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Abstract5

General linear models have been the foundational statistical framework used to discover the6

ecological processes that explain the distribution and abundance of natural populations. Analyses7

of the rapidly expanding cache of environmental and ecological data, however, require advanced8

statistical methods to contend with complexities inherent to extremely large natural data sets.9

Modern machine learning frameworks such as gradient boosted trees efficiently identify complex10

ecological relationships in massive data sets, which are expected to result in accurate predictions11

of the distribution and abundance of organisms in nature. However, rigorous assessments of the12

theoretical advantages of these methodologies on natural data sets are rare. Here we compare13

the abilities of gradient boosted and linear models to identify environmental features that explain14

observed variations in the distribution and abundance of blacklegged tick (Ixodes scapularis) popu-15

lations in a data set collected across New York State over a ten-year period. The gradient boosted16

and linear models use similar environmental features to explain tick demography, although the17

gradient boosted models found non-linear relationships and interactions that are difficult to antic-18

ipate and often impractical to identify with a linear modeling framework. Further, the gradient19

boosted models predicted the distribution and abundance of ticks in years and areas beyond the20

training data with much greater accuracy than their linear model counterparts. The flexible gra-21

dient boosting framework also permitted additional model types that provide practical advantages22

for tick surveillance and public health. The results highlight the potential of gradient boosted23

models to discover novel ecological phenomena affecting pathogen demography and as a powerful24

public health tool to mitigate disease risks.25

Introduction26

Statistical models have been a cornerstone of understanding ecological phenomena in the natural27

world. Ecological models traditionally focus on identifying the biotic and abiotic drivers of natural28

phenomena and on explaining the distribution and abundance of populations (Austin et al., 1984;29

Elith and Leathwick, 2009; Harvey et al., 1980; McLain et al., 1995; Tran et al., 2021a). Classical30

generalized linear modeling has resulted in many foundational ecological discoveries (Abbott et al.,31

1977; Austin et al., 1990; Elith and Leathwick, 2009; Kleiber, 1947; Root, 1988; Tilman et al., 1996).32

This modeling framework, however, has several technical disadvantages including strict assumptions33

about error distributions, sensitivity to outliers, and an assumption of linear relationships between34

variables that can limit predictive power (Hastie et al., 2001; McCullagh and Nelder, 1989; Naghibi35

and Pourghasemi, 2015; Olden et al., 2008; Yee and Mitchell, 1991). The introduction of machine36

learning methods such as gradient boosted trees overcomes many of these limitations, although direct37

comparisons of the effectiveness of machine learning methods and linear models on natural data sets38

are rare (De’ath, 2007; Elith et al., 2008; Elith et al., 2006; Friedman, 2001). In this study, we compare39

a gradient boosting machine learning method (Pedregosa et al., 2011) with comparable general linear40
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models in their ability to identify environmental features affecting population dynamics and their ability1

to predict the distribution and abundance of blacklegged ticks (Ixodes scapularis), an arthropod vector2

of multiple human pathogens.3

Many machine-learning frameworks such as neural networks, random forests, and gradient boosted4

trees are well suited to investigate ecological phenomena in the increasingly data-rich research envi-5

ronment (Cutler et al., 2007; Farley et al., 2018; Friedman, 2001; Han et al., 2015; Rammer and Seidl,6

2019; Stephens et al., 2017; Tran et al., 2021b). Among machine learning methods gradient boosted7

trees are well reputed for very high predictive accuracy and accurate identification of nonlinear rela-8

tionships on tabular data (Bentéjac et al., 2021; Elith et al., 2008; Grinsztajn et al., 2022). Gradient9

boosting is an efficient machine learning algorithm that can analyze large data sets, identify complex10

relationships among variables, and make highly accurate spatio-temporal forecasts. The power of the11

gradient boosting algorithm is in part derived from their ability to automatically identify non-linear12

and non-additive relationships by combining hundreds of decision trees into a highly accurate ensemble13

