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ABSTRACT 19 

Strategic Environmental Assessment (SEA) of land-use planning is a fundamental tool to minimize 20 

environmental impacts of artificialization. In this context, Systematic Conservation Planning (SCP) tools 21 

based on Species Distribution Models (SDM) are frequently used for the elaboration of spatially 22 

exhaustive biodiversity diagnostics. Despite the paradigm of “garbage in –- garbage out” that emphasises 23 

the importance of testing the suitability of data for SDM and priority conservation areas, the assessment 24 

of database sources remains relatively rare. In addition, the lack of practical recommendations for the 25 

use of open-access databases by SEA stakeholders remains a problem. The aim of this study is to explore 26 

the quality of data sources that can be used by stakeholdersin SEA to assess priority conservation areas 27 

in SEA. The study was done usingused data for nine taxonomic groups (commonly used in inventories for 28 

environmental impact assessment) and three databases available to SEA stakeholders. Three local 29 

administrative entities in very different socio-ecological contexts were used to examine three main issues 30 

: (i) the suitability of local versus nationalregional or country databases for assessing conservation 31 

priorities, (ii) differences among taxonomic groups or territories in terms of the suitability of databases, 32 

(iii) the importance of the quality of databases for the application of SDM to assess priority conservation 33 

areas. Our study provides several clear messages for potential users of open-access databases. First, the 34 

need for prudence in the interpretation of biodiversity maps. Second, for SDM, the collection of individual 35 

databases at the nationalcountry scale is necessary to complete local data and ensure the suitability of 36 

modelsSDM in a local context. Third, a data driven approach can lead to the use of notably different 37 

species communities to identify priority conservation areas when compared to the community in the 38 

original database. Finally, we propose a workflow to guide SEA stakeholders through the process of data 39 

rationalization and use in conservation planning. 40 

 41 
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1 - Introduction 45 

Land-use change, in particular urban land expansion, leads to artificialization of habitats and soils and is 46 

one of the major causes of the loss of biodiversity (Maxwell et al., 2016; IPBES, 2019). The reduction and 47 

fragmentation of natural habitats leads to population declines and species extinction (Fahrig, 1997; Horváth 48 

et al., 2019; Lino et al., 2019), as well as biotic homogenization that, i.e. mostly the extinction of specialist 49 

species and the introduction of exotic species, which involves an increase in genetic, taxonomic and functional 50 

similarity (Olden and Rooney, 2006; Zambrano et al., 2019)(Olden and Rooney, 2006; Zambrano et al., 2019).  51 

A major tool to limit artificialization is the mitigation hierarchy used in environmental assessments studies. 52 

This approach consists of three sequential steps: “avoid” impacts, “reduce or minimize” impacts not avoided 53 

and “offset” residual impacts (Bull et al., 2016; Maron et al., 2016). However, in the current application of the 54 

mitigation hierarchy several weaknesses prevent it from achieving the goal of “No Net Loss” of biodiversity 55 

(Quétier et al., 2014; Bezombes et al., 2019). Avoidance is poorly implemented despite the fact that it is the 56 

first and most efficient step of the hierarchy (Bigard et al., 2017; Phalan et al., 2018). What is more, the 57 

mitigation hierarchy is mostly applied in a project-by-project approach without scaling up (Pope et al., 2013; 58 

Bigard et al., 2017), which limits proper consideration of fragmentation issues (Gontier et al., 2006) and 59 

cumulative impacts (Whitehead et al., 2017), including those of multiple small projects (Bigard et al., 2017). 60 

To anticipate avoidance measures, Strategic Environmental Assessment (SEA) of land-use planning is a 61 

global and fundamental tool to minimize environmental impacts (Baker et al., 2005). SEA provides for the 62 

integration of avoidance measures early in the land-use planning process through environmental assessment 63 

of policies, plans and programs (Fundingsland Tetlow and Hanusch, 2012; Bigard et al., 2020). However, the 64 

implementation of SEA is often based on biodiversity diagnostic maps that are rarely complete and exhaustive. 65 

Indeed, biodiversity diagnostics are rarely exclusively based on empirical observations from field surveys 66 

(Phalan et al., 2018) and usually use areas and documents already known (e.g., protected areas and green 67 

infrastructures).  68 

Spatial modelling provides a tool for the elaboration of spatially exhaustive diagnostics of biodiversity maps 69 

for land-use and conservation planning (Almenar et al., 2019; Tarabon et al., 2019; Bigard et al., 2020; Tulloch 70 

et al., 2019; Baker et al., 2021; Boileau et al., 2022). Among these methods of biodiversity modelling, Species 71 

Distribution Models (SDM) are widely used to predict suitable habitat for species based empirical observations 72 

(Guisan et al., 2017; Zurell et al., 2020) and are increasingly used in conservation planning (Guisan et al., 2017; 73 

Domisch et al., 2019; Baker et al., 2021). Systematic Conservation Planning (SCP) tools are also particular 74 

pertinent to identify priority biodiversity stakes and avoid the adoption of an ad hoc approach (Margules and 75 

Pressey, 2000; Pressey and Bottrill, 2008) in order to inform SEA (Tulloch et al., 2019).  76 

The management of databases and their use for conservation planning is a critical issue for the application 77 

of such methods to practical conservation planning. The databases available for SEA stakeholders (i.e. decision 78 

makers, environmental consultants and conservation managers) are often limited because of data sensitivity 79 

or ownership issues, although more and more programmesprograms contain data that are publicly available 80 

and use of them can be made without any particular attention to their quality (Costello and Wieczorek, 2014; 81 

Tittensor et al., 2014). and they are generally unfamiliar to SEA stakeholders. Surprisingly however, despite the 82 

prevailing recognition of the “garbage in – garbage out” that emphasises the critical importance of the quality 83 

of data (Sanders and Saxe, 2017; Canbek, 2022), an examination of data suitability is relatively rare in local 84 

conservation planning (Rondinini et al., 2006; Hermoso et al., 2015a). In this context, some authors argue the 85 

necessity of examining the sensitivity of model results to the nature of the datasets that are used (Sanders and 86 

Saxe, 2017; Clare et al., 2019; Velazco et al., 2020). SDM studies generally use data that has not been designed 87 

specifically for this type of analysis, and is often comprised of presence-only data, hence the need for a rigorous 88 

assessment of sampling biases (Beck et al., 2014; Botella et al., 2018; Guisan et al., 2017). Another particularly 89 

important point that can influence distribution modelling is the spatial extent of the data, and in particular the 90 

question of whether to use only local data or those collected on a larger scale (Baker et al., 2021; Meyer, 2007). 91 

The choice and possible combination of data sources is part of this problem due to the fact that they often 92 

vary considerably in their design, the gradients covered, and potential sampling biases (Fletcher et al., 2019; 93 

Boyd et al., 2023). Basically, the use of available databases requires a rigorous test of their quality and 94 

pertinence (Zuckerberg et al., 2011), especially when used for analyses such as SDM (Tulloch et al., 2016; 95 

Domisch et al., 2019). Confidence in the models must be assessed through the use of metrics adapted to the 96 

data (Guisan et al., 2017; Leroy et al., 2018). As recognised by Clare et al., (2019), the lack of practical 97 



 

 

recommendations for the use of databases that differ in terms of their quality and pertinence by public 98 

authorities or other institutions remains a serious problem. 99 

The overall goal of this study is to test the influence of different database sources that can be used by SEA 100 

stakeholders to map priority conservation areas in SEAs based on SCP. To do so, we studied three local 101 

administrative territories that occur in different socio-ecological contexts in France. The study has three main 102 

objectives. First, in terms of the quantity of data available we assess the content of three open-access 103 

databases for nine taxonomic groups commonly used in naturalist inventories in environmental impact 104 

assessment studies, we assess the variation in the . We evaluate their suitability of the available databases in 105 

terms of data quantity for SDM application, at three scales (local, regional and national) for application of SDM. 106 

Second, by focusing oncountry). SDM and SCP analyses were performed for two taxonomic groups with 107 

different dispersion capacities, home range sizes and environmental(Aves and Papilionidae) to test the 108 

hypothesis that sampling bias and differences in ecological response scales,  of species may influence the 109 

identification priority conservation areas. Second, we explore the influence of databases foron the application 110 

of SDM to assess priority conservation areas. Third, we analyse the influence of this data-driven approach on 111 

the composition of species communities that are ultimately considered in priority conservation areas relative 112 

to the actual communities in the original databases. Third, we analyse the influence of this data-driven 113 

approach on the composition of species communities that are ultimately consideredused in the 114 

analysisidentification of priority conservation areas relative to the actual communities in the original 115 

databases.  116 

2 - Methods 117 

2.1 - Study sites  118 

To assess the availability and suitability of pertinent data sources, we selected three French local 119 

administrative entities in charge of land-use planning: Lodévois-Larzac (T1), Brocéliande (T2), La Rochelle (T3) 120 

(Figure 1, Table 1). We selected these territories). We selected these study sites on the basis their contrasting 121 

social, ecological and geographical contexts in order to examine patterns of variation of data suitability among 122 

sites. (Figure 1, Table 1). For example, each of the three territories is composed ofstudy sites have different 123 

ecosystems and bioclimates and the sites vary in terms of urbanization pressures (from 3% to 28% artificial 124 

land-use cover for sites T1 and T2 respectively) and . This is due to the presence of protected areas a major 125 

city (La Rochelle) in their territories (from 2% to 70% of the protected territorythe T2 study site. The major 126 

towns in the other two study sites are smaller however there is a major city less than 50 km away for T3both 127 

of them (Montpellier and T1Rennes respectively). Only site T1 has an important cover of protected areas 128 

(Natura 2000) area.  129 

 130 



 

 

 131 

 132 
Figure 1 - LocalisationLocalization of the study sites in FranceFrench administrative regions: T1 is 133 

BrocéliandeLodévois-Larzac, T2 is La Rochelle, T3 is Lodévois-Larzac.Brocéliande. Source: IGN, Google, 134 
2023.  135 



 

 

 136 
Table 1 - Description of three study sites in France 137 

TerritoryStudy site Lodévois-Larzac (T1) La Rochelle (T2) Brocéliande (T3) 

Country / RegionAdministrative 
region 

France / Occitanie France / Nouvelle-Aquitaine France / Bretagne 

Main city coordinates 43°43'57"N 3°19'02"E 46°09'35"N 1°09'05"W 48°00'08"N 2°05'48"W 

Area 554 km2 327 km2 298 km2 

Climate Mediterranean Oceanic Oceanic 

Major habitats / land-use 
Mediterranean forest and 

scrubland 
Intensive agricultural field, 

swamps, few forests 
Pastures, temperate forest 

% land-use (1) 

Artificial – 
urban areas 

Farmland 

Semi-natural 

3% 
3% 

94% 

28% 
55% 
17% 

7% 
29% 
64% 

Landscape and dynamics Rural, woodland expansion 
Coastal, intensive agriculture, 

urban expansion 
Rural, agricultural 

intensification 

Urbanization context 
Close to a major city, across 

(Montpellier), linked by a 
highway 

Economic and tourist 
dynamism, major city 

presence 

Close to a major city, across 
(Rennes), linked by a highway 

% protected 
area (2) 

Regulatory 

Land control 

Contractual 

Total 

0% 

1618 ha – 0.6% 

38096 ha – 68.8% 

38602 ha – 69.7% 

327 ha – 0.99% 

148 ha – 0.45% 

3534 ha – 10.7% 

3546 ha – 10.8% 

0% 

80 ha – 0.25% 

586 ha – 2% 

592 ha – 2% 

(1) source: OSO Land Cover (Inglada et al., 2019). Artificial is impermeable surfaces; crop field is annual crop and orchards and 
vineyards; semi-natural is hardwood and soft wood and grasslands and water. 
(2) source: https://inpn.mnhn.fr/ 

