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Abstract 1

2

Context and objectives
Although urbanization is a major driver of biodiversity erosion, it does not affect all species equally. The
neutral genetic structure of populations in a given species is affected by both genetic drift and gene flow
processes. In cities, the size of animal populations determines drift and can depend on multiple processes,
whereas gene flow essentially depends on the ability of species to disperse across urban areas. Considering
this, we tested whether variations in dispersal constraints alone could explain the variability of neutral
genetic patterns commonly observed in urban areas. Besides, we assessed how the spatial distribution of
urban green spaces (UGS) and peri-urban forests acts on these patterns.
Methods
We simulated multi-generational genetic processes in virtual populations of animal species occupying either
UGS or forest areas (both considered as a virtual species habitat) within and around 325 European cities. We
used three dispersal cost scenarios determining the ability of species to cross the least favorable land cover
types, while maintaining population sizes constant among scenarios. We then assessed genetic diversity
and genetic differentiation patterns for each city and each habitat types across the three cost scenarios.
Results
Overall, as dispersal across the least favorable land cover types was more constrained, genetic diversity
decreased and genetic differentiation increased. Across scenarios, the scale and strength of the relationship
between genetic differentiation and dispersal cost-distances varied substantially, alike previously observed
empirical genetic patterns. Forest areas contributed more to habitat connectivity than UGS, due to their
larger area and mostly peri-urban location. Hence, population-level genetic diversity was higher in forests
than in UGS and genetic differentiation was higher between UGS populations than between forest popu-
lations. However, interface habitat patches allowing individuals to move between different habitat types
seemed to locally buffer these contrasts by promoting gene flow.
Discussion and conclusion
Our results showed that variations in spatial patterns of dispersal, and thus gene flow, could explain the
variability of empirically observed genetic patterns in urban contexts. Besides, the largest habitat areas and
biodiversity sources are likely to be found in areas surrounding city centers. This should encourage urban
planners to pay attention to the areas promoting dispersal movements between urban habitats (e.g., UGS)
and peri-urban habitats (e.g., forests), rather than among urban habitats, whenmanaging urban biodiversity.

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Keywords: urban ecology; ecological networks; gene flow; biodiversity conservation; green infrastructures 33

2



Introduction 34

Most of humankind currently lives in cities and urban areas are predicted to cover three times the area 35

they covered in 2000 by 2030 (Seto et al., 2012), and four times by 2050 (Angel et al., 2011). Urbanization is an 36

important component of the anthropogenic pressures triggering the erosion and spatial redistribution of bio- 37

diversity (Díaz et al., 2019). Indeed, it favors the spread of invasive species, concentrates pollution, and urban 38

lifestyles are important drivers of natural resource over-exploitation and greenhouse gas emissions (McDon- 39

ald et al., 2020). Last but not least, it is a direct cause of habitat destruction and fragmentation (Beninde et al., 40

2015). As a result, many empirical studies have evidenced negative effects of urbanization on biodiversity 41

(Aronson et al., 2014; Piano et al., 2020). However, this relationship is complex and variable across taxa, bio- 42

logical organization levels (ecosystems, species, genes), and across cities (Fidino et al., 2020). Urban ecology 43

research is therefore needed and particularly crucial if humanity is willing to limit its impact on biodiversity 44

and to maintain the ecosystem services it provides (Verrelli et al., 2022). 45

46

Urban ecology studies have shown that species are not all affected in the same way by urbanization (Aron- 47

son et al., 2014; Blair, 1996; Fanelli et al., 2022; Fidino et al., 2020). While some species are mostly, if not only, 48

present in cities because they are specialist of anthropized environments (urban adapters), others cannot sur- 49

vive in these areas (urban avoiders). Somemore ubiquitous species are present in both urban and non-urban 50

areas. These urban tolerant species are reliable indicators of urban influences on population dynamics along 51

rural-to-urban gradients. They may also be the most affected by the impact of urban planning on environ- 52

mental conditions across such gradients. 53

54

Species-specific responses to urbanization not only affect species diversity patterns, but also explain the 55

variability of genetic patterns observed at the intra-specific level along rural-to-urban gradients. Although 56

rapid genetic adaptations to urbanization have been observed in several species (Santangelo et al., 2022), ur- 57

banization also shapes neutral genetic patterns in a significant manner (Fusco et al., 2021; Miles et al., 2019). 58

For instance, urban populations of human pests can exhibit higher levels of genetic diversity than non-urban 59

ones (Miles et al., 2018). In contrast, Khimoun et al. (2020) and Schoville et al. (2013) did not detect any sig- 60

nificant difference in genetic diversity nor any patterns of isolation by distance pattern when studying ant 61

and butterfly populations, respectively, in urban and non-urban settings. Similarly, the relationship between 62

amphibian genetic diversity or differentiation and the degree of urbanization of several North American cities 63

was not significant in the study by Schmidt andGarroway (2021). On the contrary, Delaney et al. (2010) showed 64

that urbanization decreased genetic diversity and increased genetic differentiation in three lizard species and 65

one bird species, mainly due to higher road density in urban areas. Likewise, Stillfried et al. (2017) showed 66

that urban populations of wild boars exhibited lower genetic diversity levels than suburban ones in Berlin. 67

68

The variability of the neutral genetic patterns observed in urban settings stems from the demographic 69

dynamics determining the intensity of both genetic drift and gene flow (Frankham et al., 2004; Miles et al., 70

2019; Munshi-South and Richardson, 2020). On the one hand, genetic drift can lead to allele loss, especially 71

in small-sized populations. On the other hand, gene flow following successful dispersal events between pop- 72

ulations leads to genetic exchanges. This can compensate for the diversity loss due to drift and decrease the 73

resulting genetic differentiation between populations. Consequently, both the size of urban populations and 74

the permeability of urban environments to individual dispersal drive genetic diversity and genetic differen- 75

tiation, because they determine genetic drift and gene flow. As such, the genetic patterns described above 76

span the whole range of patterns that are theoretically expected from variations in the respective intensity 77

of drift and gene flow across urban and non-urban areas (Frankham et al., 2004; Hutchison and Templeton, 78

1999). Under strong genetic drift and low gene flow, a low genetic diversity is expected. Besides, isolation 79

by distance patterns should not be significant, due to the prevailing role of local stochasticity on pairwise ge- 80
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netic differentiation irrespective of pairwise distances among populations. On the contrary, under moderate 81

genetic drift and gene flow, a significant isolation by distance pattern and a higher genetic diversity level are 82

expected. Finally, at intermediate levels, isolation by distance patterns are expected, at least temporarily, until 83

a pairwise distance threshold beyond which drift becomes the prevailing stochastic driver of genetic differen- 84

tiation. However, because these predicted genetic patterns depend on the respective intensities of both drift 85

and gene flow, disentangling the influence of these two processes is a complex task. 86

87

In urban tolerant species, genetic drift could explain most of the variability observed in genetic patterns 88

given that some of these species only form small populations in urban areas (e.g., Lourenço et al. (2017)), 89

thereby exacerbating drift effects, whereas others can maintain large populations (e.g., Miles et al. (2018)). 90

Yet, gene flow, which is mainly driven by the ability of urban tolerant species to disperse across urban fabric, 91

could also be the prevailing driver of genetic responses to urbanization. Accordingly, assessing how dispersal 92

limitations and resulting gene flow reductions shape genetic patterns is crucial for several reasons. First, many 93

biodiversity conservation programs rely on habitat connectivity conservation and restoration for maintaining 94

genetic diversity in urban areas. They assume that dispersal limitation is the main cause of biodiversity loss. 95

Besides, they often focus on Urban Green Spaces (thereafter referred to as UGS) as biodiversity sources, al- 96

though their spatial location within cities could convert them into sink patches (Lepczyk et al., 2017; Pulliam, 97

1988; Verrelli et al., 2022), thus compromising the efficiency of habitat and ecological corridor restoration 98

in urban cores. Determining to which point species movements in these areas are sufficient for preventing 99

diversity loss is therefore needed for estimating the potential benefit of such measures. For that purpose, 100

simulations have been commonly recommended in landscape genetics (Balkenhol et al., 2016; Munshi-South 101

and Richardson, 2020), particularly for studying how neutral genetic patterns emerge from the interplay of 102

drift and gene flow processes, independently of adaptive processes. They also proved to be efficient for re- 103

producing empirically observed genetic patterns in urban areas (Rochat et al., 2017). 104