(De’ath, 2007; De’ath and Fabricius, 2000). These models have several advantages over traditional14

linear models including that they accept many data types, are unconstrained by data and error dis-15

tributions, and automatically detect nonlinear and interactive relationships. Further, cross-validation16

and advances in interpretative machine learning algorithms have addressed prior concerns that gra-17

dient boosted algorithms are prone to over-fitting and are too complex to derive ecological inferences18

(Elith et al., 2008; Lundberg and Lee, 2017; Rudin, 2019; Ryo et al., 2021).19

The ability of linear and gradient boosted models to identify ecologically relevant features or to20

forecast demographic changes is rarely assessed in natural systems, despite the availability of appro-21

priate data sets (though see Becker et al., 2020; Elith et al., 2006; Escobar et al., 2018; Qiao et al.,22

2015; Shabani et al., 2016). On one such dataset, linear models that explored the explanatory power of23

217 environmental variables on the distribution and abundance of I. scapularis ticks identified several24

geographical, temporal, seasonal, environmental, climatic, and landscape features that accounted for25

the majority of the natural variance in tick demography (Tran et al., 2021a). These linear models26

accurately predicted the distribution and abundance of tick populations in future years, providing27

a potentially powerful public health tool to mitigate human disease risks from I. scapularis-borne28

pathogens including the agents causing Lyme disease, babesiosis, and anaplasmosis (Burgdorfer et al.,29

1982; Spielman et al., 1979; Telford et al., 1996). However, the data distributions assumed in this30

linear model framework required separate distribution and abundance models and the default assump-31

tions of linearity and additivity limited the exploration of non-linear and non-additive effects which32

are ubiquitous in ecological systems (Hastie et al., 2001; Levin, 1998; McCullagh and Nelder, 1989;33

Olden et al., 2008; Tran et al., 2021a; Yee and Mitchell, 1991).34

Here, we use gradient boosted trees to investigate the relationship between environmental fea-35

tures and the distribution and abundance of I. scapularis using the same dataset previously analyzed36

with general linear models (Tran et al., 2021a). The gradient boosted models were used to forecast37

the distribution and abundance of ticks in areas and years not used to build the models. Both the38

environmental features determined to influence tick demographics and the predictive performance of39

the gradient boosted tree models were compared to linear models trained and validated using the40

same data sets (Tran et al., 2021a). Additionally, we utilize the flexibility of the gradient boosting41

framework to build and validate two additional models that offer practical benefits for disease surveil-42

lance, including ease of interpretation and the ability to simultaneously predict tick distribution and43

abundance.44
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Methods1

Study system2

The presence and abundance of host-seeking nymphs were determined at 532 unique locations3

between 2008 and 2018 using the standardized dragging, flagging, and walking survey protocols de-4

scribed previously (Prusinski et al., 2014; Tran et al., 2021a). Locations were sampled every 1–5 years5

with an average of 4.7 visits per site between 2008 and 2018. The environmental features investigated6

as explanatory factors in our statistical models can be broadly categorized as geographical, tempo-7

ral, seasonal, climatic, and landscape features. The tick density and environmental data used in this8

study are identical to those previously described (Tran et al., 2021a) to rigorously evaluate the relative9

efficacy of the gradient boosted and linear statistical models.10

Distribution and Abundance Models11

Independent distribution and abundance gradient boosted models were built to allow direct com-12

parisons with the previously published distribution and abundance linear models (Tran et al., 2021a).13

A combined distribution and abundance linear model was not built, as a log-transformation of tick14

abundance was used to approximate a normal distribution and thus sites where ticks were absent could15

not be accommodated (Tran et al., 2021a). Data were also processed as described previously (Tran16

et al., 2021a) to aid comparisons between gradient boosted and linear models. As examples, ticks17

were considered “present” at a site in a given year if nymphs were detected at any of the multiple site18

visits within the year and the visit with the greatest nymphal abundance estimate was used as the19

abundance value for that site in that year. For a summary of built models see (Supplemental Table20

2).21

Training of gradient boosted models included feature selection, hyper-parameter tuning, and22

model fitting to the training data set (data from 2008-2017). Environmental features were selected23

separately for each model using a step-forward feature selection algorithm that optimizes average pre-24

dictive performance on a 5-fold cross-validation data set (Raschka, 2018). Briefly, each of the 5 folds of25

the cross-validation data set was generated by randomly partitioning the training data into subsets for26

model fitting (80% of data) and evaluation (20% of data), such that each fold would contain a unique27

