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ABSTRACT
Behavioral flexibility, the ability to adapt behavior to new circumstances, is thought to play an 
important role in a species’ ability to successfully adapt to new environments and expand its 
geographic range. However, flexibility is rarely directly tested in species in a way that would 
allow us to determine how flexibility works to predict a species’ ability to adapt their behavior to 
new environments. We use great-tailed grackles (Quiscalus mexicanus; a bird species) as a 
model to investigate this question because they have recently rapidly expanded their range into 
North America. We attempted to manipulate grackle flexibility using shadcolored tube (light and 
dark gray) reversal learning to determine whether flexibility is generalizable across contexts 
(multi-access box), and what learning strategies grackles employ. We found that flexibility was 
manipulablemanipulatable: birds in the manipulated group took fewer trials to pass criterion with
increasing reversal number, and they reversed a shadecolor preference in fewer trials by the 
end of their serial reversals compared to control birds who had only one reversal. Birds that 
passed their last reversal faster were also more flexible (faster to switch between loci) and 
innovative (solved more loci) on a multi-access box. All grackles in the manipulated reversal 
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learning group used one learning strategy (epsilon-decreasing: long exploration period) in all 
reversals and did not use the epsilon-first strategy: quickly shift their preference), and none 
used a particular exploration or exploitation strategy earlier or later in their serial reversals. 
Understanding how flexibility causally relates to other traits will allow researchers to develop 
robust theory about what flexibility is and when to invoke it as a primary driver in a given 
context, such as a rapid geographic range expansion.

Video summary

INTRODUCTION
Behavioral flexibility, the ability to adapt behavior to new circumstances through packaging 
information and making it available to other cognitive processes (see Mikhalevich et al., 2017 for
the theoretical background on this definition), is thought to play an important role in a species’ 
ability to successfully adapt to new environments and expand its geographic range (e.g., 
Lefebvre et al., 1997; Sol et al., 2002, 2005, 2007; Sol & Lefebvre, 2000). The behavioral 
flexibility (hereafter referred to as flexibility) of individuals is considered an important trait that 
facilitates the capacity for learning, which is then associated with problem solving ability 
(applying what one has learned about the world to then attempt to access a resource that is not 
readily accessible) (see review in Lea et al., 2020). It is hypothesized that, through flexibility, 
individuals can increase the diversity of their behaviors either via asocial learning 
(innovativeness) or social learning, leading to the establishment of the population in a new area 
(Wright et al., 2010).

It is predicted that flexibility should positively relate with innovativeness, the ability to create a 
new behavior or use an existing behavior in a new situation (Griffin & Guez, 2014). However, 
these predictions are based on species-level data and proxies for flexibility and for innovation 
(e.g., brain size, number of anecdotal reports of “novel” foods consumed) when examining such 
relationships (see Logan et al., 2018). Flexibility is rarely directly tested in species that are 
rapidly expanding their geographic ranges in a way that would allow us to determine how 
flexibility works and predict a species’ ability to adapt their behavior to new areas. Those 
investigations that examine the relationship between flexibility and innovation or problem solving
[or problem solving - a type of experimental assay that does not necessarily require 
innovativeness to solve, e.g., the ability to solve tasks using pre-trained behaviors; Griffin & 
Guez (2014)] in species that are expanding their range show mixed results, with these variables
correlating positively (e.g., grey squirrels: Chow et al., 2016), negatively (e.g., Indian mynas: 
Griffin et al., 2013), or not at all (e.g., stick tool use and string pulling in great-tailed grackles: 
Logan, 2016). Problem solving in these contexts involves experimental assays that do not 
necessarily require innovativeness to solve (e.g., the ability to solve tasks using pre-trained 
behaviors; Griffin & Guez 2014). However, none of these experiments manipulated flexibility.

Here, we take tThe first step to improving our understanding of whether and how flexibility 
relates to innovativeness, by and the focus of the current investigation, is to  starting with one 
population and performing a manipulative experiment on one of the variables to determine 
whether there is an associated change in the other. Once this association is known, future 
research can then investigate whether flexibility and innovativeness are involved in a range 
expansion. Manipulative experiments go beyond correlations to infer a cause and effect 
relationship between the manipulated variable and the variable(s) measured after the 
manipulation (Hernán & Robins, 2006; McElreath, 2020). A manipulative experiment combined 
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with the random assignment of subjects to a condition (manipulated group or control group), 
eliminates many confounds associated with internal and external variation (for example, season,
motivation, sex, and so on). Such manipulative experiments in behavioral ecology have 
primarily been conducted in laboratory settings because of the increased feasibility, however 
such experiments are now also being conducted in wild settings (Aplin et al., 2015).

We focused our study on one population of great-tailed grackles (Quiscalus mexicanus, 
hereafter grackles), a bird species that is flexible (Logan, 2016). Wand, while they are originally 
from Central America, great-tailed gracklesthey have rapidly expanded their geographic range 
across the US since 1880 (Summers et al., 2022; Wehtje, 2003). We attempted to manipulate 
grackle flexibility using serial reversals of a shadecolor  (light or dark gray) preference to 
determine whether their flexibility is generalizable across additional experimental contexts 
(touchscreen reversal learning and multi-access box solution switching), whether improving 
flexibility also improves innovativeness (number of loci solved on a multi-access box), and what 
learning strategies grackles employ (Figure 1).

Reversal learning is a common way of measuring flexibility that has been used for many 
decades across many species, therefore lending itself well to comparative analyses and 
generalizations (see review in Lea et al., 2020). In this test, an individual learns to prefer the 
rewarded option, which differs from the non-rewarded option in shade/color, shape, space, or 
another discriminableobvious feature. Once this initial preference is formed, the previously non-
rewarded option becomes the rewarded option and vice versa, and the preference is reversed. 
Individuals who are faster to reverse their preference are considered more flexible - better able 
to change their behavior when the circumstances change. Serial reversal learning involves 
continuing to reverse the preference back and forth to determine whether individuals learn a 
“win-stay, lose-shift” rule that, when the reward is no longer followsin the expected option, they 
should switch to preferring the other option (Spence, 1936; J. Warren, 1965; J. M. Warren, 
1965). Once this rule is learned, it can then be applied to new contexts and result in improved 
performance over individuals who have not learned this rule (J. M. Warren, 1965). We randomly
assigned individuals to a manipulated or control condition and used serial reversals (for the 
manipulated group) to attempt to manipulate flexibility and determine whether the manipulated 
individuals were then more flexible and more innovative in other contexts.

If grackle flexibility is manipulablemanipulatable using serial reversals, this would provide us 
with a useful tool for investigating the relationship between flexibility and any number of other 
variables implicated in geographic range expansions. It would provide researchers with a way to
examine the direct links between, for example, flexibility and exploration, to determine whether 
they are connected and in which direction, which could provide insights into how populations 
establish in a new location if cross-population manipulations were conducted. If the flexibility 
manipulation is not successful, this could indicate either that we did not manipulate the right 
aspect of flexibility (e.g., perhaps training them to solve a variety of different types of tasks 
quickly would be more effective) or that grackle flexibility is not a trait that is trainable.
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Figure 1. A visual illustration of Hypothesis 1 (A), Hypothesis 2 (B), and Hypothesis 4 (C). 
Longer black arrows indicate slower reversal times, the two yellow circles represent experience 
with the two yellow tubes that both contained food for the control group.

HYPOTHESES

H1: Behavioral flexibility, as measured by reversal learning using shadcolored 
tubes, is manipulablemanipulatable.

● Prediction 1: Individuals improve their flexibility on a serial reversal learning task using 
shadcolored tubes by generally requiring fewer trials to reverse a preference as the 
number of reversals increases (manipulation condition). Their flexibility on this test is 
manipulated relative to control birds who do not undergo serial reversals. Instead, 
individuals in the control condition are matched to manipulated birds for experience (they
experience a similar number of trials), but there is no possibility of a functional tube 
preference because both tubes are the same shadecolor (yellow) and both contain food, 
therefore either choice is correct.

● P1 alternative 1: If the number of trials to reverse a preference does not correlate with 
or positively correlates with reversal number, which would account for all potential 
correlation outcomes, this suggests that some individuals may prefer to rely on 
information acquired previously (i.e., they are slow to reverse) rather than relying on 
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current cues (e.g., the food is in a new location) (Griffin & Guez, 2014; Liu et al., 2016; 
e.g., Manrique et al., 2013; but see Homberg et al., 2007).

H2: Manipulating behavioral flexibility (improving reversal learning speed 
through serial reversals using shadcolored tubes) improves flexibility (rule 
learning and/or switching) and innovativenessproblem solving in a new 
context (two distinct multi-access boxes and serial reversals on a 
touchscreen).

● P2: Individuals that have improved their flexibility on a serial reversal learning task using 
shadcolored tubes (requiring fewer trials to reverse a preference as the number of 
reversals increases) are faster to switch between new methods of solving (latency to 
solve or attempt to solve a new way of accessing the food [locus]), and learn more new 
loci (higher total number of solved loci) on multi-access box flexibility tasks, and are 
faster to reverse preferences in a serial reversal task using a touchscreen than 
individuals in the control group where flexibility has not been manipulated. The positive 
correlation between reversal learning performance using shadcolored tubes and a 
touchscreen (faster birds have fewer trials) and the multi-access boxes (faster birds 
have lower latencies) indicates that all three tests measure the same ability even though 
the multi-access boxes require inventing new rules to solve new loci (while potentially 
learning a rule about switching: “when an option becomes non-functional, try a different 
option”) while reversal learning requires switching between two rules (“choose light gray”
or “choose dark gray”) or learning the rule to “switch when the previously rewarded 
option no longer contains a reward”. Serial reversals eliminate the confounds of 
exploration, inhibition, and persistence in explaining reversal learning speed because, 
after multiple reversals, what is being measured is the ability to learn one or more rules. 
If the manipulation works, this indicates that flexibility can be influenced by previous 
experience and might indicate that any individual has the potential to move into new 
environments (see relevant hypotheses in preregistrations on genetics (R1) and 
expansion (H1)).

● P2 alternative 1: If the manipulation does not work in that those individuals in the 
experimental condition do not decrease their reversal speeds more than control 
individuals, then this experiment elucidates whether general individual variation in 
flexibility relates to flexibility in new contexts (two distinct multi-access boxes and serial 
reversals on a touchscreen) as well as innovativenessproblem solving ability (multi-
access boxes). The prediction is the same as in P2, but in this case variation in flexibility 
is constrained by traits inherent to the individual (some of which will be tested in McCune
KB et al., 2019), which suggests that certain individuals will be more likely to move into 
new environments.

● P2 alternative 2: If there is no correlation between reversal learning speed (shadcolored
tubes) and the latency to solve/attempt a new locus on the multi-access boxes, this 
could be because the latency to solve not only measures flexibility but also 
innovativeness. In this case, an additional analysis is run with the latency to solve as the 
response variable, to determine whether the fit of the model (as determined by the lower 
AIC value) with reversal learning as an explanatory variable is improved if motor 
diversity (the number of different motor actions used when attempting to solve the multi-
access box) is included as an explanatory variable (see Diquelou et al., 2015; Griffin et 
al., 2016). If the inclusion of motor diversity improves the model fit, then this indicates 
that the latency to solve a new locus on the multi-access box is influenced by flexibility 
(reversal learning speed) and innovation (motor diversity).
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● P2 alternative 3: If there is a negative correlation or no correlation between reversal 
learning speed on shadcolored tubes and reversal learning speed on the touchscreen, 
then this indicates that it may be difficult for individuals to perceive and/or understand 
images on the touchscreen in contrast with physical objects (shadcolored tubes) (e.g., 
O’Hara et al., 2015).

