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Abstract 
 

A spatially and temporally heterogeneous environment may lead to unexpected population dynamics. 

Knowledge still is needed on which of the local environment properties favour population 

maintenance at larger scale. For pathogen vectors, such as tsetse flies transmitting human and animal 

African trypanosomosis, such a knowledge is crucial to design relevant management strategies. We 

developed an original mechanistic spatio-temporal model of tsetse fly population dynamics, 

accounting for combined effects of spatial complexity, density-dependence, and temperature on the 

age-structured population, and parametrized with field and laboratory data. We confirmed the strong 

impact of temperature and adult mortality on tsetse populations. We showed that the coldest cells 

with the smallest variations in temperature acted as refuges when adult mortality was homogeneously 

increased, control being less effective in such refuges. In contrast, targeting the cells contributed the 

most to population management, i.e. those of highest carrying capacity and the most impacted by 

increased mortality, resulted in a decline in population size with a similar efficacy, but resulted in 

more dispersed individuals, control efficacy being no longer related to temperature. Population 

resurgence after control was slow, but could be very high locally in refuges, with highly contrasted 

situations after a heterogeneous control, refuges being located at the interface between controlled and 

uncontrolled zones. Our results highlighted the importance of baseline data collection to characterize 

the targeted ecosystem before any control measure is implemented.  
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1. Introduction 1 

Environmental spatial heterogeneity is an important driver of insect population dynamics (Tilman & 2 

Kareiva 1997; Vinatier et al. 2011), inducing insect movements from source to sink patches and 3 

possibly enhancing population persistence in unsuitable patches (Holt 1985; Pulliam 1988). In 4 

addition, environmental suitability varies over time both at local scale, due to microclimate variations 5 

as related to vegetation growth (Keppel et al. 2017), and at a larger scale, due to seasonal occurrence 6 

of unfavourable periods. Confounding the role of spatial and temporal environmental heterogeneity 7 

can potentially result in erroneous predictions of ecological processes (Clark 2005). However, 8 

relating such a complex time- and space-varying habitat with population dynamics still is a challenge 9 

in ecology (Sutherland et al. 2013; Crone 2016; Griffith et al. 2016). Therefore, examples of the 10 

complex interplay between spatio-temporal environmental variability and population dynamics can 11 

illustrate theoretical concepts and assess which patch properties (co)contribute to define sources and 12 

sinks in heterogeneous environments.  13 

This is particularly true when it comes to managing vector-borne diseases whose transmission may 14 

be affected by landscape configuration as interactions between hosts and vectors largely depend on 15 

their habitat requirements (Hartemink et al. 2015). Vector persistence can be favoured by spatial 16 

heterogeneity thanks to the rescue effect, especially if control is not area-wide, i.e. targeting an entire 17 

insect pest population within a circumscribed area (Reichard 2002; Hendrichs et al. 2007). In addition, 18 

these vector populations and associated pathogens are subjected to seasonal variations of habitat 19 

suitability (Charron et al. 2013). Spatial and temporal variations in environmental suitability could 20 

induce unexpected changes in the dynamics of the vector population. Despite this, insect pest 21 

management strategies are often designed and implemented without considering local environmental 22 

specificities, potentially reducing the chances of success. 23 

Tsetse flies (Glossina spp.) are vectors of African trypanosomes, widely recognized as a major 24 

pathological constraint for productive livestock and for sustainable agricultural development in sub-25 

Saharan Africa (Alsan 2015). Trypanosoma spp. parasites cause both Human African 26 
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Trypanosomosis (HAT) or sleeping sickness in humans and African Animal Trypanosomosis (AAT) 27 

or nagana in livestock. Tsetse flies are widely distributed in Africa and occur in 38 countries infesting 28 

around 10 million km2 (Vreysen et al. 2013). Over 60 million people are continuously exposed to the 29 

risk of becoming infected with HAT, a neurological, potentially lethal disease, mainly in remote rural 30 

areas where access to health services is very limited. In addition, farmers in tsetse-infested areas 31 

suffer up to 20-40% losses in livestock productivity which amounts to an estimated annual loss of 32 

$4,500 million (Budd 1999). Although there are 31 species and subspecies of tsetse flies described, 33 

only a third is of economic (agricultural and veterinary) and human health importance (Solano et al. 34 

2010a). Efforts to manage the vector and the disease in Africa have been on-going for decades but 35 

have largely failed to create sustainable tsetse-free areas, and it is estimated that the tsetse distribution 36 

has only been reduced with less than 2% (Allsopp 2001; Bouyer et al. 2013a). Although the ecology 37 

and biology of tsetse flies are rather complex, their very low rate of reproduction (one offspring every 38 

10 days) make them an ideal target for eradication strategies, but this would require a better 39 

understanding of their spatio-temporal dynamics (Peck & Bouyer 2012). 40 

Mathematical models have proved to be relevant tools in insect ecology, to better understand the 41 

dynamics of insect populations (Hasting 2012) and to predict these dynamics under changing 42 

conditions (Evans et al. 2012). Process-based models incorporate at minimal costs sparse and 43 

heterogeneous knowledge from various areas, species, and fields of expertise. Simulations are 44 

complementary to field observations and experiments (Restif et al. 2012), enabling the fast acquisition 45 

of quantitative predictions which can in turn emphasize the need for further biological investigations. 46 

Moreover, the range of behaviours of complex systems can be scanned using mechanistic models, 47 

and scenarios can be tested (Cailly et al. 2012). Provided hypotheses and limits are clearly stated 48 

(Getz et al. 2018), models can guide decision-making (Sutherland & Freckleton 2012). 49 

With respect to tsetse biology and population dynamics, entomologists have developed a number of 50 

models (Rogers 1988, 1990; and more recently: Vale & Torr 2005; Lin et al. 2015), and encouraged 51 

their use when making management decisions (Hargrove 2003; Childs 2011; Meyer et al. 2018). 52 
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However, most models have failed to predict the persistence of target populations leading to 53 

inaccurate guidelines for control programs (Peck & Bouyer 2012; Bouyer et al. 2013b). In addition, 54 

most of these programs were not implemented following area-wide principles (Klassen 2005; 55 