20% of the training data for evaluation. Models were limited to 30 or fewer environmental features to28

reduce the probability of over-fitting (Cawley and Talbot, 2010). Hyper-parameters that influence the29

learning process were tuned using a random search algorithm to find values that maximized perfor-30

mance on cross-validation data sets (Pedregosa et al., 2011). Using cross-validation sets to optimize31

which features and hyper-parameters are used in the final model fitting process reduces over-fitting to32

the training data, making the resultant model more likely to generalize to out-of-sample data (data33

collected in 2018, which was not used to train the model). The analytical code for this training process34

is available at MendeleyData (doi: https://doi.org/10.17632/w8bp678m3f.2).35

Predictive Accuracy Assessment36

The out-of-sample predictive accuracy of the gradient boosted distribution and abundance models37

was compared to the accuracy of linear distribution and the abundance models using the previously38

published accuracy metrics (Tran et al., 2021a). Briefly, the predictions from gradient boosted and39

linear distribution models to the 2018 out-of-sample data were assessed based on accuracy, sensitivity,40

and specificity. Abundance model predictions to the out-of-sample data were compared using root-41

mean-squared-error and R2 values. Additionally, to compare the abundance models in accordance with42

the methodology from (Tran et al., 2021a), abundances were converted from log-transformed counts of43

nymphs into discrete categories of low (1-4 nymphs), medium (7-35), and high (36+), and predictions44

were considered accurate if they were within one natural log unit of the average prediction error.45
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Simultaneous Modeling of Distribution and Abundance1

A multi-class categorical model and a density-estimating regression model were built using the2

gradient boosting framework. These models do not require the data processing, such as the log-3

transformation necessary for the linear models, which allows simultaneous analysis of presence and4

abundance from all sites and years. The multi-class model predicts nymphal abundance to one of three5

categories: absent (no nymphs), low abundance (1-35 nymphs), and high abundance (>35 nymphs).6

Out-of-sample performance was assessed as the accuracy of the predicted classification to locations7

visited in 2018.8

The gradient boosted density model is similar to the previously described abundance model except9

that the response variable was tick density, as opposed to the number of ticks collected used in the10

linear model, and that site densities of zero ticks were permitted. Nymphal density was estimated11

as the number of ticks collected per collection-hour. Collector hours here were limited to four as12

preliminary analyses and prior studies demonstrated that density estimates were biased when larger13

collection-hour values were included (Tran et al., 2021a). The statistical weight of sites during model14

fitting was positively correlated with collection-hour up to four hours as density estimate accuracy is15

greater at sites with more sampling effort.16

Environmental Feature Analyses17

The relationships between nymphal tick distribution or abundance with individual environmental18

features in each model were analyzed using SHAP (SHapley Additive exPlanation) values (Lundberg19

and Lee, 2017). Briefly, this interpretative framework estimates the impact each model feature has20

on model predictions. Together these estimates provide a global view of the impact of each feature21

on model predictions in the context of other model features. SHAP values were used to identify and22

visualize the non-linear relationships and interaction effects discovered by each model. SHAP values23

were not used to evaluate the impact of environmental variables on predictions from the multi-class24

model as the complex outputs of this model are not supported in this analytical framework.25

Results26

The gradient boosted distribution and abundance models outperformed their linear model coun-27

terparts in both predictive power and identification of complex relationships between environmental28

features. The gradient boosted distribution model (Figure 1A), built using data from 2008-2017, accu-29

rately predicted 94% of sites where ticks were present in 2018 and 84% of sites where ticks were absent.30

By comparison, the linear distribution model trained and tested on the same data accurately predicted31

80.6% of sites where ticks were present and 80.7% of sites where they were absent. Importantly, the32

gradient boosted model had a far lower false negative rate than the linear model (5.8% vs 19.4%), an33

especially costly error for public health efforts. The gradient boosted distribution model also made34

highly accurate predictions to the 27 sites that were visited for the first time in 2018 (true positive35

rate = 85%; true negative rate = 86%).36

The gradient boosted abundance model more accurately predicted out-of-sample tick abundance37

than the analogous linear model in all quantitative metrics (RMSE = 0.972 vs. 1.096; R2 = 0.59 vs.38

