (t0) in orchards were associated with higher values of NDWI, i.e. humidity. The 355 

second-best predictor was PC2 (Figure 4). This component of the PCA was a temporal dimension, which 356 

contrasted humidity conditions: positive values were correlated with precipitations occurring between 357 

February and April and with higher NDWI values between December and May, while negative values were 358 

correlated with precipitations in December, January and May (Figure 5A). The former conditions were mainly 359 

observed in 2012 and, to a lesser extent, in 2013 while the later mostly corresponded to the year 2014 (Figure 360 
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5B). Although the SHAP dependence plot for the PC2 predictor showed a sawtooth-kind of relationship 361 

(Figure 6), there was a clear trend indicating that negative individual SHAP values roughly corresponded to 362 

positive PC2 values. This result suggests that BD population growth (t0) in orchards is expected to start earlier 363 

when humidity conditions (precipitations and NDWI) are higher between February and April. The third best 364 

predictor was the first component of the PCA (PC1), which showed a well-marked spatial gradient in monthly 365 

temperature ranges, from positive values in the coastal area, associated with the highest minimum 366 

temperatures and the lowest maximum temperatures, to negative values in the inland, characterized by the 367 

highest maximum temperatures and lowest minimum temperatures (Figures 5A, 5B). Smoothed SHAP-values 368 

associated with PC1 exhibited a U-shaped curve (Figure 6), suggesting that the earliest starts of BD population 369 

growth (t0) in orchards are associated with intermediate conditions in terms of minimum and maximum 370 

monthly temperatures, as observed in the central part of the study area.  Three other top predictors identified 371 

from the ranking of the results over the 500 different GPBoost analyses applied on the 500 sample sets 372 

corresponded to landscape classes (Figure 4), expressed in terms of cumulative influence (lc) on estimates of 373 

t0 as computed with the Siland method (see Supplementary material, Section 3, Tab. S3.1 for a detailed 374 

description of Siland results). The smoothed relationships between these landscape predictors and the 375 

individual SHAP values (Figure 6) roughly approximated either: an L-shaped or inverted L-shaped curve for 376 

urban area (LU13) and sparsely vegetated ground (LU11) respectively, and a S-shaped curve for shrub 377 

savannah (LU7). These relationships suggest that the presence of urban areas (LU13) in the orchard’s 378 

surrounding is associated with early population growth (i.e. smallest t0 values). On the contrary, the presence 379 

of sparsely vegetated ground (LU11) and shrub savannah (LU7) tend to delay the onset of the demographic 380 

growth of BD populations within orchards (i.e. highest t0 values). Finally, the smoothed SHAP curve for the 381 

class of potential alternative hosts AH3 (i.e. grouping species having fruits mostly during and/or after the 382 

mango season in the Niayes, from April to November: Annona species, cashews, guava, pomegranate and 383 

kola nuts, see Supplementary material, Section 2, Tab S2.1) also approximated an inverted L-shaped 384 

relationship suggesting that the higher the proportion of these tree species, the later the onset of BD 385 

population growth within orchards. 386 

 Lastly, as a validation step of our variable selection procedure, we assessed the predictive 387 

performance of the GPBoost model considering either all predictors, the seven top ranked predictors (i.e. 388 

PC3, PC2, PC1, LU13, LU11, LU7,AH3) or only the four top ranked predictors (i.e. PC3, PC2, PC1 and LU13). 389 

The RMSE and Pearson correlation coefficient, averaged over the 500 analyses, were 2.24 and 0.77, 390 

respectively, for the model including all predictors, 2.23 and 0.78 for the model including seven predictors 391 

and 2.23 and 0.77 for the model including the four top predictors (see details in Supplementary material, 392 

Section 5C, Fig. S5.3).  393 

 394 

 395 
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DISCUSSION 396 

In this work, we present a flexible analysis pipeline to hierarchize the effects of multi-scale candidate 397 

environmental factors on estimated parameters of pest population dynamics (Figure 1). At the heart of this 398 

pipeline is a recent machine learning method, GPBoost, which allows gradient boosting to be combined with 399 

mixed effects models or latent Gaussian models (Sigrist 2022). The method inherently benefits from the 400 

advantages of gradient-boosted trees (e.g. handling of nonlinearities, discontinuities, higher order 401 

interactions, outliers, multicollinearity between predictors and missing data (Elith et al., 2008)), while 402 

allowing to relax the zero prior mean or linearity assumption of Gaussian process and mixed effects models 403 