105

Considering this, our research objective in this study was to answer the following question: how does dis- 106

persal limitation explain the variability of genetic patterns in urban tolerant species? To this end, we simulated 107

neutral genetic patterns resulting from multi-generational gene flow between populations of urban tolerant 108

species located in both UGS and forest areas within and around 325 European cities. Using scenarios intro- 109

ducing variations in the ability of three virtual animal species to disperse across urban fabric, we assessed 110

how this ability affects genetic patterns, independently from any other process. Across scenarios, genetic 111

drift intensity was constant for a given set of populations. The simulated variations in dispersal, for each city, 112

could thus affect genetic patterns by modifying the respective intensities of drift and gene flow. We also com- 113

pared the connectivity of UGS and forest areas, and contrasted the genetic diversity and differentiation levels 114

observed in these habitats to shed light on how the connectivity and spatial configuration of habitats drive 115

genetic responses to dispersal scenarios in cities. 116

Material and methods 117

To answer our research questions, we needed to assess the genetic responses to urbanization of urban 118

tolerant species having different abilities to cross artificial areas, while being equivalent in terms of popula- 119

tion density and dispersal abilities to cross favorable areas. We also needed to assess these responses at the 120

level of entire urban areas and to replicate the analyses to ensure that our results were not merely due to 121

the specificity of a single study area. To meet these conditions, we implemented a simulation approach and 122

applied it to 325 European urban areas, hereafter referred to as cities. 123

124

For each city, we first modeled the connectivity of habitat patch networks for forest-dwelling species oc- 125

cupying both UGS and forest patches according to three dispersal scenarios, using a graph-based approach. 126
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Then, we simulated drift and gene flow processes in populations occupying both types of habitats, and ana- 127

lyzed the resulting genetic pattern at both the within-population (genetic diversity) and between-population 128

(genetic differentiation) levels. We provide details in the following sub-sections. 129

Habitat connectivity analyses 130

Land cover data 131

We used urban land cover data from the Urban Atlas 2018 database of the Copernicus European agency. 132

These land cover data are available for 788 functional urban areas, sensu Organisation for Economic Co- 133

operation and Development (OECD, Moreno-Monroy et al. (2021)), counting at least 50,000 inhabitants in 38 134

member or partner states of the European Union. These vector land cover data include 27 land cover types 135

at a relatively fine spatial resolution (MinimumMapping Unit: 0.25 ha inside urban core areas, and 1 ha in sur- 136

rounding rural areas). They were reclassified into 10 land cover types (Table S1) and rasterized at a spatial res- 137

olution of 5 m. The two "Forests" and "UGS" land cover types were considered for delineating habitat patches 138

in the analyzes. "Forests" tended to be peripheral (i.e., peri-urban) whereas "UGS" were mostly located within 139

city cores, although in each city, some patches did not conform to this pattern. UGS included public green ar- 140

eas predominantly dedicated to recreational use (e.g., gardens, parks), as well as suburban natural areas that 141

are used and managed as urban parks. We obtained the spatial coordinates of the center of every city from 142

the Open Street Map database using Nominatim and the jsonlite R package (Ooms, 2014). In most cases, it 143

coincided with the city hall, which is commonly used as the center of cities (Lemoy and Caruso, 2020)(Figure 1). 144

145

We delineated the cities under study by standardizing their proportion of artificial areas in order to assess 146

the influence of dispersal on genetic patterns in areas having the same degree of urbanization, although 147

differing in the configuration of their urban fabric and natural areas. Delineating study areas of the same 148

spatial extent would have led the differences among cities to mainly reflect the effect of varying densities of 149

artificial areas (i.e., proportion of sealed area in the study area). In contrast, we here assessed species genetic 150

responses in areas which differ in the location and shape of their urban fabric. To that end, we calculated the 151

proportion of artificial areas in disks of increasing radius centered on the city center. These radius ranged 152

from 5 km to 40 km, with steps of 500 m. The target proportion of artificial areas was fixed at 20% ± 1% 153

after preliminary analyses. This threshold allowed us to maximize the number of cities for which a radius 154

encompassing a fixed proportion of artificial areas could be found between 5 and 40 km and to minimize 155

the variance of this radius. Cities were included in our sample when at least 95 % of the delineated disk was 156

covered by the Urban Atlas land cover data (Figures 1A and 1B). When required, we completed the remaining 157

peripheral sectors with Corine Land Cover data, matching their typology with our land cover classification, as 158

indicated in Table S2. Ourmethod selected 325 cities andmainly excluded coastal cities and very small or very 159

large cities for which the proportion of artificial areas was never below or above 20 %, respectively, within the 160

range of considered radii. 161

Dispersal cost scenarios 162

We wanted to assess whether genetic responses were affected by the capacity of species to cross the least 163

favorable areas when dispersing from one habitat patch to another. We therefore made three dispersal cost 164

scenarios, consisting of cost values associated with land cover types and representing the cost of species 165

movements across pixels of each land cover type (Table 1). These costs were similar to the costs used by 166

Sahraoui et al. (2017) and Tannier et al. (2016) for modeling habitat connectivity in urban areas for forest 167

species such as rodents (e.g., Mustela putorius) or birds (e.g., Picus canus). They were minimal (1) in habitat 168

areas and higher in land cover types supposed to highly affect forest species movements, such as grasslands 169

(10), agricultural areas (50) or wetlands (100). These costs were constant across scenarios. In contrast, the 170

costs associated with water, roads and artificial land cover types increased from scenario 1 to 3. They were 171
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equal to 90, 900 and 9,000 for water and roads, and to 100, 1,000 and 10,000 for artificial areas in scenarios 1, 172

2 and 3, respectively. This reflects the fact that built-up areas are more difficult to cross than unfavorable yet 173

open areas such as roads or water bodies. A cost scenario based on similar assumptions has been empirically 174

validated by Balbi et al. (2019) in an urban context. The cost variations in the least favorable land cover types 175

for a forest species allowed us to distinguish three virtual species with different dispersal behaviors in urban 176

areas. Nonetheless, the total cost they could endure during dispersal was kept equal for the three virtual 177

species. This means that they had similar absolute capacities to disperse whatever the cost scenario. Yet, the 178

spatial paths they followed when dispersing could vary substantially from one scenario to another depending 179

on the configuration of land cover types. Using these cost scenarios, we thus aimed to isolate the effect of 180

variations in spatial patterns of dispersal on genetic patterns across rural-to-urban gradients. 181

Land cover types Scenario 1 Scenario 2 Scenario 3
Forests 1 1 1
Urban Green Spaces 1 1 1
Grasslands 10 10 10
Semi-natural areas 10 10 10
Agricultural areas 50 50 50
Other open areas 50 50 50
Wetlands 100 100 100
Water 90 900 9000
Roads 90 900 9000
Artificial areas 100 1000 10000

Table 1. Dispersal cost values associated with each land cover type according to the scenarios considered.
Scenarios 1 to 3 represent an increasing aversion of forest species for dispersal movements across water,
roads, and artificial areas.

Landscape graphs 182

We modeled habitat connectivity with landscape graphs using the Graphab 2.8 software program (Foltête 183

et al., 2021). Landscape graphs represent habitat patch networks as sets of habitat patches (nodes) connected 184

by potential dispersal paths (links)(Urban and Keitt, 2001). We built them using the Urban Atlas land cover 185

data and the three dispersal cost scenarios (one graph per scenario). Each forest or UGS habitat patch above 186

0.25 ha was a node of the graphs. Although a single type of habitat patch (node) is most often considered 187

in graph-based connectivity analyzes, the special feature of our analyzes was the distinction between forests 188

and UGS, considered as two distinct types of nodes in subsequent analyzes (Savary et al., in prep.). 189

190

We computed least-cost paths between every pair of habitat patches. This simplemethod estimates disper- 191

sal paths by finding the ones connecting patches while minimizing the total cost accumulated when crossing 192

pixels with specified cost values. Despite the known limitations of thismethod (Zeller et al., 2012), it has proved 193

to be relevant in empirical studies measuring species movements in urban areas (e.g., Balbi et al. (2019)). For 194

each scenario, we obtained a set of potential dispersal paths and the accumulated cost along them, i.e., the 195

cost-distance (Figure 1C). We then created three minimum planar graphs, sensu Fall et al. (2007), in every ur- 196

ban area. In these graphs, links correspond to least-cost paths, connect neighbor patches, and are weighted 197

by the corresponding cost-distances. 198

199

We used these graphs to assess the contribution of each habitat patch to the connectivity of the habitat
network and identify whether the distribution of forest and UGS patches could drive potential source-sink
dynamics. To that purpose, we computed the ’Flux’ (F ) connectivity metric for each patch to estimate the
amount of habitat that is reachable from the focal patch. It considers the area of the other patches and the

6



cost-distances associated with the shortest path to these other patches on the graph, as follows:

Fi =

n∑
j=1;j ̸=i

aje
−α×dij

with i the focal patch index, j the index of every other patch among then habitat patches, dij the cost-distance 200

between patches i and j, and aj the area of each patch j. 201

202

αwas set such that the probability of covering a cost-distance equivalent to an average path of 5 km (d5km) 203

is equal to 0.05, i.e., p(d5km) = e−αd5km = 0.05. This distance can be considered as the maximum dis- 204

persal distance of forest species with medium dispersal capacities (Sahraoui et al., 2017). To obtain d5km, we 205

assessed the relationship between (1) the length inmetric units of the least-cost paths not crossing the least fa- 206

vorable areas and (2) the corresponding cost-distances, using log-log linear regressions (Tournant et al., 2013). 207

For that purpose, we only considered the set of paths (spatial trajectories and associated cost-distances) that 208

never crossed any pixel of artificial area, road or water, as they are supposed to be representative of the most 209

common species movements. We then used the estimated relationship between the length of these paths 210

and their cost-distances to convert 5 km into cost units and computed the average converted value for each 211

urban area and each scenario. d5km averaged 20,000 cost-distance units. By using the same d5km and α val- 212

ues for all three dispersal scenarios in this analysis and for parameterizing the genetic simulations (see below), 213

we ensured that the virtual species we considered had similar absolute capacities to disperse whatever the 214

cost scenario. 215

216

When computing the F metric, we distinguished cases where patches i and j were respectively either (i) 217

both forest patches (FForest↔Forest), (ii) forest and UGS patches (FForest↔UGS ), (iii) UGS and forest patches 218