2.2 – Workflow of analysis   138 

A methodological framework was developed to test the influence of different database sources in mapping 139 

priority conservation areas in SEAs thanks to a SCP approach, all steps are summarized in Figure 2. and in the 140 

following text.  141 

2.3 – DatabaseDatabases available for SEA stakeholders 142 

2.3.1 – Content of available databases 143 

We focused on nine taxonomic groups commonly used for naturalist inventories for environmental impact 144 

assessment studies: Amphibia, nesting Aves (hereafter name Aves), Chiroptera, Flora, Mammalia aptera 145 

(hereafter name Mammalia), Orthoptera, Odonata, Papilionidae and Reptilia (Bigard et al., 2017; Guillet et al., 146 

2019; Iorio et al., 2022). The three spatial scales used for data collection are depicted in Figure 1: the local scale 147 

(i.e. study site with a 10km buffer around), the regional scale (i.e. French administrative regions); and the 148 

country scale (i.e. continental France). We selected three open-access databases containing these groups that 149 

can be widely used by SEA stakeholders for the assessment and hierarchy of conservation priorities (Figure 2, 150 

step 1.1). This study thus directly addresses SEA stakeholders (i.e. decision makers, environmental consultants 151 

and conservation managers) using the databases available to them.  152 

The first of these databases concerns the French Natural and Landscape Information System (SINP) that is 153 

structured at the regional scale in France.scale of French administrative regions in charge of data extraction 154 

requests. Each site has its own database, can be collected only at local scale due to the limited extent of data 155 

requests, without the need for a special request (maximum 2000 km2, i.e. nearby 10km buffer zone around 156 

the study site). This database is composed of opportunist observations and only contains presence data for 157 

taxa for which identification is confirmed by experts (Jomier et al., 2018). Access to this database requires a 158 

data extraction request to the regional administrative structure in charge of the database. Generally, a special 159 

request is necessary above a 10km buffer zone around the study site (maximum 2000 km2), the data remains 160 

accessible only locally. Each site has its own database (see Appendix  (see Appendix A.1).  161 

The second database is the Global Biodiversity Information Facility (GBIF) an international platform for the 162 

provision of biodiversity data that is based on information collected from various databases (Telenius, 2011). 163 

It is composed of observation data that are not based on protocols and for which presence data and 164 

https://inpn.mnhn.fr/


 

 

identification are not subject to expert confirmation. The data downloading is autonomous from the website 165 

(see Appendix A.1).  166 

The third database is a French biodiversity monitoring scheme (Vigie Nature) dedicated to assess spatio-167 

temporal populations trends. Within this monitoring scheme data collection is based on a standardized 168 

biodiversity survey. Despite local spatial distribution heterogeneities, the sampling plan ensures a 169 

representation of the current national distribution of habitats and landscapes across France (Julliard and 170 

Jiguet, 2002; Mariton et al., 2022). Homogeneity in identification criteria and compliance with the protocol are 171 

ensured by offering training to volunteers. This database is composed of presence/absence and abundance 172 

data. Access to these databases requires a data extraction request to the person in charge (see Appendix A.1).  173 

These three databases were combined in two ways: “All databases” (i.e. the combination of SINP, GBIF and 174 

Vigie Nature) used in section 2.3 (i.e. for assess which taxa are enough documented within each dataset) and 175 

“National databases” (i.e. the combination of GBIF and Vigie Nature , which are available at country scale) used 176 

specifically in section 2.4 (i.e. forto test the effect of database sources on SDM performance).   177 

The databases were collected for continental France except for the SINP that was collected in 10km buffer 178 

zone around the study sites due to the access restrictions explained above. The databases were collected over 179 

a period of 10 years (i.e. from 01/01/2010 to 31/12/2020) and data with spatial inaccuracy greater than 50 180 

meters were not considered. We made a series of operations to standardize, correct and homogenize species 181 

names, transform data into occurrences, limit their spatial biases and identify the presence of species into 182 

each study site (Appendix A.1).  183 

The databases were collected for continental France except for the SINP that was collected in 10km buffer 184 

zone around the study sites due to the access restrictions explained above. The databases were collected over 185 

a period of 11 years (i.e. from 01/01/2010 to 31/12/2020) and data with spatial inaccuracy greater than 50 186 

meters were not considered. We made a series of operations to standardize, correct and homogenize taxa 187 

names at the specific taxonomic level using the French taxonomic reference “TAXREF.V14” (Gargominy et al., 188 

2021). We transformed data into occurrences and limited their sampling biases by geographical filtering using 189 

“spThin” package (Aiello-Lammens et al., 2015). In each study site, we identify the presence of one species at 190 

least five observations from "All databases” combined at local scale and defined as present species in France 191 

by TAXREF.V14 (Appendix A.1).  192 

2.3.2 – Quantitative description of databases for SDM  193 

For the nine taxonomic groups, four metrics were selected to quantitatively describe the amount and thus 194 

the suitability of each database (i.e. SINP, GBIF, Vigie Nature and “All databases)”) for the realization of SDM 195 

in presence-only (Figure 2, step 1.2): (i) the number of species observed in the study site; (ii) the proportion of 196 

species with < 15 observations which represents the minimal threshold for the utility of SDM with more 197 

accurate predictions than in a random model (Støa et al., 2019); (iii) the proportion of species with between 198 

15 and 50 observations, i.e. the minimum number of presences recommended for SDM (Merow et al., 2014 in 199 

Guisan et al., 2017); (iv) the proportion of species with > 50 observations, i.e. highly suitable for modelling 200 

(Støa et al., 2019). These metrics were calculated at three different scales: (a) for each territorystudy site 201 

including a 10km buffer zone (local scale) that is the maximum extent for a SINP data request; (b) on a regional 202 

scale that is used for the structure of biodiversity data in France; (c) for continental France. SINP database is 203 

analysed individually only at the local scale due to the previously mentioned restriction of access, nevertheless 204 

it integrated the three scales of the “All databases.”.  205 

2.4 - Systematic conservation planning process  206 

For the three study sites, we identified priority conservation areas with a Systematic Conservation Planning 207 

(SCP) tool based on Species Distribution Models (SDM) (Figure 2, steps 2.1 and 2.2). Several variants of SDM 208 

were made using different database sources (i.e. GBIF, Vigie Nature and “National databases)”) and two 209 

methods of generating pseudo-absences (named individual database or mixed databases). Among the nine 210 

taxonomic groups studied above, only Aves and Papilionidae taxa were analysed to compare the tests in the 211 

SCP process. The data available in France for these groups seems to beis sufficient in quantity to realize SDM 212 

with each database. The use of these two groups allows for a comparison between one group of highly mobile 213 

taxa with a large home range (Aves) and another group with a smaller home range and whose movement 214 

closely tracks local environmental variation (Papilionidae). These two taxonomic groups thus have different 215 



 

 

biological traits associated with their dispersal and function, hence we predict differences in in terms of the 216 

spatial resolution of their distribution.  217 

2.4.1 - Species distribution modelling (SDM) 218 

We modelled favourable habitats for birds and butterflies in the three study sites using SDM (Figure 2, step 219 

2.1). A resolution of 50m was used to meet the needs of the SEA of land-use planning. A buffer zone of 10km 220 

around each of the study sites (i.e. local scale) was used for the SDM prediction to limit any border edge effects 221 

and to increase the number of species that could be modelled and evaluated. Indeed, species with less than 222 

15 data points for the calibration (threshold explain above, Støa et al., 2019) and/or less than 10 data for 223 

performance evaluation (threshold defined by expert opinion) were not modelling.  224 

Biodiversity data used for the SDM came from the databases decribeddescribed above at the 225 

nationalcountry scale, according to the results of section 2.3 (Table 2). These data were separated into two 226 

independent datasets that allow for robust validations with independent data (Matutini et al., 2021). 227 

NationalCountry data without local data were used for model calibration and local data were used only for 228 

model performance evaluation. Therefore, the SINP database, which is only available at local scale, was not 229 

used for model calibration.  230 

For model calibration, pseudo-absences were generated with two methods., separately for each taxonomic 231 

group. First, methods to generate pseudo-absences in the individual databases for all their data (i.e. GBIF, Vigie 232 

Nature and “National databases).”). For databases with a protocol for sampling (i.e. Vigie Nature) to optimize 233 

species detection (day and year periods), the absence points were defined as all the points without the 234 

observed species. For databases without such sampling protocols for all their data (i.e. GBIF and “National 235 

databases),”), pseudo-absence data were generated with the target-group (TG) approach, which infers the 236 

sampling bias from the aggregated occurrences of (TG) species, i.e. the respective taxonomic groups (Ponder 237 

et al., 2001; Anderson, 2003; Phillips et al., 2009). Second, a method to mix the presence data in the GBIF and 238 

“National databases” with the absence from Vigie Nature (named mixed databases) was applied (Hermoso et 239 

al., 2015a).  240 

Three types of environmental variables were used for SDM: biogeographicgeographic, human occupancy 241 

and pollution and fragmentation (Appendix A.2A.2).  242 

SDM were calibratecalibrated by Random Forest down-sample (Valavi et al., 2021a) which according to 243 

Valavi et al. (2021b) is among the best performing models for presence-only data. Although the Random Forest 244 

is not very sensitive to the non-independence of the variables and over-parametrization (Matsuki et al., 2016; 245 

Srisa-An, 2021), in order to be parsimonious, the collinear variables were removed (Pearson >0.7, Appendix 246 

A.2A.2, Brun et al., 2020). Thirty bootstraps were performed for each SDM (Guisan et al., 2017) using a 247 

calibration for 70% of the data at the nationalcountry scale outside of local scale. The thirty Random Forest 248 

bootstraps were combined with mean to provide an ensemble prediction of habitat suitability for all species.  249 

The performance evaluation of the models was done using the Boyce’s index (CBI), the most suitable metric 250 

for model in presence-only (Boyce et al., 2002; Leroy et al., 2018), with local data (i.e. “All databases” 251 

combining SINP, GBIF and Vigie Nature). Dubos et al. (2022) reveal the CBI turns out to be misleading in some 252 

cases, thus we used a threshold of 0.3 to define good or poor model quality.   253 

2.4.2 – Systematic conservation planning (SCP) tool 254 

Priority conservation areas in the three territoriesstudy sites were analysed from SDMs for each database 255 

source in using a SCP tool (Figure 2, step 3.1). To meet the needs of SEAs, the study site was restricted to 256 

administrative boundaries with a buffer zone of 1km to maintain coherence between administrative entities 257 

and a resolution of 50m. The SEAsaim of SEA biodiversity conservation strategies aim is to establish priorities 258 

for the whole territorystudy site as a whole and all the cells have the same cost value of 1. The objective was 259 

a maximum coverage objective that seeks to maximize the number of features, i.e. the SDMs (Church et al., 260 

1996). The features were only the predictions of SDM with a Boyce’s index > 0.3 to limit the influence of 261 

poorgood quality models defined previously. The priority conservation areas decisions were between 0 and 1. 262 

To obtain a priority gradient, we cumulated Ferrier importance scores (Ferrier et al., 2000) from nine targets 263 

of the total amount of each feature (from 0.1 to 0.9 every 0.1).  TheWe used the package “prioritizr” was used 264 

(Hanson et al., 2021) with the open-source solver SYMPHONY (Kim et al., 2023).   265 



 

 

2.5 - Comparative analysis of SDM and priority conservation areas  266 

TheWe analysed the influence of database sources on SDM predictions and priority conservation areas 267 

were analysed (Figure 2, step 2.2 and 3.2). SDM performance evaluations were analysed between database 268 

sources. The SDM prediction and priority conservation areas maps were compared with the Spearman’s rank 269 

coefficient (Phillips et al., 2009) and the Schoener’s D index as a measure of projection overlap (Schoener, 270 

