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Abstract

The role of intraspecific variability (IV) in shaping community dynamics and species
coexistence has been intensively discussed over the past decade and modeling studies
have played an important role in that respect. However, these studies often implic-
itly assume that IV can be represented by independent random draws around species-
specific mean parameters. This major assumption has largely remained undiscussed,
although a great part of observed IV is structured in space or time, in particular when
environmental dimensions that influence individual performance are imperfectly char-
acterised or unobserved in the field. To test the impact of this strong assumption on the
outcome of community dynamics models, we designed a simulation experiment where
we varied the level of knowledge of the environment in virtual communities, resulting
in different relative importance of explained vs unexplained individual variation in per-
formance. We used a community dynamics simulator to generate communities where
the unexplained individual variation is, or is not, added as an unstructured random
noise. Communities simulated with unstructured IV never reached the community di-
versity and composition of those where all the variation was explained and structured
(perfect knowledge model). This highlights that incorporating unstructured IV (i.e.
a random noise) to account for unexplained (but structured) variation can lead to in-
correct simulations of community dynamics. In addition, the effects of unstructured
IV on community diversity and composition depended on the relative importance of
structured vs unstructured IV, i.e. on the level of knowledge of the environment, which
may partly explain the contrasting results of previous studies on the effect of IV on
species coexistence. In particular, the effect of unstructured IV on community diversity
was positive when the proportion of structured IV vs unstructured IV in the model was
low, but negative when this proportion was high. This is because unstructured random
noise can either limit the competitive exclusion of inferior competitors in low dimen-
sions or destabilise thigh niche partitioning in high dimension. Our study suggests that
it is crucial to account for the sources and structure of observed IV in real communi-
ties to better understand its effect on community assembly and properly include it in
community dynamics models.

Keywords—community dynamics, community model, ecological niche, environmental filtering,
high-dimensional environment, individual variation, species coexistence
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Introduction

The role of intraspecific variability (IV) in shaping community dynamics has been intensively dis-
cussed over the past decade (Bolnick et al. 2011; Albert et al. 2011; Violle et al. 2012; Des Roches
et al. 2018; Raffard et al. 2019). Observed IV, i.e. the variability among measured individual at-
tributes (functional or demographic traits, or any proxy of individual performance) within a species5

has indeed been reported to be large within communities (Siefert et al. 2015; Poorter et al. 2018).
Modeling studies have played an important role to decipher the effect of IV on species coexistence
(e.g. Lichstein et al. 2007; Vieilledent et al. 2010; Courbaud et al. 2012; Hart et al. 2016; Uriarte
and Menge 2018; Crawford et al. 2019), offering opportunities of virtual experiments out of the
scope of empirical approaches. These studies have led to contrasting results however, letting the10

debate unresolved: IV could either (i) blur species differences, thus promoting transient or unstable
coexistence (Vieilledent et al. 2010; Crawford et al. 2019), (ii) disproportionately advantage the
strongest competitor, thus hindering coexistence (Courbaud et al. 2012; Hart et al. 2016), or (iii)
promote coexistence in specific spatial configurations (Uriarte and Menge 2018). While a unifying
framework differentiating whether IV affects niche traits or hierarchical traits has been recently15

proposed to explain these discrepancies (Stump et al. 2022), a major assumption usually made
in modeling studies, namely that IV is unstructured in space or time and can be represented by
independent random draws around species-specific mean parameters, remains largely undiscussed
(Girard-Tercieux et al. 2023).

The IV observed in individual attributes is not necessarily purely random and can emerge20

from various genetic and environmental processes (Violle et al. 2012; Moran et al. 2016). Most
of these additional processes are unlikely to generate unstructured IV in the form of a random
noise, whereby the site and date of measurement would have no influence on the measured attribute
value (unstructured IV, henceforth denoted uIV). Previous works have already explored the role of
genetically heritable traits variability (Ehlers et al. 2016). In contrast, much less attention has been25

given to IV generated by structured variation of environmental gradients in space or time (structured
IV, henceforth denoted sIV). It is, however, well-known that many species attributes respond to
environmental gradients (Bonnier 1890; Kropotkine 2015; Jung et al. 2010; Niinemets 2015; Rixen
et al. 2022). As a result, high-dimensional (and potentially unobserved) variation of the environment
can lead to large observed IV. For instance, in a highly controlled clonal experiment, IV in tree30

growth within clones was larger than genetically-driven IV between clones (Girard-Tercieux et al.
2023). Indeed, differences in attributes among conspecific individuals can result from differences
in environmental dimensions that are unobserved or mischaracterized due to a mismatch between
the individual scale and the scale of the measurements. Consequently, these observed differences
do not necessarily mean that conspecific individuals substantially differ in their response to the35

environment. While it is widely accepted that environmentally-driven sIV is ubiquitous in natural
communities (Nicotra et al. 2010), the consequences of its substitution by random uIV on species
coexistence and community dynamics remain to be thoroughly tested in models (Clark 2010; Girard-
Tercieux et al. 2023).