Hendrichs et al. 2007) and their failure could be due to population resurgence in non-eradicated 56 

patches or re-invasion of the targeted zone by neighbouring populations (Meyer et al. 2016; Lord et 57 

al. 2017). With respect to tsetse flies, it is still unclear what defines relevant patch properties and how 58 

they define sources and sinks in a hostile environment created by eradication efforts. Spatial 59 

complexity of the environment has been shown to considerably influence model predictions (Peck 60 

2012; Barclay & Vreysen 2013; Lord et al. 2017), and population dynamics will be different amongst 61 

local patches of variable suitability, possibly affecting population dynamics at the larger 62 

metapopulation scale.  63 

Our objective was to assess the effect of spatial and temporal heterogeneity of the environment on 64 

the dynamics of tsetse fly populations at the metapopulation scale, as well as the effects of spatially 65 

targeted treatments on adult fly mortality and hence, on fly population densities. We have developed 66 

an original mechanistic spatio-temporal model of tsetse fly population dynamics that incorporates 67 

environmental heterogeneity through a data-driven approach. The model was applied to Glossina 68 

palpalis gambiensis population of the Niayes (Senegal), a region with an ongoing eradication project 69 

(Dicko et al. 2014; Vreyssen et al. in press). In this area, less than 4% of the habitat was considered 70 

favourable for G. p. gambiensis (Bouyer et al. 2010), and the tsetse populations were highly structured 71 

across the metapopulation (Solano et al. 2010b). This knowledge was incorporated in the model, 72 

accounting for combined effects of spatial complexity, density-dependence, and temperature on the 73 

age-structured population. 74 

2. Material and methods 75 

Key knowledge on tsetse biology 76 
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Meteorological variables influence the abundance and spatio-temporal distribution of arthropod 77 

disease vectors (Hay et al. 1996). Effect magnitude depends on species (Rogers & Randolph 1991; 78 

Rogers et al. 1996; Hargrove 2001), but for tsetse flies, average temperature is the most influential 79 

meteorological variable on life cycle (Hargrove 2004). However, its influence compared to, or 80 

combined with, demographic processes is poorly understood. 81 

Tsetse flies reproduce by adenotrophic viviparity, i.e. the egg hatches in the female’s uterus and the 82 

larva is nourished by the milk glands until larviposition (Fig. 1A). Between a temperature range of 83 

20-30°C, decreasing temperatures will increase the period between larvipositions (Harley 1968). 84 

Similarly, colder temperatures will prolong the pupal period (Glasgow 1963; Phelps & Burrows 85 

1969a,b). The newly emerged fly (called thereafter nulliparous female up to her first larviposition) 86 

takes its first blood meal to fully develop its flight muscles and reproduce. Depending on species and 87 

temperature, maturation of the first oocyte in the female fly takes about 18 days, making the period 88 

between emergence and first larviposition longer than between subsequent larviposition events (10 89 

days, Hargrove 2004). 90 

Extreme cold (below 20°c) or warm (upon 30°c) temperatures increase fly mortality (Hargrove 2001). 91 

Mortality, related to predation and feeding success, is density-dependent (Rogers & Randolph 1984) 92 

and age-dependent (Hargrove 1990), with remarkably high losses in nulliparous flies partly due to 93 

starvation risk (Phelps & Clarke 1974; Hargrove 2004). Learning capability of older flies makes them 94 

return on their first host, which increases their hunting efficiency with age (Bouyer et al. 2007). 95 

Tsetse flies are classified into three groups based on their behaviour, habitat preference and 96 

distributions, i.e. forest (subgenus Fusca), savannah (subgenus Morsitans), and riverine flies 97 

(subgenus Palpalis). Most of previous models concerned the savannah species Glossina pallidipes 98 

and G. morsitans. We focused on the riverine species G. p. gambiensis that thrives in forest galleries 99 

and riparian thickets (Bouyer et al. 2005). The habitat of this species stretches along rivers and 100 

therefore, its dispersal is mostly in one dimension. In some areas, like the Niayes of Senegal (Fig. 1B), 101 

climate changes have resulted in rivers and associated vegetation disappearing, and G. p. gambiensis 102 
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consequently adapted to patchy vegetation mainly associated with human irrigation activities (Bouyer 103 

et al. 2010) and disperse in two dimensions like tsetse flies of the fusca and morsitans groups. 104 

Furthermore, isolated populations in fragmented habitats are ideal targets for eradication strategies 105 

within area-wide integrated pest management approaches (Hendrichs et al. 2007; Bouyer et al. 2015). 106 

Hence, our case study is of broad relevance for better understanding and predicting tsetse fly spatio-107 

temporal population dynamics in rapidly changing ecosystems that are gradually becoming the norm 108 

(Guerrini et al. 2008). 109 

Data on tsetse biology 110 

The effect of temperature on mortality and fecundity of G. p. gambiensis was assessed under 111 

experimental conditions (Pagabeleguem et al. 2016). We used data of the first larviposition period 112 

(time between emergence and first larviposition day) and of subsequent inter-larval periods (time 113 

between reproductive cycles). The colony was maintained at 24°C and only temperatures above 24°C 114 

were assessed in terms of the maximum critical temperature for the flies. Therefore, most data used 115 

to estimate female mortality were obtained at 24°C and none at lower temperatures. In addition, the 116 

effect of temperature on the length of the pupal period was measured under experimental conditions 117 

at the Centre International de Recherche-Développement sur l’Elevage en zones Subhumides 118 

(CIRDES) in Bobo-Dioulasso, Burkina Faso, in 2009. One hundred and twenty 20-day old pupae 119 

were held in climate controlled rooms until emergence. The experiment was replicated three times 120 

for each temperature tested (Table S1). 121 

Dispersal of G. p. gambiensis was assessed from release-recapture data of marked sterile males from 122 