1968) which was calculated with the ENMTool R package (Warren et al., 2008; Warren and Dinnage, 2022).  271 

2.6 - Species community analysis   272 

We assessed the influence of the complete data driven workflow on the composition of species 273 

communities, i.e. differences between the original community (i.e. all species observed in study site) in the 274 

database and the final community used to identify priority conservation areas (Figure 2, step 4).  275 

To do so, we developed a workflow resistance score for each of the methodological filters for all species. 276 

A score of 1 is allocated to species observed in the study area that did not cross any of the stepwise filters. A 277 

score of 2 is allocated to species with sufficient data to calibrate SDM, i.e. > 15 nationalcountry observations, 278 

or evalueto evaluate the performance of SDM, i.e. > 10 local observations. A score of 3 is allocated to species 279 

with sufficient data to calibrate and evaluate the performance of the SDM. A score of 4 is for species that were 280 

present in the final analysis as a priority species for conservation planning (i.e. with the two previous filters 281 

and a Boyce's index > 0.3). In order to assess species composition bias ultimately considered in priority 282 

conservation areas, species communities were analysed through traits that can influence species detection 283 

(mass, displacement capacity, period activity) and ecological traits (habitats, specialisation) (Appendix 284 

A.3).A.3). Missing data were completed with a trait imputation procedure generated using the R package 285 

“missForest" (Stekhoven and Bühlmann, 2012) by considering evolutionary relationships in the imputation 286 

process (see Carmona et al., 2021) using the R script of Toussaint et al. (2021). Due to the nature of the 287 

response variable (i.e. ordinal scoring including four modalities), we used ordinal regression mixed models with 288 

cumulative link using the clmm function of “ordinal” R package (Christensen, 2022). We adapted the link 289 

function to the data distribution for Aves and Papilionidae, using thea “cauchit” link for Aves and a “logit” links, 290 

respectivelylink for Papilionidae. Species traits were used as fixed effects, while the random effects selected 291 

were the study sites for Aves and the combination for study sites and database sources for Papilionidae. Finally, 292 

we evaluated the quality of the full model by comparing to the null model with Akaike’s information criterion 293 

(AIC) (Mac Nally et al., 2018).  294 

Thus, our models were structured in the following way:  295 

For Aves  𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ~ 𝛽0 + 𝛽𝑖  . ′𝑡𝑟𝑎𝑖𝑡′𝑖 + +(1|𝑆𝑡𝑢𝑑𝑦𝑆𝑖𝑡𝑒𝑠) 296 

For Papilionidae  𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ~ 𝛽0 + 𝛽𝑖  . ′𝑡𝑟𝑎𝑖𝑡𝑠′𝑖 + +(1|𝑆𝑡𝑢𝑑𝑦𝑆𝑖𝑡𝑒𝑠_/𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝑠) 297 

Where β is the parameter estimates, i correspond to the variables of ‘traits’ using in fix effect, 0 is the shift 298 

between ordinal class of resistance (i.e. 1|2, 2|3 and 3|4) and “1|” is the random effect.  299 
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 301 
Figure 2 - Methodological framework applied to test the influence of different database sources to map 302 
conservation planning areas in SEAs based on SCP. The green and blue boxes are the appendices detailing 303 
the methodology and the results of the analyses, respectively. The red boxes “R.” are the methodological 304 
filters used for generate workflow resistance score. 305 

  306 



 

 

3 - Results 307 

3.1 - Quantitative description of databases for SDM 308 

The use of individual observation databases provided a limited number of observation data for distribution 309 

modelling of many species, regardless of the taxonomic group (Table 2, Appendix B.1). B.1). None of the GBIF 310 

and SINP individual databases have more than 50 observations for all nine taxonomic groups, and there are 311 

currently no programs for three of the nine taxonomic groups in the Vigie Nature databases. Local databases 312 

and, to a lesser extent, regional databases are not equivalent in terms of the amount of data available for 313 

different taxa for the three study sites. The difference is particularly pronounced for the SINP databases, with 314 

no data available for five taxonomic groups in the T3 study site, whereas in the T1 study site, six taxonomic 315 

groups have sufficient data to model over 50% of the species. At the regional scale, the number of observations 316 

per species is highly variable among territoriesstudy sites for the GBIF databases and is more similar for the 317 

Vigie Nature databases.  318 

The use of combined databases (i.e. “All databases)") increased the total number of species that can be 319 

studied. At the local scale, the proportion of species in each suitability class showed only small changes, while 320 

at the nationalcountry scale of France, it allowed a significant gain in species with suitable data (Table 2). 321 

Indeed, on a nationalcountry scale, the GBIF and Vigie Nature databases are complementary with each other. 322 

For example, the GBIF has few Chiroptera data, which is complemented by Vigie Nature data, and vice versa 323 

for Amphibian data. 324 

At the nationalcountry scale, aggregation of the databases seem to provide the most suitable setup 325 

(databases and scale) for SDM analysis. Using these compiled, nationalcountry databases provides a large 326 

amount of data for a large number of species present in the three territoriesstudy sites (Table 2 and Appendix 327 

B.1).  328 

3.2 - SDM and priority conservation areas analysis  329 

The evaluation of SDM revealed differences among the database sources; none of which produced more 330 

than 87% of satisfactory models for the two studied taxonomic groups and some had less than 20% of 331 

satisfactory models (Table 3, Appendix B.2). Use of the GBIF data led to a higher proportion of well-evaluated 332 

SDM, ranging between 48 and 79% of satisfactory models for the species in the two taxonomic groups. GBIF 333 

data are also more suitable than Vigie Nature data, they produced between 11% and 37% more satisfactory 334 

models than the latter database (Table 3). Nevertheless, between 4% and 9% of species provide well-evaluated 335 

models from Vigie Nature and poorly evaluated by GBIF database. The combination of “National databases” 336 

(i.e. GBIF and Vigie Nature) decreased the performance of SDMs with GBIF data, but still yield better results 337 

than SDM based on the Vigie Nature database. The substitution in individual databases of pseudo-absences 338 

for the absences from Vigie Nature (i.e. mixed databases) reduced the performance of models based on GBIF, 339 

but increased the performance of the combined “National databases” (Figure 3, Appendix B.2).B.2). Regardless 340 

of the database used, our analyses revealed significant differences between territoriesstudy sites (Table 3). No 341 

SDMs for butterflies in T2 could be evaluated due to insufficient local data. For the T3 study site, over 50% of 342 

the Papilionidae and Aves models perform poorly, whereas for the T1 study site poor models occur in less than 343 

50% of the evaluations.  344 

Although important differences in model performance between the database sources used for SDM 345 

showed a high degree of overlap, as indicated by Shoener’s D index with values above 0.8, the ranking of 346 

habitat suitability was highly variable. This was in particularly the case for the GBIF and Vigie Nature databases 347 

that had median spearman’s rank coefficient values between 0.2 and 0.5 and a very wide distribution 348 

(Appendix B.3). The substitution of pseudo-absence data in GBIF and “National databases” by absence data 349 

from Vigie Nature, showed a similar situation (Appendix B.4).  350 

For priority conservation areas, whatever the individual databases used, the overlaps with Schoener’s D 351 

index were above 0.72 and similar in each territorystudy site. Nevertheless, Sperman’s rank coefficients 352 

showed a greater difference in prioritization ranks in particular between GBIF and Vigie Nature and for the T3 353 

study site (Table 4). Between maps of priority conservation areas, we observed similarities in overlap, despite 354 

a significant difference in the hierarchy of areas to be prioritized (Figure 4, Appendix B.5). The list of species is 355 

presented in Appendix B.7, where it can be seen that there are no difficulties with respect to invasive species 356 

which are very few in the data sets. 357 



 

 

3.3 - Species community analysis  358 

The distribution of workflow resistance scores showed that only 30% and 42% respectively of Aves and 359 

Papilionidae species were integrated in priority conservation areas maps. Among species not integrated, the 360 

workflow steps filtering the most species concern the amount of suitable data for model evaluation followed 361 

by the quality of the models (Figure 5). The analysis of the species community composition observed in each 362 

of the three study sites in comparison with the species community integrated in priority conservation 363 

areasarea identification revealed significant differences for all three study sites. For Aves communities, the 364 

differences concern an under-representation of nocturnal species, large species with high dispersal capacity, 365 

and species of swamp habitats and deciduous forests in relation to the observed species community in the 366 

databases for the three study sites. Conversely, species that favour urban habitats, shrubland, grassland and 367 

coniferous forests are over-represented in the species community of the final maps, as are species with 368 

specialized diets and foraging strata (Table 5). For Papilionidae communities, common species with long flight 369 

periods are over-represented in the final community used for analysis. Species related to anthropogenic and 370 

thermo/meso Mediterranean habitats, and species that use a wide range of hostplants are over-represented 371 

in relation to the original species community, while supra-Mediterranean species and those of montane 372 

environments are under-represented (Table 5). 373 



 

 

Table 2 - Quantitative description of the observation databases (Local SINP, GBIF, Vigie Nature) for nine taxonomic groups in the three study sites (“T1”: Lodévois-Larzac, 374 
“T2”: La Rochelle, “T3”: Brocéliande) for “local” (study site with buffer of 10km), “Regional” (administrative region) and “FranceCountry” (continental France). “nSp” is 375 
the number of species observed at least 3 times in a given territorystudy site within a 10 km buffer zone, “>15obs” is the percentage of species with more than 15 376 
observation and “>50obs” the percentage with more than 50 observations (red < 25%, orange 25-75%, green >75%, grey - no data).  377 

Taxa 

GBIF SINP Vigie Nature All databases combined 

Local Regional FranceCountry Local Local Regional FranceCountry Local Regional FranceCountry 

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 

Amp 

nSp 11 1 11 13 2 11 14 2 11 13 2 0 

No program 

14 2 11 14 2 11 14 2 11 

>15obs                      

>50obs                      

Ave 

nSp 100 73 77 198 159 120 204 170 131 197 94 82 114 155 101 182 143 120 201 170 132 205 171 132 205 166 132 205 171 132 

>15obs                               

>50obs                               

Chi 

nSp 4 0 5 13 13 5 19 19 21 21 6 18 25 22 24 25 22 24 25 22 25 26 22 26 26 22 26 26 22 26 

>15obs                               

>50obs                               

Flo 

nSp 786 476 639   825   995   843 286 177 136 825 657 413   848          

>15obs                               

>50obs                               

Mam 

nSp 10 1 14 23 6 21 23 6 28 23 7 30 

No program 

23 7 30 23 6 30 23 7 30 

>15obs                      

>50obs                      

Odo 

nSp 38 5 23 56 7 28 57 7 30 57 1 0 0 1 24 56 7 27 57 7 30 57 7 30 57 7 30 57 7 30 

>15obs                               

>50obs                               

Ort 

nSp 53 3 24 93 25 26 95 25 34 91 8 0 25 19 19 25 19 19 25 19 19 98 25 34 98 25 34 98 25 34 

>15obs                               

>50obs                               

Pap 

nSp 115 15 33 144 18 43 147 18 52 154 11 0 0 0 50 132 18 51 149 18 52 154 18 52 154 18 52 154 18 52 

>15obs                               

>50obs                               

Rep 

nSp 18 2 7 20 4 7 21 4 7 21 4 0 

No program 

22 4 7 22 4 7 22 4 7 

>15obs                      

>50obs                      

Table 3 - Proportion of well-evaluated SDM corresponding to Boyce’s index greater than 0.3. “National” combines GBIF and Vigie Nature databases.  378 