H3: Behavioral flexibility within a context is repeatable within individuals.

This hypothesis from the original preregistration is now being treated in a separate manuscript 
[@mccune2022flexmanip].

H4: Individuals should converge on an epsilon-first learning strategy (learn the
correct choice after one trial) as they progress through serial reversals.

● P4: Individuals prefer a mixture of learning strategies in the first serial reversals (an 
epsilon-decreasing strategy where individuals explore both options extensively before 
learning to prefer the rewarded option, and an epsilon-first strategy where the correct 
choice is consistently made after the first trial), and then move toward the epsilon-first 
learning strategy. The epsilon-first strategy works better later in the serial reversals 
where the reward is all or nothing because individuals have learned the environment is 
changing in predictable ways (Bergstrom & Lachmann, 2004): only one option is 
consistently rewarded, and if the reward isn’t in the previously rewarded option, it must 
be in the other option.

● P4 alternative 1: Individuals continue to prefer a mixture of learning strategies, and/or 
they do not converge on the more functional epsilon-first learning strategy, regardless of 
how many reversals they participate in. This pattern could suggest that the grackles do 
not attend to functional meta-strategies, that is, they do not learn the overarching rule 
(once food is found in the non-preferred tube, one must switch to preferring that tube 
shadecolor), but rather they learn each preference change as if it was new.

METHODS
Please see our preregistration that received in principle acceptance at PCI Ecology (PDF 
version) for all of the preregistered methods. Below, we include a summary and describe all 
deviations from the preregistration. We present the results from different hypotheses in separate
articles: this one, K. McCune et al. (2022), and Lukas et al. (2022).

Planned Sample

Great-tailed grackles were caught in the wild in Tempe, Arizona, USA for individual identification
(colored leg bands in unique combinations). Some individuals (~32: ~16 in the control group 
(they receive 1 reversal) and ~16 in the flexibility manipulation (they receive multiple reversals)) 
were brought temporarily into aviaries for testing, and then released back to the wild.

● Deviation from the plan: we were able to test a total of 20 individuals: 11 in the control 
condition and 9 in the manipulation condition. This met our minimum sample size 
criterion (see next section).

Data collection stopping rule
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We stopped testing birds after we completed two full aviary seasons because the sample size 
was above the minimum suggested boundary of 15 (to detect a medium effect size) based on 
model simulations (see Supplementary Material 16).

Summary of testing protocols (Figure 2)

**Reversal learning with shaded tubes:** one light gray and one dark gray tube were placed 
such that the openings were not visible (shades were pseudorandomized for side). One shade 
always contained a food reward. The individual had the opportunity to choose to look inside one
tube per trial. Once the individual chose correctly on 17 out of the most recent 20 trials, they 
were considered to have a shade preference, and then the food was always placed in the 
previously non-rewarded shade and the same passing criterion was used to determine their 
reversal learning performance. Individuals were randomly placed in the manipulated condition 
(serial reversals until they passed two consecutive reversals in 50 trials or less) or the control 
condition (receive only one reversal and then a similar number of total trials to the manipulated 
individuals, but with two yellow tubes, both of which always had food).
**Plastic multi-access box:** was a puzzlebox made of plexiglas and plastic, which contained 
one piece of food on a post in the center of the box. The box was placed in the aviary for up to 
15 minutes per trial. Each plexiglas wall had one option (locus) for retrieving the food, but each 
option required a different method for obtaining the food. The individual had the opportunity to 
attempt (touch, but not obtain the food) or solve a locus. Once a locus was used successfully 
three times to get the food, it was considered solved and rendered non-functional in subsequent
trials. The experiment ended when an individual solved all four loci or if they did not interact with
or successfully solve a locus in three consecutive trials.
**Wooden multi-access box:** a puzzlebox carved from a log to have four loci containing a food 
item. Each locus required a different motor action to solve. Three loci were covered with a 
plastic door on a hinge and one locus was a drawer that must be pulled out. Trials lasted for up 
to 15 minutes. The passing criterion and experiment ending criteria were the same as for the 
plastic multi-access box.
**Reversal learning of shapes on a touchscreen:** this is the same experimental design as with 
the shaded tubes, except it was carried out on a touchscreen computer where the individual 
was presented with two white symbols that differed in shape (pentagon or diamond). Touching 
the screen over the rewarded shape resulted in food dropping from a food hopper into a dish 
accessible to the grackle, while touching the screen over the non-rewarded shape resulted in no
food and a longer inter-trial interval.
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Figure 2. The experimental apparatuses: reversal learning using dark gray and light gray tubes 
or two different shapes on a touchscreen, and the wooden and plastic multi-access boxes 
(MAB). The wooden MAB has four loci, each containing food and each locus has a distinct way 
of being opened: lift up flap (A), swing open flap (B), pull out drawer (C), or push in flap (D). The
plastic MAB has four loci that all provide access to one piece of food and each locus has a 
distinct way of being opened: open the window (left side), pull the string (top side), push the 
shovel (right side), or twist the shovel (bottom side).

Open materials

Design files for the plastic multi-access box: 3D printer files and laser cutter files

Testing protocols for all three experiments: shadcolored tube reversal learning, plastic multi-
access box, wooden multi-access box, and touchscreen reversal learning

Open data

The data are available at the Knowledge Network for Biocomplexity’s data repository: 
https://knb.ecoinformatics.org/view/corina_logan.84.42. Data are publicly 
[available](https://doi.org/10.5063/F1XP73CJ) at the Knowledge Network for Biocomplexity 
[@logan2022flexmanipdata].
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Randomization and counterbalancing

H1: Subjects were randomly assigned to the manipulated or control group. In the reversal 
learning trials, the rewarded option is pseudorandomized for side (and the option on the left is 
always placed first). Pseudorandomization consisted of alternating location for the first two trials 
of a session and then keeping the same shadecolor on the same side for at most two 
consecutive trials thereafter. A list of all 88 unique trial sequences for a 10-trial session, 
following the pseudorandomization rules, was generated in advance for experimenters to use 
during testing (e.g., a randomized trial sequence might look like: LRLLRRLRLR, where L and R 
refer to the location, left or right, of the rewarded tube). Randomized trial sequences were 
assigned randomly to any given 10-trial session using a random number generator (random.org)
to generate a number from 1-88. The only exception to this randomization was when an 
individual exhibited a side bias (choosing one side 4 or more trials in a row). In these cases, we 
stopped the current random numbers for side and started putting the rewarded shadecolor on 
the non-preferred side as much as possible while still following the pseudorandomization rules 
until the individual stopped exhibiting a side bias.

ANALYSEIS PLAN
Analyses were conducted in R [current version 4.1.2; R Core Team (2017)], using several R 
packages: kableExtra (Zhu (2021), stargazer (Hlavac (2018), MCMCglmm (Hadfield (2010), 
MuMIn (Bartoń (2020), rethinking (McElreath (2020), stan (Stan Development Team (2020), 
formatR (Xie (2019), Rstudioapi (Ushey et al. (2020), rcpp (Eddelbuettel & François (2011), 
ggplot2 (Wickham (2016), knitr (Xie, 2013, 2017, 2018), dplyr (Wickham et al. (2021), cmdstanr 
(Gabry & Češnovar (2021), posterior (Bürkner et al., 2020), cowplot (Wilke, n.d.), bayesplot 
(Gabry et al., 2019), irr (Gamer et al., 2012), psych (Revelle, 2014, 2017), reactable (Lin (2020),
DHARMa (Hartig, 2019), lme4 (Bates et al., 2012; Bates et al., 2015).

Unregistered analyses: We conducted unregistered interobserver reliability analyses on the 
video and live coding of the response variables. Scores indicated that the response variables 
are repeatable to a high or extremely high degree given our instructions and training for coders 
(see Supplementary Material 25).

Planned analyses: When there is more than one experimenter within a test, experimenter will 
be added as a random effect to account for potential differences between experimenters in 
conducting the tests. If there are no differences between models including or excluding 
experimenter as a random effect, then we will use the model without this random effect for 
simplicity.

Deviation from the plan: We removed experimenter (random variable) from all analyses 
because the interobserver reliability scores were so high, indicating there was no difference 
between experimenters, therefore we could keep our models simpler by leaving this variable 
out.

Data checking

The data were checked for overdispersion, underdispersion, zero-inflation, and 
heteroscedasticity with the DHARMa R package (Hartig, 2019) following methods by Hartig. 
Note: DHARMa doesn’t support MCMCglmm, therefore we will use the closest supported 
model: glmer from the R package lme4 (Bates et al., 2015) for the DHARMa data checking.

Determining the threshold: How many reversals are enough?
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The plan: We initially (in 2017) set as the passing criterion: During the data collection period, 
the number of trials required to reverse a preference will be documented per bird, and reversals 
will continue until the first batch of birds tested reaches an asymptote (i.e., there are negligible 
further decreases in the number of trials required to reverse a preference). The number of 
reversals to reach the asymptote will be the number of reversals that subsequent birds 
experience.

● Deviations from the plan: We initially (in 2017) set as the passing criterion: During the 
data collection period, the number of trials required to reverse a preference will be 
documented per bird, and reversals will continue until the first batch of birds tested 
reaches an asymptote (i.e., there are negligible further decreases in the number of trials 
required to reverse a preference). The number of reversals to reach the asymptote will 
be the number of reversals that subsequent birds experience. Due to delays in setting up
the field site, we were only able to test two grackles in early 2018 (January through April)
and, due to randomization, only one (Fajita) was in the experimental condition that 
involved undergoing the flexibility manipulation (Empanada was in the control condition).
While Fajita’s reversal speeds generally improved with increasing serial reversals, she 
never reached an asymptote (which we defined as passing three consecutive reversals 
in the same number of trials), even after 38 reversals. These 38 reversals took 2.5 
months, which is an impractical amount of time if birds are to participate in the rest of the
test battery (multi-access box, detour, causal cognition, go no-go, reversal on a 
touchscreen) after undergoing the reversal manipulation (we were initially permitted to 
keep them in aviaries for up to three months per bird, which we extended to 6 months 
per bird in Dec 2018). Because our objective in this experiment was to manipulate an 
individual’s flexibility, we decided to revise our serial reversal passing criterion to 
something more species relevant based on Fajita’s serial reversal performance and the 
performance of seven grackles in Santa Barbara who underwent only one reversal in 
2014 and 2015 (Logan, 2016). The revised serial reversal passing criterion was: 
passing two reversals in a row at or under 50 trials. 50 trials is fewer trials than any 
of the nine grackles required to pass their first reversal (range 70-130), therefore it 
should reflect an improvement in flexibility.

Revising the choice criterion and the criterion to pass the control condition

Reversal learning color tube cChoice criterion: At the beginning of the second bird’s 
initial discrimination in the reversal learning colored tube experiment (October 2018), we revised
the criterion for what counts as a choice from A) the bird’s head needs to pass an invisible line 
on the table that ran perpendicular to the the tube opening to B) the bird needs to bend its body 
or head down to look in the tube (see B demonstrated in Figure 3). Criterion A resulted in birds 
making more choices than the number of learning opportunities they were exposed to (because 
they could not see whether there was food in the tube unless they bent their head down to look 
in the tube) and appeared to result in slower learning. It is important that one choice equals one 
learning opportunity, therefore we revised the choice criterion to the latter. Anecdotally, this 
choice matters because the first three birds in the experiment (Tomatillo, Chalupa, and Queso) 
learned faster than the pilot birds (Empanada and Fajita) in their initial discriminations and first 
reversals. Thus, it was an important change to make at the beginning of the experiment (after 
testing the two pilot birds and before collecting any data that were included in analyses).