(FUGS↔Forest) or (iv) both UGS patches (FUGS↔UGS ). For each urban area and scenario, forest patches asso- 219

ciated withFForest↔UGS values in the upper quartile of the distribution were considered as "Forest Interface" 220

patches. Similarly, UGS patches associated with FUGS↔Forest values in the upper quartile of the distribution 221

were considered as "UGS Interface" patches. Indeed, these habitat patches are the most important ones for 222

the connectivity between several types of habitats. We expect them to be mostly, though not strictly, located 223

at the periphery of city centers. They could therefore play a significant role in potential source-sink dynam- 224

ics. Their connectivity could also drive genetic diversity transfers from less to more anthropized habitat areas, 225

and conversely, e.g., when UGS Interface patches are connected to other UGS located closer to the city center. 226

227

Finally, we computed the Equivalent Connectivity (EC) metric for estimating the connectivity of the whole
habitat patch network. This metric represents the area of the unique patch that would provide species with
the same amount of reachable habitat as the whole habitat patch network, given its degree of subdivision and
the resistance of the matrix (Saura et al., 2011). We used the following formula (see also Figure S1):

EC =

√√√√ n∑
i=1

n∑
j=1

aiaje−α×dij

Given that we distinguished two types of habitat patches, we could estimate the contribution to EC of (i) 228

the forest patches and the connections between them (ECForest.Forest, both i and j are forest patches), (ii) 229

the UGS patches and the connections between them (ECUGS.UGS , both i and j are UGS patches) and (iii) the 230

connections between forest and UGS patches, weighted by their respective areas (ECForest.UGS , i is a forest 231

patch and j a UGS patch, or conversely). To make these values comparable among cities, we standardized 232

them by the total area of each city. We also assessed the relative value of the three EC components here 233

considered, standardizing each of them by their sum. 234
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Genetic simulations 235

Population size and location 236

The large number of patches in each city prevented us from simulating a population in all habitat patches, 237

due to limitations in computational capacities. Furthermore, we can reasonably assume that habitat patches 238

are not all occupied in actual metapopulations. Nevertheless, we wanted the number of populations to reflect 239

the subdivision of habitat areas. Therefore, for each type of habitat h, the number of populationsNpoph,c in 240

city c ranged from 10 to 400 and was proportional to the logarithm of the number of patches of that type in 241

the city c (ph,c), such that: 242

Npoph,c = 10 + (400− 10)
log ph,c − log(min∀i ph,i)

log(max∀i ph,i)− log(min∀i ph,i)

withmin∀i ph,i andmax∀i ph,i the minimum and maximum number of patches of type h across all cities. 243

Then, for each city and habitat type, we randomly sampled a number of patches equal to Npoph,c among 244

the habitat patches of type h in the city c, before populating them with individuals. As we wanted the total 245

population in a given city to reflect the total amount of habitat of that city, the total number of individuals 246

Nindc in each city ranged from 500 to 10,000 and was proportional to the logarithm of the total habitat area 247

in each city (using the same formula as above). Log-transformations normalized the distributions of popula- 248

tion and individual numbers. 249

250

Each population (i.e., sampled habitat patch) was then populated with at least 10 individuals, in a way 251

that reflected the area of its patch. We wanted to assign larger populations to large habitat patches while 252

ensuring that the total number of individuals across populations was equal to Nindc. Thus, the numbers of 253

individuals in each populationwere randomly drawn following amultinomial distribution. Each sampled patch 254

was associatedwith a probability of being assigned supplementary individuals (beyond theminimumeffective 255

of 10 individuals) that was proportional to its area (see Figure S2 for an histogramof patch areas). For each city, 256

these probabilities summed to 1. Therefore, cities with many habitat patches had many populations, cities 257

with large habitat areas had many individuals overall, and large habitat patches on average contained many 258

individuals. On average, there were 23 individuals per population (median: 19), and the largest population 259

included 229 individuals in a 1000 ha patch. Consequently, population sizes varied among patches and among 260

cities, thereby affecting drift intensities. Yet, drift intensity was constant across dispersal scenarios in every 261

patch, making it possible to directly attribute genetic response variations across scenarios to variations in 262

dispersal patterns. 263

Dispersal and reproduction parameters 264

Dispersal between populations depended on cost-distances computed for the three cost scenarios. 10 % of 265

the individuals of each population could disperse from their origin population to another at each generation, 266

over a total of 250 generations. The dispersal probability from population i to population j decreased with 267

cost-distance, such that: pdij
= e−αdij . We used the same α value as specified in the previous section. 268

269

The population size was constant over time and the sex-ratio initially equal to 1. After birth, individuals 270

potentially dispersed (see above) and could then only mate and reproduce with individuals from the same 271

population. Each female had 3 offspring, with a sex-ratio averaging 1, and supernumerary individuals, either 272

juveniles or adults, died to keep the local population constant. Initial genotypes were randomly generated by 273

drawing 1 in 20 alleles, twice for each of the 20 simulated loci and for every individual. Mutations could happen 274

at a 0.0005 rate. We carried out the simulations using PopGenReport R package (Adamack and Gruber, 2014). 275
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Genetic data analyses 276

We wanted to assess the influence of the dispersal scenarios on the genetic responses simulated in each 277

type of habitat. Thus, at the end of the simulations, we assessed both (i) intra-population genetic diversity 278

(local) and (ii) inter-population genetic differentiation (pairwise), and their variations according to the scenarios 279

and types of habitat (i.e., Forest, UGS, and their respective "interface" patches). Besides, to gain insights into 280

gene flow influence on spatial genetic patterns in cities, we assessed the scaling properties of isolation by 281

landscape resistance patterns, and whether populations formed genetic clusters coinciding with the spatial 282

structure of habitat patches. Genetic analyses were performed using the graph4lg package (Savary et al., 283

2021b) in R (R Core Team, 2020). 284

Genetic diversity and differentiation 285

We estimated genetic diversity within each population as the mean number of alleles per locus when con- 286

sidering all individuals, i.e., allelic richness. We then averaged allelic richness for each habitat type ("Forest", 287

"Forest Interface", "UGS", "UGS Interface"), each scenario and each city (n = 4 × 3 × 325). In parallel, we as- 288

sessed pairwise genetic differentiation using the DPS index (Bowcock et al., 1994), i.e., 1− proportion of shared 289

alleles. We distinguished three types of population pairs, i.e., "Forest-Forest", "Forest.UGS" and "UGS.UGS", 290

and averaged values for each scenario and city (n = 3× 3× 325). 291

Isolation by Landscape Resistance (IBLR) 292

Isolation by distance (IBD) patterns have been known for a long time for providing insights into the relative 293

influence of drift and gene flow on genetic differentiation (Hutchison and Templeton, 1999; Slatkin, 1993). We 294

wanted to assess to which degree differences in spatial patterns of dispersal due to cost scenarios could affect 295

the spatial genetic structure. We therefore analyzed isolation by landscape resistance patterns (IBLR) and 296

their scaling properties. For that purpose, we iteratively computed Mantel correlation coefficients between 297

DPS and cost-distances, while filtering population pairs according to increasing cost-distance thresholds until 298

all population pairs became included. We identified the threshold at which this coefficient was maximal and 299

called it Distance of Maximum Correlation (DMC), following Van Strien et al. (2015). To obtain comparable 300

values across cities, we standardized the range of the DMC between 0 and 1 by dividing it by the maximum 301

cost-distance between population pairs. A value of 1 is supposed to indicate cases where IBLR leads to a 302

continuous and linear relationship between DPS and cost-distances at the scale of the whole study area (i.e., 303

the equivalent of the case I IBD pattern sensu Hutchison and Templeton (1999), although we did not use 304

the exact same framework as for classical Isolation By Distance analyses (Rousset, 1997)). On the contrary, 305

values between 0 and 1 could indicate the presence of a plateau in the relationship (case IV IBD pattern sensu 306

Hutchison and Templeton (1999))(Van Strien et al., 2015). Besides, the correlation coefficient value between 307

DPS and cost-distances at theDMC showed us towhat extent genetic differentiation increased due to increases 308

in cost-distance. 309

Module partitions 310

In each city and for each scenario (n = 325× 3), we modeled population genetic structure using a genetic 311

graph. Each node represented a population, and the links were weighted by DPS values. To identify genetic 312

clustering patterns potentially emerging from dispersal limitations between sets of habitat patches, we identi- 313

fiedmodules in these graphs using the fast greedymodularity algorithm by Clauset et al. (2004). This algorithm 314

identifies the partition of populations into modules maximizing a modularity index. This index takes genetic 315

differentiation values into account and takes large values when populations from the same module are also 316

genetically similar. 317

318
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We wanted to determine (i) whether the spatial distribution of genetic modules reflected the dispersal con- 319

straints imposed by the different cost scenarios, and (ii) whether populations from different types of habitat 320

tended to be assigned to different genetic clusters as well. We therefore compared the genetic modules with 321