Taxa 
Study 

site 
Number of 

species 
Individual database  SDM with Vigie Nature absence 

GBIF Vigie Nature “National” GBIF “National” 

Aves 
T1 114 79 % 61 % 70 % 87 % 82 % 
T2 87 68 % 31 % 47 % 57 % 46 % 
T3 56 48 % 38 % 29 % 52 % 43 % 

Papilionidae 
T1 127 75 % 52 % 64 % 75 % 73 % 
T3 25 52 % 16 % 20 % 12 % 20 % 

 379 
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 381 

Figure 3 - Proportion of SDM with Boyce’s index (CBI) greater than 0.3 by database source 382 
(“Individual” and “Mixed” with Vigie Nature absence), by combining territoriesstudy sites (T1, T2, T3) 383 
and taxonomic groups (Aves, Papilionidae). “National” combines GBIF and Vigie Nature databases.  384 

 385 
Table 4 - Overlap of priority conservation areas between database sources using two metrics: 386 
Schoener’s D index (D) and Spearman’s rank coefficient (S cor). VN is Vigie Nature database and 387 
“National” combines GBIF and Vigie Nature databases.  388 

Taxa 
Study 
sites 

Individual database 
Pseudo-absence of individual 
database - absence from VN 

“National” – GBIF “National” – VN GBIF - VN GBIF “National” 
D S cor D S cor D S cor D S cor D S cor 

Aves 
T1 0.82 0.56 0.81 0.53 0.78 0.36 0.75 0.88 0.79 0.38 
T2 0.82 0.74 0.76 0.49 0.72 0.42 0.76 0.64 0.79 0.64 
T3 0.77 0.34 0.81 0.51 0.78 0.29 0.73 0.19 0.79 0.39 

Papilionidae 
T1 0.85 0.64 0.84 0.65 0.83 0.59 0.72 0.66 0.82 0.66 
T3 0.80 0.49 0.77 0.31 0.78 0.22 0.76 0.17 0.72 0.06 

 389 

 390 

Figure 4 - Maps of priority conservation areas for Aves and Papilionidae of tree study sites (T1, T2, 391 
T3) from different individual database source (All, GBIF, Vigie Nature). 392 



 

 

 393 

Figure 5 - Workflow resistance scores for Papilionidae and Aves. 1 - species observed in the study 394 
area that did not cross any of the stepwise filters. 2 - species with sufficient data to calibrate SDM, 395 
i.e. > 15 nationalcountry observations, or evalueevaluate the performance of SDM, i.e. > 10 local 396 
observations. 3 - species with sufficient data to calibrate and evaluate the performance of the SDM. 397 
4 - species present in the final analysis, i.e. Boyce's index > 0.3. 398 

 399 
Table 5 - Parameter estimates (β), standard error (se) and P-values for the full model of Aves and 400 
Papilionidae species resistance to the workflow. Appendix B.6, the evaluation of the quality of the 401 
model.  402 

 Aves Papilioniadae 
 Variables β se P-value Variables β se P-value 

F
u

ll
 m

o
d

el
 

β0 1|2 -7.84 1.12 / β0 1|2 -2.54 1.28 / 
β0 2|3 0.14 0.33 / β0 2|3 1.39 1.26 / 
β0 3|4 1.4 0.34 / β0 3|4 2.97 1.27 / 
Mass -0.21 0.13 . WingspanM 0.01 0.09  

Avian hand-wing 
index 

-0.31 0.07 *** FMoMean 0.38 0.11 *** 

Nocturn -2.28 0.59 *** Hostplant N 0.23 0.11 * 
Deciduous -0.27 0.15 . Hostplant Spe 0.16 0.11  
Coniferous 0.38 0.15 * HPG Bi 0.28 0.50  
Woodland 0.17 0.14  HPG Th -0.21 0.22  

Shrub 0.55 0.13 *** HPG Sb -0.32 0.23  
Grassland 0.47 0.13 ** HPG Tr 0.22 0.45  

Mountain meadows 0.23 0.24  HPG Li 0.02 0.36  
Reed 0.08 0.33  SSI 0 0  

Swamps -0.84 0.28 ** AltVeg ‘A’ 0.06 1.12  

Rocks -0.14 0.21  AltVeg ‘Mo’ -0.93 0.31 ** 
Urban 0.83 0.14 *** AltVeg ‘SupMed’ -0.79 0.46 . 

Spe. Diet 0.92 0.35 ** AltVeg ‘ThMeMed’ 1.37 0.37 *** 
Spe. Foraging 

behav. 
-0.08 0.4  Rarity ‘2’ 0.86 0.29 ** 

Spe. Diet strat 1.49 0.4 *** Rarity ‘3’ 1.42 0.34 *** 
Spe. Habitat -0.14 0.38      

Spe. Nest -0.28 0.72      
Spe. Mean -2.26 1.63      

P-value: *** P < 0.001, ** P < 0.01, * P < 0.05, . P < 0.1, / P-value not applicable 
Trait description: Spe. is the specialization, FMoMean is duration of yearly flight period, Hostplant N is hostplant 
specificity, HostplantSpe is hostplant specificity index, HPG is hostplang growth form (Bi: short herb, Th: tall herb, Sb: 
shrub, Tr: tree, Li: Liana), SSi is Species Specialization Index, AltVeg is altitudinal vegetation (A=Anthropogenic, Co: 
Foothill, TheMeMed: Thermo/Meso-Mediterranean, Med: Mediterranean, SupMed: Supra-Mediterranean , Mo: Montane, 
Asa: Alpine and Subalpine). For more details on traits see Appendix A.3 
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4 - Discussion 407 

The absence of recommendations for the use of available databases that differ in terms of their quality 408 

and pertinence by public authorities or other institutions remains a serious problem for local conservation 409 

planning (Clare et al. 2019). The goal of this study was to test the suitability of different database sources 410 

that can be used by public stakeholders to map priorities for biodiversity stakes in SEAs and SCP. We found 411 

that the compilation of databases at the nationalcountry scale is the most suitable procedure to apply SDM 412 

to a large number of species. For Aves and Papilionidae, the GBIF database provided the highest proportion 413 

of well-assessed SDM. We detected a significant overlap in species distributions in different database 414 

sources despite significant variability in the order of habitat suitability and similar spatial predictions for 415 

priority conservation areas. Finally, weWe showed that the composition of the species community used 416 

for priority conservation areas in all three study sites were clearly not representative of the observed 417 

species communities in the original database (in terms of ecological traits). species and ecological traits). 418 

Finally, despite important differences among the study sites in terms of the proportion of artificial land 419 

cover and protected areas we found no particular differences between the three study sites. Clearly, the 420 

data sources are the most important factor influencing the results. 421 

Open-access biodiversity data provide a valuable source of information for decision makers, 422 

environmental consultants and conservation and land-use planningmanagers (i.e. SEA stakeholders;); they 423 

contain vital information on species locations compared to expert knowledge and unshared datasets that 424 

are inaccessible to most users (Sousa-Baena et al., 2014; Meyer et al., 2015). Through their use and careful 425 

application of SDM, they contribute to the estimation of relative habitat suitability in a given study site 426 

(Baker et al., 2021). Our study showed however that SDM for a large majority of species observed locally 427 

requires their compilation on a nationalcountry scale. Local and regional data are not suitable for model 428 

calibration but remain important for assessing the suitability of models in a local context. Indeed, this 429 

performance evaluation step is one of the most restrictive filters in the workflow we proposed, as 430 

evidenced by SDM’s for butterflies in the T2 study site, where no species could be evalutedevaluated. The 431 

spatial extent of data collection can influence distribution modelling (Meyer, 2007), and our study 432 

emphasises this importance for SDM and the use of data available on nationalcountry scale in France. 433 

Different types of databases are constructed in different way – with opportunistic data collection or, in 434 

some cases, as part of a scientific monitoring scheme – allowing the use of as complementary data sources 435 

(Beck et al., 2013; Shirey et al., 2021). The three individual databases examined in this study are indeed 436 

complementary in that when they are combined they provide a suitable source for modelling the 437 

distribution of many species. Nevertheless, some groups commonly have a low numberamount of data in 438 

such bases, e.g. Insecta (Troudet et al., 2017). The study of data with a fine spatial grain, as required for 439 

SEA and SCP (Guisan et al., 2013), reveals information gaps for more taxonomic groups at the global scale, 440 

e.g. Amphibians and Mammals (Witté and Touroult, 2017). The construction of an overall database at 441 

nationalcountry scale is therefore the most appropriate way to have suitable data for SDM of different 442 

taxonomic groups. Furthermore, there is a dilemma between protocolized and opportunistic data. 443 

Although protocolized data are recommended for SDM (Guisan et al., 2017; Guillera-Arroita et al., 2015), 444 

very often the amount of such data is low, which can be detrimental at the local scale, particularly for 445 

model evaluation with data having the same sampling bias. For opportunistic data, their large number is of 446 

course a positive point, however the estimating their sampling bias can be a real challenge (Botella et al., 447 

2018; Fithian et al., 2015; Matutini et al., 2021) to ensure the reliability of the results. 448 

SDM of Aves and Papilionidae species clearly revealed differences between the databases used for 449 

modelling, with differential impacts on the identification of conservation priorities. Indeed, the high 450 

overlap in species distribution overlap is high between databasedata sources, as indicated by the 451 

Schoener’sSchoener's D index, i.e.indicates that, regardless of the data source, species, are predicted in 452 

similar environments (Warren et al., 2008). However, Spearman’s ranking of habitat suitability between 453 

data sources was highly variable, indicative that species’ responses to environments are highly variable, as 454 

are the location of favourable habitats (Warren et al., 2008). Although the use of presence-absence data is 455 

advocated for SDM (Guillera-Arroita et al., 2015; Valavi et al., 2021b; Dubos et al., 2022)(Guillera-Arroita 456 

et al., 2015; Valavi et al., 2021b; Dubos et al., 2022), we showed that opportunist data from GBIF provided 457 

a greater number of well-assessed models at the local scale. Models using opportunist data with a target-458 

group approach to generate pseudo-absences provides a sufficient quality of information on species 459 



 

 

distribution (Phillips et al., 2009; Barber et al., 2022) and can be correctly used in SCP (Sofaer et al., 2019; 460 

Baker et al., 2021). The lack of data at the regionallocal scale, whatever the database, does not allow us to 461 

explain a better fit of models using GBIF data. Evaluating the models with a large proportion of opportunist 462 

data could however bias the evaluation, but only independent data were used, which provides robust 463 

validation of SDM (Matutini et al., 2021). Moreover, in contrast to Hermoso et al. (2015a), we found that 464 

mixing presence-only data with absence data increased the number of misjudged models. In addition to 465 

the use of the ROC curve (AUC) as a presence-only model evaluation metric by Hermoso et al. (2015a), the 466 

different results can be explained by different sampling biases between the two data types (Baker et al., 467 

2022; Barber et al., 2022). Finally, the GBIF data seem to be more adapted to model the distribution of a 468 

large number of species.  469 

The notion of “garbage in – garbage out” emphasises the critical importance of the quality of data 470 