Figure 3. Tzanatl preciosa bending down to look into the tube. 
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Criterion to pass the control condition: Before collecting experimental data, we set the 
number of trials experienced by the birds in the control group as 1100 because this is how many
trials it would have taken the pilot bird in the manipulated group, Fajita, to pass serial reversals 
2-17 according to our revised serial reversal passing criterion. However, after 25 and 17 days 
(after Tomatillo and Queso’s first reversals, respectively) of testing the first two individuals in the
control group, it became apparent that 1100 trials is impractical given the time constraints for 
how long we were permitted to keep each bird temporarily in captivity and would prevent birds 
from completing the test battery before their release. Additionally, after revising the choice 
criterion, it was going to be likely that birds in the manipulated group would require fewer than 
1100 trials to meet the serial reversal passing criterion. Therefore, reducing the number of trials 
the control birds experience would result in a better match of experience with birds in the 
manipulated group. On 2 November 2018 we set the number of trials control birds experience 
after their first (and only) reversal to the number of trials it requires the first bird in the 
manipulated group to pass (the first bird has not passed yet, therefore we do not yet know what 
this number is). After more individuals in the manipulated group passed, we updated this 
number to the average number of trials to pass. This applied to all birds in the control condition, 
except Mofongo (see next paragraph).

●   Deviation from the plan (16 April 2020): Mofongo (control condition) was a slow 
participator and would not have finished his test battery by the time it got too hot to keep 
birds in the aviaries if we used the current average number of trials (420). Instead, we 
matched him with the fastest bird in the manipulated group (Habanero=290 trials) to 
make it more likely that Mofongo could get through the rest of the test battery in time.

P1: negative relationship between the number of trials to reverse a preference
and the number of reversals?

Analysis: Response variable: Number of trials to reverse a preference. An individual is 
considered to have a preference if it chose the rewarded option at least 17 out of the most 
recent 20 trials (with a minimum of 8 or 9 correct choices out of 10 on the two most recent sets 
of 10 trials). We use a sliding window to look at the most recent 10 trials for a bird, regardless of
when the testing sessions occurred. Explanatory variable: reversal number. Random variables: 
batch (batch is a test cohort, consisting of 8 birds being tested simultaneously and there 
wererandom effect because multiple batches included in the analysis; batch is a test cohort, 
consisting of 8 birds being tested simultaneously) and ID (random effect because there were 
repeated measures on the same individuals). A Generalized Linear Mixed Model [GLMM; 
MCMCglmm function, MCMCglmm package; Hadfield (2010)] will be used with a Poisson 
distribution and log link using 130,000 iterations with a thinning interval of 5010, a burnin of 
903,000, and minimal priors (V=1, nu=0) (Hadfield, 2014). We will ensured the GLMM showeds 
acceptable convergence [lag time autocorrelation values <0.01; Hadfield (2010)], and adjusted 
parameters asif necessary. We will determine whether an independent variable had an effect or 
not using the Estimate in the full model.

We did not need a power analysis to estimate our ability to detect actual effects because, by 
definition, the individuals that complete this experiment must get faster at reversing in order to 
be able to pass the stopping criterion (two consecutive reversals in 50 trials or less). According 
to previous grackle data (from the pilot birds, and from Santa Barbara; Logan, 2016), the fastest
grackle passed their first reversal in 70 trials, which means that passing our serial reversal 
stopping criterion would require them to have improved their passing speed.

**Unregistered analyses:** We evaluated whether the individuals in both conditions 
(manipulated and control) required a similar number of trials to pass their first reversal 
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(dependent variable: trials to reverse in first reversal, explanatory variable: condition, random 
variables: ID and batch; Table 1), and their last reversal (dependent variable: trials to reverse in 
last reversal, explanatory variable: condition, random variables: ID and batch; Table 3).  

Code

P2: serial reversal improves rule switching and innovativenessproblem solving

Code

APlanned analyses: Note: As originally planned, we replaced the GLMs and GLMMs in May 
2020 with more powerful models after learning how to make bespoke Bayesian models from 
McElreath (2016). We made these models before analyzing the actual data (14 May 2020).

One model was run per response variable: average latency to attempt to solve a new locus after
solving a different locus, and total number of loci solved. Explanatory variable: Number of trials 
to reverse a preference in the last reversal. Random variable: batch.

The model for the number of loci solved takes the form of:

locisolved ~ Binomial(4, p) [likelihood]

logit(p) ~ α[batch] + βtrials [model]

locisolved is the number of loci solved on the multi-access box, 4 is the total number of loci on 
the multi-access box, p is the probability of solving any one locus across the whole experiment, 
α is the intercept and each batch gets its own, β is the expected amount of change in locisolved
for every one unit change in trials, and trials is the number of trials to reverse a shadecolor 
preference. See Supplementary Material 13 for more model details.

The model for the latency to switch options takes the form of:

latency ~ gamma-Poisson(λi,ϕ) [likelihood]

log(λi) ~ α[batch] + βtrials [model]

latency is the average latency to attempt a new locus on the multi-access box, λi is the rate 
(probability of attempting a locus in each second) per bird (and we take the log of it to make 
sure it is always positive; birds with a higher rate have a smaller latency), ϕ is the dispersion of 
the rates across birds, α is the intercept for the rate per batch, β is the expected amount of 
change in the rate of attempting to solve in any given second for every one unit change in trials, 
and trials is the number of trials to reverse a shadecolor preference. Note that a gamma-
Poisson distribution is also known as negative binomial. See Supplementary Material 16 for 
more model details.

Note: As originally planned, we replaced the GLMs and GLMMs in May 2020 with more 
powerful models after learning how to make bespoke Bayesian models from McElreath (2016). 
We made these models before analyzing the actual data (14 May 2020).

Code

Deviations from the plan:

● April 2020: we realized that the average latency to solve a new locus after solving a 
different locus is confounded with the total number of loci solved because the measure 
of innovation is included in the definition. Therefore, we removed average latency to 

12



solve a locus from analyseis so that we are only examining pure measures of flexibility 
(average latency to attempt to solve) and innovation (total number of loci solved).

●   Removed batch (random variable): the original model for P2 (Table SM32: Model 1) 
included the covariate aviary batch, however this ended up confounding the analysis 
because control and manipulated individuals, while randomly assigned to these 
conditions, ended up in particular batches as a result of their willingness to participate in 
tests offered during their time in the aviary (Table SM32: Model 3). Several grackles 
never passed habituation or training such that their first experiment could begin, 
therefore we replaced these grackles in the aviaries with others who were willing to 
participate. This means that batch did not indicate a particular temporal period. 
Therefore, we removed batch from the models (post data collection, mid-data analysis).

●   When making the bespoke Bayesian models, we realized that we had previously 
misinterpreted which variable should be the response variable in this analysis. We 
originally set the number of trials to reverse as the response variable, however we 
should have instead set the number of loci solved as the response variable and then 
planned to conduct a second model with the latency to attempt a new locus as the 
response variable and number of trials as the explanatory variable. This is because a) 
we manipulated the number of trials to reverse, therefore it must be the explanatory 
variable (Hernán & Robins, 2006); and b) they should be split into two models because 
of a and because these are two very different relationships that should be considered in 
their own models. We also realized that Condition (manipulated or control) does not 
need to be a variable in any of our models because the manipulated birds have, by 
definition, faster reversal speeds.

Unregistered analyses: Because the wooden multi-access box was added after in principle 
recommendation, we conducted an unregistered analysis to determine whether the plastic and 
wooden multi-access box results correlated with each other, which would indicate that these 
tests are interchangeable. We found that they did not statistically significantly correlate with 
each other on either variable measured: the average latency to attempt a new locus (switching; 
Pearson’s r=0.74, 89% confidence level=0.02-0.95, t=2.18, df=4, p=0.09, n=6) or the total 
number of loci solved (problem solving; Pearson’s r=0.51, 89% confidence level=0.03-0.80, 
t=1.86, df=10, p=0.09, n=12). Therefore, while the performance on the two multi-access boxes 
might not be completely independent as indicated by the high r values, the two boxes appear 
not to be completely interchangeable either as indicated by the lack of statistical significance 
and high uncertainty in the r values. We therefore analyzed the plastic and wooden multi-access
boxes separately.

Post-data collection, we added an additional unregistered analyses comparing first versus last 
reversal performance for the individuals in the manipulated group (see r code chunk 
“posthoc_conditionalimprovement” at the rmd for model details).

P2 alternative 2: additional analysis: latency and motor diversity

APlanned analyseis: We ran one model per response variable: average latencyNumber of 
trials to to attempt a new locus on the multi-access boxes, and number of trials to solve (meet 
criterion) a new locus on the multi-access boxes. Explanatory variables: Number of trials to 
reverse a preference in the last reversal that an individual participated in, motor diversity: the 
number of different motor actions used when attempting to solve the multi-access boxes (motor 
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diversity). Random variable: ID (random because repeated measures on the same individuals). 
A Generalized Linear Mixed Model [GLMM; MCMCglmm function was, MCMCglmm package; 
Hadfield (2010)] will be used with a Poisson distribution and log link using 13,000 iterations with 
a thinning interval of 10, a burnin of 3,000, and minimal priors (V=1, nu=0) (Hadfield, 2014). We 
ensured the GLMM showed acceptable convergence [lag time autocorrelation values <0.01; 
Hadfield (2010)] by adjusting parameters if necessary. We determined whether an independent 
variable had an effect or not using the Estimate in the full model.

Deviations from the plan: P2 alternative 2: We used the average latency rather than the 
number of trials to attempt a new locus because this would make the model comparable with 
the model in P2. Using the number of trials was an artifact from a previous version and we had 
missed updating this. We omitted the number of trials to solve a new locus as described in the 
deviation from the plan in P2 above. We used a GLM rather than a GLMM because there was 
only one data point per bird (note that there would have been only one data point per bird in the 
preregistration as well, but we didn’t realize this until afterward).

Code
Code
Code
Code

P4: learning strategies (for birds in the manipulated group only)

Analysis 1 (qualitative): Learning strategies were identified by matching them to the two 
known approximate strategies of the contextual, binary multi-armed bandit: epsilon-first and 
epsilon-decreasing (McInerney, 2010; as in Logan, 2016). We used the criterion for the epsilon-
first strategy of learning the correct choice after one trial and then choosing correctly thereafter. 
Other patterns were classified as the epsilon-decreasing strategy where individuals gradually 
increase their number of successes as the number of trials increases. This method of qualitative
inspection of learning curves is standard for this type of learning strategy assessment 
(McInerney, 2010). The variable for visual inspection was the proportion of correct choices in a 
non-overlapping sliding window of 4-trial bins across the total number of trials required to reach 
the criterion of 17/20 correct choices per individual.

From Logan (2016) (emphasis added):

The following equations refer to the different phases involved in each strategy:

Equation 1 (exploration phase): ϵN

Equation 2 (exploitation phase): (1−ϵ)N

N is the number of trials given, and epsilon, ϵ, represents the subject’s 

uncertainty about the location of the reward, starting at complete uncertainty (ϵ = 
1) at the beginning of the experiment and decreasing rapidly as individuals gain 
experience with the task (exploration phase where the rewarded [option] is 
chosen below or at chance levels) and switch to the exploitative phase (the 
rewarded [option] is chosen significantly above chance levels). Because the 
[subjects] needed to learn the rules of the task, they necessarily had an 
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exploration phase. The epsilon-first strategy involves an exploration phase 
followed by an entirely exploitative phase. The optimal strategy overall would be 
to explore one color in the first trial and the other color in the second trial, and 
then switch to an exploitative strategy (choose the rewarded [option] significantly 
above chance levels). In this case there would be no pattern [in the learning 
curve] in the choices [during] the exploration phase because it would consist of 
sampling each [option] only once. In the epsilon-decreasing strategy, subjects 
would start by making some incorrect choices and then increase their choice of 
the rewarded [option] gradually as their uncertainty decreases until they choose 
the rewarded [option] significantly above chance levels. In this case, a linear 
pattern emerges (in the learning curve) during the exploration phase.