October 2010 to December 2012 (Pagabeleguem 2012). Mass-reared male flies from the CIRDES 123 

colony were shipped as irradiated and chilled pupae to Senegal (Pagabeleguem et al. 2015) and after 124 

emergence, released twice a month and monitored in four areas: Parc de Hann in Dakar, Diacksaw 125 

Peul, Pout, and Kayar (Fig. 1B). Two release points were selected per location (in suitable vs. 126 

unsuitable habitats) and released flies were trapped using Vavoua traps (Laveissière & Grébaut 1990) 127 

that were deployed at intervals of 100-300 m up to 2 kms from the release points. Traps were 128 
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deployed before 9 am and collected after 4 pm 3 days later. The monitoring of a release stopped when 129 

less than 2 marked males were recaptured. 130 

In another study, natural abortion rates were monitored in the Parc de Hann, Diacksaw Peul, 131 

Sebikotane, and Pout (Fig. 1B). In each site, 10 traps were deployed for three days every month from 132 

March 2008 to February 2009, and then every three months until September 2010 (Hann, Diacksaw) 133 

or December 2011 (Pout, Sebikotane). Flies were collected at least once a day and female flies were 134 

dissected to assess their ovarian age. This female dataset was used to calculate the population age 135 

structure, to be compared to simulation results for partial validation of the model. 136 

 

Figure 1. Local and general tsetse fly population dynamics applied to the Niayes in Senegal. (A) life 

cycle of tsetse flies as it occurs within each cell (drawn by D. Cuisance). (B) Map of Senegal with 
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locations where field data were collected. (C) Simulated area, highlighting the spatial heterogeneity 

resulting in different local carrying capacities kc. 

Environmental data 137 

The spatio-temporal heterogeneity of the environment was realistically represented using an original 138 

data-driven approach. The environmental carrying capacity and the local daily temperatures were 139 

incorporated in the model. 140 

The carrying capacity was defined as the maximum sustainable number of individuals for a given 141 

area and was estimated as (Eq. 1, Fig. 1C): 142 

𝑘 =
𝑆𝐼×𝐴𝐷𝑇

𝜎
 (Eq. 1) 143 

where SI is the suitability index as estimated with a species distribution model (Dicko et al. 2014) 144 

that was based on maximum entropy (Maxent) (Supporting Information 2.1), σ is the trap efficiency, 145 

i.e. the probability that a trap catches a fly within 1 km² within a day (Barclay and Hargrove 2005), 146 

and ADT is the apparent density of the fly population (no. flies per trap per day, Dicko et al. 2015). 147 

All available trap catch data collected in the Niayes before the start of the eradication campaign (2007-148 

2010) were used to estimate local carrying capacities (Supporting Information 2.1). 149 

Air temperatures measured in weather stations are not those experienced by flies in resting places. 150 

Tsetse flies prefer micro-environments that are normally 2-6°C cooler than the ambient temperature 151 

(Hargrove & Coates 1990). In addition, temperature generally increases from the centre of a gallery 152 

forest towards its edges (Bouyer 2006). Therefore, the micro-climate was modelled by approximating 153 

local temperatures truly perceived by the tsetse flies. High resolution macro-climate data were freely 154 

available for 2011 in the studied area and were corrected using temperature data recorded in selected 155 

suitable habitat patches (Supporting Information 2.2). Approximated temperatures were used as 156 

model inputs in a zone known as suitable for tsetse to check if the simulated population persisted as 157 

expected. 158 

A mechanistic spatio-temporal model of tsetse fly population dynamics 159 
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A mechanistic and deterministic compartmental model was developed to predict the spatio-temporal 160 

dynamics of G. p. gambiensis population accounting for environmental heterogeneity and density-161 

dependence. Individuals were categorized into pupae (P), without differentiating males and females, 162 

nulliparous females (N), and parous females with four ovarian age categories (F1, F2, F3, F4+, Fig. S1, 163 

Hargrove & Ackley 2015). Adult males (M) were not considered limiting for breeding. They could 164 

mate from the age of day 6 post-emergence, regardless of temperature, after which they were only 165 

subject to mortality (Solano et al. 2010a), and they played a role in density-dependent processes. The 166 

environment was modelled using a grid (cell resolution: 250m x 250m; study area: 30 x 30 cells; 167 

Fig. 1C). The model was implemented in Python as a discrete-time model with a one-day time step 168 

(Supporting Information 7). Parameter values are provided in Table S2. 169 

 170 

Within-cell dynamics - The population size of life stage S at time t in cell c decreased with mortality, 171 

following a negative exponential model of instantaneous rate 𝜇𝑆,𝑡,𝑐 (Eq. 2, Table S2). Considering the 172 

lack of data on pupa mortality, we used a constant rate (Eq. 3, Table S2, Childs 2011). For adults, the 173 

log of mortality rates increased linearly with temperature (𝜃𝑡,𝑐 at time t in cell c) above 24°C 174 

(Hargrove 2004). Below this threshold, and for the range of temperatures observed in the field, the 175 

literature and the lack of data suggested a constant mortality rate (Eq. 4, Table S2). Age-dependence 176 

was featured by setting nulliparous mortality to twice that of parous females (Alderton et al. 2016, 177 

Eq. 5). Density-dependence occurred when the adult population exceeded the cell carrying capacity 178 