0.48). Gradient boosted model predictions were also converted into discrete categories to compare39

the accuracy of the linear and gradient boosted models using the previously published methodology40

(Tran et al., 2021a). The gradient boosted abundance model was more accurate than its linear model41

counterpart, correctly predicting the abundance at 82.5% of sites compared to the 74.8% of sites42

correctly predicted by the linear model (Figure 1B). Sites visited for the first time in 2018 were43

also predicted with high accuracy by the gradient boosted model (83.3%; RMSE = 0.948; R2 =44

0.61). Importantly, nearly 40% of all sites incorrectly predicted by the gradient boosted model were45
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Figure 1: Gradient boosted models more accurately predict future (A) distributions and
(B) abundances of nymphal ticks than generalized linear models. (A) The gradient boosted
distribution model was more accurate (90.6% vs 80.6%), more sensitive (true positive rate = 94.2%
vs 80.5%), and more specific (true negative rate = 84.2% vs 80.7%) than its linear model analog.
(B) The gradient boosted abundance model also more accurately predicted to the out-of-sample data
than its linear model counterpart (82.5% vs 74.8%). Stars indicate sites with accurate predictions
from the gradient boosted model and inaccurate predictions from the linear model; triangles represent
accurate linear model predictions and inaccurate gradient boosted model predictions; squares represent
sites accurately predicted by both models; circles represent inaccurate predictions by both models.
Confusion matrices summarize the accurate and inaccurate predictions made by the gradient boosted
model vs the linear model.

conservative in that the model overestimated tick abundances at sites with high abundance (n=3) or1

underestimated tick abundance at sites with low abundance (n=4). These errors are less costly as2

they indicate that the model has correctly predicted sites with high or low tick abundance but erred3

in terms of magnitude.4

Complex non-linear relationships between environmental features and nymphal abundance were5

detected in gradient boosted models that were not investigated in the previously published linear6

models (Tran et al., 2021a). For example, estimates of deer population size have a highly complex re-7

lationship with nymphal abundance (Figure 2A): deer harvest values less than 2000 result in decreased8

nymphal abundance predictions; deer harvest between 2000 and 3000 are correlated with increases9

in nymphal abundances; deer harvest between 3000 and 6000 are correlated with decreased nymphal10

abundances; and deer harvest above 6000 is correlated with increased nymphal abundance. Although11

not biologically relevant, the number of tick collection efforts (sampling hours) had a positive but decel-12

erating relationship with the number of nymphs collected (Figure 2B). That is, the number of nymphs13

collected is strongly and positively correlated with the number of hours field technicians flagged for14

ticks at sites visited for fewer than two hours. However, this positive relationship becomes less pro-15

nounced at sites visited for greater than two hours and is not detectable at sites visited for more than16

five hours.17
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Figure 2: Gradient boosted models identified non-linear relationships that are impractical
to investigate with linear models. (A) The association between estimates of deer population size
and nymphal tick abundance oscillates between having a positive effect to a negative effect. (B) The
relationship between person-hours collecting hours and tick abundance is a positive but decelerating
function. Data shown are the rolling average (rolling window = 50) of the impact that (A) deer density
estimates or (B) tick collection effort has on tick abundance.

The impacts of non-additive interactions between environmental features on the presence of1

nymphal ticks were also detected in gradient boosted models. One ecologically relevant interaction2

demonstrates that the effect of the month in which a site is sampled on the presence of active nymphs3

is conditioned on the maximum temperature in June of the year before sampling (Figure 3). Although4

sampling month is generally highly predictive of nymphal presence due to the seasonal activity patterns5

of I. scapularis in New York State (Yuval and Spielman, 1990), ticks were more likely to be detected6

in the summer months (May-August) if the temperature in June of the prior year was hotter. By7

contrast, the probability of detecting nymphal ticks in fall months (September-December) was greater8

if the maximum temperature in June of the prior year was cooler. This non-additive effect was strong9

enough to change the month of May from being negatively associated with the presence of nymphs10

when June of the prior year was cooler to a positive association when this month was warmer.11