(Sigrist 2022). The possibility to consider grouped random effects, as done in the present study, also provides 404 

a unique way to account for the non-independence of the response variable across observations, which is 405 

overlooked in most machine learning algorithms. This pipeline allowed us to integrate pre-existing data from 406 

multiple sources to hierarchize the effects of 28 environmental predictors, assessed from the local to the 407 

regional scale, on the annual onset of local population growth (t0) of Bactrocera dorsalis, a major invasive 408 

pest of the mango crop in Senegal. 409 

 Given that the two best environmental predictors were the third and second principal components 410 

of the PCA carried out on physical variables, our results clearly suggest that humidity conditions are the 411 

primary driver of the spatio-temporal variation in the earliness of local population growth of BD in mango 412 

orchards of the Niayes region (i.e. up to 17 weeks of delay between the earliest and latest onset of the local 413 

population growth within a year). This result is in line with previous studies reporting humidity as a key 414 

component of BD population dynamics (e.g. Chuang et al., 2014; Ibrahim et al., 2022; Vayssières et al., 2009). 415 

The relationship between the estimated start of local population growth (t0) and the variation in monthly 416 

precipitations (predictor PC2), indicated that even a very small episodic rainfall event occurring before the 417 

mango season between February and April (Figure 5A) (which are called “heug” or “mango rain” in Senegal 418 

(Wade et al., 2015)) could be involved in creating favourable conditions leading to early development of BD 419 

populations in orchards.  Furthermore, the fine variation in space and time of the level of humidity, expressed 420 

by the Normalized Difference Water Index (NDWI), was the best predictor (PC3) of the start date of 421 

population growth within orchard. Early onsets of population growth were associated with high values of 422 

NDWI, which depends, at least partly, on precipitations and soil moisture. These results are consistent with 423 

several experimental studies indicating that humidity is a critical factor for BD survival, especially at the pupal 424 

stages. Indeed, the survival of pupae (and so the emergence rate) is significantly affected by soil moisture, 425 

which is strongly related to precipitations, with optimal trait values at 10-60% moisture levels (Hou et al., 426 

2006). Desiccation is also an important cause of mortality of third-instar larvae under different climatic 427 

conditions (Jackson et al., 1998; Serit & Tan 1990). Furthermore, from observational data in Penang, 428 

Malaysia, Serit & Tan (1990) found that the main factors of mortality of BD immature stages was desiccation 429 
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or drowning of larvae and pupae in soil (77.8% of mortality for soil-associated immatures). In this way, BD 430 

larvae's preference for pupating in shaded areas has already been mentioned (Susanto et al., 2022). 431 

 Importantly, the vegetation water content (NDWI) also reflects the vegetation fraction cover (i.e. 432 

importance of the canopy). Thus, higher NDWI values may also reflect favourable microclimate conditions 433 

for adults of BD, with higher moisture levels and higher shading effects that will contribute to moderate 434 

temperature variations. Besides, the first component of the physical PCA, which showed a gradient in 435 

minimum and maximum monthly temperatures, was also ranked in the top environmental predictors with 436 

intermediate conditions of temperature associated with the earliest BD population growth. This result would 437 

be consistent with previous experimental studies describing performance curves for temperature-dependent 438 

development, survival and fecundity traits in B. dorsalis. For example, temperatures for optimal immature 439 

development ranged around 25-30°C, with development time (or mortality) increasing at lower (or higher) 440 

temperatures, preventing from any adult emergence above 35°C (and below 9-10°C) (Dongmo et al., 2021; 441 

Rwomushana et al., 2008; Vargas et al., 1996). In addition, adult longevity decreases with increasing 442 

temperature, and females can only lay eggs between 15 and 35°C, with the optimal conditions for a higher 443 

number of eggs being between 20 and 25°C (Choi et al., 2020; Dongmo et al., 2021; Vargas et al., 1997; Yang 444 

et al., 1994). In our study area, the most favourable temperature range for early population development in 445 

orchards lies between oceanic conditions in the coastal part and inland conditions where the maximum daily 446 

temperature easily exceeds 35°C during the dry season. As temperatures above 35°C challenge all 447 

components of BD life history, spatial and inter-annual weather variability in the Niayes region is likely to 448 

interact with local factors providing higher levels of humidity and shading (e.g. water bodies and 449 

groundwater, vegetation and soil moisture, canopy structure) to create favourable habitats allowing BD to 450 

mitigate hydric and thermal stress during the dry season (Inskeep et al., 2021; Mutamiswa et al., 2021). 451 

 In addition to physical factors, the boosting approach also identified three landscape variables that 452 

influenced the timing of the annual re-infestation of mango orchards. First, urbanized areas (LU13) would act 453 

as a catalyst for early re-infestation. This phenomenon could be attributed to the high frequency of peri-454 

urban farming or even micro-gardens within towns. Intensive irrigation practices and the presence of 455 

alternative host plants, like citrus, during the dry season in these areas (Vayssières et al., 2011) might offer 456 

favourable conditions for BD survival and reproduction. The role of urban area in sustaining populations has 457 

been pointed out for other fly pest species, such as Drosophila suzukii, under unfavourable northern climates 458 

