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Summary 
Population trends derived from systematic monitoring programmes are essential to identify species of 

conservation concern and to evaluate conservation measures. However, monitoring data pose several 

challenges for statistical analysis, including spatial bias due to an unbalanced sampling of landscapes or 15 

habitats, variation in observer expertise, frequent observer changes, and overdispersion or zero-

inflation in the raw data. An additional challenge arises from so-called ‘rolling’ survey designs, where 

each site is only visited once within each multi-year rotation cycle. We developed a GAMM-based 

workflow that addresses these challenges and exemplify its application with the highly structured data 

from the Ecological Area Sampling (EAS) in the German federal state North-Rhine Westphalia (NRW). 20 

First, we derive a routine that allows informed decisions about the most appropriate combination of 

distribution family (Poisson or negative binomial), model covariates (e.g., habitat characteristics), and 

zero-inflation formulations to reflect species-specific data distributions. Second, we develop a 

correction factor that buffers population trend estimates for variation in observer expertise as reflected 

in variation in total bird abundance. Third, we integrate landscape-specific trends that adjust for 25 

between-year variation in the representation of habitat or landscape types within the yearly subset of 

sampled sites. In a consistency check, we found good match between our GAMM-based EAS trends and 

TRIM-based trends from the standard German common Bird monitoring scheme. The study provides a 

template script for R statistical software so the workflow can be adapted to other monitoring 

programmes with comparable survey designs and data structures. 30 
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1 Introduction 
Bird populations decline worldwide (Klvaňová et al. 2009, Sauer et al. 2017, Burns et al. 2021a, Burns et 

al. 2021b), with the European Union alone facing an approximate loss of 560–620 million bird individuals 40 

(17–19%) within 40 years (Burns et al. 2021a, Burns et al. 2021b). Such knowledge of population sizes 

and their trends heavily relies on standardized monitoring programmes to provide reliable population 

density estimates. The resultant population trend estimates allow allocating conservation resources to 

species of highest conservation concern (Niemelä 2000, Buckland and Johnston 2017), provide feedback 

on the efficiency of conservation efforts (Johnston et al. 2015), and raise awareness for the value and 45 

state of biodiversity among decision makers and the public (Jennings 2021).  

However, many monitoring programmes pose substantial challenges for statistical inference that can 

reduce the reliability and robustness of the estimated trends if not treated with care (Buckland and 

Johnston 2017). Our study focuses on a monitoring scheme with a rolling (or ‘rotating’) survey design 

that generates multi-year intervals between repetitive surveys per site (Buckland and Johnston 2017). 50 

Rolling surveys can cover more study sites and thus a wider range of landscape types across years than 

monitoring schemes with a yearly coverage of all sites but result in a large fraction of sites with missing 

values each year and frequent observer changes. In this context, we develop an analytical protocol to 

cover three core aspects. First, rolling monitoring programmes rest on spatially structured sampling 

designs, often coupled with between-year variation in the representation of habitat types, which needs 55 

integration into the analysis (van Strien et al. 2004, Buckland and Johnston 2017). Spatial bias arises 

when relevant landscape types or habitats are not represented according to their spatial coverage in 

the monitoring sample  (van Strien et al. 2004). As a result, when population trends vary between 

landscapes or habitats, the estimated overall population trend can be biased towards overrepresented 

landscapes, or reflect changes in sample composition rather than a true change in abundance (Buckland 60 

and Johnston 2017, Bowler et al. 2022).  

Second, detection probabilities and survey quality can vary strongly among and (over time) within 

observers, potentially introducing random and systematic trend estimation errors when ignored (Sauer 

et al. 1994, Link and Sauer 1998, Kéry et al. 2005, Jiguet 2009, Farmer et al. 2014). When average 

observer expertise remains constant, between-observer variation primarily increases (random) 65 

variation in abundance estimates between sites and years. (Sauer et al. 1994, Johnston et al. 2018). In 

contrast, within-observer learning and systematic changes in average observer expertise introduce 

(systematic) biases in trend estimates. For example, initial familiarization with a new study site and the 

specificities of the monitoring programme usually cause underestimated bird abundances in early 

survey years (Link and Sauer 1998, Jiguet 2009). Moreover, observer expertise usually increases with 70 

time after active engagement in bird territory surveys, while species detectability declines with age if 
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hearing impairment reduces the detection of high-pitch bird vocalisations (Farmer et al. 2014). In rolling 

survey design, these general issues typically go along with a high turnover in observer identities between 110 

successive surveys of the same site, which adds further variation. 

Finally, count response data as typical for bird census require models to reflect distribution properties 

such as overdispersion or zero inflation (Blasco‐Moreno et al. 2019, Campbell 2021). Overdispersion 

arises when the variance of count data exceeds their mean value. It is typically resolved by modelling 

trends with a negative binomial error distribution instead of a Poisson distribution (Blasco‐Moreno et 115 

al. 2019, Campbell 2021). Zero-inflation occurs when datasets contain so-called structural zeros. This 

implies a disproportionally large fraction of unoccupied sites that cannot be explained solely by sampling 

variation among sites considered suitable, but rather arises from survey sites that are unsuitable. Where 

present, structural zeros are modelled separately from the count distribution in zero-inflated model 

components (Korner-Nievergelt et al. 2015, Blasco‐Moreno et al. 2019, Campbell 2021, Tirozzi et al. 120 

2021).  

The software TRIM (Pannekoek and van Strien 2001) represents a common analytical tool for the 

analysis of monitoring data and is used, for example, in the Pan European Common Bird Monitoring 

Scheme (Vorisek et al. 2008) and the national bird monitoring programmes of Sweden (Jiguet et al. 