(i) modules computed in similar population graphs with links weighted by cost-distance values instead of DPS 322

values, and (ii) the classification of habitat patches into forests or UGS. In the former case, we set the number 323

of modules in each spatial cost-distance graph to be equal to the optimal number of modules identified in 324

each corresponding genetic graph. Then, we compared these partitions using the Adjusted Rand Index (ARI, 325

Hubert and Arabie (1985)), following themethod described by Savary et al. (2022). This index takes itsmaximal 326

value (1) when two nodes from the same module in one graph also belong to the same module in the other 327

graph. It is equal to 0 when two partitions are comparable to random partitions. It takes its minimal value (-1) 328

when partitions are totally distinct, i.e., when two nodes from the same module are in different modules in 329

the other graph. 330

Genetic response modeling 331

Wemodeled the different genetic responses as a function of the dispersal cost scenarios (and habitat type 332

or type of population pairs for the allelic richness and genetic differentiation, respectively) usingmixed-effects 333

models with random intercepts at the city level. This allowed us to take into account the lack of statistical inde- 334

pendence between simulationsmade for three cost scenarios in the same city. In that way, we also accounted 335

for the fact that all cities do not have the same habitat area, number of populations and individuals, which 336

created overall differences in genetic structure, irrespective of cost scenarios. 337

338

Because all our genetic responses did not have the same range of values and distributions, we usedmixed- 339

effects models assuming various distributions and link functions (when generalized), as explained in the Re- 340

sults section and Supporting Information 3. Models were fitted with a Restricted Maximum Likelihood ap- 341

proach using the lme4 (Bates et al., 2007) and glmmTMB (Brooks et al., 2017) R packages. The adequation be- 342

tween the distribution of the residuals and the models’ assumptions were checked using a simulation-based 343

approach implemented in the DHARMa R package (Hartig, 2020). We only interpreted the models whose resid- 344

uals matched these assumptions. Because wemodeled simulated values for which we controlled the number 345

of replicates, we did not interpret the p-values (which took the lowest value reported by the R software pro- 346

gram in most cases)(White et al., 2014). Mean values per fixed effect level and their confidence intervals (95 347

%) were obtained using emmeans (Russel, V. L., 2021). 348

349

When both the cost scenarios and the habitat type (4 levels: Forest, Forest Interface, UGS, UGS Interface) 350

or type of pairs (3 levels: Forest-Forest, Forest-UGS, UGS-UGS) were considered as fixed effects, we included 351

an interaction between these two variables in the models. Indeed, variations in dispersal were not supposed 352

to affect the genetic responses similarly according to the type of habitat considered. 353

354

Assessing results’ sensitivity to city size and habitat amount variations among cities 355

We wanted to check whether the results were consistent across cities regardless of prominent differences 356

in terms of city size and habitat cover. To this end, we analyzed the results by considering separate groups 357

of cities, created from the quartiles of the city sizes (study area radii) and of the total amount of habitat (UGS 358

and forest total area). Additionally, we assessedwhether allelic richness contrasts between habitat types were 359

similar when the connectivity of UGS (ECUGS.UGS ) was larger than that of forests (ECForest.Forest). 360
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Results 361

Habitat connectivity 362

The 325 cities delineated in this study were covered at 20 % ± 1 % by artificial areas and had a radius 363

ranging from 5 to 40 km, with a mean of 10.8 km and a median of 8.5 km. Their population averaged 300,000 364

inhabitants in 2018 (median: 140,000, maximum: 6,000,000). In these areas, the overall amount of reachable 365

habitat (EC) was mainly due to forest patches and much less to UGS, with ECForest.Forest largely higher 366

thanECUGS.UGS , and thanECForest.UGS , although to a lesser extent (Figure 2A). This contrast was stronger 367

when modeling connectivity according to dispersal cost scenarios 2 and 3 (Figures S3 and S4). However, in 368

some urban areas where forest areas are very limited, the contribution of UGS to the amount of reachable 369

habitat was the highest, as reflected by the proportional share of ECUGS.UGS (Figure 2B). 370

371

Genetic diversity 372

The simulated genetic diversity varied substantially both among cities and among cost scenarios and habi- 373

tat types (Figure 3). Wemodeled the mean allelic richness across populations for each city and type of habitat 374

occupied by the populations (Forest, UGS, Forest Interface, UGS Interface), as a function of habitat type and 375

cost scenario using a linear mixed-effects model (LMM) with random intercept at the city level. The random 376

effects explained 78 % of the overall variance (ICC: 0.783) due to large differences among cities. The residual 377

distribution was satisfactory, as well as the model fit (conditional R2 = 0.91, marginal R2 = 0.56). Although 378

population sizes, drift intensity, dispersal rates and dispersal distances were constant in a given city from 379

one scenario to another, the overall allelic richness decreased substantially from scenario 1 to 3 in all types 380

of populations when taking among-cities differences into account (Table 2), as expected from Figure 3. This 381

resulted from stronger constraints on gene flow exerted by artificial areas, roads, and water bodies, which 382

modified the respective intensities of drift and gene flow. The effect of the interaction between cost scenarios 383

and habitat types was much lower than their main effects (χ2 values from Wald test: main effect of cost sce- 384

nario: χ2=16037.6, main effect of habitat type: χ2=5960.9, interaction: χ2=890.1). In the cost scenario 1, allelic 385

richness was in all habitats relatively higher than in other scenarios, although it took slightly lower values in 386

UGS (Table 2). For a given type of habitat (Forest, UGS), the highest allelic richness was observed in Interface 387

habitats. It strongly decreased from scenario 1 to 3 but the decrease depended on the type of patches in 388

which the populations were located. In Forest and Forest Interface patches, allelic richness was halved from 389

scenario 1 to 3 (Forest: 10.68 to 5.93, Forest Interface: 11.68 to 6.60). It was almost divided by three in UGS 390

Interface (10.95 to 4.19), and almost by four in UGS (9.37 to 2.39) (see CI in Table 2). 391

Genetic differentiation 392

Themean genetic differentiation (DPS) between populationswas high overall (> 0.6) and increased from0.62 393

to 0.72 and 0.85 in scenarios 1, 2 and 3, respectively (Figure 4). Genetic differentiation was lower between 394

forest populations than between UGS populations and took intermediate values between forest and UGS 395

populations. We first used a generalized linear mixed model (GLMM) assuming a beta distribution and using 396

a logit link function to model the DPS values as a function of the cost scenario and type of population pair 397

(i.e., Forest-Forest, Forest-UGS, UGS-UGS). We also used a LMM assuming a normal distribution. The GLMM 398

provided a slightly better fit than the LMM. However, its residuals were slightly over-dispersed, whereas the 399

LMM residuals had a satisfactory distribution. Both models provided similar results and we here present the 400

LMM results. The random effects (city-level random intercepts) explained 76 % of the overall variance (ICC: 401

0.759) due to large differences among cities. Themodel fit was good (conditionalR2 = 0.90,marginalR2 = 0.58). 402

There were large differences among both cost scenarios and types of population pairs, after accounting for 403

among-cities differences (Table 3). In that case also, the effect of the interaction between cost scenarios and 404
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Scenario Habitat type Estimate Lower.CI Upper.CI
Sc. 1 Forest 10.68 10.41 10.96
Sc. 2 Forest 9.18 8.90 9.46
Sc. 3 Forest 5.93 5.65 6.21
Sc. 1 UGS 9.37 9.09 9.65
Sc. 2 UGS 4.73 4.45 5.01
Sc. 3 UGS 2.39 2.12 2.67
Sc. 1 Forest Interface 11.68 11.40 11.95
Sc. 2 Forest Interface 10.05 9.77 10.33
Sc. 3 Forest Interface 6.60 6.32 6.87
Sc. 1 UGS Interface 10.95 10.67 11.23
Sc. 2 UGS Interface 8.13 7.85 8.41
Sc. 3 UGS Interface 4.19 3.91 4.47

Table 2. Results of the mixed-effects model of the simulated genetic diversity. Predicted values and confi-
dence intervals of the mean allelic richness across populations at the city level as a function of dispersal cost
scenario, habitat type and their interaction. "Forest Interface" patches correspond to the forest patches most
connected to UGS according to the FForest↔UGS metric, whereas "UGS Interface" patches correspond to the
UGS patches most connected to forests according to the FUGS↔Forest metric.

types of population pairs was much lower than their main effects (main effect of cost scenario: χ2 =11824.2, 405

main effect of population pairs type: χ2 =3714.1, interaction: χ2 =850.0). Overall, the genetic differentiation 406

among populations was lower in scenario 1 than in scenario 2, and the latter lower than in scenario 3, in 407

accordance with Figure 4 (Table 3). The genetic differentiation among Forest populations was overall lower 408

than between Forest and UGS populations, itself lower than among UGS populations. The increase in genetic 409

differentiation from scenarios 1 to 2 and 3 was slightly lower for pairs of populations located in forests (see 410

mean values and their CI in Table 3). 411

Scenario Population pair Estimate Lower.CI Upper.CI
Sc. 1 Forest-Forest 0.599 0.589 0.609
Sc. 2 Forest-Forest 0.620 0.610 0.630
Sc. 3 Forest-Forest 0.764 0.754 0.774
Sc. 1 Forest-UGS 0.628 0.618 0.638
Sc. 2 Forest-UGS 0.752 0.742 0.762
Sc. 3 Forest-UGS 0.881 0.871 0.891
Sc. 1 UGS-UGS 0.644 0.634 0.654
Sc. 2 UGS-UGS 0.801 0.790 0.811
Sc. 3 UGS-UGS 0.902 0.892 0.912

Table 3. Results of the mixed-effects model of the simulated genetic differentiation. Predicted values and
confidence intervals of the DPS among populations at the city level as a function of dispersal cost scenario,
type of population pairs, and their interaction.