Here, we explore the effect of considering IV either as structured by environmental dimensions40

(sIV) or as an unstructured random noise (uIV), through a virtual experiment designed to provide
a first proof-of-concept, performed using a simulator of community dynamics. To do so, we first
created a virtual plant community, where individual performance is fully determined by species-level
responses to 15 environmental dimensions (Fig. 1A). This extreme scenario, although unrealistic
regarding its level of environmental determinism, was subsequently used as a reference (henceforth45

denoted Perfect knowledge model) in our virtual experiment. We then considered imperfect knowl-
edge models, where this 15-dimensional individual performance is estimated using 0 to 15 supposedly

3



“observed” environmental dimensions, while the remaining IV (or unexplained variation) resulting
from the effect of “unobserved” environmental dimensions, is ignored (Imperfect knowledge models
without uIV ) or is included as random unstructured IV (Imperfect knowledge models with uIV, Fig.50

1B). These three performance models are used to independently run the same community dynamics
simulator in order to compare their effects on species coexistence and community dynamics.

Specifically, we are asking two questions. First, how well does random unstructured IV (uIV)
mimic the effect of environmentally-driven structured IV (sIV) on diversity and community com-
position? To answer this question, we compare communities simulated under the Perfect knowledge55

model and under Imperfect knowledge models with uIV. Importantly, these models share the same
amount of total variation across individuals, but partitioned differently between sIV and uIV, de-
pending on the amount of knowledge of the environment, i.e. on the number of “observed” envi-
ronmental dimensions (Fig. 1C, arrow 1). Second, how does the effect of adding uIV on diversity
and community composition vary with the knowledge of the environment (Fig. 1C, arrow 2), i.e.60

with the relative importance of sIV and uIV in our model? To answer this question, we compare
pairs of models with the same amount of sIV, i.e. with the same knowledge of the environment,
but including or excluding uIV. This latter comparison corresponds to the approaches proposed in
previous studies testing the effects of IV on coexistence (Vieilledent et al. 2010; Courbaud et al.
2012; Hart et al. 2016).65
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Figure 1: Conceptual framework. Consider an environment that is varying in many dimensions,
X1 to X15. Each dimension influences individual performance in a species-specific way, as illustrated in A
for one species (where the variation of performance with all environmental variables is projected separately
for each variable in 2-dimensional plots). In practice, several of these environmental dimensions are often
unobserved in the field. The effect of these unobserved environmental dimensions on individual performance
results in an observed intraspecific variability (IV) in the species response to observed dimensions. As an
illustration, in B, only X6 is observed and used to fit a polynomial function to the performance data (teal
curve), and the remaining variation is estimated through a variance term (gray envelope). This variability is
often represented as a probability distribution, which is used to simulate the variation in performance among
conspecific individuals through random draws that are independent and unstructured in space and time
(density panel in B). We propose a framework to assess the consequences of representing the variation resulting
from unobserved environmental dimensions, which is structured in space and time, by such unstructured
IV (uIV) on community dynamics, and how these consequences vary with the level of knowledge of the
environment (C). To do so, we varied from 0 to 15 the number of dimensions that are observed and used
for estimating the 15-dimensional performance (panel B providing an example with one dimension). By
increasing the number of observed dimensions, we thus increased the proportion of structured IV (sIV) that
is accounted for in estimating individual performance (C, horizontal axis; see also Fig. 2). For a given number
of observed dimensions, or % of sIV, the variation resulting from unobserved dimensions can be either added
as uIV or not (C, vertical axis). For each way to estimate performance (with uIV or not, and with different
numbers of observed dimensions), we simulated community dynamics using the same simulator. We then
compared the simulated communities in terms of diversity and composition (e.g. species richness in colored
points in C). By comparing communities simulated with uIV with the one with 100 % sIV (arrow 1) we tested
the effect of substituting sIV with uIV on community dynamics. By comparing communities simulated with
and without uIV, for a given % of sIV (arrow 2), we mimicked the approach of previous modeling studies
testing the effect of intraspecific variability on community dynamics and species coexistence. By comparing
this difference between communities simulated with and without uIV across different % of sIV (arrow 3), we
tested whether the results of previous studies can be influenced by the level of knowledge of the environment.
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Materials and methods

Environmental variables

We considered a grid of M =25 × 25 = 625 sites. Each site m was characterised by K =15 envi-
ronmental variables x1, . . . , xK . To confer some realism to our virtual experiment and the resulting
illustrations (Fig. S5.17), each environmental variable was spatially auto-correlated, as it is often70

the case in nature (Tymen et al. 2017; Zellweger et al. 2019), and independently derived from a
conditional autoregressive model, with a normal distribution centered on 0 and of variance 1. There-
fore, environmental variables were not uniformly distributed, some habitats being more frequent
than others. Environmental variables were then rescaled to [0, 1] to ensure that each variable had
the same effect on species performance on average.75

Individual performance

For parsimony’s sake, we here focus on an attribute (or trait) that has a direct link with performance,
hereafter “individual performance”. We considered J =20 species, whose individual performances
were computed in three alternative ways, as follows.

