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Despite having established its usefulness in the last ten years, the decomposition of ecological networks in

components allowing to measure their �-diversity retains some methodological ambiguities. Notably, how

to quantify the relative e�ect of mechanisms tied to interaction rewiring vs. species turnover has been

interpreted di�erently by di�erent authors. In this contribution, I present mathematical arguments and

numerical experiments that should (i) establish that the decomposition of networks as it is currently done

is indeed �t for purpose, and (ii) provide guidelines to interpret the values of the components tied to

turnover and rewiring.



Ecological networks are variable both in time and space (Poisot et al. 2015; Trøjelsgaard & Olesen 2016) -1

this variability motivated the emergence of methodology to compare ecological networks, including in a2

way that meshes with the core concept for the comparison of ecological communities, namely3

�-diversity (Poisot et al. 2012). The need to understand network variability through partitioning in4

components equivalent to �, �, and 
 diversities is motivated by the prospect to further integrate5

the analysis of species interactions to the analysis of species compositions. Because species that6

make up the networks do not react to their environment in the same way, and because interactions are7

only expressed in subsets of the environments in which species co-occurr, the �-diversity of8

networks may behave in complex ways, and its quanti�cation is likely to be ecologically informative.9

Poisot et al. (2012) and Canard et al. (2014) have suggested an approach to �-diversity for ecological10

networks which is based on the comparison of the number of shared and unique links among species11

within a pair of networks. Their approach di�erentiates this sharing of links between those12

established between species occurring in both networks, and those established with at least one13

unique species. This framework is expressed as the decomposition �wn = �os + �st, namely the fact14

that network dissimilarity (�wn) has a component that can be calculated directly from the dissimilarity of15

interactions between shared species (�os), and a component that cannot (�st). Presumably, the value of16

these components for a pair of networks can generate insights about the mechanisms involved17

in dissimilarity.18

This approach has been widely adopted since its publication, with recent examples using it to understand19

the e�ect of �re on pollination systems (Baronio et al. 2021); the impact of rewiring on spatio-temporal20

network dynamics (Campos-Moreno et al. 2021); the e�ects of farming on rural and urban landscapes on21

species interactions (Olsson et al. 2021); the impact of environment gradients on multi-trophic22

metacommunities (Ohlmann et al. 2018); and as a tool to estimate the sampling completeness of23

networks (Souza et al. 2021). It has, similarly, received a number of extensions, including the ability to24

account for interaction strength (Magrach et al. 2017), the ability to handle probabilistic ecological25

networks (Poisot et al. 2016), and the integration into the Local Contribution to Beta Diversity (Legendre26

& De Cáceres 2013) approach to understand how environment changes drive network dissimilarity (Poisot27

et al. 2017).28

[Figure 1 about here.]29
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Yet, the precise meaning of �st, namely the importance of species turnover in the overall30

dissimilarity, has been di�cult to capture, and a source of confusion for some practitioners.31

This is not particularly surprising, as this component of the decomposition responds to unique32

species introducing their unique interactions both between themselves, and with species that33

are common to both networks �g. 1. For this reason, it is important to come up with guidelines34

for the interpretation of this measure, and how to use it to extract ecological insights.35

Furthermore, much like the de�nition of �-diversity in all its forms is a contentious topic36

amongst community ecologists (see e.g. Tuomisto 2010), the �-diversity of networks has been37

submitted to methodological scrutiny over the years. A synthesis of some criticisms, related to38

the correct denominator to use to express the proportion of di�erent links, has recently been39

published (Fründ 2021). It argues that the calculation of network dissimilarity terms as originally40

outlined by Poisot et al. (2012) is incorrect, as it can lead to over-estimating the role of interactions41

between shared species in a network (“rewiring”), and therefore underestimate the importance of species42

turnover across networks. As mist-understanding either of these quantities can lead to biased43

inferences about the mechanisms generating network dissimilarity, it is important to assess44

how the values (notably of �os, and therefore of �st) react to methodological choices.45