Distance of Maximum Correlation (DMC) 412

IBLR relationships were very different from one dispersal cost scenario to another. In scenario 1, the DMC 413

was overall equal to the maximum cost-distance between populations (Figure 5A), suggesting that gene flow 414

and drift jointly influenced genetic differentiation at the scale of the whole study area. The slope of the IBLR 415

relationship, reflected by the Mantel correlation coefficient at the DMC (Figure 5B), was less steep in this 416

scenario, indicating that the increase of genetic differentiation was somehow limited when cost-distances 417

increased. In contrast, in scenario 2, the mean DMC was equal to 0.47 and the corresponding correlation 418
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coefficients were high. This implies that for a subset of populations separated by cost-distances lower than a 419

given threshold, therewas a strong linear relationship between genetic distances and cost-distances reflecting 420

significant gene flow between neighbor populations. Finally, in scenario 3, the low DMC values (Figure 5A) 421

suggest that the IBLR relationships were weak and that genetic drift had a much stronger influence than 422

gene flow on genetic differentiation. The mixed-effects models did not have a satisfactory fit for the DMC. 423

In contrast, they confirmed that the differences in the correlation coefficients measured at the DMC across 424

cost scenarios, visible in Figure 5B, were substantial even when taking among-cities differences into account. 425

The values predicted by the LMM were equal to 0.55 (95% CI [0.54, 0.56]) in the scenario 1, 0.81 (95% CI [0.80, 426

0.83]) in the scenario 2, and 0.78 (95%CI [0.76, 0.79]) in the scenario 3 (see Supporting Information 3). However, 427

given that the distribution of the DMC values in the latter scenario reflects an absence of IBLR relationship, 428

the corresponding correlation coefficients should not be interpreted for the scenario 3. 429

Population graph modularity 430

The modules identified in genetic graphs best coincided with the modules from similar graphs with links 431

weighted by cost-distances in scenario 2 (Figure 6A). Indeed, mean ARI values were equal to 0.12, 0.27 and 432

0.00 in scenarios 1, 2 and 3, respectively (corresponding median values: 0.02, 0.25, 0.00). Similarly, in scenario 433

2, genetic modules best reflected the distinction between forest and UGS patches (Figure 6B). This means 434

that, in this scenario, it was more likely for two populations belonging to the same genetic cluster to be close 435

when considering cost-distances, and to be located in the same habitat type. Thus, the genetic structure of 436

populations and either their spatial structure when taking dispersal constraints into account, or their habitat 437

type classification (UGS vs forests) matched in a stronger way in this intermediate cost scenario. This was not 438

the case when gene flow was less constrained by unfavorable areas (i.e., scenario 1) or, on the contrary, highly 439

constrained by these areas (i.e., scenario 3). We did not interpret the results of the mixed-effects models of 440

ARI values, because the strong heteroscedasticity and atypical distribution of their values prevented us from 441

obtaining satisfactory models. 442

Consistencyof analysis results among cities havingdifferent sizes andhabitat amount 443

The heterogeneity of city sizes, due to the varying radius of the disks containing 20 % of artificial areas, had 444

negligible effects on the results. In the supplementary materials, we provide the same figures as included in 445

this section plotted separately after splitting the urban areas in 4 quartiles based on their total area (Figures S5, 446

S6, S7, S8, S9, and S10). Similarly, the results were highly consistent when considering cities including varying 447

total habitat areas (Figures S11, S12, S13, and S14). Finally, in the few cities where the connectivity of UGS 448

was higher than that of forests due to small forest areas, allelic richness contrasts were consistent with the 449

ones observed for the whole set of cities in scenarios 2 and 3 (Table S3). However, in these cities, under the 450

scenario 1, UGS and UGS interface patches tended to maintain higher diversity levels than forest patches. 451

Discussion 452

We simulated the genetic structure of urban tolerant forest species occupying forests and urban green 453

spaces in 325 European cities, while varying species abilities to cross the least favorable areas. We thereby 454

found that in urban contexts, variations in dispersal movement behaviors alone can shape highly variable 455

genetic diversity contrasts between habitat types and isolation by landscape resistance patterns. The sub- 456

stantial variations in simulated genetic responses between forests and urban green spaces could be due to 457

their connectivity differences, reflecting their respective extent, spatial configuration and location within the 458

urban matrix. These results were obtained without making any assumption regarding the respective quality 459

of these habitats in our simulations. Urban ecologists should thus bear in mind the strong influence that dis- 460

persal between urban habitats exhibiting different spatial distributions can have on genetic patterns when 461
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assessing the relative influence of dispersal, adaptation, resource availability or biotic interactions on species 462

responses to urban environments. Our results also provide insights into connectivity modeling and biodiver- 463

sity conservation in these contexts. 464

Variations in dispersal constraints can shape highly contrasted genetic patterns 465

In our simulations, as dispersal across the least favorable land cover types became more costly, genetic 466

diversity tended to decrease in both forest and UGS, and genetic differentiation tended to increase between 467

populations. Althoughoverall genetic responses, such as themean allelic richness, differed among cities, varia- 468

tions among cost scenarios for a given city were relatively consistent. Contrasts weremainly due to differences 469

of total habitat areas and number of patches, which determined the number of populations and individuals, 470

and consequently the intensity of drift in each city. In urban contexts, differences in effective population sizes 471

among species are known for being an important driver of the variability of their genetic responses (Schmidt 472

et al., 2020), and are frequently invoked as the main driver of genetic diversity (Miles et al., 2019). However, 473

these population size differences do not explain the strongly contrasted genetic responses among cost sce- 474

narios we obtained for a given city because the number of individuals in each population stayed constant 475

whatever the scenario. Thus, only gene flow variations can explain these contrasts. 476

477

The resistance of artificial areas, roads and water bodies to species dispersal varied according to the cost 478

scenario, but the total cost-distance that a fixed proportion of individuals could cover at each generation did 479

not vary. In other words, the scenarios essentially modified the spatial pattern of dispersal movements, but 480

not the effective distance they could cover. Consequently, for a given number of dispersing individuals, dis- 481

persal paths crossing unfavorable land cover types became less likely to be followed from scenario 1 to 3 482

because the cost of paths crossing other land cover types (e.g., grasslands, agricultural areas) remained the 483

same whatever the scenario. Our results thus reflect the potential genetic responses of several species hav- 484

ing the same individual density within patches, the same absolute dispersal abilities, and dispersal rates, but 485

different dispersal behaviors in urban environments. It is noteworthy that simulated variations in the spatial 486

pattern of dispersal can reproduce the inter-specific variability of patterns of genetic diversity and differentia- 487

tion commonly observed in empirical landscape genetic studies (as reviewed by Fusco et al. (2021) and Miles 488

et al. (2019)). For instance, the very subtle differences in genetic diversity simulated under the scenario 1 re- 489

call the empirical results of Khimoun et al. (2020). In contrast, the sharper differences simulated under the 490

scenario 3 are akin to the significant genetic contrasts between urban and non-urban settings observed by 491

Delaney et al. (2010) in several species. Although our results do not provide an explanation for these specific 492

empirical findings, they show that differences in dispersal patterns could be sufficient to generate similar ge- 493

netic patterns. 494

495

When drift intensity is constant but the spatial pattern of gene flow changes, the relative influence of drift 496

and gene flow on genetic differentiation is logically modified in a different way according to the respective lo- 497

cation of populations. Variations in the spatial range at which the relationship between genetic differentiation 498

and cost-distances was the strongest revealed how contrasted genetic differentiation patterns were across 499

scenarios. Indeed, when gene flow was not strongly restricted across artificial areas, roads and water bod- 500

ies, genetic differentiation only increased progressively as cost-distance increased, producing a continuous 501

pattern of genetic variations at the scale of the entire urban areas. This pattern is similar to the case I IBD 502

pattern, according to the typology by Hutchison and Templeton (1999), and suggests that stepping-stone dis- 503

persal movements can prevent strong genetic differentiation in species with good abilities to disperse within 504

cities. On the contrary, this pattern was only apparent between subsets of populations in scenario 2, and ge- 505

netic differentiation increased more strongly with cost-distances. This corresponds to the case IV IBD pattern, 506

according to Hutchison and Templeton (1999), and indicates that considering species having intermediate abil- 507

ities to move across cities, the continuous and progressive increase of genetic differentiation resulting from 508
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dispersal limitation is only observed at small scales, within well connected subsets of populations. Finally, 509

when dispersal movements in unfavorable areas were highly constrained, the relationship between genetic 510

differentiation and cost-distances flattened out because drift became themain driver of the genetic response, 511

and not gene flow anymore, which somehow recalls the case III IBD pattern described by Hutchison and Tem- 512

pleton (1999). In sum, changes in dispersal cost scenarios led to contrasted genetic differentiation patterns 513

because they modified the relative frequency of dispersal events over each path connecting two populations. 514