Analysis 2 (quantitative): We then quantitatively determined to what degree each bird used 
the exploration versus exploitation strategy using methods in (Federspiel et al., (2017) by 
calculating the number of 120-trial blocks where birds were choosing “randomly” (26-914 correct
choices; called sampling blocks; akin to the exploration phase above) and dividing it by the total 
number of blocks to reach criterion per bird. This ratio was also calculated for “acquisition” 
blocks where birds made primarily correct choices (915-120 correct choices; akin to the 
exploitation phase above). These ratios, calculated for each bird for their serial reversals, 
quantitatively discern the exploration from the exploitation phases.

Deviation from the plan P4: (Aug 2021): the grackles were tested in 10-trial blocks and not 20-
trial blocks as in Federspiel et al. (2017), which would mean that if there were <20 trials in the 
last block of a reversal, they would be omitted from the analysis. Therefore, we changed the 
block size to 10 trials and adjusted the sampling blocks to 2-9 correct choices, and the 
acquisition blocks to 9-10 correct choices using significance levels in the binomial test as did 
Federspiel et al. (2017).

DEVIATIONS FROM THE PREREGISTRATION

After pilot data were collected and before the actual data collection 
began

●       We initially (in 2017) set as the serial reversal passing criterion: 
During the data collection period, the number of trials required to 
reverse a preference will be documented per bird, and reversals 
will continue until the first batch of birds tested reaches an 
asymptote (i.e., there are negligible further decreases in the 
number of trials required to reverse a preference). The number of 
reversals to reach the asymptote will be the number of reversals 
that subsequent birds experience. Due to delays in setting up the 
field site, we were only able to test two grackles in early 2018 
(January through April) and, due to randomization, only one 
(Fajita) was in the experimental condition that involved undergoing
the flexibility manipulation (Empanada was in the control 
condition). While Fajita’s reversal speeds generally improved with 
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increasing serial reversals, she never reached an asymptote 
(which we defined as passing three consecutive reversals in the 
same number of trials), even after 38 reversals. These 38 reversals 
took 2.5 months, which is an impractical amount of time if birds 
are to participate in the rest of the test battery (multi-access box, 
detour, causal cognition, go no-go, reversal on a touchscreen) 
after undergoing the reversal manipulation (we were initially 
permitted to keep them in aviaries for up to three months per bird, 
which we extended to 6 months per bird in Dec 2018). Because our
objective in this experiment was to manipulate an individual’s 
flexibility, we decided to revise our serial reversal passing criterion
to something more species relevant based on Fajita’s serial 
reversal performance and the performance of seven grackles in 
Santa Barbara who underwent only one reversal in 2014 and 2015 
(Logan, 2016). The revised serial reversal passing criterion was: 
passing two reversals in a row at or under 50 trials. 50 trials is 
fewer trials than any of the nine grackles required to pass their 
first reversal (range 70-130), therefore it should reflect an 
improvement in flexibility.

At the beginning of data collection 

●       Reversal learning shaded tube choice criterion: At the beginning of the second 
bird’s initial discrimination in the reversal learning shaded tube experiment 
(October 2018), we revised the criterion for what counts as a choice from A) the 
bird’s head needs to pass an invisible line on the table that ran perpendicular to 
the the tube opening to B) the bird needs to bend its body or head down to look in
the tube (see B demonstrated in Figure 3). Criterion A resulted in birds making 
more choices than the number of learning opportunities they were exposed to 
(because they could not see whether there was food in the tube unless they bent 
their head down to look in the tube) and appeared to result in slower learning. It is 
important that one choice equals one learning opportunity, therefore we revised 
the choice criterion to the latter. Anecdotally, this choice matters because the first
three birds in the experiment (Tomatillo, Chalupa, and Queso) learned faster than 
the pilot birds (Empanada and Fajita) in their initial discriminations and first 
reversals. Thus, it was an important change to make at the beginning of the 
experiment (after testing the two pilot birds and before collecting any data that 
were included in analyses).
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Figure 3. Tzanatl preciosa bending down to look into the dark gray tube. 

●       Criterion to pass the control condition: Before collecting experimental data, we 
set the number of trials experienced by the birds in the control group as 1100 
because this is how many trials it would have taken the pilot bird in the 
manipulated group, Fajita, to pass serial reversals 2-17 according to our revised 
serial reversal passing criterion. However, after 25 and 17 days (after Tomatillo 
and Queso’s first reversals, respectively) of testing the first two individuals in the 
control group, it became apparent that 1100 trials is impractical given the time 
constraints for how long we were permitted to keep each bird temporarily in 
captivity and would prevent birds from completing the test battery before their 
release. Additionally, after revising the choice criterion, it was going to be likely 
that birds in the manipulated group would require fewer than 1100 trials to meet 
the serial reversal passing criterion. Therefore, reducing the number of trials the 
control birds experience would result in a better match of experience with birds in 
the manipulated group. On 2 November 2018 we set the number of trials control 
birds experience after their first (and only) reversal to the number of trials it 
requires the first bird in the manipulated group to pass (the first bird had not 
passed yet, therefore we did not yet know what this number was). After more 
individuals in the manipulated group passed, we updated this number to the 
average number of trials to pass. This applied to all birds in the control condition, 
except Mofongo. Mofongo (control condition) was a slow participator and would 
not have finished his test battery by the time it got too hot to keep birds in the 
aviaries if we used the current average number of trials (420). Instead, we matched
him with the fastest bird in the manipulated group (Habanero=290 trials) to make it
more likely that Mofongo could get through the rest of the test battery in time.

In the middle of data collection
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4. 10 April 2019: We discontinued the reversal learning experiment on the 
touchscreen because it appeareds to measure something other than what we intended 
to test and it requireds a huge time investment for each bird (which consequently 
reduceds the number of other tests they weare available to participate in). This is not 
necessarily surprising because this wais the first time touchscreen tests have been 
conducted in this species, and also the first time (to our knowledge) this particular 
reversal experiment has been conducted on a touchscreen with birds. We based this 
decision on data from four grackles (2 in the flexibility manipulation group and 2 in the 
flexibility control group; 3 males and 1 female). All four of these individuals showed 
highly inconsistent learning curves and required hundreds more trials to form each 
preference when compared to the performance of these individuals on the shadcolored 
tube reversal experiment. It appeareds that there wais a confounding variable with the 
touchscreen such that they weare extremely slow to learn a preference as indicated by 
passing our criterion of 17 correct trials out of the most recent 20. We didwill not include 
the data from this experiment when conducting the cross-test comparisons in the 
Analysis Plan section of the preregistration. Instead, in  Supplementary Material 4the 
Results section, we provided summary results for this experiment and, in the Discussion,
qualitatively compared it with performance on the shadcolored tube reversal test to 
explain what might have confounded the touchscreen experiment.

5. 16 April 2019: Because we discontinued the touchscreen reversal learning experiment, 
we added an additional but distinct multi-access box task, which allowed us to 
continue to measure flexibility across three different experiments. There are two main 
differences between the first multi-access box, which is made of plastic, and the new 
multi-access box, which is made of wood. First, the wooden multi-access box is a natural
log in which we carved out 4 compartments. As a result, the apparatus and solving 
options are more comparable to what grackles experience in the wild, though each 
compartment is covered by a transparent plastic door that requires different behaviors to
open. Furthermore, there is only one food item available in the plastic multi-access box 
and the bird could use any of 4 loci to reach it. In contrast, the wooden multi-access box 
has a piece of food in each of the 4 separate compartments.

Post data collection, pre-data analysis

6. We completed our simulation to explore the lower boundary of a minimum sample size 
and determined that our sample size for the Arizona study site is above the 
minimum (see details and code in Supplementary Material 1; 17 April 2020).

7. Please see our Alternative Analyses section in the preregistration where we stated that 
we would learn and implement Bayesian models, which resulted in our changing the 
analysis for P2 and that we are replacing this analysis with the new models in the 
Ability to detect actual effects section (Supplementary Material 1; 14 May 2020). We also
describe in SM1 that we realized that Condition (manipulated or control) does not need 
to be a variable in our models because our analyses in P1 demonstrate that the 
manipulation causally changed reversal speeds, which is the key assumption in P2the 
manipulated birds have, by definition, faster reversal speeds..

8. We originally planned on testing only adults to have a better understanding of what the 
species is capable of, assuming the abilities we are testing are at their optimal levels in 
adulthood, and so we could increase our statistical power by eliminating the need to 
include age as an independent variable in the models. Because the grackles in Arizona 
were extremely difficult to catch, we ended up testing two juveniles: Taco and Chilaquile.
We did not conduct the full test battery with Taco or put him in the flexibility manipulation
or control groups (he received 1 reversal and then moved on to the next test) because 
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he was the first juvenile and we wanted to see whether his performance was different 
from adult performances. His performances were similar to the adults, therefore we 
decided to put Chilaquile in the full test battery. Chilaquile’s performances were also 
similar to the adults, therefore we decided not to add age as an independent variable in 
the models to avoid reducing our statistical power.

9.      We **removed experimenter as a random effect** from all analyses because the 
interobserver reliability scores were so high, indicating there was no difference between 
experimenters, therefore we could keep our models simpler by leaving this variable out.

10.  P2 alternative 2: We used the average latency rather than the number of trials to attempt
a new locus because this would make the model comparable with the model in P2. 
Using the number of trials was an artifact from a previous version and we had missed 
updating this. We omitted the number of trials to solve a new locus as described in the 
deviation from the plan in P2 above. We used a GLM rather than a GLMM because 
there was only one data point per bird (note that there would have been only one data 
point per bird in the preregistration as well, but we didn’t realize this until after in principle
acceptance).

11.  P4 (Aug 2021): the grackles were tested in 10-trial blocks and not 20-trial blocks as in 
Federspiel et al. (2017), which would mean that if there were <20 trials in the last block 
of a reversal, they would be omitted from the analysis. Therefore, we changed the block 
size to 10 trials and adjusted the sampling blocks to 2-9 correct choices, and the 
acquisition blocks to 9-10 correct choices using significance levels in the binomial test as
did Federspiel et al. (2017).

Post data collection, mid-data analysis

12. P2: April 2020: we realized that the average latency to solve a new locus after solving a 
different locus is confounded with the total number of loci solved because the measure 
of innovation is included in the definition. Therefore, we removed average latency to 
solve a locus from analyses so that we are only examining pure measures of flexibility 
(average latency to attempt to solve) and innovation (total number of loci solved).

13.  P2: Removed batch (random variable): the original model for P2 (Table SM3: Model 1) 
included the covariate aviary batch, however this ended up confounding the analysis 
because control and manipulated individuals, while randomly assigned to these 
conditions, ended up in particular batches as a result of their willingness to participate in 
tests offered during their time in the aviary (Table SM3: Model 3). Several grackles never
passed habituation or training such that their first experiment could begin, therefore we 
replaced these grackles in the aviaries with others who were willing to participate. This 
means that batch did not indicate a particular temporal period. Therefore, we **removed
batch from the models** (post data collection, mid-data analysis).

14.  P2: When making the bespoke Bayesian models, we realized that we had previously 
misinterpreted which variable should be the response variable in this analysis. We 
originally set the number of trials to reverse as the response variable, however we 
should have instead set the number of loci solved as the response variable and then 
planned to conduct a second model with the latency to attempt a new locus as the 
response variable and number of trials as the explanatory variable. This is because a) 
we manipulated the number of trials to reverse, therefore it must be the explanatory 
variable (Hernán & Robins, 2006); and b) they should be split into two models, one each 
for average latency and number of loci solved, because of a and because these are two 
very different relationships that should be considered in their own models. We also 
realized that Condition (manipulated or control) does not need to be a variable in any of 
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our models because our analyses in P1 demonstrate that the manipulation causally 
changed reversal speeds, which is the key assumption in P2.