Here, I present amathematical analysis of the Poisot et al. (2012) method, explain how information46

about species turnover and link rewiring can be extracted from its decomposition, and conduct47

numerical experiments to guide the interpretation of the �-diversity values thus obtained (with a speci�c48

focus on �st). These numerical experiments establish three core facts. First, the decomposition49

adequately captures the relative roles of species turnover and interaction rewiring; second, the50

decomposition responds to di�erences in network structure (like connectance) as expected;51

�nally, the decomposition more accurately captures rewiring than the proposed alternative52

using a di�erent denominator put forth by Fründ (2021).53

Partitioning network dissimilarity54

The approach to quantifying the di�erence between pairs of networks established in Poisot et al. (2012) is55

a simple extension of the overall method by Kole� et al. (2003) for species dissimilarity based on56

presence-absence data. The objects to compare, X1 and X2, are partitioned into three values,57
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a = |X1 ∪ X2|, b = |X2 ⧵ X1|, and c = |X1 ⧵ X2|, where | ⋅ | is the cardinality of set ⋅ (the number of58

elements it contains), and ⧵ is the set substraction operation. In the perspective of species composition59

comparison, X1 and X2 are the sets of species in either community, so that if X1 = {x, y, z} and60

X2 = {v, w, x, y}, we have X1 ∪ X2 = {v, w, x, y, z}, X1 ∩ X2 = {x, y}, X2 ⧵ X1 = {v, w}, and X1 ⧵ X2 = {z}.61

The core message of Kole� et al. (2003) is that the overwheling majority of measures of �-diversity can be62

re-expressed as functions that operate on the cardinality of these sets – this allows to focus on the63

number of unique and common elements, as outlined in �g. 1.64

Re-expressing networks as sets65

Applying this framework to networks requires a few additional de�nitions. Although ecologists tend to66

think of networks as their adjacency matrix (as is presented in �g. 1), this representation is not optimal67

to reach a robust understanding of which elements should be counted as part of which set when68

measuring network dissimilarity. For this reason, we need fall back on the de�nition of a graph as a pair of69

sets, wherein G = (V, E). These two components V and E represent vertices (nodes, species) and edges70

(interactions), where V is speci�cally a set containing the vertices of G, and E is a set of ordered pairs, in71

which every pair is composed of two elements of V; an element {i, j} in E indicates that there is an72

interaction from species i to species j in the network G. The adjancency matrix A of this network73

would therefore have a non-zero entry at Aij.74

In the context of networks comparison (assuming the networks to compare areℳ andN), we can further75

decompose the contents of these sets as76

ℳ = (Vc ∪ Vm, Ec ∪ Esm ∪ Eum) ,

and77

N = (Vc ∪ Vn, Ec ∪ Esn ∪ Eun) ,

78

where Vc is the set of common species, Vm and Vn are the species belonging only to networkm and n79

(respectively), Ec are the common edges, and Esm and Eum are the interactions unique to k involving,80
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respectively, only species in Vc, and at least one species from Vm (the same notation applies for the81

subscript n).82

De�ning the partitions from networks as sets83

The metaweb (Dunne 2006), which is to say the entire regional species pool and their interaction, can be84

de�ned asℳ ∪N (this operation is commutative), which is to say85

ℳ ∪N = (Vc ∪ Vm ∪ Vn, Ec ∪ Esm ∪ Eum ∪ Esn ∪ Eun) .

This operation gives us an equivalent to 
-diversity for networks, in that the set of vertices contains all86

species from the two networks, and the set of edges contains all the interactions between these species. If,87

further, we make the usual assumption that only species with at least one interaction are present in the set88

of vertices, then all elements of the set of vertices are present at least once in the set of edges, and the set of89

vertices can be entire reconstructed from the set of edges. Although measures of network �-diversity90

operate on interactions (not species), this property is maintained at every decomposition we will describe91

next.92

We can similarly de�ne the intersection (also commutative) of two networks:93

ℳ ∩N = (Vc, Ec) .