(Sanders and Saxe, 2017), nevertheless, the examination of data suitability for conservation planning 471 

remains rare. In addition to the above issues our study revealed the importance of attention that should 472 

be paid to the representativeness of the species communities used in the models compared with the actual 473 

species communities observed in the study sites. This is particularly important in the light of the finding 474 

that there are marked differences between conservation priorities when different database sources are 475 

employed. Indeed, the number and composition of species in the community used can influence 476 

conservation priorities. Elsewhere it has been shown the difference will decline as the number of species 477 

increases (Kujala et al., 2018). The methodology tested in our study is based on a data-driven approach 478 

that attempts to use all available biodiversity data. This approach is data intensive, but is necessary to 479 

ensure the best representation of the observed local biodiversity. We revealed that such an approach can 480 

nevertheless induce a significant bias in the species community that is ultimately studied. Indeed, the 481 

prevalence of data affects the composition of the modelled species as well as the accuracy of the models 482 

and the evaluation of the species response (Fukuda and De Baets, 2016). Particular attention should thus 483 

be paid to the representativeness of the species communities used in the models in relation to the actual 484 

species communities observed in the territory under study. site.  485 

Our study presents a workflow (Figure 2) for identifying biodiversity stakes using a data-driven 486 

approach from open-access database sources. Land-use planningSEA stakeholders can use this workflow 487 

as a step towards the rationalization of data in order to reduce the biases mentioned above. The 488 

confrontation of the limits of such a workflow with the needs of SEA stakeholders could illustrate how to 489 

precisely target new sources of database that should be collected according to the suitability of current 490 

databases for priority groups. This workflow could be compared with the data context of another country 491 

to compare our findings. Hermoso et al. (2015b) revealed that evaluation models using a new collection of 492 

field data does not necessarily reduce the problems of model uncertainty. However, other databases can 493 

be examined by SEA stakeholders as well as other monitoring schemes (e.g. “PopAmphibien” for Reptilian 494 

and Amphibian populations in France http://lashf.org/popamphibien-2/) or negotiate the use of databases 495 

that are not yet shared. An important issue is thus the integration ofTo overcome this data sharing 496 

problem, the structuring of networks of different contributors of data and users of the databases and 497 

ambitious regional policies is necessary. As evidenced by our three study sites, the quantity of local data 498 

available is correlated with the number of years the SINP has been implemented. An important issue is 499 

thus the integration of SEA stakeholders in the workflow we propose, and their appropriation of the 500 

procedure. This could be done by a form of participatory modelling (Lagabrielle et al., 2010; Lees et al., 501 

2021), where stakeholders are consulted for issues and choices such as the species to be examined. In such 502 

participatory modelling it is important to avoid arbitrary choices that are neither reproducible nor 503 

representative of local diversity, but rather the result of administrative or political interest. Finally, it is 504 

currently recommended to use these tools to elaborate a more holistic approach to SCP (Cadotte and 505 

Tucker, 2018).  506 

 507 

5 – Perspectives: operational implementation by SEA stakeholders 508 

Spatially exhaustive and ecologically representative priority conservation areas are crucial for the 509 

elaboration of SEAs that aim to limit artificialization impacts as early as possible in the planning process. 510 

Empirical observations are major sources of information on biodiversity that are still rarely used by SEAs. 511 

http://lashf.org/popamphibien-2/


 

 

The collection of open-access databases for SEA territories provides important but incomplete knowledge 512 

on species occurrence. Furthermore, their use is particularly interesting to help strategically direct 513 

inventory campaigns (especially for under sampled taxa and areas).) that go beyond the emphasis on rare, 514 

threatened and emblematic species. These additional data would clearly improve the assessment of the 515 

SDMs suitability in local territories.administrative entities as our study sites. What is also interesting here 516 

for SEA stakeholders is that the process of filtering species and attributing them a score allows us to 517 

identifyfor the identification of different groups of species in terms of their needs for additional data in 518 

order to undertake SDM.   519 

The influence of database sources on the identification of priority conservation areas reveals the 520 

importance of examining their suitability. Thus, it is necessary to be prudent in the interpretation of 521 

biodiversity maps. The integration of local experts may help limit any misjudgements in the workflow 522 

procedure.  523 

The influence of database sources on the identification of priority conservation areas reveals the 524 

importance of examining their suitability. In our study this is true for three highly contrasting study areas 525 

that differ markedly in terms of the cover of protected areas and artificialisation. The problem of data 526 

sources is thus typical of many areas. Thus, it is necessary to be prudent in the interpretation of biodiversity 527 

maps. The integration of local experts may help limit any misjudgements in the workflow procedure. 528 

Indeed, the integration of "expert" knowledge and local studies is valuable information, which is important 529 

to share, and which it is important to consider in order to complete our proposal. In future studies, species 530 

conservation issues for spatial prioritization could be considered by focusing on (for example) the issues 531 

associated with threatened and/or invasive species. The multiple dimensions of biodiversity could be 532 

analyzed within a context of limited data access and the complementarity of different facets (functional 533 

and phylogenetic) in addition to a classical species-based approach (Brumm et al., 2021; Cadotte and 534 

Tucker, 2018). 535 

A data-driven approach that considers as many species as possible requires a large amount of data, 536 

biases the species communities considered and does not highlight species of particular interest as their 537 

threats and regulatory protections. It is therefore necessary to rationalize this approach, by integrating the 538 

needs and issues of local SEA stakeholders. 539 

  540 
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Appendix 899 

Appendix A - Additional material and methods  900 

A.1 - Collect and series of operation on species occurrences  901 

Databases collection:  902 

- Access to source databases:  903 

o French Natural and Landscape Information System (SINP, https://inpn.mnhn.fr), each of the 904 

three study sites has its own database: https://sinp-occitanie.fr/atlas/ for Lodévois-Larzac, 905 

(T1), https://obv-na.fr/ and https://observatoire-fauna.fr/ for Brocéliande,La Rochelle (T2), 906 

https://data.biodiversite-bretagne.fr for La RochelleBrocéliande (T3).  907 

o GBIF: GBIF.org (04 October 2022) GBIF Occurrence Download  908 

https://doi.org/10.15468/dl.ry6uw7  909 

o French biodiversity monitoring scheme (Vigie Nature): https://www.vigienature.fr/, the 910 

database used are the STOC for Aves, the Vigie-Chiro for Chiroptera and Orthoptera, the 911 

Vigie-Flore for Flora, the STELI for Odonata, the STERF for Papilionidae 912 

- Period of 1011 years, from 01/01/2010 to 31/12/2020 913 

- Extent: continental France (without island, Corsica and overseas regions) 914 

- Spatial accuracy of 0 to 50m 915 

Standardization of species names : French taxonomic reference TAXREF.V14  (Gargominy et al., 916 

2021)(Gargominy et al., 2021). 917 

- Keep only the species and subspecies  918 

- Groups data at the species level  919 

Taxonomic filtering: from TAXREF.V14 920 

- Keep only species in nine taxonomic groups selected: Amphibia, Aves, Chiroptera, Flora, Mammalia 921 

aptera (Mammalia), Orthoptera, Odonata, Papilionidae and Reptilia  922 

- Delete species not present in France so keep: “Present”, “Endemic”, “Subendemic”, “Cryptogenic”, 923 

“Introduced”, “Invasive introduced"  924 

Data transformation and filtering: 925 

- Transformation data into occurrence, i.e. transform data into presence only  926 

- Geographical filtering for reduce sampling biases and delete duplicate data: spatial thinning at a 927 

distance of 50m with “spThin” package (Aiello-Lammens et al., 2015)(Aiello-Lammens et al., 2015)  928 

Identify the presence of species into each study site: at least five observations from all databases in the 929 

study site to certify the presence of the species 930 

Standardization of the observation period between databases: for Aves filtering observations between 1 931 

March and 15 July corresponding to the STOC period.  932 

https://inpn.mnhn.fr/
https://sinp-occitanie.fr/atlas/
https://obv-na.fr/
https://observatoire-fauna.fr/
https://data.biodiversite-bretagne.fr/
https://doi.org/10.15468/dl.ry6uw7
https://www.vigienature.fr/


 

 

A.2 - Environmental variables selected for Species Distribution Models (SDM) of Aves and Papilionidae species. Variables used for SDM are the variables with 933 

collinearity removed (Pearson >0.7).  934 

Type of variables Variables Database Year 
Raw 

precision 
Source Variables used for SDM 

BiogeographyGeography 

Climatic 19 bioclimatic variables Chelsa 
1981-
2010 

1 km 
Karger et 
al., 2021, 

2017 

Bio 2 (temp. range), Bio 5 (temp. warmest 
month), Bio 6 (min. temp. coldest month), Bio 9 

(temp. driest quarter), Bio 13 (prec. wettest 
month), Bio 14 (prec. driest month), Bio 

15(prec. seasonality) 

Elevation 

Elevation, mean in a buffer of 
fifty meters 

BD ALTI, 
IGN 

2014 25 m IGN, 2022 

Elevation 

Slope, mean in a buffer of 50 
meters Slope 

Topographic Position Index 
(TPI), mean in a buffer of 50 

meters 
TPI 

Wetland 
Area of wetland potential: very 
high in a buffer of 50, 500, 2000 

meters 

INRAE 
Wetland 
potential 

2014 50 m 
Berthier et 

al., 2014 
Wetland in buffer of 50 and 500 m 

Waterway 
Linear meters of waterway in a 
buffer of 50, 500, 2000 meters 

BD TOPO, 
IGN 

2022 Vector IGN, 2022 Waterway in buffer of 50 and 500m 

Human occupancy 

Land-use 

Area of artificial, conifer forest, 
crop, deciduous forest, land, 

lawn, mineral, prairie, water in 
buffer of 50, 500 and 2000 

meters 

OSO Land 
Cover 

2018 25 m 
Inglada et 
al., 2019 

Artificial, conifer, crops, deciduous, fruit culture, 
land, mineral, prairie, water in a buffer of 50 and 

500 m 
Lawn in a buffer of 500 m,  

Sand in a buffer of 50, 500, 2000 m 

Hedge line 
Linear meters of hedge in a 

buffer of 50, 500, 2000 meters 
BD TOPO, 

IGN 
2022 Vector IGN, 2022 Hedge line in buffer of 50, 500 m 

NDVI mean 
NDVI mean in buffer of 50, 500, 

2000 meters 
DHI NDVI 2022 10 m 

CESBIO, 
2021, 
2022 

DHI NDVI in buffer of 50 and 500m 

Pollution / 
Fragmentation 

Light 
pollution 

Mean value in buffer of 500 
meters of night time light 
average masked of 2015 

VIIRS 
night 
time 
lights 

2015 500 m 
Elvidge et 
al., 2021 

Night time light 

Road 
fragmentation 

Linear meters of fragmenting of 
main road in a buffer of 50, 

500, 2000 meters 

BD TOPO, 
IGN 

2022 Vector IGN, 2022 Main road in a buffer of 50, 500, 2000 m 

 935 



 

 

A.3 - Species traits of Aves and Papilionidae. Missing traits were imputed by considering evolutionary 936 

relationships following the process of Carmona et al. (2021) with the help the R scripts of Toussaint et 937 

al. (2021). 938 
 Traits Description Reference 

A
v

e
s 

Mass 
Body mass using data from males, females, and/or 

unspecified adults in g 
Storchová and Hořák, 2018 

HWI 
Avian hand-wing index (HWI), an estimate of wing shape 

as a proxy for dispersal ability in birds 
Sheard et al., 2020 

Nocturn Nocturnal activity Wilman et al., 2014 
Habitats (Deciduous 

Coniferous, Woodland, 
Shrub, Grassland, Mountain 

meadows, Reed, Swamps, 
Rocks, Urban) 

Species occupies habitat in breeding area, 1: yes; 0: no Storchová and Hořák, 2018 

Spe. Diet, Spe. Foraging 
behav., Spe. Diet strat, Spe. 
Hab., Spe. Nest, Spe. Mean 

Specialization respectively of diet, foraging behaviour, 
foraging substrate, habitat, nesting site and mean of five 

specializations 
Morelli et al., 2020 

P
a

p
il

io
n

id
a

e
 

Wingspan Average length of male wingspan in mm 

Middleton-Welling et al., 
2020 

FMoMean Average duration of yearly flight period 
HostplantN Hostplant specificity, number of hostplants 