(e.g. Dalton et al., 2011; Rossi-Stacconi et al., 2016) and, very recently, for Ceratitis capitata in Australia, 459 

where unmanaged urban populations have been estimated to contribute to pest pressure in surrounding 460 

orchards up to 2 km (Broadley et al., 2024). Another non-exclusive plausible explanation relies on the 461 

potential contribution to local population dynamics of flies originating from imported mangoes in the region 462 

(Hong et al., 2015; Louzeiro et al., 2021). Before the start of the production season in the Niayes, mangoes 463 

are massively imported from southward production basins (e.g. Guinea, Southern Mali and Casamance) to 464 

supply the local markets including those in the study area. The arrival of potentially infested mangoes could 465 
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contribute to the early establishment of a pool of individuals, which may then lead to the rapid re-infestation 466 

of nearby orchards. Second, the presence of sparsely vegetated ground (LU11) and shrub savannah (LU7) 467 

would conversely delay the onset of local population growth. These landscape classes may be unsuitable 468 

habitats for BD due to the absence of host plants and the very low relative humidity, soil moisture and 469 

shading. Re-infestation of orchards surrounded by these types of habitats might strongly rely on BD dispersal 470 

from favourable refuges, a process that may be limited under dry conditions, leading to delays in re-471 

infestation. Habitats such as shrub savannah may also shelter natural enemies that could impact BD 472 

abundance and dispersal (Vayssières et al., 2016). 473 

 Although considered to be significant factors impacting BD population dynamics, we did not identify 474 

any clear effect suggesting that orchard management could determine the timing of the clear change in BD 475 

abundance, either in terms of agricultural practices (irrigation, sanitation and presence of vegetable crops) 476 

or host diversity (mango varieties and alternative hosts) and phenology. The only potential effect found was 477 

that an increasing proportion of the alternative host class AH3, which produce fruits mainly during the mango 478 

season (April to November), would delay the onset of BD population growth within orchards, which may 479 

reflect the strong preference of BD for mango. In contrast to previous studies that have investigated BD 480 

population dynamics strictly in terms of abundance variation, we specifically focused on the onset of local 481 

population growth. Thus, our results suggest that while orchard management may explain differences in 482 

abundance, it plays a far less important role in initiating the re-infestation process compared to physical and 483 

landscape variables. However, one methodological point worth noticing is that the orchard management 484 

data we used in our analysis was only available for monitored orchards (no information about practices in 485 

the surroundings) and some were coded as categorical variables with a few levels, which may not allow us to 486 

properly capture the underlying relationships between categories. Such categorical variables may also be 487 

much less informative than continuous predictors to find optimal split points for decision trees in the gradient 488 

boosting procedure.  489 

 Mango is the preferred cultivated host fruit of BD (Drew et al., 2005; Ekesi et al., 2006; Motswagole 490 

et al., 2019; Vayssières et al., 2009), but the species is known to be highly polyphagous (Allwood et al., 1999; 491 

Clarke et al., 2005; Ekesi & Billah 2006; Ndiaye 2009), which has led to the assumption that its maintenance 492 

during the dry season relies on the presence of alternative hosts to ensure continuous reproduction and 493 

larval development (Boinahadji et al., 2019; Diallo et al., 2021; Diatta 2016; Faye et al., 2021; Ndiaye et al., 494 

2012; Vayssières et al., 2015). However, although 34 species of host fruit trees have been reported in the 495 

arid to semi-arid environment of the Niayes region (Ndiaye et al., 2012), their availability during the dry 496 

season remains relatively erratic, with the exception of cultivated Citrus spp.. Thus, one possible explanation 497 

for the lack of evidence for a role of alternative hosts in the earliness of orchard re-infestation is that the 498 

underlying process involved in BD maintenance during the mango off-season in the Niayes region may not 499 

be a continuous reproduction. This explanation is supported by the good performance of the GPBoost model 500 

in predicting the onset of the BD population growth in orchards based only on a few environmental factors 501 
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representing physical and landscape variables. Active dispersal and dormancy are alternative ways of coping 502 

with stress during the unfavourable season. Experimental studies have shown that the dispersal of B. dorsalis 503 

adults is quite spatially restricted, generally upwind and occurs mostly when resources are scarce and 504 

temperatures exceed 20-24°C (Chailleux et al., 2021; Froerer et al., 2010; Makumbe et al., 2020). Dormancy 505 

is the interruption or reduction of metabolic and developmental activity in an immediate (quiescence) or pre-506 

programmed (diapause) response to unfavourable conditions. While pupal dormancy is a common aridity 507 

survival strategy in Dipteran species (Thorat & Nath 2018), it has not been demonstrated in a B. dorsalis 508 

desiccation experiment (Hou et al., 2006). Clarke et al. (2022) argue that phenological data on tropical 509 