In other words, they rewired dispersal networks. The consequences of these changes in dispersal spatial pat- 515

terns reinforce previous calls for a better consideration of population network topology in landscape genetics 516

(Savary et al., 2021a; Van Strien, 2017). 517

518

In landscape genetics, unbridgeable barriers to dispersal are commonly inferred by identifying landscape 519

features separating spatially structured genetic clusters of populations (Manel et al., 2007; Safner et al., 2011). 520

Interestingly, our results show that genetic modules best reflected the spatial structure of genetic differenti- 521

ation patterns in the second cost scenario, and not in the third one, which exerted the strongest constraints 522

on dispersal movements. We could have expected the opposite and this suggests that there is an analytical 523

limit in our ability to detect barriers to dispersal when gene flow is so constrained that drift is the main driver 524

of genetic differentiation. 525

526

Several studies have evidenced that other processes than gene flow drive different population dynamics 527

and individual fitness in urban populations as compared with non-urban ones. For example, urban bird popu- 528

lations can feed on more diverse food items, sometimes at the expense of their quality (Sinkovics et al., 2021), 529

and can exhibit shifted and/or more variable phenotypes (Thompson et al., 2021), due to plasticity or genetic 530

adaptations. If our results do not deny the existence of these well-known processes, they nonetheless call for 531

a better consideration of dispersal spatial patterns when inferring the respective influence of different drivers 532

of population genetic structure in urban areas. 533

Influence of the spatial distribution of multiple urban habitat types 534

Forest populations tended tomaintain a higher genetic diversity than UGS populations and to be less differ- 535

entiated than pairs of UGS populations. Besides, genetic differentiation levels measured between these two 536

types of habitats were intermediate, as compared with the high and low levels measured within UGS and for- 537

est patches, respectively. Similar genetic responses to urbanization have already been empirically observed 538

in several species, from birds and reptiles (Delaney et al., 2010), to rodents (DeMarco et al., 2021; Gortat et al., 539

2015) and larger mammals (Stillfried et al., 2017; Wandeler et al., 2003). In our simulations, they mainly stem 540

from the fact that the contribution of forest areas to the overall amount of reachable habitat was much larger 541

than that of UGS in most cities. Besides, UGS patches are usually smaller and also harder to reach due to 542

their location within the urban fabric. This explains why, except in scenario 1, even in cities where UGS con- 543

tributedmore to the amount of reachable habitat than forests, similar genetic contrasts were observed. These 544

differences in terms of area and connectivity between UGS and surrounding natural areas provide a likely ex- 545

planation to previous empirical observations in urban landscape genetics, as habitat amount and connectivity 546

are often mentioned as key drivers of urban biodiversity (Beninde et al., 2015). 547

548

The stronger relative isolation of UGS was also apparent in the genetic clustering pattern. In the second 549

cost scenario, we observed that forest and UGS populations tended to form separate genetic clusters. This 550

sub-structuration of genetic differentiation patterns within the urban core areas had also been empirically 551

evidenced in striped field mouse populations in Warsaw (Gortat et al., 2015) or in wild boar populations in 552

Berlin (Stillfried et al., 2017). 553

554

However, we also observed that the presence of habitat patches well connected to patches of another 555
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habitat type seemed to locally buffer these differences among habitat types by promoting gene flow at the 556

interface between forest and UGS. Therefore, the connectivity analyzes and genetic simulations together sug- 557

gest that peri-urban and less anthropized areas can be important sources of biodiversity in cities when they 558

are connected to intra-urban habitat patches, in accordance with previous simulations (Snep et al., 2006) and 559

empirical observations (Stillfried et al., 2017). The corollary of this is the potential sink role of UGS, as pre- 560

viously raised by Lepczyk et al. (2017) and Verrelli et al. (2022). This could have a negative influence on the 561

long-term persistence and genetic adaptation of wild populations both within and outside cities, and remains 562

to be investigated. 563

Implications for biodiversity management in urban areas 564

Making urban planning policies compatible with the conservation of biodiversity is crucial. These policies 565

are commonly based on biodiversity surveys and on the conservation of so-called "green infrastructures", 566

including several types of natural areas, UGS and the corridors connecting them. Our results stress several 567

points that should deserve more attention in that context. First, genetic diversity and connectivity differences 568

between forest and UGS were substantial regardless of the spatial extent of the city under consideration. In 569

most cases, the largest habitat areas and biodiversity levels are to be found in natural areas surrounding city 570

centers and not in UGS. This should encourage planners to consider large areas including themost biodiverse 571

and favorable places to wildlife, often located at the periphery of cities. 572

573

Our connectivity analyzes and genetic simulations in 325 European cities also suggest that urban planners 574

should identify habitat interface areas and consider themas "gateways" throughwhich species canmove from 575

less to more anthropized habitats, as suggested by Gortat et al. (2017). We could also expect these areas to 576

play a crucial role for maintaining species diversity within cities as long as gene flow and drift effects affect 577

single species genetic structure in a comparable way as colonization and extinction processes affect species 578

diversity (Vellend and Geber, 2005). 579

580

Finally, our results confirm that species which can hardly move across artificial areas and roads will not 581

maintain high levels of genetic diversity within cities. This can explain why some species are very rarely ob- 582

served in urban areas, but this could also mean that urban populations of some species are already engaged 583

in a local extinction vortex. As such, considering the long-term effect of urbanization on genetic structure 584

and its potential consequences for population persistence is key for biodiversity management (Sarrazin and 585

Lecomte, 2016), and particularly in urban areas where these processes can be fast (Szulkin et al., 2020). 586

Limitations and perspectives 587

Our analyzes focused only on urban tolerant forest species occupying forest and UGS. These species only 588

represent a small proportion of urban biodiversity. Reproducing these analyses by considering either special- 589

ist species using another type of habitat or more generalist species could help obtain a broader picture of 590

biodiversity dynamics in urban settings. Besides, most forest patches were located at the periphery of cities, 591

whereas UGS were more central, and this peculiar spatial distribution largely affected our results. Assessing 592

how the spatial distribution of other types of urban and/or peri-urban habitats affects genetic patterns would 593

also be needed. 594

595

For comparison purposes, we here assumed that UGS mapped by the Urban Atlas database were suitable 596

for urban tolerant forest species. However, habitat patches may not all be suitable for these species and 597

many other patches could fit their needs within cities (e.g., private wooded backyards in residential areas). 598

This limitation should encourage the use of fine-grained remote sensing data to map urban habitats with 599

more accuracy. Yet, acquiring such maps for a number of cities providing sufficient statistical power in a stan- 600
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dardized way remains a challenge. 601

602

Although the genetic simulations we carried out can help prioritize habitat patches in urban planning con- 603

text, they only reflect the potential genetic responses of a single species. These simulations could be advanta- 604

geously completed by empirical surveys for assessing whether they closely reflect actual ecological processes. 605

Our simulation framework could also be implemented in areas where genetic data are already available for 606

testing whether dispersal limitations can explain the empirically observed genetic structure. Besides, adding 607

to the simulation local habitat features, and how they locally influence several species based on their niche op- 608

timum, breadth, and competitive interactions (alike in the meta-community simulation framework of Thomp- 609

son et al. (2020)) could provide insights into species diversity patterns in urban areas. This could help deter- 610

mine whether connectivity restoration measures are always positive for biodiversity conservation in urban 611

areas; which may not always be guaranteed when invasive species also benefit from them. 612

613

Finally, although substantial differences among urban areas in terms of reachable amounts of habitat (i.e., 614

connectivity) probably explain most of the variability in genetic responses across cities, we did not investigate 615

the structural causes of these differences. Indeed, the interplay of urban formwith the spatial configuration of 616

forest and UGS likely determines habitat connectivity patterns and species genetic structure. Further research 617

is needed for understanding these relationships and providing broad guidance on urban planning at a time 618

when increased urbanization and biodiversity conservation too often seem incompatible. 619

Acknowledgements 620

We are particularly grateful to the ARP-Astrance company for its constant support along the project. Sim- 621

ulations and analyses were carried out on the calculation "Mésocentre" facilities of the University of Franche- 622

Comté. 623

Fundings 624

PS was supported by the ARP-Astrance company for the duration of the project. 625

Conflict of interest disclosure 626

The authors declare that they comply with the PCI rule of having no financial conflicts of interest in relation 627

to the content of the article. 628

Data, script, code, and supporting information availability 629

Data and codes are available online: https://doi.org/10.5281/zenodo.8180746. Supporting informa- 630

tion is also available online: https://doi.org/10.5281/zenodo.10789195 631

References 632

Adamack, A. T. and Gruber, B. (2014). PopGenReport: simplifying basic population genetic analyses in R. 633

Methods in Ecology and Evolution, 5(4):384–387. 634

Angel, S., Parent, J., Civco, D. L., Blei, A., and Potere, D. (2011). The dimensions of global urban expansion: 635

Estimates and projections for all countries, 2000–2050. Progress in Planning, 75(2):53–107. 636

17

https://doi.org/10.5281/zenodo.8180746
https://doi.org/10.5281/zenodo.10789195


Aronson, M. F., La Sorte, F. A., Nilon, C. H., Katti, M., Goddard, M. A., Lepczyk, C. A., Warren, P. S., Williams, 637