2013), Finland (Pöysä et al. 2013), or Germany (Kamp et al. 2021). TRIM computes trends and annual 125 

population indices from loglinear Poisson regressions. It corrects for overdispersion, serial correlation 

and missing values (van Strien et al. 2004) and allows weights to account for spatial bias (van Strien et 

al. 2004). Yet, designed for monitoring schemes with almost yearly surveys per site by the same 

observer, TRIM estimates are considered robust unless the turnover in survey sites between years leads 

to a ≥ 60 % fraction of missing values (van Strien et al. 2001, Bogaart et al. 2020, Dakki et al. 2021). 130 

Moreover, TRIM is restricted to categorical covariates, requiring climate or landscape composition 

covariates to be transformed into categories (Bogaart et al. 2020). Finally, long-term trend analyses 

beyond yearly index estimates are restricted to linear trends and breakpoint analyses, while more recent 

developments favour the integration of trend smoothers, e.g. with general additive (mixed) models 

(GA(M)Ms) (e.g., Fewster et al. (2000), Knape (2016)). Using a smoothing function, GA(M)Ms can also 135 

capture non-linear short- and long-term trends while allowing to identify periods of strongly increasing 

or decreasing trends and breakpoints of (linear) trend direction (Fewster et al. 2000, Zuur 2012, Knape 

2016, Wood 2021). 

We develop a user-friendly tool that integrates high observer turnover, long time gaps between 

successive surveys, spatial bias, as well as overdispersion and zero-inflation into an analysis of bird 140 

abundance trends from rolling surveys. It is exemplified with data from the Ecological Area Sampling 

(EAS), a monitoring programme of the German federal state North-Rhine Westphalia (NRW) with a six-
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year rolling sampling scheme. As a quality check, we compared the predicted population trends with 165 

West German trends derived from the German Common Bird Monitoring scheme (MhB) with yearly 

surveys per site. The statistical approach is provided as an R script (Rieger et al. 2025) and package 

(Rieger 2024) that can be adjusted to other datasets with a comparable structure. 

 

2 Material and Methods 170 

2.1 The Ecological area sampling (EAS) dataset 
The Ecological Area Sampling (EAS) is a long-term biodiversity monitoring programme of the State 

Agency for Nature, Environment and Consumer Protection in North Rhine-Westphalia (LANUV) with 170 

study sites that represent the average landscape of North-Rhine Westphalia (NRW) (LANUV 2016b). 

Sites are distributed across two biogeographic regions (atlantic lowlands, continental highlands) and six 175 

natural regions (Fig. 1) proportional to their spatial coverage. Another 21 metropolitan sites were added 

in 2011 to represent landscape characteristics of the Rhine-Ruhr metropolis region (Weiss and Schulze‐

Hagen 2014). The program targets an alternating six-year cycle for successive surveys of a given site, 

but could not yet strictly impose it given restructuring in the yearly balance of sites among natural and 

metropolitan regions (see section 2.3). The dataset for the survey period 2002-2020 typically covered 180 

25 to 36 (max. 43 and 47) sites per year, two to four replicated surveys per site, and 614 surveys in total. 

Each site is visited at least nine times per sampling year (two to eight hours per date) between February 

and July with complete coverage of its 1 km² area (LANUV 2016a). The repetitive surveys are used to 

derive the territory count per species and km², which represents the response variable abundance in all 

statistical analyses (LANUV 2016a). Survey effort (survey number and duration) constitute relevant 185 

model covariates but the respective information is not available for the current dataset (Further detail 

on EAS methodology in appendix section 1). 

 

2.2 Site characterization 
Site-specific categories included biogeographic region (atlantic, continental), natural region (six regions 190 

as specified in Fig. 1), and localisation within a metropolitan area (no, yes). For analyses, we merged 

these into seven landscape types consisting of the six natural regions (sites outside the metropolitan 

area) and one metropolitan region (sites within the metropolitan area, ignoring natural regions given 

the overriding effect of urbanization in these lowland sites). Quantitative site characteristics included 

altitude above sea level (ATKIS 2013), ten parameters of climate and three of landscape compositions 195 

to account for variation in mean environmental attributes between the site subsets surveyed per year. 

Climate parameters included long-term spring and winter averages between 1981 and 2010 (CDC 2010) 
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of minimum, mean, and maximum temperatures, precipitation, and sunshine duration. Landscape 

variables were the coverages of forest, arable land, and settlements (ATKIS 2013). Given substantial 

collinearity between these 14 attributes, we integrated their principal components (PC) with 220 

eigenvalues exceeding 1 into the statistical models (three PCs in our case; for details see Appendix 

section 2).  

Figure 1: Sites and study area of EAS coloured by six natural regions (left) and two biogeographic regions including the Rhine-
Ruhr metropolis (middle). Map adapted from LANUV (2016b). 225 

 

2.3 Spatial bias 
The initial sample of 170 EAS monitoring sites almost perfectly represented the proportional coverage 

of landscape types in NRW, but sampling bias arose from two sources. First, the monitoring programme 

added 21 metropolitan sites overrepresenting the metropolitan area to the other six landscape types in 230 

2021. Second, the yearly subsampling of sites was highly unbalanced with respect to landscape types in 

the early phase of the EAS programme (Fig. 2), with improvements since 2007 and almost perfect 

balance since 2013.  

To account for the uneven allocation in early programme years and for the overrepresentation of 

metropolitan areas since 2011, we analysed annual trends per landscape type. 235 
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Figure 2: Landscape shares in annual EAS samples (main panel) and their spatial coverage per biogeographical region and in 
NRW (right panel). Bar widths are proportional to the number of surveyed sites per year.  

 265 

2.4 Observer effects 
The delineation of breeding territories is prone to under- and overestimation arising from variation in 

observer expertise in species identification and detection, territory delineation, and general field survey 

quality (Südbeck et al. 2005, Johnston et al. 2018), even in programmes such as the EAS that hire skilled 

ornithologists (König 2020). Observer effects add further noise to trend estimates when observers 270 

change between successive surveys of a given site. Excluding data from first year surveys, an established 

standard in monitoring data with yearly site coverage (e.g., German Common Bird Monitoring (Kamp et 

al. 2021)), is unfeasible for rolling surveys: In the EAS dataset, 434 out of 614 breeding bird surveys 

between 2002 and 2020 (71 %) were such first-year combinations of observer and site. To characterise 

observer expertise and learning effects, we therefore categorized observers as (i) unfamiliar with the 275 

survey programme and site, (ii) familiar with survey programme but unfamiliar with the site, or (iii) 

familiar with both. Yet, we excluded this predictor from final models since it did not improve model fit, 

most likely because site familiarization introduced no detectable bias into the EAS trend estimates given 

the high observer turnover rates among successive surveys. 