Bactrocera spp. strongly suggest an adult reproductive arrest that would allow life span to be extended during 510 

the unfavourable dry season when fruits are scarce. This hypothesis of an adaptation to survive desiccation 511 

during the dry season fits well with our main findings that habitat characteristics underlying early population 512 

growth rates are those that provide milder temperatures and higher humidity and shading. 513 

 It should be noted that the data used in this study have some limitations. First, the data describing 514 

the cropping system (i.e. host plant diversity and agricultural practices) may not be precise enough to detect 515 

significant effects in statistical analyses. Second, pre-existing demographic data are limited to the abundance 516 

of BD in orchards clustered in six sites, which does not allow to investigate whether the variability in the 517 

timing of re-infestation also depends on BD dispersal processes in interaction with the environmental matrix. 518 

Further research is therefore needed, based on better spatial coverage and finer data collection, to assess 519 

environmental heterogeneity (from the orchard to the regional scale) and its impact on the spatio-temporal 520 

dynamics of BD. Moreover, the acquisition of longitudinal demographic data would be a crucial advance, 521 

allowing the estimation of spatio-temporal interactions between variations in effective densities, population 522 

sizes and dispersal patterns.  523 

 Despite these limitations, our results indirectly provide valuable insights into the spatial and temporal 524 

conditions that may lead to the emergence of local habitats favourable to BD survival during the dry season 525 

in the Niayes. Altogether, our results support the hypothesis of localised refuges, with more favourable 526 

conditions of temperature (moderate), humidity (high) and shade (high), where small BD populations could 527 

survive and re-infest orchards at the beginning of the mango season. If confirmed in future experimental and 528 

observational studies, such an information could ultimately be a key step for the design of surveillance 529 

programs and preventive control measures. Considering the large delay between the earliest and the latest 530 

onset of population growth found in this study (between 12 and 17 weeks depending on the year), locating 531 

areas with such favourable environmental conditions could allow preventive control measures to be taken 532 

during the dry season to limit the sources of orchard re-infestation.   533 
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FIGURES 

Figure 1 - Summary of the analysis pipeline implemented in this study. All steps presented in the 

figure are detailed in the section Materials & Methods. 

 

 

 
 
 
 
  



Figure 2 - Study area and sampling sites in the Niayes region, Senegal. The distribution of the 69 

orchards monitored for BD abundance among the six main sampling sites (S1 to S6) is 20, 23, 17, 5, 3 

and 1, respectively. The background map represents the 13 land use classes (Jolivot 2021) considered 

in this study.  

 

 

 

  



Figure 3 - Illustration of the annual dynamics of BD populations within monitored orchards. The 

boxplots show the median value (black line), the lower (Q1) and upper (Q3) quartiles (upper and lower 

box limits), the highest and lowest values excluding outliers (vertical lines, with a maximum length of 

1.5*(Q3-Q1)) and outliers (black dots) of the mean number of flies captured per orchard on a weekly 

basis over the three years of monitoring (2012 to 2014) of the 69 orchards. For a given week, the mean 

number of captures per orchard is the average of the number of trapped BD in all the traps set in the 

orchard. 

 

 

 

  



Figure 4 - Ranking of the environmental predictors from the GPBoost model. The ranking is based on 

the SHAP values resulting from the GPBoost model applied independently on the 500 sample sets: for 

each predictor, the boxplot shows the median, first quartile, third quartile, lowest and highest values 

(vertical lines) and outliers (black points) of the Smean values (i.e. the average of individual SHAP values) 

obtained for the 500 sample sets.  

 

 

 

 

  



Figure 5 - Results of the PCA performed on the 30 weather and NDWI variables. (A) Variable 

correlation plots for the first and second PCs (top panel) and first and third PCs (bottom panel): each 

vector represents a type of input variable (colours) for a given month (numbers) from December (12) 

to May (05). (B) Maps of the grid cell PCA scores, for each PC and each year of sampling.  

(A)  
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Figure 6 - SHAP dependence plots. For each of the most important environmental predictors in the 

GPBoost model, the gam-smoothed curve of the SHAP values over the 500 sample sets is represented 

as a blue line, with its 99% confidence interval in dotted lines and residuals as grey dots. Black lines on 

the x-axis indicate the distribution of the predictor values. GAM were fitted using thin plate regression 

splines and by fixing the basis dimension k (ranging from 4 to 9) to avoid overfitting. 

 