The Perfect knowledge model80

We first considered a simple model representing the functioning of a plant community in a hypo-
thetical world where all determinants of individual performance would be environmental and known
- named Perfect knowledge model and henceforth considered as the reference. Individuals within a
species did not have any intrinsic differences and could therefore be considered as clones, and we
assumed no genetic variation among individuals. We considered that the environment was mul-85

tidimensional and partitioned among species. To this end, in this model, the performance of an
individual i of species j (j ∈ [1, . . . , J ]) was maximal at one point in the multidimensional environ-
mental space, denoted x∗j = (x∗1,j , . . . , x

∗
K,j). For an environmental axis k (k ∈ [1, . . . ,K]), x∗k,j was

drawn in a uniform distribution in [0, 1]. Then, the performance of an individual i of species j on
site m, pi,j,m, was computed as the opposite of the normalised Euclidean distance between x∗j and90

the local environment at the site where the individual resided, xm = (x1,m, . . . , xK,m) (Eq.1).
Therefore, at each site, one species outperformed all the others. The number of sites where each

species had the highest performance varied between species, since the environmental variables were
not uniformly distributed. For some species, there was no site where they were the most competitive.
Importantly, all individuals of a given species j responded in the same way to the environment, the95

performance of conspecifics differing only because they resided in a different environment. Individual
variation was thus fully environmentally-driven and structured in space (0% uIV and 100% sIV in
Fig. 1C).

pi,j,m = −(dm,j − µd)/σd

di,j,m =

√√√√ K∑
k=1

(x∗k,j − xk,m)2
(Eq.1)

where µd and σd are the mean and variance of dm,j across all sites m and species j respectively.100
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The Imperfect knowledge models

As it is typically unfeasible to fully characterise all relevant dimensions of the environment at fine
scales in the field, we then assumed that only nobs < 15 environmental variables were measured and
accounted for when estimating individual performance. These performances were thus estimated
from a statistical model fitting the individual performance provided by the Perfect knowledge model105

pi,j,m (Eq.1, representing what actually happens in the field and is measured, assuming no mea-
surement error) against the nobs observed environmental variables (Fig. 1). We considered the
simple case where ecologists, in absence of exact knowledge of the underlying processes, here de-
picted by the Perfect knowledge model , assume a quadratic relationship between performance and
each observed environmental variable, thus approaching the triangular shape (i.e. increasing then110

decreasing piecewise linear) of the actual relationship of the Perfect knowledge model (Eq.2).

pi,j,m = β0,j +

nobs∑
k=1

(β1,k,jxk,m + β2,k,jx
2
k,m) + εi,j,m

εi,j,m ∼ N (0, Vj)

(Eq.2)

This statistical model was fitted using the “lm” function of the “stats” R package. Species
parameters (βj = {β0,j , β1,k,j , β2,k,j}) and residuals εi,j,m were retrieved. In this model, we consid-
ered that the εi,j,m represented an unstructured IV. The observed IV was thus estimated as the115

variance of the εi,j,m for each species j, Vj . This variability emerged from the spatial variation in
environmental variables that were not measured and accounted for, namely [xnobs+1, . . . , xK ].

In Imperfect knowledge models, the individual performance p̂i,j,m was computed with the param-
eters obtained at different levels of knowledge of the environment using Eq.2, i.e. with nobs varying
from 0 to 15. εi,j,m thus accounted for the K − nobs unobserved environmental variables, respec-120

tively. In the Imperfect models without uIV, the residual variation, εi,j,m, was neglected (Eq.3),
while in the Imperfect knowledge models with uIV, it was included as a random noise ε̂i,j,m gen-
erated through independent individual draws in a normal distribution of variance Vj (Eq.4). The
Imperfect knowledge models with uIV therefore shares the same amount of total variation across
individuals with the Perfect knowledge model, but partitioned differently between sIV and uIV: for125

a given number of observed environmental dimensions, random IV εi,j,m was used as a substitute
of the environmental variation that was not observed. Using the Imperfect knowledge models with
nobs = K, we were able to test if the error due to this assumption was large.

Importantly, in the Imperfect knowledge models without uIV, conspecific individuals responded
similarly to the environment as in the Perfect knowledge model for the observed environmental130

dimensions, but lacking information on the other environmental dimensions (0% uIV in Fig. 1C).
In contrast to the Perfect knowledge model and the Imperfect knowledge models without uIV, in the
Imperfect knowledge models with uIV, conspecific individuals could perform differently in the same
environment (0 to 100% uIV in Fig. 1C).

p̂i,j,m = β0,j +

nobs∑
k=1

(β1,k,jxk,m + β2,k,jx
2
k,m) (Eq.3)

135

p̂i,j,m = β0,j +

nobs∑
k=1

(β1,k,jxk,m + β2,k,jx
2
k,m) + ε̂i,j,m ε̂i,j,m ∼ N (0, Vj) (Eq.4)

7



The three types of performance models (Eq.1, Eq.3, Eq.4) were then implemented in the same
simulator of community dynamics, in order to disentangle the effects of random, unstructured IV
on the one hand, and of the imperfect characterisation of the environment on community dynamics
and species coexistence on the other hand.140