(Eq. 6-7, Table S2, Hargrove 2004). 179 

𝑆𝑡+𝛥𝑡,𝑐 = 𝑆𝑡,𝑐𝑒𝑥𝑝(−𝜇𝑆,𝑡,𝑐𝛥𝑡) (Eq. 2) 180 

with stage S ∈ {P, N, Fx, M} and ovarian age x ∈ {1, 2, 3, 4+} (note that µF,t,c applied irrespective of 181 

ovarian age), ∆t = 1, and: 182 

𝜇𝑃 = 𝑚𝑃 (Eq. 3) 183 

𝜇𝑋,𝑡,𝑐 = {
µ𝑋,𝑡,𝑐(𝜃𝑡,𝑐 = 24°𝐶), 𝑖𝑓𝜃𝑡,𝑐 ≤ 24°𝐶

µ𝑋,𝑡,𝑐(𝜃𝑡,𝑐), 𝑖𝑓𝜃𝑡,𝑐 > 24°𝐶
, X ∈ {N, F, M} (Eq. 4) 184 
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µ𝑁,𝑡,𝑐 = 2µ𝐹,𝑡,𝑐 (Eq. 5) 185 

µ𝑋,𝑡,𝑐 = 𝛽𝑡,𝑐𝑒𝑥𝑝(𝑚1,𝑋𝜃𝑡,𝑐 + 𝑚2,𝑋), X ∈ {F, M} (Eq. 6) 186 

𝛽𝑡,𝑐 = {
1, 𝑖𝑓

𝐴𝑡,𝑐

𝑘𝑐
≤ 1

𝐴𝑡,𝑐

𝑘𝑐
, 𝑖𝑓

𝐴𝑡,𝑐

𝑘𝑐
> 1

, with 𝐴𝑡,𝑐 = 𝑁𝑡,𝑐 + ∑ 𝐹𝑖,𝑡,𝑐
4
𝑖=1 + 𝑀𝑡,𝑐 (Eq. 7) 187 

In addition, individuals evolved within and between stages as a function of temperature. Pupa 188 

development function 𝛿𝑃,𝑡,𝑐 was fitted to the data. For nulliparous and parous females, consistency of 189 

experimental data on the target species was checked against published equations (Hargrove 2004, 190 

Eq. 8, Table S2, Fig. S4): 191 

𝛿𝑋,𝑡,𝑐 = 𝑑1,𝑋(𝜃𝑡,𝑐 − 24) + 𝑑2,𝑋, X ∈ {N, F} (Eq. 8) 192 

Each stage was discretized into 𝑛𝑆 states, 𝑛𝑆 being the longest duration in stage S obtained with its 193 

development rate 𝛿𝑆 calculated at the minimum temperature of the year 𝑚𝑖𝑛(𝜃𝑡,𝑐) (Fig. S1). For 194 

higher temperatures, individuals made a leap forward in the development vector, the interval being 195 

determined by the integer part 𝑙 of ∆ (Eq. 9, Fig. S1). 196 

∆𝑆,𝑡,𝑐= 𝛿𝑆,𝑡,𝑐(𝜃𝑡,𝑐)𝑛𝑆 (Eq. 9) 197 

To avoid discretization artefacts, individuals were proportionally divided into two successive states 198 

according to the decimal part q of ∆ (Fig. S1). Individuals who reached state 𝑛𝑆 (i.e. stage S is 199 

completed) evolved to the next stage. A pupa was produced at the end of both nulliparous and parous 200 

female stages. After the fourth ovarian age, parous females looped back to the start of F4+ (i.e. stage 201 

F4+ represented females who have produced at least 4 pupae). 202 

 203 

Between-cell dynamics - An original dispersal pattern was designed favouring suitable over hostile 204 

habitats to be conform with species behaviour. The proportion 𝑝𝑡,𝑐 of flies leaving cell 𝑐 at time t was 205 

controlled by a sigmoidal density-dependent dispersal rate (Lloyd-Smith, 2010), adapted for 206 

individuals competing to access resources (Rogers & Randolph 1984) (Eq. 10, Table S2):  207 

𝑝𝑡,𝑐 = [1 + 𝑒𝑥𝑝 (−𝑔 (
𝐴𝑡,𝑐

𝑘𝑐
− 1))]

−1

 (Eq. 10) 208 
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where kc denotes the carrying capacity in cell c, At,c denotes the number of adults in cell c at time t, 209 

and g denotes a shape parameter set to 10 meaning that 𝑝𝑡,𝑐 {

≈ 0, 𝑖𝑓𝐴𝑡,𝑐 < 0.5𝑘𝑐

≈ 1, 𝑖𝑓𝐴𝑡,𝑐 > 1.5𝑘𝑐

0.5, 𝑖𝑓𝐴𝑡,𝑐 = 𝑘𝑐

 (Fig. S2).  210 

The spatial distribution of dispersing flies from cell c to neighbouring cells 𝑃𝑟𝑜𝑏𝑐→𝑖∈{𝑣} was 211 

determined by the relative attractiveness of neighbouring cells 𝑎𝑡,𝑖∈{𝑣} (Eq. 11-12). This attractiveness 212 

was designed to favour the emptiest cells (𝐴𝑡,𝑖 ≪ 𝑘𝑖) and cells of greatest ki if equal to At,i. An 213 

extended Moore neighbourhood of range 𝑟 was used: flies dispersed from a cell to its (2𝑟 + 1)² 214 

neighbours (v), which included the cell itself and diagonals. Parameter 𝑟 is the maximum distance 215 

reached daily, in number of cells, rather than the effective distance covered per fly per day, as the 216 

trajectory is not linear. It was calibrated using data by taking into account the average 
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑚)

𝑡𝑖𝑚𝑒(𝑑𝑎𝑦𝑠)
 217 

between release and capture of marked flies (Fig. S23). 218 

𝑎𝑡,𝑖∈{𝑣} =
(1−𝑒𝑥𝑝(

−𝑘𝑖
𝐴𝑡,𝑖

))𝑘𝑖

𝑚𝑎𝑥(𝑘𝑖∈{𝑣})
 (Eq. 11) 219 

𝑃𝑟𝑜𝑏𝑐→𝑖∈{𝑣} =
𝑎𝑖

∑ 𝑎𝑗𝑗∈𝑣
 (Eq. 12) 220 

Model setting and sensitivity analysis 221 

A 3-year burn-in period was simulated starting with N0,c=M0,c=0.5kc (A0,c=kc), using reference 222 

parameter values (Table S2), and these provided the initial conditions for the pre-control scenario and 223 

for the model sensitivity analysis, where population dynamics was simulated over three more years. 224 