HostplantSpe Hostplant specificity index 

HPG 
Hostplant growth form: Short herb/grass (<1 m) (Bi), tall 

herb/grass (>1 m) (Th), shrub (Sb), tree (Tr), liana (Li) 
SSI Species Specialization Index Essens et al., 2017 

AltVeg 

Altitudinal vegetation: A=Anthropogenic, Co=Foothill, 
TheMeMed=Thermo/Meso-Mediterranean, 

Med=Mediterranean, SupMed=Supra-Mediterranean, 
Mo=Montane, ASa=Alpine and Subalpine 

Dupont et al., 2013 

Rarity Rarity in France between 1 very rare to 3 common species 
In Moussus et al., 2019 

from oreina.org and 
faune.france.org 

The phylogenetic trees used to consider evolutionary relationships were from Jetz et al. (2012) and Wiemers et al. (2019, 2020) 
for the Aves and Papilionidae, respectively.  
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Appendix B - Supplementary results 941 

B.1 - Description of observation databases (Local SINP, GBIF, Vigie Nature) available nine taxonomic groups 942 

in the three study sites (T1: Lodévois-Larzac, T2: Brocéliande, T3: La Rochelle) for “local” (Local” (study 943 

site with a buffer zone 10 km), “Regional” (administrative region) and “FranceCountry” (continental 944 

France) scales. Statistics: “nSp” is the number of species with at least threefive observations on the 945 

study site within a 10 km buffer; “pSp<15obs”, “pSp15.50obs” and “pSp>50obs” are the percentage of 946 

species with <15, 15 to 50 and >50 observations respectively and “-“ represents no data available.   947 

B.1.A - Local scale (10km buffer zone). 948 
  Local 

Taxa Statistc 
GBIF SINP Vigie Nature All databases combined 

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 

Amphibia 

nSp 11 1 11 13 2 0 

No program 

14 2 11 

pSp<15obs 82% 100% 100% 23% 50% - 29% 50% 100% 

pSp15.50obs 18% 0% 0% 15% 50% - 7% 50% 0% 

pSp.>50obs 0% 0% 0% 62% 0% - 64% 0% 0% 

Aves 

nSp 100 73 77 197 94 82 114 155 101 205 171 132 

pSp<15obs 87% 93% 95% 37% 96% 85% 56% 50% 54% 37% 47% 59% 

pSp15.50obs 10% 6% 4% 23% 3% 15% 32% 17% 20% 22% 22% 13% 

pSp.>50obs 3% 1% 1% 40% 1% 0% 12% 33% 27% 41% 31% 28% 

Chiroptera 

nSp 4 0 5 21 6 18 25 22 24 26 22 26 

pSp<15obs 100% - 100% 10% 83% 50% 12% 41% 21% 12% 41% 27% 

pSp15.50obs 0% - 0% 38% 0% 44% 16% 36% 46% 19% 36% 34% 

pSp.>50obs 0% - 0% 52% 17% 6% 72% 23% 33% 69% 23% 39% 

Flora 

nSp 786 476 639 1703 1335 843 286 177 136 1844 1460 1093 

pSp<15obs 81% 85% 81% 52% 48% 74% 100% 100% 100% 52% 50% 72% 

pSp15.50obs 16% 14% 17% 30% 25% 14% 0% 0% 0% 28% 24% 17% 

pSp.>50obs 3% 1% 3% 18% 27% 12% 0% 0% 0% 20% 25% 11% 

Mammalia 

nSp 10 1 14 23 7 30 

No program 

23 7 30 

pSp<15obs 100% 100% 100% 78% 86% 60% 74% 86% 57% 

pSp15.50obs 0% 0% 0% 17% 14% 20% 22% 14% 20% 

pSp.>50obs 0% 0% 0% 4% 0% 20% 4% 0% 23% 

Odonata 

nSp 38 5 23 57 1 0 0 1 24 57 7 30 

pSp<15obs 74% 100% 100% 28% 100% - - 100% 100% 28% 100% 97% 

pSp15.50obs 26% 0% 0% 37% 0% - - 0% 0% 30% 0% 3% 

pSp.>50obs 0% 0% 0% 35% 0% - - 0% 0% 42% 0% 0% 

Orthoptera 

nSp 53 3 24 91 8 0 25 19 19 98 25 34 

pSp<15obs 92% 100% 100% 71% 100% - 24% 58% 16% 56% 68% 53% 

pSp15.50obs 8% 0% 0% 23% 0% - 24% 32% 52% 18% 24% 29% 

pSp.>50obs 0% 0% 0% 6% 0% - 52% 10% 32% 26% 8% 18% 

Papilionidae 

nSp 115 15 33 154 11 0 0 0 50 154 18 52 

pSp<15obs 60% 100% 94% 21% 100% - - - 88 21% 100% 73% 

pSp15.50obs 30% 0% 6% 19% 0% - - - 12 18% 0% 27% 

pSp.>50obs 10% 0% 0% 60% 0% - - - 0 60% 0% 0% 

Reptilia 

nSp 18 2 7 21 4 0 

No program 

22 4 7 

pSp<15obs 67% 100% 100% 24% 100% - 27% 75% 100% 

pSp15.50obs 28% 0% 0% 33% 0% - 32% 25% 0% 

pSp.>50obs 6% 0% 0% 43% 0% - 41% 0% 0% 

B.1.A - Regional scale.  949 
  Regional 

Taxa Statistic 
GBIF Vigie Nature All databases combined 

T1 T2 T3 T1 T2 T3 T1 T2 T3 

Amphibia 

nSp 13 2 11 

No program 

14 2 11 

pSp<15obs 8% 0% 73% 7% 0% 73% 

pSp15.50obs 23% 50% 18% 14% 50% 18% 

pSp.>50obs 69% 50% 9% 79% 50% 9% 

Aves 

nSp 198 159 120 182 143 120 205 166 132 

pSp<15obs 21% 21% 40% 31% 29% 32% 12% 16% 19% 

pSp15.50obs 12% 12% 22% 21% 15% 27% 11% 10% 28% 

pSp.>50obs 67% 67% 38% 48% 56% 41% 77% 74% 53% 

Chiroptera 

nSp 13 13 5 25 22 24 26 22 26 

pSp<15obs 100% 100% 100% 0% 0% 8% 0% 0% 15% 

pSp15.50obs 0% 0% 0% 4% 0% 17% 8% 0% 15% 

pSp.>50obs 0% 0% 0% 96% 100% 75% 92% 100% 69% 

Flora 

nSp 1428 1093 825 825 657 413 1844 1158 1093 

pSp<15obs 43% 38% 47% 95% 94% 94% 32% 40% 47% 

pSp15.50obs 19% 19% 20% 5% 6% 6% 26% 19% 23% 

pSp.>50obs 38% 49% 33% 0% 0% 0% 42% 41% 31% 

Mammalia 

nSp 23 6 21 

No program 

23 6 30 

pSp<15obs 39% 33% 62% 30% 33% 50% 

pSp15.50obs 26% 0% 33% 22% 0% 23% 

pSp.>50obs 35% 67% 5% 48% 67% 27% 

Odonata 

nSp 56 7 28 56 7 27 57 7 30 

pSp<15obs 18% 14% 64% 77% 71% 100% 9% 14% 53% 

pSp15.50obs 30% 14% 25% 23% 29% 0% 21% 14% 37% 

pSp.>50obs 52% 71% 11% 0% 0% 0% 70% 72% 10% 

Orthoptera 

nSp 93 25 26 25 19 19 98 25 34 

pSp<15obs 42% 24% 58% 4% 0% 11% 30% 4% 27% 

pSp15.50obs 39% 40% 42% 4% 0% 16% 22% 0% 29% 

pSp.>50obs 19% 36% 0% 92% 100% 74% 48% 96% 44% 

Papilionidae 

nSp 144 18 43 132 18 51 154 18 52 

pSp<15obs 12% 0% 37% 42% 11% 55% 7% 0% 34% 

pSp15.50obs 19% 11% 42% 30% 22% 41% 13% 6% 31% 

pSp.>50obs 69% 89% 21% 28% 67% 4% 81% 94% 35% 

Reptilia 

nSp 20 4 7 

No program 

22 4 7 

pSp<15obs 20% 0% 14% 18% 0% 14% 

pSp15.50obs 30% 25% 57% 28% 25% 57% 

pSp.>50obs 50% 75% 29% 59% 75% 29% 



 

 

B.1.C - FranceCountry scale. 950 
  FranceCountry 

Taxa Statistic 
GBIF Vigie Nature All databases combined 

T1 T2 T3 T1 T2 T3 T1 T2 T3 

Amphibia 

nSp 14 2 11 

No program 

14 2 11 

pSp<15obs 7% 0% 0% 0% 0% 0% 

pSp15.50obs 0% 0% 9% 7% 0% 9% 

pSp.>50obs 93% 100% 91% 93% 100% 91% 

Aves 

nSp 204 170 131 201 170 132 205 171 132 

pSp<15obs 2% 1% 1% 8% 9% 4% 1% 0% 0% 

pSp15.50obs 3% 1% 1% 11% 9% 7% 1% 1% 0% 

pSp.>50obs 95% 98% 98% 81% 82% 89% 98% 99% 100% 

Chiroptera 

nSp 19 19 21 25 22 25 26 22 26 

pSp<15obs 90% 89% 90% 0% 0% 0% 0% 0% 4% 

pSp15.50obs 10% 11% 10% 0% 0% 0% 4% 0% 0% 

pSp.>50obs 0% 0% 0% 100% 100% 100% 96% 100% 96% 

Flora 

nSp 1573 1261 995 1336 1105 848 1844 1460 1093 

pSp<15obs 25% 20% 17% 68% 61% 53% 19% 14% 16% 

pSp15.50obs 18% 18% 16% 19% 23% 27% 21% 17% 16% 

pSp.>50obs 57% 62% 67% 13% 16% 20% 60% 69% 68% 

Mammalia 

nSp 23 6 28 

No program 

23 7 30 

pSp<15obs 13% 16% 18% 9% 14% 23% 

pSp15.50obs 17% 17% 28% 13% 29% 17% 

pSp.>50obs 70% 67% 54% 78% 57% 60% 

Odonata 

nSp 57 7 30 57 7 30 57 7 30 

pSp<15obs 2% 0% 0% 11% 0% 0% 0% 0% 0% 

pSp15.50obs 10% 14% 0% 26% 0% 13% 3% 0% 0% 

pSp.>50obs 88% 86% 100% 63% 100% 87% 97% 100% 100% 

Orthoptera 

nSp 95 25 34 25 19 19 98 25 34 

pSp<15obs 22% 12% 6% 4% 0% 0% 15% 0% 0% 

pSp15.50obs 28% 20% 21% 0% 0% 0% 25% 4% 9% 

pSp.>50obs 50% 68% 73% 96% 100% 100% 60% 96% 91% 

Papilionidae 

nSp 147 18 52 149 18 52 154 18 52 

pSp<15obs 4% 0% 0% 13% 5% 0% 1% 0% 0% 

pSp15.50obs 8% 0% 0% 18% 6% 0% 7% 0% 0% 

pSp.>50obs 88% 100% 100% 69% 89% 100% 92% 100% 100% 

Reptilia 

nSp 21 4 7 

No program 

22 4 7 

pSp<15obs 0% 0% 0% 4% 0% 0% 

pSp15.50obs 14% 0% 0% 5% 0% 0% 

pSp.>50obs 86% 100% 100% 91% 100% 100% 
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B.2 - SDM evaluation of Aves and Papilionidae taxonomic groups for (A) three individual database sources 953 

and (B) between SDM using different pseudo-absence sources. Each graphic is a pair of databases. 954 