N. S., Cilliers, S., Clarkson, B., et al. (2014). A global analysis of the impacts of urbanization on bird and plant 638

diversity reveals key anthropogenic drivers. Proceedings of the Royal Society B, 281(1780):20133330. 639

Balbi, M., Petit, E. J., Croci, S., Nabucet, J., Georges, R., Madec, L., and Ernoult, A. (2019). Ecological relevance of 640

least cost path analysis: An easy implementation method for landscape urban planning. Journal of Environ- 641

mental Management, 244:61–68. 642

Balkenhol, N., Cushman, S., Storfer, A., andWaits, L. (2016). Landscape genetics: concepts, methods, applications. 643

John Wiley & Sons. 644

Bates, D., Sarkar, D., Bates, M. D., and Matrix, L. (2007). The lme4 package. R package version, 2(1):74. 645

Beninde, J., Veith, M., and Hochkirch, A. (2015). Biodiversity in cities needs space: a meta-analysis of factors 646

determining intra-urban biodiversity variation. Ecology letters, 18(6):581–592. 647

Blair, R. B. (1996). Land use and avian species diversity along an urban gradient. Ecological applications, 648

6(2):506–519. 649

Bowcock, A. M., Ruiz-Linares, A., Tomfohrde, J., Minch, E., Kidd, J. R., and Cavalli-Sforza, L. L. (1994). High 650

resolution of human evolutionary trees with polymorphic microsatellites. Nature, 368(6470):455–457. 651

Brooks, M. E., Kristensen, K., Van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Machler, 652

M., and Bolker, B. M. (2017). glmmtmb balances speed and flexibility among packages for zero-inflated 653

generalized linear mixed modeling. The R journal, 9(2):378–400. 654

Clauset, A., Newman, M. E., andMoore, C. (2004). Finding community structure in very large networks. Physical 655

review E, 70(6):1–6. 656

Delaney, K. S., Riley, S. P., and Fisher, R. N. (2010). A rapid, strong, and convergent genetic response to urban 657

habitat fragmentation in four divergent and widespread vertebrates. PLoS ONE, 5(9):e12767. 658

DeMarco, C., Cooper, D. S., Torres, E., Muchlinski, A., and Aguilar, A. (2021). Effects of urbanization on popula- 659

tion genetic structure of western gray squirrels. Conservation Genetics, 22(1):67–81. 660

Díaz, S.M., Settele, J., Brondízio, E., Ngo, H., Guèze,M., Agard, J., Arneth, A., Balvanera, P., Brauman, K., Butchart, 661

S., et al. (2019). The global assessment report on biodiversity and ecosystem services: Summary for pol- 662

icy makers. Technical report, Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem 663

Services. 664

Fall, A., Fortin, M.-J., Manseau, M., andO’Brien, D. (2007). Spatial graphs: principles and applications for habitat 665

connectivity. Ecosystems, 10(3):448–461. 666

Fanelli, R. E., Martin, P. R., Robinson, O. J., and Bonier, F. (2022). Estimates of species-level tolerance of urban 667

habitat in north american birds. 668

Fidino, M., Gallo, T., Lehrer, E.W., Murray, M. H., Kay, C., Sander, H. A., MacDougall, B., Salsbury, C.M., Ryan, T. J., 669

Angstmann, J. L., et al. (2020). Landscape-scale differences among cities alter common species’ responses 670

to urbanization. Ecological Applications, 2253. 671

Foltête, J.-C., Vuidel, G., Savary, P., Clauzel, C., Sahraoui, Y., Girardet, X., and Bourgeois, M. (2021). Graphab: an 672

application for modeling and managing ecological habitat networks. Software Impacts, 8:100065. 673

Frankham, R., Ballou, J. D., and Briscoe, D. A. (2004). A primer of conservation genetics. Cambridge University 674

Press. 675

18



Fusco, N. A., Carlen, E. J., and Munshi-South, J. (2021). Urban landscape genetics: Are biologists keeping up 676

with the pace of urbanization? Current Landscape Ecology Reports, pages 1–11. 677

Gortat, T., Rutkowski, R., Gryczynska, A., Kozakiewicz, A., and Kozakiewicz, M. (2017). The spatial genetic struc- 678

ture of the yellow-neckedmouse in an urban environment–a recent invader vs. a closely related permanent 679

inhabitant. Urban Ecosystems, 20(3):581–594. 680

Gortat, T., Rutkowski, R., Gryczyńska, A., Pieniążek, A., Kozakiewicz, A., and Kozakiewicz, M. (2015). Anthro- 681

popressure gradients and the population genetic structure of apodemus agrarius. Conservation Genetics, 682

16(3):649–659. 683

Hartig, F. (2020). Dharma: residual diagnostics for hierarchical (multi-level/mixed) regression models. R pack- 684

age version 0.3, 3(5). 685

Hubert, L. and Arabie, P. (1985). Comparing partitions. Journal of classification, 2(1):193–218. 686

Hutchison, D. W. and Templeton, A. R. (1999). Correlation of pairwise genetic and geographic distance mea- 687

sures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evo- 688

lution, 53(6):1898–1914. 689

Khimoun, A., Doums, C., Molet, M., Kaufmann, B., Peronnet, R., Eyer, P., andMona, S. (2020). Urbanizationwith- 690

out isolation: the absence of genetic structure among cities and forests in the tiny acorn ant temnothorax 691

nylanderi. Biology letters, 16(1):20190741. 692

Lemoy, R. and Caruso, G. (2020). Evidence for the homothetic scaling of urban forms. Environment and Planning 693

B: Urban Analytics and City Science, 47(5):870–888. 694

Lepczyk, C. A., Aronson, M. F., Evans, K. L., Goddard, M. A., Lerman, S. B., and MacIvor, J. S. (2017). Biodiversity 695

in the city: fundamental questions for understanding the ecology of urban green spaces for biodiversity 696

conservation. BioScience, 67(9):799–807. 697

Lourenço, A., Álvarez, D., Wang, I. J., and Velo-Antón, G. (2017). Trapped within the city: Integrating demogra- 698

phy, time since isolation and population-specific traits to assess the genetic effects of urbanization. Molec- 699

ular Ecology, 26(6):1498–1514. 700

Manel, S., Berthoud, F., Bellemain, E., Gaudeul, M., Luikart, G., Swenson, J., Waits, L., Taberlet, P., and Con- 701

sortium, I. (2007). A new individual-based spatial approach for identifying genetic discontinuities in natural 702

populations. Molecular Ecology, 16(10):2031–2043. 703

McDonald, R. I., Mansur, A. V., Ascensão, F., Crossman, K., Elmqvist, T., Gonzalez, A., Güneralp, B., Haase, 704

D., Hamann, M., Hillel, O., et al. (2020). Research gaps in knowledge of the impact of urban growth on 705

biodiversity. Nature Sustainability, 3(1):16–24. 706

Miles, L. S., Dyer, R. J., and Verrelli, B. C. (2018). Urban hubs of connectivity: Contrasting patterns of 707

gene flow within and among cities in the western black widow spider. Proceedings of the Royal Society B, 708

285(1884):20181224. 709

Miles, L. S., Rivkin, L. R., Johnson, M. T., Munshi-South, J., and Verrelli, B. C. (2019). Gene flow and genetic drift 710

in urban environments. Molecular Ecology, 28(18):4138–4151. 711

Moreno-Monroy, A. I., Schiavina, M., and Veneri, P. (2021). Metropolitan areas in the world. delineation and 712

population trends. Journal of Urban Economics, 125:103242. 713

Munshi-South, J. and Richardson, J. (2020). Landscape genetic approaches to understanding movement and 714

gene flow in cities. In Szulkin, M., Munshi-South, J., and Charmantier, A., editors, Urban evolutionary biology, 715

pages 54–73. Oxford University Press, USA. 716

19



Ooms, J. (2014). The jsonlite package: A practical and consistent mapping between json data and r objects. 717

arXiv preprint arXiv:1403.2805. 718

Piano, E., Souffreau, C., Merckx, T., Baardsen, L. F., Backeljau, T., Bonte, D., Brans, K. I., Cours, M., Dahirel, M., 719

Debortoli, N., et al. (2020). Urbanization drives cross-taxon declines in abundance and diversity at multiple 720

spatial scales. Global Change Biology, 26(3):1196–1211. 721

Pulliam, H. R. (1988). Sources, sinks, and population regulation. The American Naturalist, 132(5):652–661. 722

R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical 723

Computing, Vienna, Austria. 724

Rochat, E., Manel, S., Deschamps-Cottin, M., Widmer, I., and Joost, S. (2017). Persistence of butterfly popula- 725

tions in fragmented habitats along urban density gradients: motility helps. Heredity, 119(5):328–338. 726

Rousset, F. (1997). Genetic differentiation and estimation of gene flow from F-statistics under isolation by 727

distance. Genetics, 145(4):1219–1228. 728

Russel, V. L. (2021). emmeans: Estimated marginal means, aka least-squares means. CRAN R package version 729

1.5.4. 730

Safner, T., Miller, M. P., McRae, B. H., Fortin, M.-J., andManel, S. (2011). Comparison of Bayesian clustering and 731

edge detection methods for inferring boundaries in landscape genetics. International Journal of Molecular 732