The decomposition of �-diversity from Poisot et al. (2012) uses these components to measure �os94

(“rewiring”), and �wn (the overall dissimilarity including non-shared species). We can express the95

components a, b, and c of Kole� et al. (2003) as the cardinality of the following sets:96

Component a b c

�os Ec Esn Esm

�wn Ec Esn ∪ Eun Esm ∪ Eum

It is fundamental to note that these components can be measured entirely from the97

interactions, and that the number of species in either network are never directly involved.98
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In the following sections, I present a series of calculations aimed at expressing the values of �os,99

�wn, and therefore �st as a function of species sharing probability (as a proxy for mechanisms100

generating turnover), and link rewiring probability (as a proxy for mechanisms generating101

di�erences in interactions among shared species). These calculations are done using102

Symbolics.jl (Gowda et al. 2021), and subsequently transformed in executable code for Julia103

(Bezanson2017JulFre?), used to produce the �gures.104

Quantifying the importance of species turnover105

The di�erence between �os and �wn stems from the species dissimilarity betweenℳ andN, and it is106

easier to understand the e�ect of turnover by picking a dissimilarity measure to work as an exemplar. We107

will use � = (b + c)∕(2a + b + c), which in the Kole� et al. (2003) framework is (Wilson & Shmida 1984).108

Thismeasure returns values in [0, 1], with 0meaning complete similarity, and 1meaning complete109

dissimilarity.110

Based on a partition between three sets of cardinality a, b, and c,111

�t =
b + c

2a + b + c
.

So as to simplify the notation of the following section, I will introduce a series of new variables. Let112

C = |Ec| be the number of links that are identical between networks (as a mnemonic, C stands for113

“common”); R = |Esn ∪ Esm| be the number of links that are not shared, but only involve shared species114

(i.e. links fromℳ ∪N established between species fromℳ ∩N; as a mnemonic, R stands for115

“rewired”); and T = |Eun ∪ Eum| the number of links that are not shared, and involve at least one unique116

species (as a mnemonic, T stands for “turnover”).117

There are two important points to note here. First, as mentionned earlier, the number or proportion of118

species that are shared is not involved in the calculation. Second, the connectance of either network is not119

involved in the calculation. That all links counted in e.g. U come fromℳ, or that they are evenly120

distributed betweenℳ andN, has no impact on the result. This is a desirable property of the approach:121

whatever quantitative value of the components of dissimilarity can be interpreted in the light of the122

connectance and species turnover without any risk of circularity; indeed, I present a numerical123
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experiment where connectance varies independently later in this manuscript, reinforcing this124

point.125

The �nal component of network dissimilarity in Poisot et al. (2012) is �st, i.e. the part of �wn that is not126

explained by changes in interactions between shared species (�os), and therefore stems from species127

turnover. This fraction is de�ned as �st = �wn − �os.128

The expression of �st does not involve a partition into sets that can be plugged into the framework of129

Kole� et al. (2003), because the part ofℳ andN that are composed of their unique species cannot, by130

de�nition, share interactions. One could, theoretically, express these asℳ ⧵N = (Vm, Eum) and131

N ⧵ℳ = (Vv, Eun) (note the non-commutativity here), but the dissimilarity between these networks is132

trivially maximal for the measures considered.133

Using the �t measure of dissimilarity, we can re-write (using the notation with A, S, and U)134

�os =
R

2C + R ,

135

and136

�wn =
R + T

2C + R + T .

137

Note that �os has the form x∕y with x = S and y = 2A + S, and �wn has the form (x + k)∕(y + k), with138

k = U. As long as k ≥ 0, it is guaranteed that �wn ≥ �os, and therefore that 0 ≥ �st ≥ 1; as C, T, and R are139

cardinalities of sets, they are necessarily satisfying this condition.140

We can get an expression for �st, by bringing �os and �wn to a common denominator and simplifying the141

numerator:142

�st =
2CT

(2C + R)(2C + R + T)
.

143

8 of 17



Note that this value varies in a non-monotonic way with regards to the number of interactions that are144

part of the common set of species – this is obvious when developing the denominator into145

4C2 +R2 + 4CR + 2CT +RT. As such, we expect that the value of �st will vary in a hump-shaped way with146

the proportion of shared interactions. For this reason, Poisot et al. (2012) suggest that �st∕�wn (alt.147

1 − �os∕�wn) is a better indicator of the relative importance of turnover processes on network dissimilarity.148

This can be calculated as149

�st
�wn

= 2CT
(2C + S)(2C + R + T)

× R + T
2C + R + T ,

150

which reduces to151

�st
�wn

= 2CT
(2C + R)(R + T)

.