Instead, we identified surveys with suspiciously high or low territory counts summed across all species. 280 

The procedure assumes that severe observer effects typically manifest in a general under- or 

Deleted: ) for all combinations of natural regions and 
metropolitan area.…

Deleted: White boxes at the lower end of each landscape 
refer to sample sites in metropolitan areas. *metropolitan 285 
area of landscape not present in EAS due to low shares in 
NRW (SB = 0.4%, KB = 0.6%).

Deleted: monitoring data

Deleted: within

Deleted: delineated290 



 

6 
 

overestimation of territory numbers (= abundance), so that total abundance (summed across species) 

for a given site and year stands out against average total abundance for that site. Based on this logic, 

we calculated  

Observer effect =  
𝑁𝑗𝑠

𝑁𝑠̅̅̅̅
   

with 𝑁𝑗𝑠 the total abundance across species on site 𝑠 in survey year 𝑗, and 𝑁𝑠
̅̅ ̅ the mean total abundance 295 

across species on site 𝑠 across all survey years (Rieger 2024). This observer effect is a ratio, so that a 

value of 1 indicates no deviation from the mean, and a value of 0.75 (1.25) a deviation of -25% (+25%) 

from the observed mean. We integrated the observer effect as a categorical predictor variable classified 

as ‘negative’ (or ‘positive’) when the abundance sum of a given survey was at least 25% smaller (or 

larger) than the mean per site, and as ‘none’ otherwise. As a sensitivity analysis, we also checked 300 

observer effect thresholds of 20% and 15%. 

 

2.5 Distribution characteristics and the statistical analysis of EAS 
We analysed species-specific abundance trends between 2002 and 2020 for all species with ≤ 90 % zero-

sightings among the 614 surveys (and thus at least 61 non-zero records) to allow plausible trend 305 

detection. The criterion was fulfilled in 61 (out of 148) species. For conciseness, this study focuses on a 

subset of 14 species that cover the observed range of abundance distributions and proportions of zero 

counts (Table 1). 

Trends in Abundance, i.e. the territory count per site and year, were analysed using generalized additive 

mixed models (GAMMs) within a Bayesian framework as implemented in the package brms (v.2.21.0 310 

(Bürkner 2017)) for R (v.4.3.3 (R Core Team 2024)). The brms package fits Bayesian models using Stan 

via the package cmdstanr (v.0.7.1 (Gabry and Češnovar 2020)) and allows to more flexibly integrate the 

required error families and model structures. We implemented four different error structures to 

account for zero-inflation or overdispersion, namely a Poisson error structure (Pois), negative binomial 

(nb), zero-inflated Poisson (zip), or zero-inflated negative binomial (zinb), all using a log link (Table 2, 315 

Appendix section 3). Since the underlying survey method generates .5 abundances for peripheral 

territories, we multiplied abundance by two (so it would be number of territories for 2 km²) and added 

an offset of two to all models. 

The main model was constructed as follows, and we explain each model component below: 

2*Abundance ~ s(Year, by = Landscape) + Landscape + Observer 320 

+ poly(PC1, 2) + poly(PC2, 2) + poly(PC3, 2) 
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+ offset(log(2)) + (1|siteID).       (1) 

Survey Year as the main continuous predictor was modelled with a smoothing function (thin plate 365 

regression splines with an automatic selection of the degree of smoothing) to account for non-linear 

changes in abundance over time while allowing adjacent years to be related to each other (Fewster et 

al. 2000, Zuur 2012, Knape 2016, Wood 2021). Thus, smoothers buffer against the property of rolling 

surveys that sampled site subsets differ between successive years, so that year-to-year changes in 

abundance cannot differentiate among-site variation from true short-term change in population size 370 

(Zuur 2012). Smoothers were modelled separately per Landscape type to account for spatial bias due 

to the unbalanced sampling design (Fig. 2). 

We added Landscape type as a categorical main effect  (Wood 2021) to contrast population densities 

and trends between the seven landscapes. Landscape types showed near-complete separation between 

biogeographical regions, where the continental region encompasses the natural regions ‘silicate hillside’ 375 

and ‘limestone hillside’ and the Atlantic region the remaining five natural regions including the 

‘metropolitan area’. We therefore refrained from adding biogeographic region as a separate predictor, 

but extract population trends per biogeographic region by combining the respective landscape trends 

(see section ‘Population trends’).  

Observer effects as outlined in section 2.4 were added as a categorical covariate. For numeric covariates, 380 

we included linear and quadratic terms of site-specific environmental attributes captured in the first 

three principal components PC1 to PC3 as outlined in section 2.2 and Appendix section 2. Finally, we 

added site-ID as a random intercept to reflect repeated measures per site and to model variation in 

mean abundance between the different site subsets per year.  

The zero-inflation model component, where needed (Table 1), represents a binomial (Bernoulli) model 385 

with a logit link to estimate the additional occurrence of structural zeros. We kept this component as 

simple as possible (formulation 2.1) and estimated separate zero-inflation parameters per Landscape 

type, environmental PC, or study site-ID (formulations 2.2–2.4) only where needed to improve model 

convergence and better reflect the observed distribution of zero counts (Fig. 3, Table 2): 

  zi-formula ~ 1           (2.1) 390 

 zi-formula ~ Landscape          (2.2) 

 zi-formula ~ PC1 + PC2 + PC3       (2.3) 

 zi-formula ~ (1|siteID)         (2.4) 
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We did not integrate temporal autoregressive structures (van Strien et al. 2004, Korner-Nievergelt et al. 