(National combined GBIF and Vigie Nature). Each point is an individual species that is listed in both 955 

databases, some species are assessed only in one database (missing). A Boyce’s index threshold of 0.3 956 

is used to assess the proportion of satisfactory and unsatisfactory models conjointly for each of the two 957 

database sources. The blue quadrant contains species whose SDMs are evaluated in a satisfactory 958 

manner in both data bases (Boyce index > 0.3 for both databases) ; the red quadrant contains the 959 

species for which SDMs are evaluated in an unsatisfactory manner in both databases (Boyce index < 960 

0.3 for both databases). In the top-left quadrant and the bottom-right quadrants, SDM model 961 

evaluation was satisfactory for only one database (on the in y and x axes respectively). 962 

 963 
 964 



 

 

B.3 - Overlap between SDM from individual database sources. VN is Vigie Nature database and National 965 

combined GBIF and Vigie Nature.  966 

 967 



 

 

B.4 - Overlap between SDM from individual database sources and SDM from mixed databases (i.e. using 968 

absence from Vigie Nature). National combine of GBIF and Vigie Nature. 969 

 970 



 

 

B.5 - Maps of conservation planning area for Aves and Papilionidae of tree study sites (T1, T2, T3) from 971 

different individual database source (GBIF, Vigie Nature and “National databases, GBIF, Vigie Nature” 972 

combining the two databases). 973 

 974 
 975 

B.6 - Evaluation of the quality of the full model (Table 5) compared to null model using AIC.  976 

Model Aves Papilionidae 
Full 3057 1322 
Null 3357 1574 

 977 



 

 

B.7  – Species list observed in each study site (T1, T2, T3) and their French status from TAXREF.V14 978 

(Presence, Introduced, Invasive introduced) and IUCN regional red list from BD.STATUT.V16 (LC, NT, VU, 979 

EN, CR, DD, NA) for A) Aves species and B) Papilionidae Species. 980 

B.7.A – Aves species 981 

Species 
Observed 

French status 
IUCN regional red list  

T1 T2 T3 T1 T2 T3 

Accipiter gentilis Yes Yes Yes Present LC VU EN 
Accipiter nisus Yes Yes Yes Present LC LC LC 

Acrocephalus arundinaceus Yes Yes - Present VU CR - 
Acrocephalus schoenobaenus - Yes Yes Present - VU LC 

Acrocephalus scirpaceus Yes Yes - Present NT VU - 
Actitis hypoleucos Yes Yes Yes Present EN CR NA 

Aegithalos caudatus Yes Yes Yes Present LC LC LC 
Aegypius monachus Yes - - Present CR - - 

Aix galericulata Yes - - Introduced NA - - 
Alauda arvensis Yes Yes Yes Present LC VU LC 

Alcedo atthis Yes Yes Yes Present NT NT LC 
Alectoris rufa Yes Yes Yes Present DD DD DD 
Anas acuta - - Yes Present - - VU 
Anas crecca - - Yes Present - - LC 

Anas platyrhynchos Yes Yes Yes Present DD LC LC 
Anser anser - Yes Yes Present - VU NA 

Anthus campestris Yes Yes - Present VU EN - 
Anthus pratensis Yes Yes Yes Present VU EN VU 
Anthus spinoletta - Yes Yes Present - LC LC 

Anthus trivialis Yes Yes Yes Present LC LC LC 
Apus apus Yes Yes Yes Present LC NT LC 

Aquila chrysaetos Yes - - Present VU - - 
Aquila fasciata Yes - - Present CR - - 

Ardea alba Yes Yes Yes Present VU NT EN 
Ardea cinerea Yes Yes Yes Present LC LC LC 

Ardea purpurea Yes Yes - Present EN VU - 
Ardeola ralloides Yes - - Present VU - - 

Arenaria interpres - Yes - Present - NA - 
Asio otus Yes Yes - Present LC LC - 

Athene noctua Yes Yes Yes Present NT NT VU 
Aythya ferina - - Yes Present - - EN 

Aythya fuligula - - Yes Present - - LC 
Botaurus stellaris Yes - - Present EN - - 
Branta bernicla - Yes Yes Present - NA LC 

Bubo bubo Yes - - Present LC - - 
Bubulcus ibis Yes Yes Yes Present LC LC NT 

Burhinus oedicnemus Yes Yes - Present LC NT - 
Buteo buteo Yes Yes Yes Present LC LC LC 

Calandrella brachydactyla Yes - - Present EN - - 
Calidris alba - Yes - Present - NA - 

Calidris alpina - Yes - Present - NA - 
Caprimulgus europaeus Yes - Yes Present LC - LC 

Carduelis carduelis Yes Yes Yes Present VU NT LC 
Cecropis daurica Yes - - Present VU - - 

Certhia brachydactyla Yes Yes Yes Present LC LC LC 
Certhia familiaris Yes - - Present LC - - 

Cettia cetti Yes Yes Yes Present LC LC LC 
Charadrius alexandrinus - Yes - Present - EN - 

Charadrius dubius Yes Yes - Present NT VU - 
Charadrius hiaticula Yes Yes - Present VU VU - 

Chlidonias niger Yes Yes - Present NA CR - 
Chloris chloris Yes Yes Yes Present NT NT LC 

Chroicocephalus ridibundus Yes Yes Yes Present LC VU LC 
Ciconia ciconia Yes Yes - Present NT NT - 
Ciconia nigra Yes - - Present EN - - 
Cinclus cinclus Yes - - Present LC - - 

Circaetus gallicus Yes Yes - Present LC EN - 
Circus aeruginosus Yes Yes - Present VU VU - 

Circus cyaneus Yes Yes Yes Present EN NT EN 
Circus pygargus Yes Yes - Present EN NT - 
Cisticola juncidis Yes Yes Yes Present LC NT LC 

Clamator glandarius Yes - - Present NT - - 



 

 

Coccothraustes coccothraustes Yes Yes Yes Present LC NT VU 
Columba livia Yes Yes Yes Present DD DD DD 

Columba oenas Yes Yes Yes Present VU EN LC 
Columba palumbus Yes Yes Yes Present LC LC LC 
Coracias garrulus Yes - - Present NT - - 

Corvus corax Yes - - Present LC - - 
Corvus corone Yes Yes Yes Present LC LC LC 

Corvus frugilegus - Yes Yes Present - LC LC 
Corvus monedula Yes Yes Yes Present LC NT LC 
Coturnix coturnix Yes Yes Yes Present NT VU LC 
Cuculus canorus Yes Yes Yes Present LC LC LC 

Cyanistes caeruleus Yes Yes Yes Present LC LC LC 
Cygnus olor Yes Yes - Present NA LC - 

Delichon urbicum Yes Yes Yes Present LC NT LC 
Dendrocopos major Yes Yes Yes Present LC LC LC 
Dendrocopos minor Yes Yes Yes Present LC NT LC 
Dryocopus martius Yes - Yes Present LC - LC 

Egretta garzetta Yes Yes Yes Present LC LC NT 
Elanus caeruleus - Yes - Present - VU - 

Emberiza calandra Yes Yes Yes Present LC VU EN 
Emberiza cirlus Yes Yes Yes Present LC LC LC 

Emberiza citrinella Yes Yes Yes Present NT NT NT 
Emberiza hortulana Yes - - Present VU - - 

Emberiza schoeniclus Yes Yes Yes Present EN EN VU 
Erithacus rubecula Yes Yes Yes Present LC LC LC 
Falco columbarius - Yes - Present - NA - 
Falco naumanni Yes - - Present VU - - 
Falco peregrinus Yes Yes - Present VU CR - 
Falco subbuteo Yes Yes Yes Present NT NT NT 

Falco tinnunculus Yes Yes Yes Present LC NT LC 
Falco vespertinus Yes Yes - Present NA NA - 
Ficedula albicollis Yes - - Present NT - - 

Ficedula hypoleuca Yes - - Present EN - - 
Fringilla coelebs Yes Yes Yes Present LC LC LC 

Fringilla montifringilla - - Yes Present - - DD 
Fulica atra Yes Yes Yes Present LC LC LC 

Galerida cristata Yes Yes - Present LC LC - 
Gallinago gallinago Yes Yes Yes Present CR CR NA 
Gallinula chloropus Yes Yes Yes Present LC NT LC 
Garrulus glandarius Yes Yes Yes Present LC LC LC 

Grus grus Yes Yes - Present CR CR - 
Gyps fulvus Yes - - Present VU - - 

Hieraaetus pennatus Yes - - Present VU - - 
Himantopus himantopus Yes Yes - Present LC NT - 

Hippolais polyglotta Yes Yes Yes Present LC LC LC 
Hirundo rustica Yes Yes Yes Present NT NT LC 

Ichthyaetus melanocephalus - Yes - Present - CR - 
Jynx torquilla Yes Yes - Present NT VU - 
Lanius collurio Yes Yes Yes Present NT NT EN 

Lanius excubitor - - Yes Present - - NA 
Lanius meridionalis Yes - - Present EN - - 

Lanius senator Yes - - Present NT - - 
Larus argentatus - Yes Yes Present - VU VU 

Larus canus - Yes - Present - EN - 
Larus fuscus Yes Yes Yes Present NA LC LC 

Larus marinus - Yes - Present - EN - 
Larus michahellis Yes Yes - Present LC VU - 
Limosa lapponica - Yes - Present - NA - 

Limosa limosa - Yes - Present - CR - 
Linaria cannabina Yes Yes Yes Present NT NT LC 

Locustella luscinioides - Yes - Present - EN - 
Locustella naevia Yes Yes Yes Present DD VU LC 

Lophophanes cristatus Yes Yes Yes Present LC VU LC 
Loxia curvirostra Yes - - Present LC - - 
Lullula arborea Yes Yes Yes Present LC NT LC 

Luscinia megarhynchos Yes Yes Yes Present LC LC VU 
Luscinia svecica Yes Yes - Present LC LC - 

Mareca penelope - - Yes Present - - LC 
Mareca strepera - - Yes Present - - LC 

Mergus merganser - - Yes Present - - NA 
Merops apiaster Yes Yes - Present NT VU - 



 

 

Milvus migrans Yes Yes - Present LC LC - 
Milvus milvus Yes - - Present EN - - 

Monticola saxatilis Yes - - Present VU - - 
Monticola solitarius Yes - - Present VU - - 

Motacilla alba Yes Yes Yes Present LC LC LC 
Motacilla cinerea Yes - Yes Present LC - LC 

Motacilla flava Yes Yes - Present NT LC - 
Muscicapa striata Yes Yes Yes Present LC NT LC 

Neophron percnopterus - Yes - Present - EN - 
Numenius arquata Yes Yes - Present CR EN - 

Numenius phaeopus - Yes - Present - NA - 
Nycticorax nycticorax Yes Yes - Present NT VU - 
Oenanthe oenanthe Yes Yes Yes Present NT EN EN 

Oriolus oriolus Yes Yes - Present LC LC - 
Otus scops Yes - - Present NT - - 

Pandion haliaetus Yes - - Present VU - - 
Parus major Yes Yes Yes Present LC LC LC 

Passer domesticus Yes Yes Yes Present LC NT LC 
Passer montanus Yes Yes Yes Present NT EN EN 

Perdix perdix Yes Yes Yes Present NT DD DD 
Periparus ater Yes - Yes Present LC - NT 
Pernis apivorus Yes Yes - Present LC VU - 

Petronia petronia Yes - - Present LC - - 
Phalacrocorax carbo Yes Yes Yes Present NA VU LC 
Phasianus colchicus Yes Yes Yes Introduced NA DD DD 

Phoenicurus ochruros Yes Yes Yes Present LC LC LC 
Phoenicurus phoenicurus Yes Yes Yes Present LC LC VU 