152

The roots of this expression are C = 0 (the turnover of species has no contribution to the di�erence153

between �wn and �os if there are no shared species, and therefore no rewiring), and for T = 0 (the turnover154

of species has no contribution if all species are shared).155

Quantifying the response of network beta-diversity to souces of variation156

The relative e�ect of species turnover and link rewiring157

As the decomposition of beta diversity into sets presented above reveals, the value of the158

components �os and �st will respond to two family of mechanisms: the probability of sharing a159

species between the two networks, noted p, which will impose bounds on the value of T; and the160

probability of an interactions between shared species not being rewired, noted q, which will161

impose bounds on the value of C. These two probabilities represent, respectively, mechanisms162
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involved in species turnover and link turnover, as per Poisot et al. (2015), and the aim of this163

numerical experiment is to describe how these families of processes drive network164

dissimilarity.165

In order to simplify the calculations, I make the assumptions that the networks have equal166

species richness (noted S), so that S1 = S2 = S, and the same connectance (noted �), so that167

�1 = �2 = �. As a consequence, the two networks have the same number of links168

L = � × S21 = � × S22. The assumption of equal connectance will be relaxed in a subsequent169

numerical experiment. These simpli�cations allow to express the size of C, R, and T only as170

functions of p and q, as they would all be multiplied by L, which can therefore be dropped from171

the calculation.172

[Figure 2 about here.]173

The value of C is the proportion of shared species p2, as per �g. 1, times the proportion of shared174

links, q, giving C = qp2. Each network has r = p2 − (qp2) rewired links, which leads to175

R = 2r = 2p2(1 − q). Finally, we can get the number of unique links in each network t by176

substracting C + r from the total number of links (which, since we scale everything by L, is 1),177

yielding t = 1 − qp2 − p2 + qp2, which is t = 1 − p2. The total number of unique links due to178

turnover is T = 2t = 2(1 − p2). It is important to note that C and R, namely the number of links179

that are kept or rewired, depends on species sharing (p), as the possible size of the overlap180

between the two networks does, but the quantity of links that are di�erent due to turnover does181

not depends on rewiring.182

With the values of C, R, and T, we can write183

�os =
2p2(1 − q)

2p2q + 2p2(1 − q)
=

1 − q
q + 1 − q = (1 − q) .

This is a �rst noteworthy result: the value of �os, in the ideal scenario of equal links and184

richness, is the probability of link re-wiring. Because this is true regardless of the value of p185

(species turnover), this makes �os a strongly ecologically informative component.186

Similarly, we can write187
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�wn =
2p2(1 − q) + 2(1 − p2)

2p2q + 2p2(1 − q) + 2(1 − p2)
=

p2(1 − q) + (1 − p2)
p2q + p2(1 − q) + (1 − p2)

= 1 − qp2 .

The overall dissimilarity responds to q (rewiring) linerarly, and to p quadratically (which is188

expected assuming unipartite networks, in which species are present on both sides).189

Expressing �os and �wn as functions of p and q trivializes the search for the expression of �st,190

which is191

�st = 1 − p2q − 1 + q = q × (1 − p2) .

It is worth examining this solution in some detail. �st scales linearly with the probability that a192

link will not be rewired – in other words, in a pair of networks for which rewiring is important193

(q goes to 0), species turnover is going to be a relatively less important mechanism to194

dissimilarity. �st increases when turnover is important (p goes to 0), and therefore �st represents195

a balance between species turnover and link rewiring. These three values, as well as �st∕�wn, are196

represented in �g. 2.197

Sensibility of the decomposition to di�erences in connectance198

The results presented in �g. 2 include the strong assumption that the two networks have equal199

connectance. Although the range of connectances in nature tends to be very strongly conserved200

within a system, we can relax this assumption, by letting one network have more interactions201

than the other. Note that for the sake of notation simplicity, I maintain the constraint that the202

two networks are equally species rich. Therefore, the sole variation in this numerical203

experiment is that one network has L1 = � × a × S2, and the other network has L2 = � × S2; in204

other words, L1 = a × L and L2 = L. As one step of the components calculations involves a min205