2015) because variograms plotted with the variog function of the package geoR (v.1.9-3 (Ribeiro Jr and 

Diggle 2020)) revealed no issues with temporal autocorrelation. This may result from the six-year gaps 

between repeated measures (usually accompanied by a change in observer), which may add more 

variation to model residuals than expected from the remaining temporal pattern, rendering temporal 435 

autocorrelation negligible. 

Table 1: Overview of model types (main model family, coefficients in the optional zi-binomial model) and number of case study 
species per model type. Species names are given for the 14 exemplary species shown in this paper. Details for all species are in 
Appendix section 7. Models are ordered according to their parsimony (top = most parsimonious). 

model 
family 

binomial model 
coefficients 

# species (%) exemplary species 

pois  3 (4.9%) 
European Green Woodpecker (Picus viridis), 
Eurasian Nuthatch (Sitta europaea) 

nb  13 (21.3%) 
Eurasian Blue Tit (Cyanistes caeruleus), 
Common Chiffchaff (Phylloscopus collybita) 

zip ~ 1 7 (11.5%) 
Black Redstart (Phoenicurus ochruros),  
Willow Tit (Poecile montanus) 

zinb ~ 1 13 (21.3%) Great Tit (Parus major) 

zip ~ PCs 3 (4.9%) Grey Wagtail (Motacilla cinerea) 

zinb ~ PCs 6 (9.8%) 
Eurasian Jay (Garrulus glandarius),  
Common Chaffinch (Fringilla coelebs) 

zip ~ L 1 (1.6%) Common Kestrel (Falco tinnunculus) 

zinb ~ L 3 (4.9%) Barn Swallow (Hirundo rustica) 

zip ~ (1|ID) 5 (8.2%) Common Buzzard (Buteo buteo) 

zinb ~ (1|ID) 7 (11.5%) Eurasian Magpie (Pica pica) 

pois = Poisson, nb = negative binomial, zip = zero-inflated Poisson, zinb = zero-inflated negative binomial,  
PCs = Principal Components PC1 + PC2 + PC3, L = Landscape type, (1|ID) = random intercept of site ID. 
 

To fit Bayesian models, we used weakly informative prior distributions for coefficients (normal with 440 

mean = 0, SD = 2.5 for categorical coefficients, mean = 0, SD = 10 for numeric coefficients) and a 

maximum tree depth of 10. Each model ran four Markov chain Monte Carlo chains with 1,000 warm-up 

and 2,000 post-warm-up samples per chain. We used the 8,000 post-warm-up samples for posterior 

predictive checks of the models’ ability to simulate the observed abundance distribution. Criteria 

included distributional characteristics (mean and standard deviation) as well as the model’s ability to 445 

reflect extreme values (maximum value) and potential zero inflation (proportion of zero counts, propZ) 

in the data. In all these cases, we calculated the proportion of simulations exceeding the observed raw 

data value (Bayesian p-value, Korner-Nievergelt et al. 2015). Bayesian p close to 0.5 imply a good match 

because the observed values are roughly central within the distribution of simulated data, while values 

approaching 0 or 1 flag models that clearly under- or overestimated the observed value.  450 
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We further checked several conversion indicators of the coefficient estimates: Rhat-values ≤ 1.1 

(observed max = 1.01) (Brooks and Gelman 1998), effective posterior samples ≥ 10% of total samples 

(observed min = 9.4%) and Monte Carlo standard errors ≤ 10% of the standard deviation (observed max 670 

= 4.3%) (Korner-Nievergelt et al. 2015). To select the model with the best predictive performance per 

species, we did a k-fold-cross-validation using 16 folds resulting in a theoretical expected log pointwise 

predictive density (ELPD) per model, as well as ELPD differences (model with best ELPD compared to 

others) and the respective standard error of the difference (se ELPD  difference) (Bürkner 2017). When 

several models resulted in near-identical performance (ELPD difference ± 1.96*se ELPD difference 675 

included 0), we continued with the most parsimonious model, i.e., the model with the lowest number 

of covariates or model components (see Table 1), that fulfilled our conversion indicators.  

From the post-warm-up samples we also derived mean covariate coefficient estimates with their 95% 

credible intervals (CrI) and the posterior probability that the estimate exceeds 0, P(β > 0). Posterior 

probabilities approaching 0 or 1 indicate increasingly strong evidence for a directional coefficient. 680 

 

Population trend 

Model predictions ± 95% CrI were derived via brms.fitted (Bürkner 2017) to display trends graphically. 

When estimating trends over years and differences between landscape types, values of the remaining 

model covariates were set to their landscape-specific sample mean (continuous covariates), to the level 685 

‘none’ (for ‘observer effect’) (Korner-Nievergelt et al. 2015), and group-level effects (‘site ID’) were 

generalized beyond the specific grouping level by using the argument re_formual = NA. We derived 

trends across biogeographic regions by combining these landscape-specific trends according to the 

landscape’s share of the biogeographic region (Atlantic (continental): A = 11.7% (2.1%), B = 20.9% 

(9.2%), KB = 5.1% (20.1%), KM = 15.1% (0.4%), SB = 0.0% (64.7%), ST = 35.1% (1.2%), metro = 12.1% 690 

(2.3%)). Overall trends were derived alike by combining the region-specific trends according to their 

share of NRW (55.5% Atlantic region and 44.5% continental region). Based on pairwise differences of 

simulated abundances, we estimated trends as changes in abundance between the start and end date 

of any desired time period as 

Pairwise difference = 𝑁𝑖𝑗 − 𝑁𝑖(𝑗−𝛥𝑡) 695 

with 𝑁 the predicted abundance for the 𝑖th posterior draw at times 𝑗 and 𝑗 − 𝛥𝑡, where 𝛥𝑡 is the desired 

time period. If the 95% CrI of these simulated differences excluded 0, the trend estimate was considered 

robust. We specifically produced pairwise differences to estimate annual changes (𝛥𝑡 = 1) and a 12-year 

trend between 2008 and 2019 (𝛥𝑡 = 12, 𝑗 = 2019).  
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Population index 