The sets of environmental features used by the gradient boosted distribution and abundance12

models were similar to those included in linear models but were related to nymph populations in more13

complex ways. Despite different feature selection processes, the two modeling frameworks frequently14

used identical or strongly correlated features as predictors (Supplement Table 1). However, the lin-15

ear models related features to nymph populations linearly and without interaction effects, while the16

relationships in the gradient boosted models were always non-linear and frequently incorporated in-17

teractions. In fact, both non-linear relationships discussed above (Figure 2) involve features that were18

included in the previously published linear models.19

The gradient boosting framework was used to produce two additional models - a multi-class and a20

density model - that simultaneously estimate the presence and abundance of nymphs. The multi-class21

model forecasts which sites will have no nymphs, low nymphal abundance (1-35), or high nymphal22

abundance (>35) with high accuracy, correctly classifying 80% of sites in the out-of-sample data set23

(Figure 4). This multi-class model predicted the presence or absence of nymphs with similar accuracy24
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Figure 3: Gradient boosted models detected ecologically relevant interactions between
environmental features which impacts the presence of nymphal ticks. The maximum tem-
perature in June of the year before a collection event modulates tick phenology. That is, nymphal ticks
are more likely to be collected between May and August in years when the prior June was hotter while
the likelihood of nymphal tick presence in September-December increases in years when the prior June
was cooler.

Figure 4: The multi-class model accurately predicts both the presence and abundance of
nymphs across New York State. The model accurately predicted 90.6% of sites without ticks, 70%
of sites with low tick abundance (1-35), and 64.9% of sites with high tick abundance (> 35). Further,
most inaccurate predictions were one class apart (absent vs low or low vs high). That is, sites without
nymphs were rarely predicted to have a high abundance (1.3%) and sites with high abundance were
rarely predicted to have no nymphs (5.4%).
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as the gradient boosted distribution model (both ≈90%) but has the additional functionality of dis-1

tinguishing between two non-zero abundance classes. The novel density model predicts a continuous2

estimate of tick densities (ticks per collection hour) to out-of-sample data with high accuracy (R2 =3

0.42). Restricting the comparison to the subset of the out-of-sample data included in the abundance4

models (Figure 1B) resulted in the density model performing comparably with the linear abundance5

model (RMSE = 1.06 vs. 1.096; R2 = 0.51 vs. 0.48) while retaining the added functionality of predict-6

ing the absence of nymphs. Both the multi-class and density models have similar predictive accuracy7

at sites that were visited for the first time in 2018 and those that had been sampled prior to 2018.8

Discussion9

Machine learning analyses of the recent expansion of publicly available biological and environ-10

mental data is ideal for discovering novel ecological insights and accurately forecasting the distribution11

and abundance of populations in nature. The gradient boosted modeling framework efficiently and ac-12

curately identifies both simple and complex ecological relationships from large data sets and produces13

highly accurate predictions of the demography of natural populations (Elith et al., 2008; Han et al.,14

2015; Ramazi et al., 2021; Wyse and Dickie, 2018). However, the theoretical advantages of gradient15

boosted models over traditional linear models are rarely validated using natural data sets. As a result,16

many ecologists rely exclusively on generalized linear models even though gradient boosted models17

could be more effective for exploring and interpreting data (LaRue et al., 2019; Shah et al., 2019;18

Sutomo et al., 2021; Walter et al., 2018). Here we demonstrate that the distribution and abundance19

of natural populations of I. scapularis ticks can be predicted with greater efficiency and accuracy with20

gradient boosted models than with linear models. Additionally, the gradient boosted models identified21

non-linear and non-additive relationships, which are difficult to detect in linear modeling frameworks,22

that improved predictive accuracy. These results indicate that gradient boosted models can improve23

both spatio-temporal forecasts and provide novel insights into the ecology of natural populations.24