Carrying capacities were spatially heterogeneous (Fig. 1C) but assumed constant over time. Daily 225 

perceived temperatures were estimated per cell for one year and these were repeated during the 226 

following years. 227 

The individual and joint effects of input variations on aggregated output variance (Table S3) were 228 

evaluated through a variance-based global sensitivity analysis using the Fourier Amplitude 229 

Sensitivity Testing (FAST) method (Saltelli et al. 2008). Population size and age structure were 230 

outputs of interest. As traps do not catch nulliparous and females of ovarian age 4 and more as 231 
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efficiently as females of intermediate ovarian ages (Sanders 1962), predicted age structure was 232 

compared with field data for females of ovarian age 1, 2, and 3: 
𝐹𝑖=1,2,3

𝐹1+𝐹2+𝐹3
. Mortality and development 233 

functions of each life stage were varied using multiplying factors (i.e. function formulas were kept). 234 

The reference values of multiplying factors were all equal to one. A common factor was applied to 235 

all adult mortalities (N, M, F1:4+) to maintain a similar order of values. A multiplying factor was also 236 

applied to carrying capacities to regulate the magnitude of density-dependence. As the dispersal rate 237 

should remain in the range [0-1], the shape parameter g was varied (Fig. S2). Parameters and 238 

multiplying factors were varied by ± 5% of their reference value. The same range, when applied to 239 

temperature, changed the annual mean by more than 2°C, which was far greater than what was 240 

observed. Therefore, a variation of ± 0.3°C was used, corresponding to the average deviation from 241 

the daily mean in the area (Fig. S6). First order and interaction sensitivity indices were calculated per 242 

parameter (Saltelli et al. 2008). 243 

Evaluation of control strategies 244 

 A spatially targeted control strategy was mimicked by increasing female mortality during one year, 245 

starting from the same initial conditions as in the pre-control scenario. For successively reduced 246 

proportions of controlled cells (starting with 100% of the cells being controlled), we assessed the 247 

minimal mortality increase needed to decrease the female population size down to 2 or 5% of its 248 

initial size over the whole grid after one year. We stopped reducing the proportion of controlled cells 249 

once it became impossible to achieve the targeted population reduction whatever the mortality rate. 250 

We defined a score to optimize the selection of controlled cells. The best location of controlled cells 251 

was defined by assessing the contribution of each cell j to the total female population over the grid (n 252 

cells) at the end of the control (t = 1 year) if cell j was not controlled (Eq. 13): 253 

𝑃𝑗 = ∑ 𝑇𝑡=1 𝑦𝑟,𝑖
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑖=𝑗−1

𝑖=1 + ∑ 𝑇𝑡=1 𝑦𝑟,𝑖
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑖=𝑛

𝑖=𝑗+1 + 𝑇𝑡=1 𝑦𝑟,𝑗
𝑛𝑜 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 (Eq. 13)  254 

where the total number of females in cell c was: 𝑇𝑡=1 𝑦𝑟,𝑐 = 𝑁𝑡=1 𝑦𝑟,𝑐 + 𝐹1:4+,𝑡=1 𝑦𝑟,𝑐. 255 
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Cells with the highest Pj were given priority control. As a result, optimized strategies were defined 256 

by the minimal proportion of cells to be controlled, their optimal location, and the control effort 257 

required.  258 

The control efficacy was assessed with respect to the female population size at both grid and cell 259 

scales. We computed for each cell c after one year of control: (1) the proportion of females in the area 260 

which were located in that cell, 
𝑇𝑡=1 𝑦𝑟,𝑐

∑ 𝑇𝑡=1 𝑦𝑟,𝑖𝑖
, which indicated cells with the highest proportion of the 261 

female population; (2) the abundance of females in cell c in the control vs. the pre-control scenarios 262 

after one year 
(𝑇𝑡=1 𝑦𝑟,𝑐)

𝑐𝑜𝑛𝑡𝑟𝑜𝑙

(𝑇𝑡=1 𝑦𝑟,𝑐)
𝑝𝑟𝑒−𝑐𝑜𝑛𝑡𝑟𝑜𝑙

, which quantified the local impact of increased mortality.  263 

Then, population resurgence was simulated for one more year after the end of the control period, 264 

taking into consideration the reference value of female mortality. To identify the cells that contributed 265 

most to the recovery of the population, the local growth rate was calculated per cell: 
𝑇𝑡=2 𝑦𝑟,𝑐−𝑇𝑡=1 𝑦𝑟,𝑐

𝑇𝑡=1 𝑦𝑟,𝑐
, 266 

𝑇𝑡=2 𝑦𝑟,𝑐 being the female abundance in cell c one year after the end of the control period (t = 2 years). 267 

We analysed the relationships between the local environmental variables (carrying capacity, mean 268 

temperature, temperature variance in each cell) and these three cell indicators, reflecting different 269 

properties of the population spatial structure. 270 

3. Results 271 

New insights from biological data 272 

New equations were calibrated for temperature-dependent processes of the life cycle of G. p. 273 

gambiensis combining published and new observed data (Fig. S4). The log-linear function for adult 274 

mortality (Table S2) differed from published ones of other species (Fig. S4a). Up to 24°C, female 275 

mortality rate was 0.013 day-1, and mortality increased exponentially with increasing temperatures to 276 

reach 0.023 day-1 at 32°C, which corresponded to a lifespan of 43-77 days. Male mortality was higher 277 

than female mortality (Table S2, Fig. S5). 278 



14 

 

Pupa emergence clearly followed a logistic function when fitted to the observed data, providing a 279 

different pattern as compared to Hargrove’s equation (2004) (Fig S4b, Eq. 14, Table S2). 280 