For comparison with other monitoring programmes, we integrated the option to transform predicted 

mean abundances per km² into an index relative to a user-selected baseline year (here: 2006). Even 

though the first few years of the monitoring programme suffer from non-representative sampling (see 735 

section 2.3), weights and smoothing-function enabled accurate estimates in these years without 

distorting successive estimates (Buckland and Johnston 2017). Abundance indices were calculated as 

Abundance index =  
𝑁𝑖𝑗

𝑁𝐽̅̅̅̅
  

with 𝑁𝑖𝑗  the predicted abundance of the 𝑖th posterior draw in year 𝑗, and 𝑁𝐽
̅̅ ̅ the mean predicted 

abundance of all simulations in the baseline year 𝐽 (here J = 2006). Based on 10,000 simulations, we 740 

calculated the mean index and its 95% CrI for each time step 𝑗. Note that this computation calculates 

an uncertainty also for the baseline year J. Users who prefer a fixed baseline year index without 

uncertainty need to replace the mean abundance denominator, 𝑁𝐽
̅̅ ̅ in the formula by 𝑁𝑖𝐽 , i.e. the 𝑖th 

simulation in the baseline year.  

 745 

Data exclusion  

Based on an internal validation process of the LANUV, some abundance data were classified as 

implausible and therefore excluded from the analysis. This process was species-dependent, leading to 

sample sizes of 608 to 614 per species (full dataset: 614, Appendix section 7).  

 750 

2.6 Consistency check 
We checked our EAS trends for NRW for consistency with population trends in all West Germany 

according to the German Common Bird Monitoring scheme (MhB), coordinated by the German 

association for field ornithologists (DDA). MhB study sites are ideally surveyed each year by the same 

observer (four surveys per site between 10 March and 20 June; full programme details in Kamp et al. 755 

(2021)).  

The consistency analysis included 59 widely distributed species spanning a broad range of habitat 

associations and breeding strategies for which we had trend estimates available from the MhB and from 

the EAS. It is obviously difficult to compare trend estimates between programmes that rest on different 

methodologies and survey efforts (nine vs. four surveys per year), have different spatial coverage (NRW 760 
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vs. West Germany) with just a partial match in study sites, and employ fundamentally different analytical 

approaches (GAM smoothers in EAS vs. yearly point estimates in MhB). Nevertheless, largely consistent 

estimates from EAS and MhB would reassure that the analytical approach developed for rolling sampling 785 

strategies produces reliable trends that are robust to the underlying survey design. With these 

limitations in mind, we expected that yearly samples in the MhB versus 6-yearly samples in the EAS 

should generate largely consistent long-term trend estimates, except for cases where a species’ biology 

would objectively favour one survey and analysis routine over the other (see Discussion).  

To assess trend consistency we calculated two parameters for each species: (i) a Pearson ‘correlation’ 790 

coefficient between the annual TRIM-based MhB indices and the annual EAS-indices extracted from 

model smoothers between 2005 and 2020, and (ii) the Median Symmetric Accuracy (Morley et al. 2018), 

which estimates the median percentage error between both annual indices 𝐼𝑗: 

Median Symmetric Accuracy =  100 ∗ exp (𝑚𝑒𝑑𝑖𝑎𝑛 (𝑎𝑏𝑠 (log (
𝐼𝑀ℎ𝐵𝑗

𝐼𝐸𝐴𝑆𝑗
̅̅ ̅̅ ̅̅ ̅̅ )))) − 1  

Note that the baseline year 2006 (both indices = 1) was excluded for both methods. 795 

 

3 Results 
Breeding bird trends were analysed for 61 out of 148 bird species (full detail in Appendix section 6, 7), 

but we focus the description of model assessment results on 14 exemplary species (tab. 1). Exemplified 

data for five species, script, and code are available from Github (https://github.com/m-rieger/EAS_bird) 800 

(Rieger et al. 2025) as well as a package with helper functions (https://github.com/m-rieger/EAS) (Rieger 

2024). 

 

3.1 Distribution characteristics: Species-specific optimisation 
Model selection via k-fold cross validation resulted in different best-performing model families and a 805 

species-specific selection of coefficients added to the binomial part of zero-inflated models (Table 1, 

species-specific overview in Appendix section 7). We illustrate below the selection of model structure 

on four species that strongly vary in overall mean abundance, abundance dispersion, and the proportion 

of sites with zero counts: European Green Woodpecker, Eurasian Blue Tit, Black Redstart, and Eurasian 

Jay. The four measures that inform abundance distribution (propZ, mean, SD, max) can – but do not 810 

necessarily need to – vary with each other, so that an over- or underestimation of zero counts often 

goes along with an under- or overestimation of the population mean, and an over- or underestimation 

of SD with an over- or underestimation of maximum abundance.  
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Table 2: Examples for model assessment and procedure to select species-specific models from six alternative model structures 
(for further species and models see Appendix section 3). Models differ in family and the presence of a zero-inflated model 
component (zinb and zip), the latter also in binomial model coefficients. Model assessment quantifies whether simulated data 
from the model is consistent with the observed response variable (abundance) with respect to its proportion of zeros (propZ), 835 
mean and maximum value, and standard deviation (SD). Bayesian p-values close to 0.5 indicate that the observed values are 
central within the posterior distribution of simulated raw datasets (8000 in total), indicating good model fit. Values close to 0 
and 1 indicate substantial under- or overestimation and thus poor model fit. Final model selection is based on ELPD differences 
by selecting the most parsimonious model (bold, top to bottom) out of all models with an ELPD difference ± 1.96*SE of ELPD 
difference including 0 (bold values). Abbreviations see Table. 1. 840 

species 
model 
family 

binomial 
model 

coefficient
s 

 

Bayesian p-value 

 

ELPD 

 propZ mean SD max  diff. se diff. 