RESULTS
Data are publicly available at the Knowledge Network for Biocomplexity (C. Logan et al., 2022). 
Although 22 grackles completed their initial shadcolored tube discrimination, only 20 grackles 
participated in one or more reversals (Table SM5). The rest of the tests began only after a bird’s
reversal experiment was complete (C. Logan et al., 2022).

P1: reversal speed gets faster with serial reversals
The birds in the manipulated group required a similar number of trials during their first reversal 
(R1 median=75 trials) as the birds in the control group needed during their first and only 
reversal (R1 median=70 trials) (see unregistered analysis in Table 1). The manipulated birds 
improved during the reversal manipulation to a median of 40 trials in their last reversal: there 
was a significant negative correlation between the number of trials to reverse (average=71 
trials, standard deviation (sd)=28, Table 2) and the reversal number for those grackles in the 
flexibility manipulation condition (n=9, which included Memela who did not pass the 
manipulation condition of passing two consecutive reversals in 50 trials or less; Figure 43).

Table 1. Unregistered analysis: the number of trials to reverse in the first reversal is similar 
between the manipulated and control groups.

Code
Code

Posterior

mean

Lower 89 percentile

compatibilitycompatability interval

(5.5%)

Upper 89 percentile

compatibilitycompatability interval

(94.5%)

Effective

sample size

pMCM

C

Significance code: 

**=0.01

Intercept 4.29 4.12 4.46 420 <0.00

2

**

Manipulation 

Condition

-0.08 -0.27 0.11 420 0.46

Table 2. The number of trials to reverse decreases with increasing reversal number.

Code

Posterior

mean

Lower 89 percentile compatibility

interval (5.5%)

Upper 89 percentile compatibility

interval (94.5%)

Effective

sample size

pMCM

C

Significance code: 

**=0.01

Intercept 4.44 4.31 4.62 420 <0.002 **

Reverse 

Number

-0.06 -0.10 -0.03 420 <0.002 **

Code
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Code

Figure 43. Individuals in the manipulated condition (who received serial reversals) did not 
linearly decreased their reversal passing speeds with increasing reversal number (n=9 
grackles).

Unregistered analysis 1: There was additionally a difference between manipulated and control
reversal speeds when comparing their last reversals (Figure 54; for the control birds, their last 
reversal was their first reversal; Table 3). This analysis includes 19 grackles (8 manipulated 
condition - only those who actually passed the manipulation, 11 control condition) who had an 
overall average of 62 trials in their last reversal (sd=32).

Code
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Code

Figure 54. Individuals in the manipulated condition (who received serial reversals) passed their 
last reversal in fewer trials than individuals in the control condition (who only received 1 
reversal). n=19 grackles: 11=control, 8=manipulated.

Table 3. Individuals in the manipulated condition pass their last reversal in fewer trials than 
control individuals.

Code

Posterior

mean

Lower 89 percentile

compatibilitycompatability interval

(5.5%)

Upper 89 percentile

compatibilitycompatability interval

(94.5%)

Effective

sample size

pMCM

C

Significance code: 

**=0.01

Intercept 4.28 4.08 4.48 420 <0.002 **

Reverse 

Number

-0.51 -0.81 -0.22 420 0.010 **

Unregistered analysis 2: A pooled model of performance across all reversals estimates that 
birds can expect to improve by about 30 trials (89% percentile interval (PI): 25-36; Table SM37: 
Model 15) after completing the serial reversals. While all manipulated birds improved, those 
birds that were already fast to reverse in their first reversal improved less than the birds that 
required many trials to reverse in their first reversal (posterior peak indicates a correlation of 
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+0.64, with highest posterior density intervals (HPDI) all positive, between the first reversal 
value and the improvement achieved by the last reversal; Table SM3: Model 16). However, the 
birds who were the fastest in the first reversal, were also the fastest in the last reversal, but the 
difference between the slower and faster reversers is reduced (Figure 65).

Figure 65. All eight manipulated birds needed fewer trials to reverse in their last reversal than in
their first. Their improvement depended on their starting value, with steeper slopes for those 
birds that needed more trials to reverse in the first reversal (blue = observed values and 
changes, black = model estimates). However, birds who needed more trials in the first reversal 
did not completely catch up, such that the birds that needed more trials in their first reversal also
needed more trials in their last reversal relative to other grackles.

Code

P2: serial reversals improve rule switching and 
innovativenessproblem solving on the MAB
To determine whether the serial reversal manipulation affected flexibility generally, we 
compared three3 measures of performance (the number of trials to reverse a preference in the 
first and last shadecolor reversal, performance of the manipulated group relative to the control 
group) to the speed of solution switching on two multi-access boxes. Furthermore, we assessed
whether flexibility measured through these serial reversals related to innovativeness by 
comparing performance to the number of loci solved on the multi-access boxes. The results for 
each of these comparisons are described in detail below and an overview is provided in Figure 
76.
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Figure 76. Overview of the results from the P2 analyses with the multi-access boxes (plastic 
and wooden). An effect of natural variation in flexibility on performance on the multi-access box 
tasks would result in correlations in the first reversal. An effect of the flexibility manipulation 
would result in a change in correlations from the first to last reversals. Individuals are more 
flexible if they require fewer trials to pass the serial reversals, more flexible in a new context if 
they have shorter latencies to switch to a new locus on the multi-access box, and are more 
innovative if they solve more loci on the multi-access box. A plus sign (+) indicates that the two 
abilities are a positivelye correlatedion, a minus sign (-) that they areindicates a negatively 
correlatedion, and a 0 indicates no correlation between the two abilitiesvariables (note that the 
correlation between the variables that reflect the abilities for innovativeness have the opposite 
sign because individuals with more flexibility need fewer trials in the reversal learning 
experiment). The asterisks (*) indicate that a small sample size decreases the reliability of this 
result.
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Rule switching: latency to attempt a new locus on the multi-access box 
(plastic) ~ trials to reverse

Grackles that were faster to reverse a preference in their last reversal (average 52 trials, 
sd=23), where grackles in the control condition received only one reversal which served as their
first and last reversal, were also faster to attempt to solve a new locus on the plastic multi-
access box (after just having passed criterion on a different locus; average=208 seconds, 
sd=226; Figure 87a; Table SM3: Model 9; n=11 grackles: 6 in manipulated condition, 5 in 
control condition; 6 subjects completed this experiment but solved 0 loci or 1 locus and so did 
not have switching times). We also found that individuals in the flexibility manipulation had faster
switch latencies than those in the control condition (Table SM3: Model 10). Lastly, tThere was a 
positive correlation between the number of trials to reverse in the first reversal (average=70 
trials, sd=21) and the average switch latency on the plastic multi-access box (Table SM3: Model
11). A correlation was determined to be present if the compatibility interval for the slope (b) in 
the model output did not cross zero (Table SM3). This criterion was used throughout the 
analyses for P2.

Code
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Figure 87. The average latency (seconds) to attempt to solve a different locus after having 
previously successfully solved a locus on a) the plastic multi-access box (MAB) is positively 
correlated with the number of trials to pass their last reversal (n = 11 grackles), but on b) the 
wooden MAB it is not correlated with the number of trials to pass their last reversal (n = 11 
grackles). Additionally, the probability of solving a locus on c) the plastic MAB is negatively 
correlated with the number of trials to pass their last reversal (n = 15 grackles), but on d) the 
wooden MAB it is not correlated with the number of trials to pass their last reversal (n = 12 
grackles, estimate of slope includes zero). Shading represents the 89 percentile compatibility 
intervals and darker shading indicates relationships that were found.

Rule switching: latency to attempt a new locus on the multi-access box 
(wooden) ~ trials to reverse (unregistered analysis)
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There was no correlation between the number of trials to reverse a preference in their last 
reversal (average= 60 trials, sd=38) and the latency to attempt to solve a new locus on the 
wooden multi-access box (after just having passed criterion on a different locus; average=463 
seconds, sd=481; Figure 87b; Table SM3: Model 12; n=11 grackles: 5 in manipulated condition, 
6 in control condition; Diablo also completed this experiment and solved 1 locus, but did not 
attempt another locus after that, thus he does not have any switching times to analyze). We 
additionally found that there was no difference in the average latency to switch between 
individuals in the flexibility manipulation and those in the control condition (Table SM3: Model 
13). There was a negative correlation between the number of trials to reverse in the first 
reversal (average=73 trials, sd=34) and the average switch latency on the multi-access box 
(Table SM3: Model 14).

Code

Innovativeness: number of loci solved on the multi-access box (plastic) ~ trials
to reverse

Grackles that were faster to reverse a preference in their last reversal (average= 62 trials, 
sd=34) solved more loci on the plastic multi-access box (average=2 loci, sd=1.6; Figure 87c; 
Table SM3: Model 2; n=15 grackles: 6 in manipulated condition, 9 in control condition; this 
number excludes Mole and Habanero who were, due to experimenter error, given the fully put 
together box during habituation and could have learned how to solve the loci at that time). There
was no correlation between the number of loci solved and which reversal condition a grackle 
was randomly assigned to (Table SM3: Model 4). There was also no correlation between the 
number of trials to reverse in the first reversal (average=75 trials, sd=31) and the number of 
loci solved on the multi-access box (Table SM3: Model 5).

Code

Innovativeness: number of loci solved on the multi-access box (wooden) ~ 
trials to reverse (unregistered analysis)

The compatibility interval for the estimate for the association (mean beta -0.41) between the 
number of loci solved on the wooden multi-access box (average=3.2, sd=1.3) and the number of
trials to reverse a preference in their last reversal (average=59 trials, sd=38) crossed zero 
(Figure 8d5d; Table SM3: Model 6, Table SM3; n=12 grackles: 6 in manipulated condition, 6 in 
control condition). This could mean that there is no association, however simulations in 
Supplementary Material 1 showed that we would not be able to reliably distinguish whether a 
small effect is different from zero with our sample size (with a simulated beta of -1 and an sd in 
the number of trials >10, the compatibility interval of the estimate crossed zero in all simulations
; Table SM1.2). We did find a correlation between the number of loci solved and which reversal 
condition a grackle was randomly assigned to, indicating the reversal manipulation appears to 
have affected performance on the wooden multi-access box. The model estimates that 
manipulated birds solved on average 1.2 more loci than birds in the control condition (Table 
SM3: Model 7, wooden; 89% compatibility intervals=0.34-2.14; n=12 grackles: 6 in manipulated 
condition, 6 in control condition). However, there is no association between the number of trials 
to reverse in the first reversal (average=74 trials, sd=34) and the number of loci solved on the 
multi-access box (Table SM3: Model 8, wooden).

Code
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P2 alternative 2 (additional analysis): latency and motor 
diversity
Because there was no correlation between the number of trials to reverse in the last reversal 
and the latency to attempt a different locus on the wooden multi-access box, we conducted this 
additional analysis to determine whether the model fit was improved when adding the number of
motor actions as an explanatory variable. Adding the number of motor actions (wooden: 
average=13, sd=4) did not improve the model fit when examining the relationship between the 
latency to switch loci on the wooden multi-access box (wooden: average=463, sd=481) and the 
number of trials to reverse in the last reversal (wooden: average=60, sd=38) because the 
Akaike weights were similar for both models (wooden: n=11 grackles: 5 in the manipulated 
group, 6 in the control group; Table 4).