𝛿𝑃,𝑡,𝑐 = (𝑑1,𝑃 +
𝑑2,𝑃−𝑑1,𝑃

1+𝑒𝑥𝑝(
𝑑3,𝑃−𝜃𝑡,𝑐

𝑑4,𝑃
)
)

−1

 (Eq. 14) 281 

Mark-release-recapture data indicated a dispersal range r of one cell, the daily average distance 282 

covered proved to be less than 250 m (Fig. S3). 283 

Finally, the spatial heterogeneity of carrying capacities was high, the local density ranging from 112 284 

to 104,768 flies per km² (median: 2,320). On the contrary, spatial variations of local temperatures 285 

were small, the standard deviation over the simulated landscape never exceeding 0.67°C at any time 286 

step. 287 

Pre-control scenario 288 

The pre-control scenario was closely in line with field observations made before the start of the 289 

Niayes’ control program (Fig. 2). Population dynamics were seasonally influenced (Fig. 2B) and 290 

driven by temperature as expected (Fig. 2A). The female fly population dynamics (T+F1:4+) was 291 

similar across years (Fig. 2B) with a growth rate of -0.75% during the last simulation year. On average 292 

40% of the parous young females (1, 2 or 3 ovulations) had deposited one larva, whereas 33 and 26% 293 

of the females had deposited 2 and 3 larvae, respectively (Fig. 2C-D). The spatial variability of age 294 

structure (not shown) was 3 to 4 times lower than its temporal variability. 295 
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Figure 2. Model predictions for the pre-control scenario. A: average daily temperatures over three 

years (in °C); B: total number of individuals per stage (P: pupae, N: nulliparous females, F: parous 

females) in the grid (56.25 km2) over three years of simulation; C: female age structure (
𝐹𝑖=1,2,3

𝐹1+𝐹2+𝐹3
) 

during the last year of simulation; D: observed female age structure (captures and dissection occurred 

from 2008 to 2011 in the Niayes; results were averaged by month, all years and locations aggregated; 

grey filled areas are confidence intervals around the mean: 
±1.96×𝑠𝑑𝑚𝑜𝑛𝑡ℎ

√𝑛𝑚𝑜𝑛𝑡ℎ
, with sdmonth the standard 

deviation and nmonth the number of measures, i.e. the number of days in the month for simulations, the 

number of captures for data). 

Temperature and mortality as key factors driving population size 296 

Model predictions other than age structure (Fig. S7) were highly sensitive to variations in temperature 297 

() and adult mortality (µ{N,F,M}), and moderately to variations in nulliparous (N) and parous (F) 298 

female larval development duration (Table S4), while parameters related to pupae (µP, P), carrying 299 

capacities (k), and dispersal (g) did not contribute to output variance (Fig. 3, Fig. S8). A 5% variation 300 

in temperature resulted in demographic explosion or extinction, substantially outweighing the effect 301 

of a similar variation in carrying capacity (Fig. 3A), reinforcing the need for considering reasonable 302 

temperature variations. Temperature and adult mortality explained 78% of population size variance 303 

(Fig. 3B). Development of nulliparous and parous females added up to another 14.5% of explained 304 

variance. Unexpectedly, interactions between parameters were not important. 305 
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Figure 3. Sensitivity analysis of the model. A: effect on population size (nulliparous and parous 

females) of temperature variations (+5% from reference: dash dot, -5%: dashed) compared to ±5% 

variations in carrying capacities (grey filling); B: results of the FAST sensitivity analysis with 

contribution to population size variance of model parameters (: temperature, µ{N,F,M}: adult mortality, 

X: time to development of stage X (with X in {P: pupae, N: nulliparous females, F: adult females}), 

k: carrying capacity, g: the shape parameter in the diffusion process; sensitivity indices for principal 

effect in grey and for first order interactions in black). All parameters were varied by ±5% from their 

reference value except temperature varying by ±0.3°C. 

Efficacy of control measures driven by environmental heterogeneity 306 

Increasing adult mortality to levels comparable to those obtained during control programs (Hargrove 307 

2003) induced a sharp decline in the tsetse population after one year of control (Fig. 4). To obtain a 308 

reduction in population size in the simulated area to 2% of its original size without control while 309 

applying a homogeneous increase in mortality over space (orange point labelled “2” in Fig. 4A), 310 

female life expectancy had to be reduced from 60 (no control) to 35 days. The same cells contributed 311 

the most to the total population size irrespective whether control was implemented (Fig. 4B2) or not 312 

(Fig. 4B1), and this was closely correlated to local carrying capacity. Upon reaching a low average 313 

population density over the area (58 flies per km²), new patterns emerged related to cell-specific 314 

properties. Surprisingly, a homogeneous increase in adult mortality had a heterogeneous impact at 315 

the cell level: the decrease in local relative population density (i.e. the local control efficacy, Fig. 4C2) 316 

was not correlated with the carrying capacity (Fig. S9A), but was correlated with local temperature, 317 

i.e. the coldest cells that experienced the smallest variations in temperature showed the lowest impact 318 

(Fig. S9B-D). This pattern was obvious despite the small variations in mean temperature (23.7°C to 319 

24.3°C) and standard deviation (1.98°C to 2.37°C). These two temperature statistics were not 320 

correlated (Fig. S9C-D). 321 
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Figure 4. Impact of increasing adult mortality on tsetse fly population size. A: relative increase in 

mortality needed to achieve a reduction of the female population size to 2% (circle) or 5% (triangle) 

of its initial size after one year of control, when a fraction of cells was targeted. B: contribution of 

cells to the total population size (1: no control, 2: homogeneous control, 3: heterogeneous control 

targeting 46% of the cells). C: local control efficacy (2-3: same as in B), the darkest being the most 

effective (in cyan, cells without control). 