operation, I will add the constraint that L1 ≤ L2, which is to say 0 < a ≤ 1. The value of a is the206

ratio of connectances of the two networks, and the terms S2 and � being shared across all207

factors, they will be dropped from the calculations.208

The maximal number of links that can be shared is ap2 (i.e. min(p2, ap2)), as we cannot share209

more links than are in the sparsest of the two networks. Of these, q are not rewired, leading to210
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C = aqp2. The number of links that are rewired in network 1 is the number of its links between211

shared speciesminus C, i.e. r1 = ap2 − aqp2 = ap2(1 − q), and similarly r2 = p2 − aqp2 = p2(1 − aq),212

leading to R = r1 + r2 = p2 [a(1 − q) + 1]. Using the same approach, we can get t1 = a(1 − p2) and213

t2 = (1 − p2), leading to T = t1 + t2 = (1 − p2)(1 + a).214

As in the previous section, we can use these values to write215

�os = 1 − 2
aq
1 + a ,

�wn = 1 − 2
ap2q
1 + a ,

and216

�st = 2aq
(1 − p2)(1 + a)
a2 + 2a + 1

.

[Figure 3 about here.]217

The values of these components are visualized in �g. 3. The introduction of the connectance218

ratio makes these expressions marginally more complex than in the case without di�erences in219

connectance, but the noteworthy result remains that in the presence of di�erences of220

connectance, the value of �os is still independent from species turnover. In fact, there is an221

important conclusion to be drawn from this expression. The shared species component is by222

de�nition square, meaning that from an actual measurement of �os between two networks for223

which we know the connectance, noted bos, we can get the probability of rewiring by224

reorganizing the terms of bos = 1 − 2aq∕(1 + a) as225

q ≈
(1 − bos)(a + 1)

2a ,

which gives the probability of rewiring as 1 − q; note that this is an approximation, as it assumes226

that the connectances of the entire network and the connectances of the shared components227

are the same.228
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Does the partition of network dissimilarity needs a new normalization?229

One of the arguments put forth in a recent paper by Fründ (2021) is that the decomposition outlined230

above will overestimate the e�ect of rewiring; I argue that this is based on a misunderstanding of what �st231

achieves. It is paramount to clarify that �st is not a direct measure of the importance of turnover: it is a232

quanti�cation of the relative impact of rewiring to overall dissimilarity, which, all non-turnover233

mechanisms being accounted for in the decomposition, can be explained by turnover mechanisms. In this234

section, I present two numerical experiments showing (i) that the �os component is in fact an accurate235

measure of rewiring, and (ii) that �st captures the consequences of species turnover, and of the236

interactions brought by unique species.237

Illustrations on arbitrarily small networks are biased238

We can re-calculate the illustration of Fründ (2021), wherein a pair of networks with two shared239

interactions (C = 2) receive either an interaction in T, in R, or in both:240

C T R �os �wn �st �st∕�wn

2 0 0 0 0 0

2 1 0 1∕5 1∕5 0 0

2 0 1 0 1∕5 1∕5 0

2 1 1 1∕5 1∕3 2∕15 2∕5

The over-estimation argument hinges on the fact that �st < �os in the last situation (one interaction as241

rewiring, one as turnover). Reaching the conclusion of an overestimation from this is based on a242

mis-interpretation of what �st means. The correct interpretation is that, out of the entire network243

dissimilarity, only three-�fths are explained by re-wiring. The fact that this fraction is not exactly one-half244

comes from the fact that the Wilson & Shmida (1984) measure counts shared interactions twice (i.e. it has245

a 2C term), which over-ampli�es the e�ect of shared interactions as the network is really small. Running246

the same calculations with C = 10 gives a relative importance of the turnover processes of 47%, and �st247

goes to 1∕2 as C∕(T + R) increases. As an additional caveat, the value of �st will depend on the measure of248

beta-diversity used. Measures that do not count the shared interaction twice are not going to amplify the249
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e�ect of rewiring.250