Phylloscopus bonelli Yes Yes - Present LC NT - 
Phylloscopus collybita Yes Yes Yes Present LC LC LC 
Phylloscopus sibilatrix Yes - Yes Present EN - NT 
Phylloscopus trochilus Yes Yes Yes Present NA CR EN 

Pica pica Yes Yes Yes Present LC LC LC 
Picus canus Yes Yes - Present EN CR - 
Picus viridis Yes Yes Yes Present LC LC LC 

Platalea leucorodia - Yes - Present - EN - 
Pluvialis apricaria - - Yes Present - - LC 

Pluvialis squatarola - Yes - Present - NA - 
Podiceps cristatus Yes - Yes Present LC - LC 
Poecile palustris Yes Yes Yes Present LC VU NT 
Prunella collaris Yes - - Present EN - - 

Prunella modularis Yes Yes Yes Present LC LC LC 
Ptyonoprogne rupestris Yes - - Present LC - - 

Pyrrhocorax pyrrhocorax Yes - - Present VU - - 
Pyrrhula pyrrhula Yes - Yes Present VU - VU 
Rallus aquaticus Yes Yes - Present LC VU - 

Recurvirostra avosetta - Yes - Present - VU - 
Regulus ignicapilla Yes Yes Yes Present LC LC LC 

Regulus regulus Yes - Yes Present LC - LC 
Riparia riparia Yes Yes Yes Present EN NT LC 

Saxicola rubetra Yes Yes - Present EN CR - 
Saxicola rubicola Yes Yes Yes Present VU NT LC 

Scolopax rusticola Yes - - Present DD - - 
Serinus serinus Yes Yes Yes Present LC NT LC 
Sitta europaea Yes Yes Yes Present LC LC LC 

Spatula clypeata Yes Yes Yes Present DD VU LC 
Spatula querquedula - Yes - Present - CR - 

Spinus spinus Yes - - Present VU - - 
Sterna hirundo Yes Yes - Present LC VU - 

Streptopelia decaocto Yes Yes Yes Present LC LC LC 
Streptopelia turtur Yes Yes Yes Present LC VU LC 

Strix aluco Yes Yes Yes Present LC LC DD 
Sturnus vulgaris Yes Yes Yes Present LC LC LC 
Sylvia atricapilla Yes Yes Yes Present LC LC LC 

Sylvia borin Yes Yes Yes Present LC NT LC 
Sylvia cantillans Yes Yes - Present LC LC - 
Sylvia communis Yes Yes Yes Present LC NT LC 

Sylvia conspicillata - Yes - Present - EN - 
Sylvia hortensis Yes - - Present LC - - 

Sylvia melanocephala Yes - - Present LC - - 
Sylvia undata Yes - Yes Present VU - LC 

Tachybaptus ruficollis Yes Yes Yes Present LC LC LC 



 

 

Tachymarptis melba Yes - - Present VU - - 
Tadorna ferruginea - Yes - Present - NA - 

Tadorna tadorna Yes Yes - Present LC LC - 
Tetrax tetrax Yes - - Present NT - - 

Thalasseus sandvicensis Yes Yes - Present VU NT - 
Tichodroma muraria Yes - - Present CR - - 

Tringa erythropus - Yes - Present - NA - 
Tringa nebularia - Yes - Present - NA - 
Tringa ochropus Yes Yes Yes Present NA NA DD 
Tringa totanus Yes Yes - Present EN VU - 

Troglodytes troglodytes Yes Yes Yes Present LC LC LC 
Turdus iliacus Yes - Yes Present NA - DD 
Turdus merula Yes Yes Yes Present LC LC LC 

Turdus philomelos Yes Yes Yes Present LC LC LC 
Turdus pilaris Yes - Yes Present VU - DD 

Turdus torquatus - Yes - Present - LC - 
Turdus viscivorus Yes Yes Yes Present LC NT LC 

Tyto alba - Yes Yes Present - VU DD 
Upupa epops Yes Yes Yes Present LC LC LC 

Vanellus vanellus - Yes Yes Present - VU VU 
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B.7.A – Papilionidae species 983 

Species 
Observed 

French status 
IUCN regional red list  

T1 T3 T1 T3 

Aglais io Yes Yes Present LC LC 
Anthocharis cardamines Yes Yes Present LC LC 
Anthocharis euphenoides Yes - Present LC - 

Apatura ilia Yes - Present LC - 
Apatura iris Yes Yes Present NT NT 

Aphantopus hyperantus Yes Yes Present LC NT 
Aporia crataegi Yes Yes Present LC LC 

Araschnia levana Yes Yes Present LC LC 
Arethusana arethusa Yes - Present LC - 

Argynnis pandora Yes - Present LC - 
Argynnis paphia Yes Yes Present LC LC 

Aricia agestis Yes Yes Present LC LC 
Aricia montensis Yes - Present DD - 

Boloria dia Yes Yes Present LC LC 
Boloria euphrosyne Yes - Present LC - 

Boloria selene Yes - Present NT - 
Brenthis daphne Yes - Present LC - 
Brenthis hecate Yes - Present VU - 
Brintesia circe Yes - Present LC - 

Cacyreus marshalli Yes - Invasive introduced NA - 
Callophrys avis Yes - Present LC - 
Callophrys rubi Yes Yes Present LC LC 

Carcharodus alceae Yes Yes Present LC LC 
Celastrina argiolus Yes Yes Present LC LC 

Charaxes jasius Yes - Present LC - 
Chazara briseis Yes - Present VU - 

Coenonympha arcania Yes Yes Present LC LC 
Coenonympha dorus Yes - Present LC - 

Coenonympha pamphilus Yes Yes Present LC LC 
Colias alfacariensis Yes Yes Present LC LC 

Colias crocea Yes Yes Present LC LC 
Cupido alcetas Yes - Present LC - 

Cupido argiades - Yes Present - NT 
Cupido minimus Yes - Present LC - 

Cupido osiris Yes - Present NT - 
Cyaniris semiargus Yes Yes Present LC NT 

Erebia aethiops Yes - Present NT - 
Erebia epistygne Yes - Present EN - 
Erebia meolans Yes - Present LC - 
Erebia neoridas Yes - Present NT - 
Erynnis tages Yes Yes Present LC LC 

Euchloe crameri Yes - Present LC - 
Euphydryas aurinia Yes - Present NT - 
Fabriciana adippe Yes - Present NT - 



 

 

Fabriciana niobe Yes - Present NT - 
Glaucopsyche alexis Yes - Present LC - 

Glaucopsyche melanops Yes - Present LC - 
Gonepteryx cleopatra Yes - Present LC - 

Gonepteryx rhamni Yes Yes Present LC LC 
Hamearis lucina Yes - Present LC - 
Hesperia comma Yes - Present LC - 

Hipparchia alcyone Yes - Present DD - 
Hipparchia fagi Yes - Present LC - 
Hipparchia fidia Yes Yes Present LC LC 

Hipparchia genava Yes - Present NT - 
Hipparchia semele Yes Yes Present LC EN 

Hipparchia statilinus Yes Yes Present LC EN 
Hyponephele lupina Yes - Present EN - 
Hyponephele lycaon Yes - Present EN - 

Iberochloe tagis Yes - Present EN - 
Iphiclides podalirius Yes - Present LC - 

Issoria lathonia Yes Yes Present LC LC 
Laeosopis roboris Yes - Present LC - 
Lampides boeticus Yes - Present LC - 
Lasiommata maera Yes Yes Present LC CR 

Lasiommata megera Yes Yes Present LC LC 
Leptidea sinapis Yes Yes Present LC LC 

Leptotes pirithous Yes - Present LC - 
Libythea celtis Yes - Introduced LC - 

Limenitis camilla Yes Yes Present LC LC 
Limenitis reducta Yes - Present LC - 
Lycaena alciphron Yes - Present LC - 

Lycaena dispar Yes - Present NT - 
Lycaena phlaeas Yes Yes Present LC LC 
Lycaena tityrus Yes Yes Present LC LC 

Lysandra bellargus Yes - Present LC - 
Lysandra coridon Yes - Present LC - 
Lysandra hispana Yes - Present LC - 
Maniola jurtina Yes Yes Present LC LC 

Melanargia galathea Yes Yes Present LC LC 
Melanargia lachesis Yes - Present LC - 

Melanargia occitanica Yes - Present LC - 
Melanargia russiae Yes - Present VU - 

Melitaea athalia Yes - Present DD - 
Melitaea celadussa Yes - Present LC - 

Melitaea cinxia Yes Yes Present LC LC 
Melitaea deione Yes - Present DD - 

Melitaea diamina Yes - Present NT - 
Melitaea didyma Yes - Present LC - 

Melitaea parthenoides Yes - Present LC - 
Melitaea phoebe Yes Yes Present LC LC 

Minois dryas Yes - Present LC - 
Muschampia floccifera Yes - Present NT - 

Muschampia lavatherae Yes - Present NT - 
Muschampia proto Yes - Present NT - 
Nymphalis antiopa Yes - Present NT - 

Nymphalis polychloros Yes Yes Present LC LC 
Ochlodes sylvanus Yes Yes Present LC LC 
Papilio machaon Yes Yes Present LC LC 
Pararge aegeria Yes Yes Present LC LC 

Parnassius apollo Yes - Present VU - 
Phengaris alcon Yes - Present VU - 
Phengaris arion Yes - Present NT - 
Pieris brassicae Yes Yes Present LC LC 

Pieris mannii Yes - Present DD - 
Pieris napi Yes Yes Present LC LC 

Pieris rapae Yes Yes Present LC LC 
Plebejus argus Yes Yes Present LC NT 
Plebejus idas Yes Yes Present NT CR 

Polygonia c-album Yes Yes Present LC LC 
Polyommatus amandus Yes - Present VU - 
Polyommatus daphnis Yes - Present VU - 

Polyommatus dolus Yes - Present VU - 
Polyommatus dorylas Yes - Present VU - 
Polyommatus escheri Yes - Present LC - 



 

 

Polyommatus icarus Yes Yes Present LC LC 
Polyommatus thersites Yes - Present DD - 

Pontia daplidice Yes - Present LC - 
Pseudophilotes baton Yes - Present LC - 

Pyrgus alveus Yes - Present NT - 
Pyrgus armoricanus Yes - Present LC - 

Pyrgus carthami Yes - Present NT - 
Pyrgus cirsii Yes - Present VU - 

Pyrgus foulquieri Yes - Present EN - 
Pyrgus malvae Yes - Present DD - 

Pyrgus malvoides Yes - Present LC - 
Pyrgus onopordi Yes - Present DD - 

Pyronia bathseba Yes - Present LC - 
Pyronia cecilia Yes - Present LC - 

Pyronia tithonus Yes Yes Present LC LC 
Quercusia quercus Yes Yes Present LC LC 
Satyrium acaciae Yes - Present LC - 
Satyrium esculi Yes - Present LC - 
Satyrium ilicis Yes Yes Present LC LC 
Satyrium pruni Yes - Present DD - 
Satyrium spini Yes - Present LC - 

Satyrium w-album Yes - Present LC - 
Satyrus actaea Yes - Present VU - 
Satyrus ferula Yes - Present VU - 

Speyeria aglaja Yes - Present LC - 
Spialia sertorius Yes - Present LC - 
Thecla betulae Yes - Present LC - 

Thymelicus acteon Yes - Present LC - 
Thymelicus lineola Yes Yes Present LC LC 

Thymelicus sylvestris Yes Yes Present LC LC 
Vanessa atalanta Yes Yes Present LC LC 

Vanessa cardui Yes Yes Present LC LC 
Zerynthia polyxena Yes - Present LC - 
Zerynthia rumina Yes - Present LC - 
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