In contrast, targeting cells contributing the most to population management, i.e. those with the 322 

greatest carrying capacity and that were most impacted by an increase in mortality, resulted in a 323 

similar decrease in population size as a homogeneous control, while requiring a reasonable increase 324 

in mortality. However, it resulted in a much more fragmented population and control efficacy was no 325 

longer related with temperature. Controlling 70% of the area was as efficient as controlling the whole 326 

area. Reducing further the proportion of controlled cells required a sharp increase in mortality to 327 

obtain a similar efficacy. To obtain a reduction in population size in the simulated area to 2% of its 328 
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original size without control while applying a heterogeneous increase in mortality (pink point labelled 329 

“3” in Fig. 4A), female life expectancy had to be reduced from 60 (no control) to 25 days in 46% of 330 

the simulated area (i.e. the average life expectancy over the area was 44 days, slightly higher than in 331 

the homogeneous case). If less than 46% of the surface was controlled, the population could not be 332 

decreased below 2% of its initial size. Cells contributing the most to the total population size were 333 

scattered in the area (Fig. 4B3). The local relative population decrease (Fig. 4C3) here was slightly 334 

associated with carrying capacity (Fig. S10A) and the control was more effective in cells with 335 

intermediate carrying capacity than in cells with lower ones. However, no effect of temperature was 336 

observed (Fig. S10B-C). Similar patterns were observed if the population was to be reduced to 5% of 337 

its initial size (not shown). 338 

Population resurgence after control 339 

Population resurgence one year after the control period was slow irrespective whether the control was 340 

homogeneous or heterogeneous, but resurgence could be high locally in refuges.  341 

After a homogeneous control, a yearly rate of population growth of 23% was observed at the grid 342 

scale (from 3,262 to 4,011 individuals). The speed of the resurgence was spatially heterogeneous 343 

(Fig. 5A) and growth rates were highest and positive in refuge cells (i.e. coldest cells with lowest 344 

temperature variations, Fig. 5C-D), where the impact of control effort was previously the lowest 345 

(brown symbols). One year after control, local growth rates were still negative in cells where the 346 

control had been the most effective (green and blue symbols). Carrying capacity did not impact 347 

resurgence (Fig. 5B). 348 
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Figure 5. Local population resurgence one year after the end of a one-year homogeneous control.  A: 

local growth rate in the study area. B-D: variations of the local growth rate with carrying capacity, 

the mean annual temperature, and the annual standard deviation of temperature. Colours in B-D 

represent control efficacy with blue being the most effective. 

After a heterogeneous control, the yearly population growth rate was lower as compared with a 349 

homogeneous control effort, with only a 1% population increase at the grid scale (from 3,490 to 3,528 350 

individuals). Unexpectedly, such a control resulted in contrasting situations with very high local 351 

growth rates in a few cells (Fig. 6A), without any correlation with local characteristics or with the 352 

scores used to target controlled cells (Fig. 6B-D). Refuges were located at the interface between 353 

controlled and uncontrolled zones (Fig. 6A), and monitoring efforts after the control period should 354 

particularly focus on cells of intermediate carrying capacity (Fig. 6B). 355 
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Figure 6. Local population resurgence one year after the end of a one-year heterogeneous control 

(46% of controlled cells).  A: local growth rate in the study area. B-D: variations of the local growth 

rate with carrying capacity, the mean annual temperature, and the annual standard deviation of 

temperature. Colour in B-D represents control score, the highest being still targeted when the 

proportion of controlled cells is reduced. In cyan: uncontrolled cells (have lower scores). 

4. Discussion  356 

Environmental heterogeneity with respect to carrying capacity and temperature not only drives the 357 

temporal population dynamics of G. p. gambiensis at large scale, but also the spatial distribution of 358 

individuals, as well as control efficacy. It unexpectedly renders heterogeneous the impact of a 359 

homogeneous increase in adult mortality on population dynamics. The coldest cells with the smallest 360 

variations in temperature act as refuges when adult mortality was homogeneously increased, and in 361 

these refuges, the control effort was less effective and population resurgence faster after control had 362 

stopped. Such a heterogeneous impact can be partially compensated during eradication campaigns by 363 

releasing sterile males by air that will aggregate in the same sites as wild males, as observed in the 364 
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eradication campaign against Glossina austeni on Unguja Island of Zanzibar (Vreysen et al. 2011). 365 

To increase the chances of success, control strategies should account for environmental heterogeneity 366 

and emphasise (1) local areas of high suitability characterized by a high carrying capacity, (2) local 367 

refuges characterized by lower local temperatures within the relevant range for tsetse (23.7-24.0°C 368 

here), and (3) local areas with low variability of temperature over the year (irrespective of carrying 369 

capacity). In contrast, targeting patches where population control is the most efficient enabled to 370 

decrease population size with a similar efficacy, but this approach resulted in much more dispersed 371 

individuals, and in addition, efficacy of the control effort was no longer related to temperature. In this 372 

case, population resurgence after control, while being very slow in general, was locally very high in 373 

refuges, which differed from previous refuges in that they were located on the interface between 374 

controlled and uncontrolled zones. Refuges, highlighted in our study area despite a small surface 375 

suitable for tsetse, could jeopardize control efforts by providing areas from which recolonization may 376 

occur after control has stopped, a result that was at the origin of the principle of of area-wide pest 377 

management by Knipling (Vreysen et al. 2011).  378 

 379 

In addition, the temperature effect on tsetse population dynamics both at a larger and smaller local 380 

scales emphasises the need for further investigating the impact of climate change on tsetse 381 

populations (Terblanche et al. 2008; Moore et al. 2012). It is unlikely that tsetse flies will cross the 382 

Sahara, but they could migrate to higher altitudes and invade trypanosoma-free zones, particularly in 383 

Eastern and Southern Africa where tsetse distribution is mainly governed by altitude (Solano et al. 384 

2010a). Such population shifts will impact the density of cattle in either direction by impacting the 385 

transmission of trypanosomoses, which may in turn impact the distribution of wild fauna including 386 

lions (Carter et al. 2018). In addition, isolated populations could merge if close enough together in a 387 

changing habitat, possibly impairing control strategies. Conversely, new populations could become 388 

isolated, all the more as temperature is the first driver of landscape friction in tsetse (Bouyer et al. 389 