The gradient boosted occurrence and abundance models consistently outperformed their linear25

counterparts in predictive accuracy, illustrating the potential of this framework to improve predictions26

of ecological phenomena. When trained and tested on the same datasets as the linear models from27

(Tran et al., 2021a), the gradient boosted models were better able to forecast the distribution and28

abundance of nymphs (Figure 1). Notably, the gradient boosted models outperformed their linear29

analogs on sites not previously sampled, suggesting that the superior predictive performance of this30

framework results from incorporating more precise ecological relationships rather than overfitting to31

previously sampled sites. However, gradient boosted models are not always expected to be the most32

accurate type of model for a given problem. As examples, linear models might be favored for small33

datasets with simpler relationships when overfitting is likely to be a problem, whereas neural networks34

are expected to outperform in contexts like image or speech classification (Deng et al., 2013; Hastie35

et al., 2001; Rawat and Wang, 2017). Nonetheless, our findings highlight gradient boosted models as36

a powerful but underutilized tool for predicting demographic changes in natural populations.37

The gradient boosted models automatically identified complex relationships between several en-38

vironmental features and the distribution and abundance of ticks. For example, these models found a39

non-linear relationship between deer harvest data - an estimate of deer population size - and nymphal40

tick abundance (Tran et al., 2021a). The non-linear relationship identified in the gradient boosted41

model implies that changes in deer populations are positively associated with tick abundance at some42

deer population sizes and negatively at others (Figure 2). This non-linear relationship may explain43

contradictory conclusions in previous reports in which some identify positive relationships between44

deer population size and tick densities while others do not (Kugeler et al., 2016; Lewis et al., 2017;45

Ostfeld et al., 2006; Schulze et al., 2001; Tran et al., 2021a). Statistical models like gradient boosting46

do not identify the ecological mechanism underlying this relationship but do suggest avenues for further47
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experimentation to resolve this discrepancy. Gradient boosted models also identified an interaction1

between climate variables that influences tick questing activity throughout summer months. Specifi-2

cally, hotter temperatures in June of the year prior to tick collections alter tick phenology such that3

nymphal ticks are active earlier in the season (Figure 3). These results warrant further investigation4

into how climate change may affect seasonal activity patterns of ticks and possibly the pathogens they5

transmit (MacDonald et al., 2021).6

Relationships between variables identified by any statistical model should be interpreted with7

caution. The ecological relationships included in the gradient boosted models presented here were8

identified using SHAP value analyses that determine the effect each variable has on model predic-9

tions (Lundberg and Lee, 2017). Thus, these relationships represent the patterns our models used10

to make accurate predictions but do not necessarily represent causal processes. Nevertheless, similar11

environmental features were detected in the gradient boosted and linear models despite using different12

approaches (Supplemental Table 1), adding confidence that these features are useful in forecasting tick13

distribution and abundance (Tran et al., 2021a). Additionally, the complex relationships involving14

these shared environmental features suggests that the gradient boosted framework has the potential to15

yield novel ecological insights, even on datasets previously analyzed with traditional statistical meth-16

ods. While further experimentation is needed to clarify the biological significance of these relationships,17

they demonstrate the ability of the gradient boosting framework to automatically discover non-linear18

and interaction effects which general linear models often do not detect.19

The flexibility of the gradient boosted modeling framework allowed us to build models with at20

least three practical advantages for both ecological interpretation and public health (De’ath, 2007).21

First, the multi-class and density model simultaneously predict the distribution and abundance of ticks,22

allowing tick population size to be estimated with a single model. Second, data pre-processing such as23

log-transformations is not required in the gradient boosting framework making both the predictions and24

error estimates more interpretable. Lastly, the density model analyzes tick density directly, a correlate25

of the human contact risk with a questing nymph, as opposed to the number of ticks collected which26

is conditioned by the sampling effort (Khatchikian et al., 2012). While it is in principle possible to27

achieve these advantages using generalized linear models (for an ecological example see Bah et al.,28