Table 4. Adding the number of motor actions used to the analysis of the average latency to 
attempt a new option on the wooden multi-access box and the number of trials to reverse in the 
last reversal does not improve the model fit. Each row represents one model that includes 
different independent variables (motor actions and/or trials last reversal).

Code

Intercept Motor actions (wooden) Trials last reversal df log likelihood AICc delta weight

463.2 NA NA 2 -83.025 171.6 0.00 0.674

934.6 -35.28 NA 3 -82.477 174.4 2.83 0.164

665.8 NA -3.362 3 -82.631 174.7 3.14 0.140

1250.0 -40.68 -4.040 4 -81.850 178.4 6.82 0.022

P4: serial reversal learning strategy
Analysis 1 (qualitative): Using the criterion for the epsilon-first strategy of learning the correct 
choice after one trial and then choosing correctly thereafter, no grackle in this study used this 
strategy in any reversal. All grackles used an epsilon-decreasing strategy in all reversals (Figure
98 and Supplementary Material 6). We use Burrito’s figures to illustrate the epsilon-decreasing 
strategy (Figure 98): the proportion of trials he gets correct wanders up and down (epsilon-
decreasing) until an asymptote at 0.8 is reached and held.

Code
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Figure 98. Burrito’s proportion of trials correct by trial number and reversal showing the epsilon-
decreasing learning strategy where options are explored before forming a preference.

Analysis 2 (quantitative): We additionally quantitatively determined to what degree each bird 
used the exploration versus exploitation strategy using methods in Federspiel et al. (2017) by 
calculating the number of 10-trial blocks where birds were choosing “randomly” (2-9 correct 
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choices; called sampling blocks; akin to the exploration strategy) divided by the total number of 
blocks to reach criterion per bird. This ratio was also calculated for “acquisition” blocks where 
birds made primarily correct choices (9-10 correct choices; akin to the exploitation strategy). 
There was no correlation between exploration (sampling ratio) or exploitation (acquisition ratio) 
and reversal number (sampling: reversal estimate=-0.09, SE=0.11, z=-0.86, p=0.39; acquisition:
reversal estimate=0.00, SE=0.00, z=-0, p=1.00), indicating that the grackles did not use a 
particular strategy earlier or later in their serial reversals.

Code

DISCUSSION
We conducted a controlled experiment to evaluate whether serial reversal learning affected 
flexibility and innovativeness in new contexts. We found that the number of trials to reverse 
decreased with increasing reversal number, and, when examining last reversals, there was a 
difference between the manipulated and control groups. This indicates that the flexibility 
manipulation was effective in that it improvncreasmanipulated reversal learning speeds, 
suggesting that these individuals shifted toward a “win-stay, lose-shift” rule to learn to reverse 
faster after more experience with reversing (Spence, 1936; J. Warren, 1965; J. M. Warren, 
1965). The manipulated individuals who increased their reversal learning speed, were then 
apparently able to apply this to a new context, which resulted in better performance when 
compared with control individuals who did not have the opportunity to learn. Previous research 
has also exploited the fact that most individuals can learn to learn and have used serial 
reversals to show that such experience usually improves performance when transferring to 
reversals involving different stimuli (e.g., visual vs. spatial, visual vs. visual in a new 
combination) (Rayburn-Reeves et al., 2013; Schusterman, 1962; J. Warren, 1965, 1966).

While performance differed between the two multi-access boxes, the serial reversal flexibility 
manipulation did affect flexibility in a new context, as well as innovativeness. Grackles that were
faster to reverse a preference in their first and last reversals, and those in the manipulated 
condition, were also faster to attempt to solve a new locus on the plastic multi-access box. 
Similarly, the flexibility manipulation affected innovativeness because grackles in the 
manipulated condition solved on average 1.2 more loci on the wooden multi-access box than 
those birds in the control condition and there was a negativepositive correlation between the 
number of loci solved on the plastic multi-access box and the number of trials to reverse in the 
last reversal. That our results were not consistent across first reversal, last reversal, and 
condition (Figure 74) on the two different multi-access boxes could be due to the small sample 
sizes because even in the control group there were several individuals who solved their first and
only reversal in very few trials. Because of the variation in our small sample (Taquito was by far 
the slowest to reverse a preference), we conducted a cross validation check to determine 
whether removing a bird from the data set changed the model results. We found that there was 
no difference in results when removing Taquito or a random bird. However, removing either 
from the data set changed the conclusions for one of the three models (Model 2, but not Models
6 or 12). This change in results after removing a data point indicates that we should be less 
confident in the conclusion that individuals who are faster to reverse a preference in their last 
reversal also solved more loci on the plastic multi-access box. Furthermore, the lack of 
correlation between the number of trials to reverse in the first reversal and the number of loci 
solved on either multi-access box indicates that flexibility is not an inherently utilized tool, but 
one that is shaped by experience. If it was an inherently utilized tool, the variation in the number
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of trials to complete first reversals would likely have resulted in a correlation with the number of 
loci solved.

Our results are in contrast with previous research on the correlation between flexibility 
performance, using on serial reversals, and innovation: Indian mynas that were faster to 
reverse, were slower to innovate (Griffin et al., 2013). However, the Griffin et al. (2013) 
investigation was designed to evaluate the correlation between the variables and not whether 
manipulating flexibility using serial reversals influenced innovativeness. This difference could 
explain the differing results because correlational research can become noisy if there are 
unmeasured variables, which is something that a manipulation can help reduce. Larger sample 
sizes can also help reduce noise in non-manipulative experiments. Other potential reasons for 
the difference in results includecould be due to using different experimental designs, and/or 
different serial reversal passing criteria (Griffin et al., 2013 used a preset number of reversals 
that resulted in a maximum of four reversals), inherent species differences, or needing a larger 
sample size to help reduce noise in a non-manipulative experiment.

None of the flexibility manipulated individuals converged on using an epsilon-first learning 
strategy (learn the correct choice after one trial) as they progressed through serial reversals. All 
used the epsilon-decreasing strategy (explore options before forming a preference) throughout 
their reversals. Additionally, no grackle used a particular exploitation or exploration strategy 
earlier or later in their reversals. Learning theory on serial reversal experiments predicts that all 
individuals in the manipulated group shifted toward the “win-stay, lose-shift” rule because their 
reversal speeds improved (Spence, 1936; J. Warren, 1965; J. M. Warren, 1965). In contrast, 
learning theory on multi-armed bandit (a paradigm often used in reversal learning) decision 
making has a stricter criterion, predicting that the optimal strategy is to maximize the cumulative 
reward, which, in this case would result in individuals using the epsilon-first learning strategy 
immediately after the first trial (McInerney, 2010). Both learning theories consider one trial 
learning the optimal solution. Perhaps these wild-caught grackles relied solely on the epsilon-
decreasing strategy because these individuals are used to an environment where information 
about the probability of what the optimal options are varied (McInerney, 2010). Therefore, 
maximizing information gain via continued exploration of the available options is likely of more 
use in the less predictable environment in the wild. Other investigations of the exploitation vs. 
exploration learning strategies involved in reversal learning have found that these strategies can
vary by individual and relate to differences in reversal performance. For example, urban 
common mynas were slower to reverse a preference than rural mynas because they spent more
time exploring their options (Federspiel et al., 2017). Perhaps we found no such differences in 
the grackles because all of the individuals we tested came from an urban area. If a rural 
population of grackles could be found, it would be interesting to compare learning strategy use 
between rural and urban individuals.

Why did performance on a touchscreen vary so drastically 
from a traditional approach?
We assumed that reversal learning performance using shape on the touchscreen would 
directly compare to and be interchangeable with reversal learning performance using 
shadcolored tubes. However, it quickly became clear that the touchscreen experiment may have
been asking a different question compared with the traditional reversal learning approach using 
physical objects. Unfortunately, we did not have the time to explore what might have caused the
differences between the two tests, but we speculate below. We conclude that these two 
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methods, the traditional physical object and the touchscreen, do not measure the same 
construct in this species and with this reversal learning experiment.

One possible explanation for the difference between the two experiments is that grackles might 
require more trials to learn to discriminate between shapes than between shadecolors. Shapes 
are known to require a few more trials for a preference to develop (e.g., Shaw et al., 2015: 
mean=40 trials shadecolor, mean=55 trials shape in toutouwai; Isden et al., 2013: mean=6 trials
shadecolor, mean=10 trials shape in spotted bowerbirds), however grackles required hundreds 
more trials to learn shapes, therefore this explanation seems unlikely. Moreover, grackles may 
not have understood how the touchscreen worked and therefore it was the apparatus that 
interfered with their performance, yet grackles successfully completed a go/no-go inhibition task 
using the same touchscreen apparatus (Logan et al., 2021). The go/no-go task similarly used 
two different white shapes (wavy lines or a heart), but the shapes were presented sequentially 
rather than simultaneously (as in the reversal touchscreen experiment). Given this difference 
between the two touchscreen experiments, it is possible that the grackles found touching the 
screen in the reversal experiment rewarding in and of itself because something happened 
whenever they made a response. That is, if they touched the correct stimulus, they received 
food; if they touched the incorrect stimulus, the screen went blank immediately. This is in 
contrast with the go/no-go experiment where the stimulus stayed on the screen for a set amount
of time after an incorrect choice. Another potential reason for the difference between 
performances on the two touchscreen experiments was that making the incorrect choice in the 
reversal experiment was not costly enough. In the reversal touchscreen experiment, they could 
get through many trials, receiving some rewards, in a short amount of time. Consequently, there
was potentially not enough incentive to learn quickly, thus explaining the differences in learning 
speeds between the two reversal experiments.

We are not the first group to attempt to transfer a traditional lab or field task to a touchscreen 
apparatus (e.g., Drayton & Santos, 2014). Despite some of the challenges associated with 
touchscreen apparatuses, other attempts to transfer tasks to a touchscreen have been more 
successful (e.g., Blaisdell & Cook, 2005; Kangas & Bergman, 2017; Sawa et al., 2005). We 
maintain that touchscreens have the potential to be an incredibly useful tool for studying 
comparative cognition in some systems (for reviews and methods, see Bussey et al., 2008; 
Cook et al., 2004; Kangas & Bergman, 2017; Logan et al., 2021; Seitz et al., 2021; Wolf et al., 
2014).

Conclusion
We demonstrate that it is possible to manipulate flexibility, using a paradigm such as reversal 
learning, to examine its direct link with other traits. This opens up many opportunities for future 
research to better understand what flexibility is and whether and how it is causally related to 
other behaviors or forms of cognition. Understanding how flexibility causally relates to other 
traits will allow researchers to develop robust theory about the mechanisms and functional 
impact of flexibility, and when to invoke it as a primary driver in a given context, such as a rapid 
geographic range expansion. Indeed, we are already in the process of testing the latter 
hypothesis by conducting cross-population research on great-tailed grackles to test whether a 
population on the range edge is more flexible (Logan CJ et al., 2020). That we were able to 
manipulate flexibility, which had causal effects on flexible behavior in a different context (multi-
access box) as well as a different cognitive ability (innovativeness), demonstrates that flexibility 
manipulations could be useful in training individuals of other species in how to be more flexible. 
This could have important implications for threatened and endangered taxa (such as informing 
the choice of individuals for captive breeding or introduction programs where individuals or their 
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offspring are released into novel areas), as well as for habituating zoo animals or other 
managed populations to novelty. If such a flexibility manipulation was successful, it could then 
change their behavior in this and other domains, giving them a better chance of succeeding in 
human modified environments. This is the focus of our new research program, ManyIndividuals,
where we manipulate flexibility using serial reversals in the wild in species that are successful 
and at risk and determine whether the manipulation improves their success in human modified 
environments (Logan et al., 2022).
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SUPPLEMENTARY MATERIAL 1: Ability to 
detect actual effects
To begin to understand what kinds of effect sizes we will be able to detect given our sample size
limitations and our interest in decreasing noise by attempting to measure it, which increases the 
number of explanatory variables, we used G*Power (v.3.1, Faul et al., 2007, 2009) to conduct 
power analyses based on confidence intervals. G*Power uses pre-set drop down menus and we
chose the options that were as close to our analysis methods as possible (listed in each 
analysis below). Note that there were no explicit options for GLMs (though the chosen test in 
G*Power appears to align with GLMs) or GLMMs or for the inclusion of the number of trials per 
bird (which are generally large in our investigation), thus the power analyses are only an 
approximation of the kinds of effect sizes we can detect. We realize that these power analyses 
are not fully aligned with our study design and that these kinds of analyses are not appropriate 
for Bayesian statistics (e.g., our MCMCglmm below), however we weare unaware of better 
options at thatis time. Additionally, it is difficult to run power analyses because it is unclear what 
kinds of effect sizes we should expect due to the lack of data on this species for these 
experiments.