Community dynamics simulation

Our simulator of community dynamics was inspired by Hurtt and Pacala (1995). However, several
of our modeling choices differed. First, we explicitly used several environmental dimensions to
account for niche multidimensionality, while they used a one-dimensional environmental index.
Second, we randomly drew species optima, therefore leading to various sizes of the environmental145

space where each species outperforms all the others, while they used equally wide ecological niches
across species. This allowed us to test several configurations of niche partitioning. Finally, mortality
and recruitment were stochastic in their model, while we chose a deterministic process to stabilize
coexistence and limit the sources of uncertainty to the effect of IV, although we also tested a
stochastic alternative (see details below).150

For a given simulation of community dynamics, the simulated community was initialised with ten
individuals of each of the 20 species, located randomly in the landscape. The performance of these
individuals was computed using either the Perfect knowledge model (Eq.1), an Imperfect knowledge
model without uIV (Eq.3), or an Imperfect knowledge model with uIV (Eq.4). Mortality events
resulted in vacant sites for which species then competed for recruitment. To test the robustness155

of our results to the choices made in building the community dynamics simulator, we implemented
alternative ways to simulate mortality and fecundity. For mortality, we explored the three following
approaches: (i) the one percent less performing individuals in the landscape die at each timestep,
henceforth denoted deterministic mortality ; (ii) one percent of the individuals die at each timestep,
and the probability θi,j,m of each individual j to die is inversely proportional to its performance,160

θi,j,m = logit−1(0.5 × pi,j,m), henceforth denoted stochastic mortality ; (iii) θi,j,m is computed as a
function of individual performance, θi,j,m = logit−1(logit(0.01) − 0.5 × pi,j,m), henceforth denoted
logistic stochastic mortality. Death events are then drawn in a binomial distribution B(ns, θ) with
θ the vector of all θi,j,m. For fecundity, we explored the two following approaches: (i) the number of
propagules λj,t depends on species abundance Aj,t: λj,t = round(0.5×Aj,t), henceforth denoted the165

abundance-dependent fecundity ; or (ii) each species present in the community produces ten offspring
per timestep, henceforth denoted the fixed fecundity. In both cases, propagules were then randomly
distributed among all vacant sites.If several propagules landed on the same vacant site, the propagule
with the highest individual performance outcompeted the others and won the site. A species that
was not the best at a site could win “by forfeit” and be recruited at this site. When individual170

performance was computed using the Perfect knowledge model, the colonisation of a vacant site only
depended on the species optima. When individual performance was computed using an Imperfect
knowledge model without uIV, this colonisation depended on the estimated species parameters (the
βj), and, for an Imperfect knowledge model with uIV, also on a random individual variation (the
ε̂i,j,m), that enabled potential inversions of competition hierarchy locally.175

Overall, multidimensional niche partitioning and environmental filtering were the main coexis-
tence mechanisms within the simulated communities: mortality and recruitment were controlled by
performance, which depended on the local environment in a species-specific way. Therefore, individ-
uals that were maintained and recruited on a site were filtered by the environment, and performance
on each site increased rapidly. Note that our community dynamics simulator is spatially-implicit,180

i.e. the fate of an individual on a site does not depend on its neighbours neither on the envi-
ronment in the neighbourhood (the spatial auto-correlation of the environmental variables does
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not directly influence the dynamics and here was only used for illustration, Fig. S5.17). Spatial
processes that could contribute to species coexistence (e.g. Wiegand et al. 2021) were thus absent
from our simulator, whose aim was not to provide all potential coexistence mechanisms. When185

using the performance models without uIV (i.e. Perfect knowledge and Imperfect knowledge models
without uIV ), each species rapidly occupied a preferred habitat defined by its optima (perfectly or
imperfectly estimated) in many environmental dimensions. It should be noted that species favor-
able habitats were not equally frequent across species, thus intrinsically defining rare and dominant
species in the landscape. Few species that had a rare favorable habitat and whose initial individuals190

randomly landed on unfavorable sites, could be excluded from the community.
As most results remained qualitatively unchanged across the different alternatives for simulat-

ing mortality and fecundity, we present below the results for the deterministic mortality and the
abundance-dependent fecundity only, and refer the reader to Appendix 1 for the other alternatives.

Experimental setup and analyses195

For each model of individual performance and number of observed environmental dimensions, we
used ten different Environment × Species optima (E×S) configurations, each prescribed randomly.
Within each E×S configurations, ten simulations differing only in their initial conditions (location
of the initial individuals) were run. Each simulation of community dynamics was run for 10,000
generations (Table 1). The ten E × S configurations were the same across models of individual200

performance and number of observed environmental dimensions and the ten initial conditions were
the same across E × S configurations. In total, this led to 3300 simulations.

Table 1: Experimental setup.