Based on the arguments presented above, I do not think the suggestion of Fründ (2021) to change the251

denominator of �os makes sense as a default; the strength of the original approach by Poisot et al. (2012) is252

indeed that the e�ect of turnover is based on a rigorous de�nition of networks as graphs (as opposed to253

networks as matrices), in which the induction of vertices from the edgelist being compared gives rise to254

biologically meaningful denominators. The advantage of this approach is that at no time does the turnover255

of species itself (or indeed, as shown in many places in this manuscript, the network richness), or the256

connectance of the network, enter into the calculation of the beta-diversity components. As such, it is257

possible to use �os and �wn in relationship to these terms, calculated externally (as was recently done by258

e.g. Higino & Poisot 2021), without creating circularities.259

Therefore the argument of Fründ (2021), whereby the �os component should decrease with260

turnover, and be invariant to connectance, does not hold: the very point of the approach is to261

provide measures that can be interpreted in the light of connectance and species turnover.262

Adopting the perspective developed in the previous section, wherein networks are sets and the263
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measures of �-diversity operates on these sets, highlights the conceptual issue in the Fründ (2021)264

alternative normalization: they are using components (namely, interactions) of the networks265

that are not directly part of the two networks being compared.266

Using an alternative normalization trivializes the results267

In this numerical experiment, we reproduce the results in �g. 2, but using the alternative268

normalization described above. The results are presented in �g. 4. Producing the analytical269

solutions for the various components, following the expressions for C, T, and R given for �g. 2,270

yields a similar value for �wn (i.e. the two approaches estimate the same value for total271

dissimiliarity), but di�erent values for �st and �os272

. Speci�cally, �os becomes p2(1 − q), which becomes dependent on species turnover. This, from273

an ecological point of view, makes no sense: the quanti�cation of howmuch shared species274

interact in a similar way should not depend on howmuch species actually overlap. The opposite275

problem arises for �st, which becomes 1 − p2. In short, the relative importance of species276

turnover is simply species turnover itself, and has no information on interaction dissimilarity.277

Therefore the core issue of the Fründ (2021) alternative is that, by attempting to �x a non-issue278

(namely the over-estimate of the importance of re-wiring, which is only true in trivially small279

networks), it blurs the meaning of �os, and renders �st useless as it is a re-expression of species280

beta-diversity.281

[Figure 4 about here.]282

Measuring network beta-diversity: recommendations283

Based on the numerical experiments and the derivations presented in this paper, we can establish284

a number of recommendations for the measurement and analysis of network dissimilarity.285

First, �os allows to estimate the rate of rewiring, which is an important ecological information to286

have; quantifying it properly can give insights as to how networks di�er. Second, �st captures287

both turnover and rewiring mechanisms, but its interpretation is easier to accomplish in the288

context of total network dissimilarity, and therefore �st∕�wn should be interpreted more289
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thoroughly. Finally, because the alternative denominator from Fründ (2021) removes the290

interesting property of �os (independent estimate of rewiring rate), and trivializes the meaning291

of �st (by turning it into species dissimilarity), there seems to be no valid reason to use it.292
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Figure 1: The dissimilarity of two networks (green and orange) of equal richness S (this also holds for
unequal richness) depends on three families of interactions: those that are unique because of species
turnover (in a pale color), those that are unique because of rewiring (in a saturated color), and those that
are shared (in black). Assuming that the chance of sharing a species between the two networks is p, then
there can be at most p2 × S2 shared links – for this reason, overall network dissimilarity (�wn) will have a
component tied to species turnover, which is �st.
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Figure 2: Values of �os, �wn, �st, and �st∕�wn as a function of the probability q or sharing a link (x-axis),
and the probability p of sharing a species (y-axis). Larger values indicate more dissimilarity, such that for
p = q = 1 the dissimilarity as measured by �wn = 0, and for p = q = 0 the dissimilarity as measured by
�wn = 1. As expected, the relative importance of turnover (�st) is maximal when there is no rewiring, and
when turnover increases.
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Figure 3: Consequences of changing the ratio of connectances between two equally species-rich networks
on the decomposition of network beta-diversity, assuming p = 0.8. Networks with stronger di�erences
in connectance will tend to be more similar, because the di�erences in number of links becomes extreme
enough that the chances of all the links in the sparser network being in the denser network increases.
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Figure 4: Reproduction of �g. 2 with the alternative denominators proposed by Fründ (2021).
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