European Green 

Woodpecker  

Picus viridis 

pois   0.01 0.49 0.79 0.65  -11.86 7.89 

nb   

0.01 0.42 0.62 0.68 

 -

204.94 47.02 

zip ~ 1 0.12 0.44 0.87 0.72  -6.65 6.77 

zinb ~ 1 0.13 0.46 0.91 0.80  -8.06 6.73 

zip ~ PCs 0.16 0.46 0.88 0.71  -3.66 6.92 

zinb ~ PCs 0.16 0.48 0.90 0.76  -18.57 7.91 

Eurasian Blue Tit 
Cyanistes 

caeruleus 

pois   

0 0.50 0.01 0.02 

 -

510.17 69.13 

nb   0 0.64 0.70 0.37  -11.2 5.77 

zip ~ 1 

0.10 0.34 0.01 0.02 

 -

498.39 66.54 

zinb ~ 1 0.07 0.58 0.69 0.37  -19.9 8.09 

zip ~ PCs 

0.11 0.39 0.01 0.02 

 -

509.75 71.86 

zinb ~ PCs 0.07 0.60 0.70 0.38  -6.2 5.83 

Black Redstart 

Phoenicurus 

ochruros 
 

pois   0 0.51 0.56 0.47  -23.37 10.14 

nb   

0 0.59 0.82 0.59 

 -

3654.6 780.81 

zip ~ 1 0 0.30 0.48 0.45  -8.51 9.42 

zinb ~ 1 0 0.42 0.76 0.56  -4.01 7.52 

zip ~ PCs 0 0.42 0.54 0.48  -12.87 9.19 

zinb ~ PCs 0 0.51 0.79 0.51  0 0 

Eurasian Jay pois   0 0.50 0.76 0.77  -37.68 11.47 
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Garullus 

glandarius 

nb   

0 0.69 0.89 0.70 

 -

117.44 22.38 

zip ~ 1 0 0.31 0.78 0.76  -27.5 8.37 

zinb ~ 1 0 0.34 0.83 0.81  -28.52 8.11 

zip ~ PCs 0.19 0.36 0.77 0.67  -23.57 10.83 

zinb ~ PCs 0.19 0.39 0.81 0.72  -15.08 10.25 

 1160 
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Figure 3: Reasoning for selecting appropriate model structures for four species. Upper panels: Model performance with respect 
to the proportion of zero counts (propZ), mean, and standard deviation (SD) of the response variable ‘abundance’. Symbols with 
error bars display the median ± 50% CrI (thick bars) and 95% CrI (thin bars) for 8000 posterior raw datasets simulated from the 
selected models as given in the legend. Optimal models have a close match between observed and model-predicted data. Lower 1195 
panels: Density distributions of observed abundances (blue, dashed line = mean) and Poisson distributions (grey) based on 
simulated responses derived from the respective Poisson model. Y-axes differ in scale. 
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European Green Woodpecker (Table 2, Fig. 3a) represents species with typically low territory numbers 

and many zero counts. While all models underestimated the number of zero counts, a Poisson model 

sufficiently captured other distribution parameters, resulting in a good predictive performance. 1210 

Eurasian Blue Tit (Table 2, Fig. 3b) is an abundant and widespread species that occurs in nearly all study 

sites. Here, abundance varied clearly more within sites and/or between year than reflected by a Poisson 

distribution. This issue of an underestimated SD was solved by using a negative binomial model family, 

even though leading to a slight overestimated SD. 

Black Redstart (Table 2, Fig. 3c) is widespread at typically medium densities, resulting in a larger fraction 1215 

of unoccupied sites than expected under a Poisson distribution. All models failed to capture this zero-

bias, but models with a zero-inflation component were closer to the observed value. Since zero-inflated 

models mostly resulted in comparable ELPDs, we used the most parsimonious model (zero-inflated 

Poisson with no additional binomial coefficient) for further analyses. 

Eurasian Jay (Table 2, Fig. 3d) is a widespread species with low territory numbers. Using zero-inflated 1220 

models with environmental PCs as binomial model coefficient sufficiently captured the observed 

number of zero counts, and the zero-inflated negative binomial model resulted in the best predictive 

performance. 

 

3.2 Spatial bias 1225 

For many species, (long-term) trends varied between landscapes, confirming the need to account for 

spatial bias. Especially long-term trends in metropolitan areas differed considerably from trends in other 

landscapes, usually showing steeper decreases (except for a steeper increase in Black Redstart, Fig. 4). 

Ignoring the overrepresentation of metropolitan sites (or any other unbalance in landscape samples) in 

the EAS dataset would therefore result in biased (long-term) trends for biogeographic regions and 1230 

overall. In case of Eurasian Magpie and Eurasian Nuthatch, trends would be more negative and for Black 

Redstart more positive. 

 

Moved down [4]: 3.2 Spatial bias¶

Deleted: Due to added weights, especially the early years in 1235 
the EAS-period had less influence on the model than more 
recent years with a more balanced sampling distribution (Fig. 
4, Fig. 2). Therefore, only recent years achieved a sufficient 
coverage (= mean weight) of almost 1, whereas the first five 
years did not even approach a coverage of 50% (Fig. 4). 1240 
Additionally, there were single high weights between 2006 
and 2012 (Fig. 4).¶
   

¶

Moved (insertion) [4]



 

16 
 

 1245 

Figure 4: Long-term trends (2008-2019) per landscape and biogeographic region (atl, kon, grey box) for four example species. 
The y-axis displays the absolute change in abundance across 12 years (and not per year). 

 

3.3 Observer effects 
We found a strikingly inhomogeneous distribution of observer effects across years, bearing substantial 1250 

potential for biased population trend estimates when unaccounted for. High total abundances occurred 

disproportionally often since 2015, and strikingly low abundances before 2006 (Fig. 5, left), irrespective 

of the chosen threshold value (Appendix section 4). Models ignoring observer effects generally 

produced more positive 12-year trend estimates, i.e., resulted in steeper increases or less steep declines 

than models with the covariate observer effect (Fig. 5, right). For Chaffinch, correcting for observer 1255 

effects even reversed the increase in abundance in the non-corrected model to a decrease in the 

corrected model (Fig. 5, right). OE-corrected trend estimates were generally more consistent with West 

German trend estimates from the MhB programme (Appendix section 4) where consecutive surveys at 

a given site are always from the same observer. 