Experimental setting Number Comments

Model of individual
performance

3 Perfect knowledge, Imperfect
knowledge without uIV, Imperfect

knowledge with uIV

Number of observed
environmental dimensions nobs

0 to 15 Except for the Perfect knowledge
model

E × S configuration 10 The same configurations were used
across the models of individual

performance and number of observed
environmental dimensions

Initial conditions 10 Determined by the locations of the 10
individuals per species within the

landscape

Generations 10000 Sufficiently long so that changes in the
community are very slow

In order to compare simulation outputs, we studied several aspects of final communities: (1)
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community diversity, (2) the similarity in community composition between simulations, and (3) site
sorting. Community diversity was estimated using species richness and the Hill-Shannon diversity205

index (Roswell et al. 2021). Similarity in community composition was estimated as the pairwise
percentage similarity of final species abundances between pairs of simulations. For two vectors of
species abundances A = (a1, . . . , aj , . . . , aJ) and B = (b1, . . . , bj , . . . , bJ), the percentage similarity
was computed as

PS =
2×

∑J
j=1min(aj , bj)∑
aj +

∑
bj

(Eq.5)

To quantify site sorting, we computed for each simulation the final community mean performance210

as the performance obtained with the Perfect knowledge model, averaged across all individuals at
the end of the simulation. This community mean performance thus corresponded to the strength
of the environmental filtering in community assembly, i.e. the site sorting: the higher the mean
performance, the stronger the effect of the environment on community assembly.

Results215

Final community diversity

Final community diversity, both in terms of species richness and Hill-Shannon index, was lower
with unstructured IV than with the Perfect knowledge model whatever the number of observed
environmental dimensions, i.e. whatever the relative importance of structured vs unstructured
IV (Fig. 3A and B). This diversity increased with the number of observed dimensions. In most220

cases, adding unstructured IV reduced the community diversity with respect to the corresponding
Imperfect knowledge model without uIV (Fig. 3C and D). However, this effect varied with the
number of observed dimensions (but see in case of alternative mortality implementation, Appendix
1): below 50% of explained variance (i.e. up to three observed environmental dimensions, Fig. 2),
adding unstructured IV resulted in a higher or similar diversity than with the Imperfect knowledge225

models without uIV. This difference first decreased and then increased as the number of observed
dimensions increased, while staying negative from 3 to 15 observed dimensions.
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Figure 2: Observed IV depending on the level of knowledge of the environment.
Each point represents the unstructured IV inferred for one species, and each colour represents an E ×
S configuration (twenty points per colour for the twenty species). Unstructured IV was inferred using a
statistical model (Eq.2) taking 0 to 15, out of 15, dimensions into account to fit the performance provided
by the Perfect knowledge model ; the pink points, curve and ribbon correspond to the mean and standard
deviation of the R2 of these statistical models (computed over the ten different configurations for each
number of observed dimensions). As expected, observed unstructured IV decreased with the number of
observed dimensions, i.e. with the level of knowledge of the environment.
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Figure 3: Effect of the structure of individual variation on community diversity.
Each point represents the diversity, either computed as the species richness – left panels – or the Hill-Shannon
diversity index – right panels – of a final simulated community. Each colour represents an E×S configuration
(ten points per color, for the ten initial conditions). The horizontal axis corresponds to the number of
observed environmental dimensions, which is proportional to the ratio of structured and unstructured IV in
the performance models. Each number of observed dimensions corresponds to a level of explained variance
in individual performance (see Fig. 2) depicted with the pink arrow at the bottom. The top panels show
the final community diversity obtained with the Imperfect knowledge models with uIV (0 to 15 observed
dimensions) and with the Perfect knowledge model (PK, red, far right). This is useful to examine our first
question (Fig. 1C, arrow 1). The bottom panels show the difference in the final community diversity obtained
with the Imperfect knowledge models with and without uIV. Points that are above zero (horizontal dashed
line) correspond to a higher diversity when adding unstructured IV. This is useful to examine our second
question (Fig. 1C, arrows 2 and 3), by comparing the effect of adding unstructured IV at different levels
of knowledge of the environment. The Imperfect knowledge models with uIV never reached the diversity
obtained with the Perfect knowledge model (A and B). Moreover, adding unstructured IV as a random noise
had an effect on community diversity that varied with the number of observed environmental dimensions
(C and D). Results shown here were obtained with a deterministic mortality and an abundance-dependent
fecundity (see main text).

Final community composition

Similarity (as measured by PS, Eq.5) of the Imperfect knowledge models with uIV with the Perfect
knowledge model was low when few environmental dimensions were observed, i.e. when the relative230
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importance of structured (vs unstructured) IV was low. This similarity increased with the number
of observed dimensions (from 0.55 to 0.9, Fig. 4A). Adding unstructured IV increased the similarity
with the Perfect knowledge model at low numbers of observed dimensions (from 0 to 2 dimensions,
i.e. below 50% explained variance) but decreased it at higher numbers of observed dimensions, with
respect to the corresponding Imperfect knowledge model without uIV (Fig. 4C, but see in case of235