2022), the flexibility of the gradient boosting framework greatly simplified the process of implementing29

these multiple types of models (Natekin and Knoll, 2013).30

Applying the gradient boosted modeling framework to pathogens carried by I. scapularis may31

provide additional improvements for disease risk forecasting and could identify the environmental32

features that correlate with human risk of contracting a I.scapularis-borne disease. For example,33

gradient boosted analyses of the distribution and abundance of ticks carrying Borrelia burgdorferi,34

Babesia microti, Anaplasma phagocytophilum, or other tick-borne pathogens are likely to identify35

ecological factors impacting pathogen populations and could predict the risk of encountering an infected36

tick. More broadly, the gradient boosted framework can improve ecological models of many infectious37

disease systems (Ashby et al., 2017; Fischhoff et al., 2021; Giles et al., 2018; Han et al., 2015; Solano-38

Villarreal et al., 2019). The rapidly expanding environmental data sets can be efficiently analyzed by39

gradient boosted models in order to detect ecological relationships and accurately predict disease risk40

in many systems, thus promoting a better understanding of natural disease systems and aiding the41

development of public health strategies.42

Data Availability43

Data used to train and validate models are from (Tran et al., 2021a). Data and code for model44

training and evaluation are available at MendeleyData (doi: https://doi.org/10.17632/w8bp678m3f.2).45
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Bentéjac, C., Csörgő, A., & Mart́ınez-Muñoz, G. (2021). A comparative analysis of gradient boosting25

algorithms. Artificial Intelligence Review, 54 (3), 1937–1967. https://doi.org/10.1007/s10462-26

020-09896-527

Burgdorfer, W., Barbour, A. G., Hayes, S. F., Benach, J. L., Grunwaldt, E., & Davis, J. P. (1982).28

Lyme Disease - a Tick-Borne Spirochetosis? Science, 216 (4552), 1317–1319. https://doi.org/29

10.1126/science.704373730

Cawley, G. C., & Talbot, N. L. C. (2010). On Over-fitting in Model Selection and Subsequent Selection31

Bias in Performance Evaluation. Journal of Machine Learning Research, 11 (70), 2079–2107.32

http://jmlr.org/papers/v11/cawley10a.html33

Cutler, D. R., Edwards Jr., T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler,34

J. J. (2007). Random Forests for Classification in Ecology. Ecology, 88 (11), 2783–2792. https:35

//doi.org/https://doi.org/10.1890/07-0539.136

De’ath, G. (2007). Boosted Trees for Ecological Modeling and Prediction. Ecology, 88 (1), 243–251.37

https://doi.org/10.1890/0012-9658(2007)88[243:btfema]2.0.co;238

De’ath, G., & Fabricius, K. E. (2000). Classification and regression trees: a powerful yet simple tech-39

nique for ecological data analysis. Ecology, 81 (11), 3178–3192. https://doi.org/10.1890/0012-40

9658(2000)081[3178:CARTAP]2.0.CO;241

Deng, L., Hinton, G., & Kingsbury, B. (2013). New types of deep neural network learning for speech42

recognition and related applications: an overview. 2013 IEEE International Conference on43

Acoustics, Speech and Signal Processing, 8599–8603. https://doi.org/10.1109/ICASSP.2013.44

663934445

Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal46

of Animal Ecology, 77 (4), 802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x47

Elith, J., H. Graham, C., P. Anderson, R., Dud́ık, M., Ferrier, S., Guisan, A., J. Hijmans, R., Huettmann,48

F., R. Leathwick, J., Lehmann, A., Li, J., G. Lohmann, L., A. Loiselle, B., Manion, G., Moritz,49

C., Nakamura, M., Nakazawa, Y., McC. M. Overton, J., Townsend Peterson, A., . . . E. Zimmer-50

12



mann, N. (2006). Novel methods improve prediction of species’ distributions from occurrence1

data. Ecography, 29 (2), 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x2

Elith, J., & Leathwick, J. R. (2009). Species Distribution Models: Ecological Explanation and Predic-3

tion Across Space and Time. Annual Review of Ecology, Evolution, and Systematics, 40 (1),4

677–697. https://doi.org/10.1146/annurev.ecolsys.110308.1201595

Escobar, L. E., Qiao, H., Cabello, J., & Peterson, A. T. (2018). Ecological niche modeling re-examined:6