Sciences, 12(2):865–889. 733

Sahraoui, Y., Foltête, J.-C., and Clauzel, C. (2017). A multi-species approach for assessing the impact of land- 734

cover changes on landscape connectivity. Landscape Ecology, 32(9):1819–1835. 735

Santangelo, J. S., Ness, R. W., Cohan, B., Fitzpatrick, C. R., Innes, S. G., Koch, S., Miles, L. S., Munim, S., Peres- 736

Neto, P. R., Prashad, C., et al. (2022). Global urban environmental change drives adaptation in white clover. 737

Science, 375(6586):1275–1281. 738

Sarrazin, F. and Lecomte, J. (2016). Evolution in the anthropocene. Science, 351(6276):922–923. 739

Saura, S., Estreguil, C., Mouton, C., and Rodríguez-Freire, M. (2011). Network analysis to assess landscape 740

connectivity trends: application to European forests (1990–2000). Ecological Indicators, 11(2):407–416. 741

Savary, P., Clauzel, C., Foltête, J.-C., Vuidel, G., Girardet, X., Bourgeois, M., Martin, F.-M., Ropars, L., and Gar- 742

nier, S. (Preprint). Multiple habitat graphs: how connectivity brings forth landscape ecological processes. 743

Submitted to Ecological Applications. 744

Savary, P., Foltête, J.-C., Moal, H., and Garnier, S. (2022). Combining landscape and genetic graphs to address 745

key issues in landscape genetics. Landscape Ecology, X(X):1–17. 746

Savary, P., Foltête, J.-C., Moal, H., Vuidel, G., and Garnier, S. (2021a). Analysing landscape effects on dispersal 747

networks and gene flow with genetic graphs. Molecular Ecology Resources, 21(4):1167–1185. 748

Savary, P., Foltête, J.-C., Moal, H., Vuidel, G., and Garnier, S. (2021b). graph4lg: a package for constructing and 749

analysing graphs for landscape genetics in R. Methods in Ecology and Evolution, 12(3):539–547. 750

Schmidt, C., Domaratzki, M., Kinnunen, R., Bowman, J., and Garroway, C. (2020). Continent-wide effects of 751

urbanization on bird and mammal genetic diversity. Proceedings of the Royal Society B, 287(1920):20192497. 752

Schmidt, C. and Garroway, C. J. (2021). The population genetics of urban and rural amphibians in North Amer- 753

ica. Molecular Ecology. 754

20



Schoville, S. D., Widmer, I., Deschamps-Cottin, M., and Manel, S. (2013). Morphological clines and weak drift 755

along an urbanization gradient in the butterfly, Pieris rapae. PLoS ONE, 8(12):e83095. 756

Seto, K. C., Güneralp, B., and Hutyra, L. R. (2012). Global forecasts of urban expansion to 2030 and direct 757

impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences, 109(40):16083– 758

16088. 759

Sinkovics, C., Seress, G., Pipoly, I., Vincze, E., and Liker, A. (2021). Great tits feed their nestlings with more but 760

smaller prey items and fewer caterpillars in cities than in forests. Scientific reports, 11(1):1–13. 761

Slatkin, M. (1993). Isolation by distance in equilibrium and non-equilibrium populations. Evolution, 47(1):264– 762

279. 763

Snep, R. P., Opdam, P., Baveco, J., Wallis De Vries, M., Timmermans, W., Kwak, R., and Kuypers, V. (2006). 764

How peri-urban areas can strengthen animal populations within cities: A modeling approach. Biological 765

Conservation, 127(3):345–355. 766

Stillfried, M., Fickel, J., Börner, K., Wittstatt, U., Heddergott, M., Ortmann, S., Kramer-Schadt, S., and Frantz, 767

A. C. (2017). Do cities represent sources, sinks or isolated islands for urban wild boar population structure? 768

Journal of Applied Ecology, 54(1):272–281. 769

Szulkin, M., Munshi-South, J., and Charmantier, A. (2020). Urban evolutionary biology. Oxford University Press, 770

USA. 771

Tannier, C., Bourgeois, M., Houot, H., and Foltête, J.-C. (2016). Impact of urban developments on the functional 772

connectivity of forested habitats: a joint contribution of advanced urban models and landscape graphs. 773

Land Use Policy, 52:76–91. 774

Thompson, M., Capilla-Lasheras, P., Dominoni, D., Réale, D., and Charmantier, A. (2021). Phenotypic variation 775

in urban environments: mechanisms and implications. Trends in Ecology & Evolution, 37(2):171–182. 776

Thompson, P. L., Guzman, L. M., De Meester, L., Horváth, Z., Ptacnik, R., Vanschoenwinkel, B., Viana, D. S., and 777

Chase, J. M. (2020). A process-basedmetacommunity framework linking local and regional scale community 778

ecology. Ecology Letters, 23(9):1314–1329. 779

Tournant, P., Afonso, E., Roué, S., Giraudoux, P., and Foltête, J.-C. (2013). Evaluating the effect of habitat 780

connectivity on the distribution of lesser horseshoe bat maternity roosts using landscape graphs. Biological 781

Conservation, 164:39–49. 782

Urban, D. and Keitt, T. (2001). Landscape connectivity: a graph-theoretic perspective. Ecology, 82(5):1205– 783

1218. 784

Van Strien, M. J. (2017). Consequences of population topology for studying gene flow using link-based land- 785

scape genetic methods. Ecology and Evolution, 7(14):5070–5081. 786

Van Strien,M. J., Holderegger, R., and VanHeck, H. J. (2015). Isolation-by-distance in landscapes: considerations 787

for landscape genetics. Heredity, 114(1):27–37. 788

Vellend, M. and Geber, M. A. (2005). Connections between species diversity and genetic diversity. Ecology 789

Letters, 8(7):767–781. 790

Verrelli, B. C., Alberti, M., Des Roches, S., Harris, N. C., Hendry, A. P., Johnson, M. T., Savage, A. M., Charmantier, 791

A., Gotanda, K. M., Govaert, L., et al. (2022). A global horizon scan for urban evolutionary ecology. Trends in 792

Ecology & Evolution. 793

21



Wandeler, P., Funk, S. M., Largiader, C., Gloor, S., and Breitenmoser, U. (2003). The city-fox phenomenon: 794

Genetic consequences of a recent colonization of urban habitat. Molecular Ecology, 12(3):647–656. 795

White, J. W., Rassweiler, A., Samhouri, J. F., Stier, A. C., andWhite, C. (2014). Ecologists should not use statistical 796

significance tests to interpret simulation model results. Oikos, 123(4):385–388. 797

Zeller, K. A., McGarigal, K., and Whiteley, A. R. (2012). Estimating landscape resistance to movement: a review. 798

Landscape Ecology, 27(6):777–797. 799

22



Figure 1. (A) Land cover map of a city under consideration (city of Besançon, East of France), represented by
a disc including 20% artificial areas. (B) The 325 European cities considered in our analyzes. (C) Example of
least-cost paths (brown lines) connecting forest patches (dark green) and UGS patches (light green). (D)
Example of genetic simulation output. The purple and orange dot sizes represent the simulated allelic

richness in forest and UGS populations, respectively, according to the cost scenario 2.
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Figure 2. Absolute and relative values of the different EC components computed in the 325 cities according
to cost scenario 1. (A) ECForest.Forest (green), ECForet.UGS (purple) and ECUGS.UGS (orange) divided by
the total study area, for each city. (B) Respective contributions of ECForest.Forest (green), ECForest.UGS

(purple) and ECUGS.UGS (orange) to the connectivity of the habitat network. The total connectivity value of
the network is the sum of the three EC components, which is slightly different from the global EC value

because of square root properties.
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Figure 3. Distribution of the mean allelic richness of populations located in "Forest", "Forest Interface",
"UGS" and "UGS Interface" patches in the 325 cities for the three dispersal cost scenarios. "Forest Interface"
patches correspond to the forest patches most connected to UGS according to the FForest→UGS metric,

whereas "UGS Interface" patches correspond to the UGS patches most connected to forests according to the
FUGS→Forest metric. n = 325 values per box
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Figure 4. Distribution of the mean genetic differentiation (DPS ) computed between forest patches
(Forest.Forest), forest and UGS patches (Forest.UGS) and UGS patches (UGS.UGS) in the 325 cities for the

three dispersal cost scenarios. n = 325 values per box
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Figure 5. (A) Distance of Maximum Correlation (DMC), computed as the threshold distance used for selecting
the subset of population pairs giving the maximum Mantel correlation coefficient between genetic distances
(DPS ) and cost-distances, in the 325 cities and for the three dispersal cost scenarios. The DMC is divided by
the maximum cost-distances between populations in the corresponding city and cost scenario and therefore

ranges from 0 to 1. (B) Mantel correlation coefficients measured at the DMC. n = 325 values per box
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Figure 6. Adjusted Rand Index (ARI) comparing the partitions into modules of the genetic graph with links
weighted by genetic distances (DPS ) with (A) module partitions obtained from similar graphs with links
weighted by cost-distances or with (B) the classifications of populations into forest or UGS populations

according to the type of patch they occupy. An ARI value is computed for each city and each cost scenario,
such that n = 325 values per box
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