alternative mortality implementation, Appendix 1). This negative effect became stronger (from 3 to
8 observed dimensions) before becoming weaker (from 9 to 15 observed dimensions). See Appendix
2 for the similarity within models.
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Figure 4: Effect of individual variation on the similarity in final species abun-
dances between models and on the site sorting. Each colour represents an E×S configuration.
For the similarity - left panels -, each point represents the pairwise percentage similarity (PS) in the final
species abundances between two simulations with the same E × S configuration and the same initial condi-
tions (ten points per color), but obtained using the Perfect knowledge model on the one hand and one of the
Imperfect knowledge models on the other hand. For the site sorting - right panels -, each point represents
the community mean performance of the final communities. This mean performance was calculated with the
Perfect knowledge model and averaged across all individuals at the end of the simulation. The top panels
show these two metrics for communities simulated with the Imperfect knowledge models with uIV (0 to 15
observed dimensions) and with the Perfect knowledge model (PK, red, far right). The bottom panels show
the difference in these metrics for communities obtained with the Imperfect knowledge models with and with-
out unstructured IV. Points that are above zero (horizontal dashed line) correspond to a higher similarity or
mean performance when adding unstructured IV, respectively. The similarity between the Perfect knowledge
model and the Imperfect knowledge models with uIV was low with few observed dimensions and increased
with the number of observed dimensions (A). The effect of adding unstructured IV to Imperfect knowledge
models on the similarity with the Perfect knowledge model varied with the number of observed environmental
dimensions (C). The mean performance obtained for communities simulated with the Imperfect knowledge
models with uIV as well as its difference with the Imperfect knowledge models without uIV varied with the
number of observed dimensions (B, D). Results shown here were obtained with a deterministic mortality and
an abundance-dependent fecundity (see main text).

The mean performance of communities simulated with the Imperfect knowledge models with uIV
increased with the number of observed dimensions (except between 14 and 15 observed dimensions),240
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i.e. with the relative importance of structured IV (Fig. 4B). Below ten observed dimensions, it
remained lower than that of the communities simulated with the Perfect knowledge model, but was
higher above ten observed dimensions. Adding unstructured IV decreased the mean performance of
the final species community from zero to six observed dimensions but increased it at higher numbers
of observed dimensions, with respect to the corresponding Imperfect knowledge model without uIV245

(Fig. 4D). This difference increased with the number of observed dimensions, except between 14
and 15 observed dimensions.

Discussion

Substituting structured with random unstructured individual vari-
ability lowers community diversity and generates communities that250

are dissimilar from the reference

Ecologists often have only access to an imperfect characterisation of all the environmental dimen-
sions that actually lead to individual variation, be it due to some overlooked dimensions or variables,
or a monitoring at a scale coarser than the one of the variation that actually influences individuals.
This mischaracterisation can result in an observed but unexplained intraspecific variability in data.255

To account for it in community dynamics models, it has often been (implicitly) assumed that some
unstructured variation could be added to the explained part of variation to reach the actual ob-
served total variation. To test this assumption, in our simulation experiment, we varied the level of
knowledge of the environment and incorporated the remaining (unexplained) variability in individ-
ual performance as unstructured noise, thus varying the ratio of structured and unstructured IV.260

We showed that this difference in the nature of IV has strong consequences on community structure
and composition.

Compared to the reference communities simulated with a 15-dimensional individual performance
(Perfect knowledge model), the communities simulated with a performance estimated with fewer
dimensions and to which the remaining variance was added as a random noise (Imperfect knowledge265

models with uIV ) were less diverse (Fig. 3A and B; see also Appendix 3 for further explanation
on simulated species richness). Beyond the community diversity per se, community composition
was dissimilar from the reference when the number of observed dimensions was low, i.e. when
the relative importance of structured vs unstructured IV was low: the strength of environmental
filtering in shaping community assembly was too low to generate species abundances similar to270

the one of the reference communities. As the relative importance of structured IV increased, both
the strength of environmental filtering and the similarity of the final species abundances with the
reference ones increased (Fig. 4A and B).

Finally, random intraspecific variability is not a good substitute for species response to un-
observed environmental dimensions for studying community dynamics. Moreover, interpreting275

observed IV as unstructured differences in conspecifics’ response to the environment can lead to
misinterpretations regarding the ecological mechanisms driving the community dynamics. It would
mistake the response of species to environmental variation (typically a niche mechanism) with ran-
dom variability (typically a neutral mechanism, i.e. affecting all species in the same way), and
present IV as a coexistence mechanism per se without taking into account the species-specific re-280

sponses to environmental variations in high dimensions from which IV can actually result. Hence,
maintaining the variance observed among individuals is not sufficient to capture the community
dynamics, the structure and nature of this individual variability is also critical.
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The effect of adding a random IV depends on the relative impor-
tance of structured vs unstructured individual variability285

Previous modelling studies that explored the role of IV on community dynamics usually did not
maintain the total level of variance among individuals. They typically compared communities with
and without additional random variability, for the same level of explained individual variation
(Imperfect knowledge model without uIV vs Imperfect knowledge model with uIV ). Our results
showed that the effect of adding a random IV depends on the level of explained variance, i.e. in290

our case on the number of observed dimensions (Fig. 3C and D, Fig. 4C and D).
When structured IV accounted for less than 50% of the total individual variation, the addition

of a random unstructured variation increased community diversity (Fig. 3C, but see in case of
alternative mortality implementation, Appendix 1). This positive effect was due to the inversions in
competitive hierarchy produced by adding a random variation to individual performance; it allowed295

more species to be maintained in the community although there were few theoretical winners (i.e.
species that are the best performing somewhere in the landscape) because of the projection of
their niches on few environmental dimensions. Similarly to species diversity, when the proportion
of structured IV was low, adding unstructured IV increased the similarity of the simulated final
species abundances with the one of the reference communities (Fig. 4C). This increase in similarity300

was however for a great part due to the higher number of species reached when adding unstructured
IV (Fig. 3) (the higher number of zero abundances with the Imperfect knowledge models without
uIV decreases the estimated similarity with the abundances obtained with the Perfect knowledge
model).