 1260 
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Figure 5: Left: Proportion of surveyed EAS sites per observer effect level per year. Bar widths are proportional to the number of 
surveyed sites per year. Right: 12-year change in abundance (2008-2019) estimated from models with and without the covariate 1300 
observer effects (OE) for 14 species (example trend curves in Appendix section 4). The y-axis displays the absolute change in 
abundance across 12 years (and not per year). 

3.4 Consistency check 
Correlation coefficients between annual EAS indices and West German MhB indices revealed solid 

matches – i.e., with correlation coefficients and their 95% CI > 0 – for 34 out of 59 species (e.g., Nuthatch 1305 

and Chiffchaff in Fig. 6a, b). Only five species (e.g., Eurasian Jay in Fig. 6d) tended to have negatively 

correlated yearly indices, but correlation coefficients and 95% CI always included 0. Likewise, median 

symmetric accuracy (MSA) values between index estimates were reasonably low, with 43 (26) out of 59 

species deviating ≤ 20% (10%). High correlation not necessarily goes along with low MSA values, because 

the latter are sensitive to the index baseline year as illustrated by the Chiffchaff data (Fig. 6b). Here, 1310 

EAS- and MhB-analyses generate a nicely consistent trend pattern, but MSA was high because the 

exceptionally low MhB index in the baseline year 2006 distorts almost all other annual MhB-index values 

to exceed the EAS values, resulting in different magnitudes of change. In contrast, Great Tit and Eurasian 

Jay exemplify how poor correlation between annual index values can go along with low MSA values (Fig. 

6c, d), here because a rather stable vs. more fluctuating trend (Great Tit) that is identified by a weak 1315 

correlation shows only minor deviations in trends (low MSA) or largely overlapping but slightly diverging 

trends (Eurasian Jay, especially due to year 2005) fail to correlate. Correlation coefficients, MSA values, 

and trend displays for all 59 species are in Appendix section 5. 
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  1350 

Figure 6: Trend comparison of EAS monitoring programme and West German MhB for four species. Left (per panel): Median 
Symmetric Accuracy (MSA) based on annual comparisons of indices. Right (per panel): correlation and correlation coefficients 
(± 95% CI) of annual indices from 2005 to 2020. Both approaches exclude the baseline year 2006. 

 

4 Discussion  1355 

Count data are the raw unit for many population trend analyses, but their distribution poses several 

challenges during statistical analyses to account for overdispersion (42 out of 61 species in our current 

dataset) and/or zero inflation (45 out of 61 species). Moreover, many biodiversity monitoring 

programmes rest on ‘rolling’ sampling designs where each study site is visited only every so many years 

and observer identity frequently changes between years. We developed a workflow that takes these 1360 

challenges into account (Fig. 7) (Rieger 2024, Rieger et al. 2025). First, we derive a routine that allows 

informed decisions about the most appropriate combination of residual families (Poisson or negative 

binomial), model covariates (e.g., habitat characteristics), and zero-inflation formulations to reflect 

species-specific data distributions. Second, we develop a correction factor that buffers population trend 

estimates for variation in observer expertise. Third, we integrate landscape-specific trends that adjust 1365 

for between-year variation in the representation of habitat or landscape types within the yearly subset 

of sampled sites. Finally, by using generalized additive mixed models, we account for missing values due 

to rolling surveys. With these corrections in place, we find – within limits of the comparison – good 

consistency between the EAS trends and trends from the standard German common Bird monitoring 

scheme.  1370 
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Figure 7: Workflow to address several challenges that arise when analysing breeding bird trends 

 1385 

4.1 Distribution characteristics: Species specific optimisation 
We found substantial variation in model structures that best reflected the empirical abundance 

distributions and fraction of structural zeros across the 61 study species. Model formulations spanned 

from simple Poisson or negative binomial models (e.g., European Green Woodpecker, Eurasian Blue Tit; 

26.2 % of all modelled species) to models with elaborate zero inflation formulae to account for variation 1390 

in the fraction of structural zeros across landscapes, study sites, or environmental covariates (e.g., Great 

Spotted Woodpecker or Willow Tit; 73.8 % of all modelled species, tab. 1). This variation often tied in 

with breeding ecologies (cf. examples in section 3.1). Widespread and abundant species with 

intermediate territory counts in many study sites typically required rather simple count models but no 

correction for structural zeroes. In contrast, heterogeneously distributed species with a high fraction of 1395 

unoccupied sites or colonial breeders with often large territory numbers at the few occupied sites 

almost exclusively required the integration of zero inflation formulae, possibly connected with controls 

for variation in zero frequencies between regions, sites or environments. This diversity in distribution 

and abundance patterns is typical for most (bird) monitoring programmes independent of the chosen 
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modelling approach, with similar choices documented elsewhere (Etterson et al. 2009, Tirozzi et al. 

2021, 2022, Hernández-Navarro et al. 2023). 

 1410 

4.2 Spatial bias 
Modelling trends per landscape type is an effective tool to avoid distorted trends due to spatial bias. 