To address the power analysis issues, we ran simulations on our Arizona data set before 
conducting any analyses in this preregistration.
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Planned: We will first run null models (i.e., dependent variable ~ 1 + random effects), which will 
allow us to determine what a weak versus a strong effect is for each model. Then we will run 
simulations based on the null model to explore the boundaries of influences (e.g., sample size) 
on our ability to detect effects of interest of varying strengths. If simulation results indicate that 
our Arizona sample size is not larger than the lower boundary, we will continue these 
experiments at the next field site until we meet the minimum suggested sample size.

● Implementation of the plan: simulations were conducted in April 2020 (pre-data 
analysis) following procedures inMcElreath (2018). This meant that there were no null 
models because the simulations using the full models are used to determine whether 
one can detect differences between effect sizes.

To run the simulations, we first constructed a hypothesis-appropriate mathematical model 
that encompasseds the relationship between the variables of interest for each analysis: 1) 
number of loci solved on the multi-access box ~ trials to reverse, and 2) latency to attempt a 
new locus on the multi-access box ~ trials to reverse.

Simulation and model: number of loci solved on the multi-access box ~ trials to reverse

The model takes the form of:

locisolved ~ Binomial(4, p) [likelihood]

logit(p) ~ α[batch] + βtrials [model]

locisolved is the number of loci solved on the multi-access box, 4 is the total number of loci on 
the multi-access box, p is the probability of solving any one locus across the whole experiment, 
α is the intercept and each batch gets its own, β is the expected amount of change in locisolved
for every one unit change in trials, and trials is the number of trials to reverse a shadecolor 
preference.

Expected values for the number of loci solved on the multi-access box were set to either 2 or 0 
(out of 4 loci maximum) because we were unsure of whether the grackles would be able to 
solve any loci on the multi-access box because this experiment had never been done on this 
species before. Expected values for reversal learning using shadcolored tubes (mean, standard 
deviation, and range of number of trials to reverse a shadecolor preference) were based on 
previously published data on great-tailed grackles (Logan, 2016). This data indicates that the 
average number of trials to reverse a preference is 91 and the standard deviation is 21. In our 
model, the variation in the actual data is reflected by both the population standard deviation and 
the expected amount of change related to the explanatory variable. After running simulations, 
we identified the following distributions and priors to be the most likely for our expected data:

α ~ Normal(4,10) [α prior]

β ~ Normal(0,5) [β prior]

We used normal distributions for α and β because they are (or are based on) sums with large 
means (see Figure 10.6 in McElreath, 2018). For the β prior, we had no expectation about 
whether the relationship would be positive or negative, therefore we centered it on 0 (the mean).

Code

Simulation and model: latency to attempt a new locus on the multi-access box ~ trials to 
reverse
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For the average latency to attempt a new locus on the multi-access box as it relates to trials to 
reverse (both are measures of flexibility), we simulated data and set the model as follows:

latency ~ gamma-Poisson(λi, ϕ) [likelihood]

log(λi) ~ α[batch] + βtrials [the model]

latency is the average latency to attempt a new locus on the multi-access box, λi is the rate 
(random probability of attempting a locus in each second) per bird (and we take the log of it to 
make sure it is always positive; birds with a higher rate have a smaller latency), ϕ is the 
dispersion of the rates across birds, α is the intercept for the rate per batch, β is the expected 
amount of change in the rate of attempting to solve in any given second for every one unit 
change in trials, and trials is the number of trials to reverse a shadecolor preference.

Expected values for the latency to attempt a new locus on the multi-access box was set to 
between 1-2700 sec because the experiment ends for a bird if they do not obtain the food in 3 
consecutive trials, and each trial can last up to 15 min. Because we did not have prior data for 
this species on this test, we set the mean to 300 sec, which is half way through a usual 10 min 
trial because it seems likely that if a bird is going to attempt another locus, it will likely do so at 
the next opportunity, especially after being successful in the previous trial. Expected values for 
reversal learning using shadcolored tubes are the same as above. After running simulations, we
identified the following to be the most likely distributions and priors for our expected data:

ϕ ~ 1/(Exponential(1)) [ϕ prior]

α ~ Normal(300,50) [α prior]

β ~ Normal(0,5) [β prior]

We used a gamma-Poisson distribution for latency because it constrains the values to be 
positive and to primarily occur sooner rather than later, which is what we expect from the 
grackles (based on data from New Caledonian crows and kea in Auersperg et al., 2011). For ϕ, 
we used an exponential distribution because it is standard for this paramter. We used normal 
distributions for α and β because they are (or are based on) sums with large means (see Figure
10.6 in McElreath, 2018). For the β prior, we had no expectation about whether the relationship 
would be positive or negative, therefore we centered it on 0 (the mean).

Code

We translated the simulation output into effect sizes and examined what kind of effect size 
these parameter values represent (Table SM1.1). For each β, we calculated the effect size (Box
13.3 in Lajeunesse et al., 2013: linear regression):

r = β (SDx / SDy) = β (1.5 / 21)

Where r is the Pearson product moment correlation and SD is the standard deviation. For the 
standard deviation of x (number of loci solved on the multiacccess box), we estimated a 
possible value of 1.5. For the standard deviation of y (trials to reverse), we used 21 from the 
Santa Barbara grackle data (Logan, 2016). We then calculated the effect sizes and R2 values 
for each value of β.

Table SM1.1. The connection between β and effect sizes (SDx=standard deviation of x, which 
is the number of loci solved; SDy=standard deviation of y, which is the number of trials to 
reverse; R2=R squared).
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Code

Beta SDx SDy Effect size R2

-5 1.5 21 -0.357 0.128

-1 1.5 21 -0.071 0.005

0 1.5 21 0.000 0.000

We then used the simulations to run models on simulated data to estimate the measurement 
error associated with varying sample size, β, and the range of multi-access box loci solved or 
latency to attempt a new locus (Table SM1.2). Before running the models, we decided that a 
model would detect an effect if 89% of the posterior sample was on the same side of 
zero(following McElreath, 2018). We ran the simulation with β=3 (latency) because this was a 
high value at which an appropriate range of values were observed in the simulation testing 
phase, β=0 because this would be the scenario in which there is no relationship between the 
response variable and the trials to reverse, and β=-1 to determine how small of a difference we 
can detect and with what amount of associated noise (σ). Sigma (σ) is the standard deviation in
the trials to reverse if the trials to reverse is a normal distribution. In all simulations, the mean in 
the trials to reverse was set to 91. Therefore, a (σ) of 14 is 15% noise (14/91). We found that 
when (σ) is larger than 14, we cannot detect even the largest effect of trials to reverse on loci 
solved or latency because there are some simulations where the estimated regression 
coefficient crosses zero. When β=0 we want all of the regression coefficients to cross zero (10 

out of 10 random repetitions) and when β≠ 0 we want none of the regression coefficients to 
cross zero (0 out of 10 random repetitions). We ran the models several times with various 
parameters to determine at what point this was the case for each combination of parameters.

Table SM1.2. Simulation outputs from varying β, sample size (n), σ, and whether the actual 
range of multi-access box [MAB] loci solved were 0-2 or 0-4 (we did not know how many loci the
grackles would be able to solve before we started collecting data so we ran two simulations. 
The grackles ended up being able to solve all four loci on both multi-access boxes, therefore we
must use only those rows associated with “Range of MAB loci solved” = 0-4). This table is 
useful for the analyses involving the number of loci solved on the multi-access box, but not the 
latency to switch to attempting a new locus on the multi-access box, which uses a different 
(gamma poisson) model.

Code

Beta n Sigma Regression coefficient crosses zero Regression coefficient Range of MAB loci solved

-5 15 15 1/10 -5.90 0-4

-5 15 14 0/10 -5.11 0-4

-5 15 12 0/10 -4.79 0-4
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-5 15 10 0/10 -4.31 0-4

-5 10 10 1/10 -4.35 0-4

-5 10 9 0/10 -5.26 0-4

-5 8 10 1/10 -5.35 0-4

-5 8 9 0/10 -4.22 0-4

-5 8 8 0/10 -3.08 0-4

-5 8 8 1/10 -4.74 0-2

-5 8 7 3/10 -6.74 0-2

-5 8 5 0/10 -3.08 0-2

-5 10 9 3/10 -4.51 0-2

-5 10 7 1/10 -7.67 0-2

-5 10 6 2/10 -5.16 0-2

-5 10 5 1/10 -4.57 0-2

-5 10 4 0/10 -5.02 0-2

-5 15 14 2/10 -3.07 0-2

-5 15 13 5/10 1.68 0-2

-5 15 10 5/10 -8.20 0-2

-5 15 8 3/10 -4.01 0-2

-5 15 6 0/10 -6.03 0-2
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-5 15 7 1/10 -8.06 0-2

0 15 14 10/10 -3.23 0-2

0 15 14 10/10 0.43 0-4

-1 15 14 10/10 -1.53 0-4

-1 15 10 10/10 -0.73 0-4

-1 15 5 3/10 0.19 0-4

-1 15 3 1/10 0.18 0-4

-1 15 2 0/10 -1.07 0-4

-1 15 2 3/10 -1.67 0-2

-1 15 1 1/10 -1.12 0-2

This shows that we would have the power to detect a medium effect (-0.357 in Table SM1.1) 
with a sample size of 15 if the noise (σ) is <15%. We would be unlikely to get a false negative 
because there were no false negatives in the simulations (i.e., the posterior sample range did 
not cross zero). With this sample size, when β=0, there are no false positives (i.e., the posterior 
sample range always included zero). However, we would not be able to detect a weak effect 
unless the noise (σ) was much smaller.

SUPPLEMENTARY MATERIAL 2: 
Interobserver reliability of dependent variables 
(unregistered analyses)
To determine whether experimenters coded the dependent variables in a repeatable way, 
hypothesis-blind video coders were first trained in video coding the dependent variable, and 
then they coded at least 20% of the videos in the reversal (tubes) and multi-access box 
experiments. We randomly chose a subset of all of the birds who participated in each 
experiment using random.org:

● Reversal 6/20 grackles (30% with half from the control group): Chalupa, Avocada, 
Diablo, Fideo, Tomatillo, Adobo

● Multi-access box plastic 3/15 grackles (20%): Habanero, Queso, Chalupa
● Multi-access box log 3/12 grackles (25%): Diablo, Adobo, Yuca
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Video coders then analyzed all videos from these birds. The experimenter’s data was compared
with the video coder data using the intra-class correlation coefficient (ICC) to determine the 
degree of bias in the regression slope (Hutcheon et al. (2010), using the irr package in R: 
Gamer et al. (2012)). Note that the data in columns from coders 1 and 2 in the data sheets were
aligned based on similar numbers between coders to prevent disagreements near the top of the 
data sheet from misaligning all subsequent entries.