When the proportion of structured IV increased, this positive effect of adding random IV on305

community diversity vanished and was even reversed (Fig. 3C, but see in case of alternative mor-
tality implementation, Appendix 1). This is because the destabilisation of the niche partitioning
between species - due to unstructured IV - decreased. Indeed, as expected, the lower unstructured
IV was (i.e. the higher the number of observed dimensions), the greater community mean perfor-
mance (i.e. site sorting) was in comparison to the communities simulated without unstructured IV310

(Fig. 4D, see Appendix 3 for further explanation on the absolute differences in community mean
performance). This negative effect first increased but then decreased with the number of observed
environmental dimensions, because the magnitude (and therefore the effect) of the added unstruc-
tured IV became lower (Fig. 2). Finally, adding unstructured IV in models is most likely to move
simulated community composition away from the reference (here the so-called Perfect knowledge315

model), because this type of variation blurs the species differences that are (although imperfectly)
captured with the observed dimensions. In other words, adding randomness does not compensate
for lack of knowledge and can even blur the limited knowledge obtained from field data, although
this is not the case at a very low level of knowledge of the environment.

Previous modelling studies that tested the effect of adding intraspecific variability on species320

coexistence provided contrasting results (Lichstein et al. 2007; Vieilledent et al. 2010; Courbaud
et al. 2012; Hart et al. 2016; Uriarte and Menge 2018; Crawford et al. 2019). Stump et al. (2022)
proposed a framework to explain part of these discrepancies, by differentiating the nature of the
traits - niche vs hierarchical traits – on which variation was added. While our virtual experiment
only considered additional variability in a hierarchical trait (performance) sensu Stump et al. (2022),325

our results here evidenced an additional source of discrepancies when testing the effect of adding a
random variability on community dynamics: the relative importance of explained and structured vs
unexplained and unstructured individual variance. Overall both features, the nature of the traits
and its link with performance on the one hand, and its structure or source of variation on the
other hand, can explain these contrasting results. Future studies should thus pay great attention330
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to each of these aspects when testing its effect on communities and move away from the systematic
approach of adding an unstructured noise.

Accounting for a high-dimensional environment in community dy-
namics models

Most previous modelling studies have modeled IV as a random noise around species means (Lich-335

stein et al. 2007; Vieilledent et al. 2010; Courbaud et al. 2012; Hart et al. 2016; Uriarte and Menge
2018; Crawford et al. 2019), and did not represent environmental variations that generate individual
variation (e.g. Lichstein et al. 2007; Courbaud et al. 2012), or did so in a way that does not mirror
multidimensional variation: Uriarte and Menge (2018) provided two different habitats, Vieilledent
et al. (2010) used site effects at a much larger scale than individuals, Crawford et al. (2019) repre-340

sented biotic interactions with resources that are constant through space and time, and while Banitz
(2019) is the first to test the consequences of IV resulting from a spatially-structured environmental
index, coexistence relied on trade-offs and random disturbances in a one-dimensional environment.
Our results showed that using independent random draws is not a relevant approach to represent
environmentally-driven intraspecific variability(Girard-Tercieux et al. 2023) in most cases. To do345

so, environment-species interactions should be better taken into account in models.

Improving the knowledge of the environment: a costly but worthy endeavour

The environment can vary in many ways, even if the number of resources is limited, as it is likely
the case (Craine 2009). Indeed, many other biotic and abiotic variables can influence the ability
to use available resources and individual performance (e.g. soil microbiome and texture, micro-350

climate, pathogens, Fortunel et al. 2018; Averill et al. 2022). Moreover, species can partition the
same environmental variable (e.g. light) by responding non-linearly to it (e.g. with different light-
performance slopes at different light levels), further increasing the dimensionality of their responses
to environmental variation in space and time. As monitoring environmental variables and species
responses at fine spatio-temporal scales remains difficult and costly despite technological advances355

and continuous effort in the field (Estes et al. 2018), part of the environmental variation that
influences individuals’ attributes is typically not properly measured in ecological studies.