This was exemplified by species such as Black Redstart, Eurasian Magpie, and Eurasian Nuthatch, 

showing striking diverging trends between metropolitan areas and other landscapes (Fig. 2, 4), which 

would otherwise bias regional or overall trends if discrepancies between landscape shares 1415 

would be ignored. Similar distortions of trends or species distributions due to spatial bias often occur 

when using citizen science data since the sampled sites are selected by the observer and thus biased by 

its preferences (e.g., urban sites, sites of ecological interest (Johnston et al. 2020, Bowler et al. 2022)) 

Monitoring schemes should obviously aim to avoid the extreme disbalance in sampling that 

characterizes the early phase of the EAS monitoring, where each year focused on a subset of landscape 1420 

types. Such bias is difficult to correct a posteriori and bears the risk that compensating for missing values 

leads to a high level of uncertainty, masking possible trends. However, when the yearly sampling subsets 

are representative and include all present landscapes, as in the EAS programme since 2013 (Fig. 2), our 

approach can unfold its full capacity by accounting for minor bias in habitat coverage or the 

overrepresentation of metropolitan areas among study sites. 1425 

 

4.3 Observer effects  
Observer effects caused substantial shifts in abundance estimates compared to West German breeding 

bird trends. The unfavourable combination of negative observer effects in early years of the EAS 

programme and positive effects in recent introduced a systematic shift towards more positive trends 1430 

compared to MhB trends unless observer effects were considered. In severe cases, adding observer 

effects as covariate successfully buffered, as confirmed by comparison with West German breeding bird 

trends from the MhB programme of the DDA (Appendix section 4). 

Our approach to categorize observer effects from site-specific abundance data risks to mask drastic 

increases or declines in true bird abundance, e.g., after a substantial change in habitat quality or land-1435 

use. Such extreme shifts, however, will typically have diverging species-specific effects on abundance 

with winners and losers (Lemoine et al. 2007), and thus appears unlikely to massively affect total 

abundance across species. Moreover, steady increases or declines in total abundance with habitat 

quality will also change mean total abundance across survey years, so that the threshold beyond which 

survey years are flagged as ’extreme‘ (positive or negative) also increases or decreases accordingly. Our 1440 
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categorization fails, however, to identify cases of species-specific observer effects, such as insufficient 1460 

expertise in discriminating ‘difficult’ species (e.g., songs of Garden Warbler vs. Blackcap) since total 

abundance is not affected by this, or hearing impairment for high pitched vocalisations (e.g., Goldcrest 

and Firecrest). For EAS, such cases are marked as implausible via an internal validating process and 

excluded from analysis (see section 2.5 ‘Data exclusion’). 

Alternative indices may capture components of observer effort beyond our rather simplistic 1465 

representation of expertise. A widespread approach integrates survey duration or transect length as 

model covariates, or combines both measures into survey duration per unit length (Kéry et al. 2005). 

Kéry et al. (2005) found higher survey effort to increase the detection rates of many bird species, 

resulting in higher abundance estimates. Others integrated observer age as a (quadratic) model 

covariate to correct for age-related changes in survey completeness (Farmer et al. 2014). Citizen Science 1470 

data, e.g. those reported through online platforms such as ornitho (https://www.ornitho.de/) or ebird 

(https://ebird.org/), further allow estimating observer- and species-specific detection rates from species 

checklists, providing even more precise correction factors (Johnston et al. 2018). So far, the EAS 

monitoring programme did not provide data required to extract any of these covariates (i.e., effort, age, 

detection rates), but we highly recommend their assessment to correct for possible observer effects. 1475 

Some of the observer effects inherent to the EAS dataset likely arise from individual differences in the 

approach to delineate breeding territories. In future refinements of the program, this could be mitigated 

by using point observations per survey instead of territories as the basis for trend analyses, possibly in 

hierarchical models comparable to those used in other monitoring programmes, e.g., the Swiss Breeding 

Bird survey (Kéry et al. 2005, Strebel et al. 2020). Alternatively, territory delineation could be automated 1480 

from raw point observations, e.g., using the AutoTerri algorithm from TerriMap online developed by the 

Swiss Ornithological Institute (Wechsler 2018).  

 

4.4 Consistency check 
Population trend estimates for 59 species revealed a reasonably close match between the GAMM-based 1485 

trend smoothers applied on the EAS dataset and TRIM-based yearly point estimates applied in the West 

German common breeding bird census. Despite substantial differences in the chosen modelling 

approach and spatial coverage, most trend estimates had solid positive correlations and/or a good 

Median Symmetric Accuracy between annual indices (Fig. 6, Appendix section 5). In many cases, 

smoothed GAMM-trends for the EAS data captured even short-term population fluctuations at a 3–7-1490 

year scale, similar to the – by definition – more fine-grained yearly MhB indices (e.g., Common Blackbird, 

Eurasian Wren, Firecrest, Appendix section 5). Neutral or even negative correlations between yearly 

EAS- and MhB-indices occurred primarily in two species subsets. The first concerns colonial birds (e.g., 
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Common Swift, Eurasian Tree Sparrow, Common House Martin, Barn Swallow, Appendix section 5) 

where trend estimates are highly sensitive to the share of study sites with colonies present, the 

influence of few large colonies on the trend estimates, the precision of nest counts, and observer access 1505 

to a given colony (Südbeck et al. 2005, LANUV 2016a). The second subset concerns species with 

pronounced affinity to urban areas as derived from low or high coefficient estimates for the linear effect 

of PC3 (Appendix section 6), where affinity can be positive (e.g., Eurasian Magpie, Dunnock, Common 

House Martin, Common Kestrel and Black Redstart) or negative (e.g., Common Chaffinch, Eurasian Jay, 

Marsh Tit or Crested Tit). Given an exceptionally high share and density of urban areas in NRW compared 1510 

to other West German federal states, NRW trends are plausibly more positive than West German MhB 

trends for urban specialists (e.g., Eurasian Magpie, Dunnock, Common Kestrel, Black Redstart, Appendix 

section 5) and more negative for non-urban species (e.g. Common Chaffinch and Crested Tit, Appendix 

section 5). 

 1515 

5 Conclusion 
We developed a modelling routine for bird population trend analyses that can handle several common 

problems in monitoring data. Our approach accounts for unbalanced sampling of landscape types, 

optimises species-specific model structure with respect to zero-inflation and overdispersion, partially 

accounts for variation in observer expertise, and integrates GAM-based smoothing to bridge even 1520 

extensive gaps between replicated surveys in a ‘rolling’ sampling design. Our consistency check against 

trends from the Germany common breeding bird programme indicates that our routine produces 

reliable and robust trends for most species. The R script and package provided with this study can be 

adapted to other monitoring programmes with comparable survey designs and data structures. 

 1525 
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