2015). 390 
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The mechanistic spatio-temporal model developed to predict G. p. gambiensis population dynamics 391 

and how these evolve when adult mortality is increased is original compared to already published 392 

models. First, the model incorporated environmental heterogeneity through a data-driven approach, 393 

both accounting for variable temperatures and carrying capacities in space and time. The model used 394 

realistic assumptions and highlighted the importance of refuges in this species, which was not 395 

previously evidenced using theoretical assumptions (Childs 2011), knowledge-driven patterns 396 

(Barclay & Vreysen 2013), or aggregated patterns assuming a binary occupancy (Lin et al. 2015). 397 

The proposed model can be applied to other areas with available data and a known metapopulation 398 

structure. Second, recent field and laboratory data on mortality, development, and dispersal were 399 

incorporated into the model. Predicted age structure was in good agreement with field data, and 400 

proved robust in our simulations as it was barely impacted by parameter variations. Amplitude and 401 

duration of seasons are expected to be major drivers of ovarian age distribution, but this could not be 402 

assessed here as temperature data were only available for one year. Our results highlight the need for 403 

more biological studies to better infer mortality variations with temperature, as well as the need for 404 

innovative methods to more accurately estimate temperatures as perceived by the insects. Such a 405 

complementary interplay between models, field observations, and laboratory experiments is 406 

fundamental to make accurate predictions. 407 

The fact that tsetse fly population dynamics was much more sensitive to mortality than reproduction 408 

is consistent with tsetse flies being specialists with a narrow niche. In this species, individual survival 409 

is prioritized over breeding (Pagabeleguem et al. 2016), where other species compensate for losses 410 

by boosting birth rates (Southwood et al. 1974). Glossina spp. have evolved towards an optimal 411 

utilization of energy and resources (Cody 1966), which makes them highly adapted to their ecological 412 

niche. Therefore, they are less likely to leave their habitat and expose themselves to other 413 

environments, which keeps the population at or near carrying capacity (Southwood et al. 1974). 414 

Efficient control methods have to be designed considering the ecological strategy of the concerned 415 

species (Southwood et al. 1974; Conway 1977). Fast action methods such as chemicals are better 416 
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suited for species showing high reproductive rates, short generation times, along with broad food 417 

preferences and good dispersing abilities (Altieri et al. 1983). In contrast, pests reproducing at lower 418 

rates and having longer generation time but good competitive abilities would be more efficiently 419 

restrained with cultural control, host resistance, and sterilization (Altieri et al. 1983). Nonetheless, 420 

such quite extreme characteristics should be considered in conjunction with species relationships 421 

within communities (Ehler & Miller 1978; Altieri et al. 1983). 422 

Traps, targets, and insecticide-treated livestock are control tactics increasing adult mortality, which 423 

can drastically reduce tsetse populations (Kagbadouno et al. 2011; Dicko et al. 2014; Percoma et al. 424 

2018). However, our results indicate also generation time as a contributing factor to population size 425 

variations. Such a factor can be indirectly modified using the sterile insect technique, which impair 426 

reproduction (Dyck et al. 2005). Obtaining very low tsetse densities is not enough to reach eradication 427 

as was demonstrated recently against G. p. gambiensis in north-western Ghana (Adam et al. 2013), 428 

the Loos islands in Guinea (Kagbadouno et al. 2011), and the Mouhoun river in Burkina Faso 429 

(Percoma et al. 2018). In addition, in view of unexpected local refuges where increasing adult 430 

mortality is not as effective as in other areas, it becomes necessary to further assess the effect of 431 

combined and spatially targeted control measures to achieve eradication. 432 

Our model provides a relevant tool to evaluate complex control strategies as it accounts 433 

simultaneously for density-dependent processes, spatial and temporal environmental heterogeneity, 434 

and all stages of tsetse lifecycle possibly targeted by control measures. Our framework could also be 435 

useful to identify where to focus stakeholders’ efforts to minimize impact of other specialist pests, 436 

such as the codling moth (Cydia pomonella) affecting apple and pear trees, and the sheep ked 437 

(Melophagus ovinus). Nevertheless, the importance of stochastic events when populations become 438 

very small must not be overlooked and these effects should be included in future developments. Our 439 

approach gives clues on how to trigger a drastic decline of the population. However, to predict the 440 

subsequent population dynamics at low densities and assess final steps of eradication strategies, a 441 
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deterministic framework becomes irrelevant as it does not enable quantifying the probability of 442 

population extinction at local and large scales. 443 

Accounting for spatial heterogeneity is essential to better understand and predict tsetse population 444 

dynamics, as habitat fragmentation holds the key to population survival when conditions are globally 445 

hostile. However, parameters driving tsetse fly dispersal abilities did not structure their final 446 

distribution. Landscape ecology must be studied to identify patches that will need longitudinal 447 

surveillance. Optimal management strategies are therefore valid for a given species in a given habitat 448 

and should not be generalized without baseline data collection to characterize the ecosystem. 449 

To conclude, environmental carrying capacity largely explained the contribution of local source spots 450 

to tsetse fly population dynamics at a large scale, but unfavourable conditions result in a progressive 451 

disappearance of such spots and the existence of refuges that located in colder areas where the 452 

temperature is less variable. When applying a spatially homogeneous increase in adult mortality for 453 

one year, population size was less impacted in such refuges. In contrast, applying a spatially 454 

heterogeneous increase in adult mortality resulted in refuges located at the interface between 455 

controlled and uncontrolled zones, and previous temperature-dependent refuges disappeared. Areas 456 

to be controlled should be chosen with caution when facing a heterogeneous habitat. Our study 457 

confirmed the importance of a preliminary characterization of the study area before the start of control 458 

operations in order to include the most suitable habitats in the control strategy, which is the foundation 459 

of area-wide integrated pest management. 460 
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