A case study with the Darwin’s fox. Ecology and Evolution, 8 (10), 4757–4770. https://doi.7

org/10.1002/ece3.40148

Farley, S. S., Dawson, A., Goring, S. J., & Williams, J. W. (2018). Situating Ecology as a Big-Data9

Science: Current Advances, Challenges, and Solutions. BioScience, 68 (8), 563–576. https :10

//doi.org/10.1093/biosci/biy06811

Fischhoff, I. R., Castellanos, A. A., Rodrigues, J. P. G. L. M., Varsani, A., & Han, B. A. (2021).12

Predicting the zoonotic capacity of mammals to transmit SARS-CoV-2. Proceedings of the13

Royal Society B: Biological Sciences, 288 (1963), 20211651. https://doi.org/10.1098/rspb.14

2021.165115

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of16

Statistics, 29 (5), 1189–1232. https://doi.org/10.1214/aos/101320345117

Giles, J. R., Eby, P., Parry, H., Peel, A. J., Plowright, R. K., Westcott, D. A., & McCallum, H. (2018).18

Environmental drivers of spatiotemporal foraging intensity in fruit bats and implications for19

Hendra virus ecology. Scientific Reports, 8 (1), 9555. https://doi.org/10.1038/s41598-018-20

27859-321

Grinsztajn, L., Oyallon, E., & Varoquaux, G. (2022). Why do tree-based models still outperform deep22

learning on tabular data?23

Han, B. A., Schmidt, J. P., Bowden, S. E., & Drake, J. M. (2015). Rodent reservoirs of future zoonotic24

diseases. Proceedings of the National Academy of Sciences, 112 (22), 7039–7044. https://doi.25

org/10.1073/pnas.150159811226

Harvey, P. H., Clutton-Brock, T. H., & Mace, G. M. (1980). Brain size and ecology in small mammals27

and primates. Proceedings of the National Academy of Sciences of the United States of America,28

77 (7), 4387–4389. https://doi.org/10.1073/pnas.77.7.438729

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The Elements of Statistical Learning: Data Mining,30

Inference, and Prediction. (Second Edition). Springer.31

Khatchikian, C. E., Prusinski, M., Stone, M., Backenson, P. B., Wang, I.-N., Levy, M. Z., & Brisson,32

D. (2012). Geographical and environmental factors driving the increase in the Lyme disease33

vector Ixodes scapularis. Ecosphere, 3 (10), 85. https://doi.org/10.1890/ES12-00134.134

Kleiber, M. (1947). Body size and metabolic rate. Physiological Reviews, 27 (4), 511–541. https://doi.35

org/10.1152/physrev.1947.27.4.51136

Kugeler, K. J., Jordan, R. A., Schulze, T. L., Griffith, K. S., & Mead, P. S. (2016). Will Culling37

White-Tailed Deer Prevent Lyme Disease? Zoonoses and Public Health, 63 (5), 337–345. https:38

//doi.org/10.1111/zph.1224539

LaRue, M., Salas, L., Nur, N., Ainley, D., Stammerjohn, S., Barrington, L., Stamatiou, K., Pennycook,40

J., Dozier, M., Saints, J., & Nakamura, H. (2019). Physical and ecological factors explain the41

distribution of Ross Sea Weddell seals during the breeding season. Marine Ecology Progress42

Series, 612, 193–208. https://doi.org/10.3354/meps1287743

Levin, S. A. (1998). Ecosystems and the Biosphere as Complex Adaptive Systems. Ecosystems, 1 (5),44

431–436. https://doi.org/10.1007/s10021990003745

Lewis, J. S., Farnsworth, M. L., Burdett, C. L., Theobald, D. M., Gray, M., & Miller, R. S. (2017).46

Biotic and abiotic factors predicting the global distribution and population density of an47

invasive large mammal. Scientific Reports, 7 (1), 44152. https://doi.org/10.1038/srep4415248

Lundberg, S. M., & Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions. Procedings49

of the 31st international conference on neural information processing systems, 30, 4768–4777.50

https://doi.org/10.48550/arXiv.1705.0787451

13
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