Our results suggest that improving the characterisation of environmental variation by monitor-
ing additional independent environmental variables (i.e. moving to the right in Fig. 2, 3, and 4) is
a worthy endeavour. Using one dimension out of 15, 41% of the variation in individual performance360

is accounted for. The corresponding simulated communities, in absence of any additional random
variation, reached less than half the species richness of the communities simulated with the actual
15-dimensional individual performance (median of 4 vs 18, Fig. S4.1) with relatively dissimilar
community composition (median of similarity in abundance of 0.43 vs 0.95, median of mean perfor-
mance of 1.15 vs 1.54, Fig. S4.2). Adding a second dimension allowed to increase the proportion365

of explained variance in individual performance to 46%, and simulated species richness to a median
of 7, with communities more similar to the reference (median of similarity in abundances of 0.59
and median of mean performance of 1.19). The identification of the most influential environmental
variables or dimensions in species responses using ecological knowledge (Rüger et al. 2009; Bartlett
et al. 2016; Soong et al. 2020) is of course valuable to optimize and prioritize these efforts in the370

field.
Another way to improve the characterisation of the environment could be to better capture the

spatio-temporal structure of the already monitored variables (Tymen et al. 2017; Estes et al. 2018;
Zellweger et al. 2019; De Frenne et al. 2021), i.e. to monitor them at finer scales in space and time.
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In our simulation, the scale of the environmental variation was the same as the individual (prescribed375

by the grid mesh size) across all models of individual performance. Testing the effect of degrading
the resolution of the observed environmental variation in the case of an imperfect characterisation of
the environment could be explored in the future. Finally, improving the characterisation of species
responses to a few major environmental variables can also enable to better reveal the realised niche
partitioning operating within communities. While niche partitioning is more easily achieved with380

a high number of environmental dimensions, high level of coexistence can also be reached with
only one axis if it is well partitioned among species (e.g. Hurtt and Pacala 1995; Detto et al.
2022), thus building a high-dimensional space where each species can perform better somewhere.
This is in agreement with several studies that showed significant improvement in the similarity of
simulated communities with the reference by only adding a second dimension to species responses385

in community models (Falster et al. 2017; Rüger et al. 2020).

Structuring variation: a first step towards accurate representation of multidi-
mensionality

Our virtual experiment builds on an extreme case in which conspecific individuals have exactly
the same response to environmental variation and where performance is completely determined by390

environmental factors, which is unlikely to be the case under the joint effect of environmental and
genetic variation in the field, as well as the effect of neutral mechanisms. Partitioning observed IV
between genetically-driven, environmentally-driven and unexplained IV using existing data, would
be a first step to better understand the nature of IV and to provide hypotheses regarding the
resulting structure of IV. This is the goal of many G × E studies and meta-analyses encompassing395

several ecosystems (e.g. Nicotra et al. 2010; Napier et al. 2023). However, while the intraspecific
variation that is added in models as a noise around species means is not structured in space and
time, IV, whether it is environmentally- or genetically-driven or both, is actually highly likely to
be structured in space and time (Girard-Tercieux et al. 2023). This structure could appear when
IV results from spatially-structured environmental variables or from limited dispersion or local400

adaptation (Marrot et al. 2021; Schmitt et al. 2021; Westerband et al. 2021). As shown here, this
has profound consequences on the properties of the simulated community. Importantly, whatever its
source, the spatio-temporal structure of individual variation is an emergent property of conspecific
individuals responding more similarly to the environment than heterospecifics locally (Clark 2010;
Girard-Tercieux et al. 2023), an important condition for stable species coexistence (Chesson 2000).405

Observed or inferred IV, whatever its source (genetic, environmental or an interaction of both,
Westerband et al. 2021), can be structured at the individual scale (”individual variability”) using
individual effects when one individual is repeatedly observed at one site (Clark et al. 2003). Such
individual effects are then typically randomly attributed to individuals in the landscape however
(e.g. Clark et al. 2007), which is almost equivalent to adding a random noise. Alternatively,410

the spatio-temporal structure of individual effects could be conserved when injected in models of
community dynamics so that a part of observed IV is spatially structured. Pioneer studies have
started to explore some aspects of the spatial structure of IV (Purves and Vanderwel 2014; Uriarte
and Menge 2018; Banitz 2019), and future work should further explore this direction to generalise
its use in community dynamics models. Another source of environmental variation that was not415

tackled in this study is temporal variation. This variation is often structured, at different temporal
scales (seasons, years, El Niño/La Niña events, etc.) and this structure should be accounted for in
models by expliciting those temporal scales after detection in the data.

Overall, our results suggest that it is crucial to explore the structure of observed IV in real
communities to better understand its impact on diversity and community dynamics.420
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X. Su, W. Wang, X. Wang, H. Yin, and J. R. Deslippe. Intraspecific trait variation in alpine
plants relates to their elevational distribution. Journal of Ecology, 110(4):860–875, Apr. 2022.580

ISSN 0022-0477, 1365-2745. doi: 10.1111/1365-2745.13848. URL https://onlinelibrary.

wiley.com/doi/10.1111/1365-2745.13848.

M. Roswell, J. Dushoff, and R. Winfree. A conceptual guide to measuring species diversity. Oikos,
130(3):321–338, Mar. 2021. ISSN 0030-1299, 1600-0706. doi: 10.1111/oik.07202. URL https:

//onlinelibrary.wiley.com/doi/10.1111/oik.07202.585
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