Interobserver reliability training

To pass interobserver reliability (IOR) training, video coders needed an ICC score of 0.90 or 
greater to ensure the instructions were clear and that there was a high degree of agreement 
across coders (see R code comments for details).

Alexis Breen (compared with experimenter’s live coding):

● Multi-access box: correct choice unweighted Cohen’s Kappa=0.90 (confidence 
boundaries=0.77-1.00, n=33 data points)

● Multi-access box: locus solved unweighted Cohen’s Kappa=0.90 (confidence 
boundaries=0.76-1.00, n=33 data points)

Note: Breen was not a hypothesis-blind video coder. She contributed to extensive video coding 
across the whole project, however, for interobserver reliability analyses, her data were always 
compared with a hypothesis-blind coder’s data.

Anja Becker (compared with experimenter’s live coding):

● Reversal: correct choice ICC=1.00 (confidence boundaries=1.00-1.00, n=25 data points)

Tiana Lam (compared with experimenter’s live coding):

● Multi-access box: correct choice ICC=0.90 (confidence boundaries=0.77-1.00, n=33 
data points)

● Multi-access box: locus solved unweighted Cohen’s Kappa=0.95 (confidence 
boundaries=0.84-1.00, n=33 data points)

Brynna Hood (compared with experimenter’s live coding):

● Multi-access log: correct choice unweighted Cohen’s Kappa=1.00 (confidence 
boundaries=1.00-1.00, n=29 data points)

● Multi-access log: locus solved unweighted Cohen’s Kappa=1.00 (confidence 
boundaries=1.00-1.00, n=29 data points)

Interobserver reliability

Interobserver reliability scores (minimum 20% of the videos) were as follows:

Brynna Hood (compared with experimenter’s live coding):

● Multi-access log: correct choice unweighted Cohen’s Kappa=0.91 (confidence 
boundaries=0.76-1.00, n=39 data points)

● Multi-access log: locus solved unweighted Cohen’s Kappa=1.0 (confidence 
boundaries=1.0-1.00, n=39 data points)

Tiana Lam (compared with experimenter’s live coding):

● Multi-access box: correct choice unweighted Cohen’s Kappa=0.83 (confidence 
boundaries=0.73-0.92, n=102 data points)
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● Multi-access box: locus solved unweighted Cohen’s Kappa=0.90 (confidence 
boundaries=0.830-0.97, n=102 data points)

Anja Becker (compared with experimenter’s live coding):

● Reversal: correct choice ICC=0.99 (confidence boundaries=0.98-0.99, n=3280 data 
points)

These scores indicate that the dependent variables are repeatable to a high or extremely high 
degree given our instructions and training

SUPPLEMENTARY MATERIAL 3: Prediction 2
model outputs
Table SM3. Model outputs for the number of loci solved and the latency to switch loci after 
passing criterion on a different locus on the plastic (models 1-5 and 9-11) and wooden (models 
6-8 and 12-14) multi-access boxes, and for the pairwise comparisons explaining the changes 
caused by the manipulation (Models 15-16). SD=standard deviation, the 89% prediction 
intervals are shown, n_eff=effective sample size, Rhat4=an indicator of model convergence 
(1.00 is ideal), a=the intercept (a[batch] is the intercept for each batch), b=the slope of the 
relationship between loci solved or average switch latency and the number of trials to pass the 
reversal. See Supplementary Material 1 for details on model specifications.

Code
Mean SD Lower 89 percentile compatability interval (5.5%) Upper 89 percentie compatability interval (94.5%) n_eff Rhat4

MODEL 1 (last reversal): loci solved plastic ~ a[batch] + b*trials

a[1] 0.04 0.46 -0.70 0.78 2304 1.00

a[2] 0.29 0.36 -0.30 0.87 2456 1.00

a[3] -0.78 0.55 -1.65 0.08 2510 1.00

b -0.22 0.25 -0.63 0.18 2364 1.00

MODEL 2 (last reversal): loci solved plastic ~ a + b*trials

a -0.02 0.24 -0.40 0.35 1466 1.00

b -0.46 0.31 -0.97 -0.01 1383 1.00

MODEL 3 (last reversal): trials ~ a[batch]

a[1] 0.09 0.37 -0.48 0.69 2095 1.00
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a[2] -0.21 0.29 -0.68 0.25 1715 1.00

a[3] 0.25 0.39 -0.38 0.86 2161 1.00

sigma 1.03 0.21 0.75 1.39 2049 1.00

MODEL 4: loci solved ~ a[condition]

a[1] control -0.11 0.32 -0.62 0.40 1311 1.00

a[2] manipulated 0.15 0.39 -0.46 0.80 1222 1.00

MODEL 5 (first reversal): loci solved plastic ~ a + b*trials

a 0.00 0.24 -0.37 0.39 1208 1.00

b -0.44 0.30 -0.94 0.02 1273 1.00

MODEL 6 (last reversal): loci solved wooden ~ a + b*trials

a 1.06 0.27 0.63 1.50 1255 1.00

b 0.41 0.43 -0.21 1.13 1107 1.00

MODEL 7: loci solved ~ a[condition]

a[1] control -0.45 0.40 -1.10 0.18 1161 1.00

a[2] manipulated 0.77 0.41 0.13 1.44 1302 1.00

MODEL 8 (first reversal): loci solved wooden ~ a + b*trials

a 0.11 0.26 -0.30 0.52 1221 1.00

b -0.50 0.35 -1.09 0.04 1234 1.00

MODEL 9 (last reversal): avg switch latency plastic ~ a + b*trials

a 4.93 0.30 4.45 5.41 1235 1.01

b 0.46 0.29 0.00 0.92 1363 1.00
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phi 0.93 0.35 0.44 1.55 1476 1.00

MODEL 10: avg switch latency plastic ~ a[condition]

a[1] manipulated 4.07 0.39 3.46 4.68 1027 1.00

a[2] control 5.18 0.39 4.50 5.76 1006 1.00

phi 0.91 0.41 0.37 1.63 925 1.01

MODEL 11 (first reversal): avg switch latency plastic ~ a + b*trials

a 4.93 0.29 4.46 5.39 1488 1.00

b 0.46 0.28 0.02 0.93 1211 1.00

phi 0.94 0.36 0.44 1.60 1447 1.00

MODEL 12 (last reversal): avg switch latency wooden ~ a + b*trials

a 5.75 0.28 5.28 6.18 1049 1.00

b -0.41 0.32 -0.86 0.15 1281 1.01

phi 1.04 0.42 0.48 1.77 1456 1.00

MODEL 13: avg switch latency wooden ~ a[condition]

a[1] control 5.31 0.42 4.61 5.95 701 1.00

a[2] manipulated 5.34 0.44 4.61 6.00 620 1.01

phi 0.66 0.32 0.25 1.25 806 1.00

MODEL 14 (first reversal): avg switch latency wooden ~ a + b*trials

a 5.71 0.26 5.28 6.12 1109 1.00

b -0.50 0.28 -0.89 -0.01 1308 1.00

phi 1.08 0.41 0.53 1.80 1347 1.00

Code
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SUPPLEMENTARY MATERIAL 4: Reversal 
learning experiments: discriminating shapes 
on the touchscreen compared with shadecolor 
using tubes
In the tube experiment, it took four grackles an average of 40 trials (sd=12) in the initial 
discrimination phase to learn to prefer a shadecolor, while it took the same individuals an 
average of 390 trials (sd=59) to learn to prefer a shape using the touchscreen (Queso, Mole, 
Habanero, and Tapa). The two individuals who were faster to learn in the tube experiment were 
slower to learn in the touchscreen experiment. For the reversal, it took three of these individuals
(Queso, Mole, and Habanero) an average of 80 trials (sd=14) to reverse their shadcolored tube 
preference, and an average of 362 trials (sd=111) to reverse their shape preference on the 
touchscreen (Tapa had to be released back to the wild before finishing the experiment, but was 
on trial 629 in reversal one of the touchscreen experiment at the time of release. In the tube 
experiment, she was also the slowest of the four to reverse at 100 trials). All three individuals 
were about equally fast at the reversal in the tube experiment, while their reversal learning 
speeds differed on the touchscreen. The touchscreen training data and a summary of the 
training process is detailed in Seitz et al. (2021).

Code

SUPPLEMENTARY MATERIAL 5: 
Summarized results per bird
Table SM5. Summarized results per bird in the reversal learning (tube and touchscreen) and 
multi-access box (plastic and wooden) experiments. “Reversals to pass” indicates how many 
serial reversals it took a bird to pass criterion (passing two consecutive reversals in 50 trials or 
less) if they were in the flexibility manipulation condition. X indicates the bird attempted, but did 
not pass that experiment. Note: Tapa did not finish the MAB log experiment; Marisco’s MAB log 
experiment ended too early due to experimenter error (timed out on 2 consecutive sessions, not
3); Mole and Habanero: do not count MAB plastic number of options solved because they were 
given the box fully put together for habituation due to experimenter error; Taco was the first 
juvenile we tested and we did not put him in the flexibility experiment: he received 1 reversal 
and moved on to his next test, therefore he was essentially a control bird without the matched 
yellow tube experience.

Code
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Tomatil

lo

1 M 40 50 50 Contr

ol

3 317 13

Queso 1 M 50 70 70 Contr

ol

1 88 330 460 8

Tapa 1 F 30 100 100 Contr

ol

4 685 450 (629+) 12

Yuca 3 F 40 80 80 Contr

ol

4 4 132 77 13 16

Marisc

o

3 M 40 50 50 Contr

ol

1 2 208 3 7

Pizza 3 M 50 60 60 Contr

ol

0 1 1482 0 8

Mofong

o

4 M 20 40 40 Contr

ol

3 4 502 630 13 14

Taquito 4 M 90 160 160 Contr

ol

0 4 100 11 10

Chalup

a

1 F 50 90 50 8 0 6

Mole 1 M 30 70 50 7 4 4 356 1173 431 307 14 15

Haban

ero

1 M 50 80 40 6 4 28 350 290 15

Diablo 3 M 20 80 40 8 2 1 25 10 2

Burrito 3 M 40 60 23 8 3 4 76 391 17 18

Adobo 3 M 50 100 50 6 4 4 31 79 16 18

Chilaqu

ile

3 J

M

30 40 30 6 4 4 44 170 19 11

Pollito 4 M 40 60 40 8 0 3 668 0 11
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Taco 3a J

M

50 80 80 (Contr

ol)

1 4 117 2 19

Memel

a

1 F 50 60 80 X 

(11+)

Fideo 2 M 60 70 70 Contr

ol

Avocad

a

1 F 50 100 100 Contr

ol

Huachi

nago

3 M 70 Contr

ol

Guaca

mole

4 M 30

SUPPLEMENTARY MATERIAL 6: Prediction 4
learning strategy figures
Below are figures for the proportion of trials correct by trial number and reversal for each bird.

Code
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Figure SM6.1. Adobo’s proportion of trials correct by trial number and reversal.
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Figure SM6.2. Chalupa’s proportion of trials correct by trial number and reversal.
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Figure SM6.3. Chilaquile’s proportion of trials correct by trial number and reversal.
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Figure SM6.4. Diablo’s proportion of trials correct by trial number and reversal.
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Figure SM6.5. Habanero’s proportion of trials correct by trial number and reversal.
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Figure SM6.6. Memela’s proportion of trials correct by trial number and reversal.
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Figure SM6.7. Mole’s proportion of trials correct by trial number and reversal.
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Figure SM6.8. Pollito’s proportion of trials correct by trial number and reversal.
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