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Abstract
Non-invasive monitoring techniques like camera traps, autonomous recording units
and environmental DNA are increasingly used to collect data for understanding species
distribution. These methods have prompted the development of statistical models to
suit specific sampling designs and get reliable ecological inferences.
Site occupancy models estimate species occurrence patterns, accounting for the possi-
bility that the target species may be present but unobserved. Here, two key processes
are crucial: detection, when a species leaves signs of its presence, and identification
where these signs are accurately recognized. While both processes are prone to error
in general, wrong identifications are often considered as negligible with in situ obser-
vations. When applied to passive bio-monitoring data, characterized by datasets re-
quiring automated processing, this second source of error can no longer be ignored as
misclassifications at both steps can lead to significant biases in ecological estimates.
Several model extensions have been proposed to address these potential errors.
We propose an extended occupancymodel that accounts for the identification process
in addition to detection. Similar to other recent attempts to account for false positives,
our model may suffer from identifiability issues, which usually require another source
of data with perfect identification to resolve them. As an alternative when such data
are unavailable, we propose leveraging existing knowledge of the identification process
within a Bayesian framework by incorporating this knowledge through an informative
prior. Through simulations, we compare different prior choices that encode varying
levels of information, ranging from cases where no prior knowledge is available, to in-
stances with accurate metrics on the performance of the identification, and scenarios
based on generally accepted assumptions. We demonstrate that, compared to using
a default prior, integrating information about the identification process as a prior re-
duces bias in parameter estimates. Overall, our approachmitigates identifiability issues,
reduces estimation bias, and minimizes data requirements.
In conclusion, we provide a statistical method applicable to various monitoring designs,
such as camera trap, bioacoustics, or eDNA surveys, alongside non-invasive sampling
technologies, to produce ecological outcomes that inform conservation decisions.
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2 Célian Monchy et al.

Introduction2

A primary objective for ecologists and conservation scientists is to understand how popula-3

tions and communities are distributed across space and time. Monitoring animal species, plants,4

and even pathogens typically involves collecting data on their presence, and ideally, their ab-5

sence, in order to evaluate their distribution area. Occupancy models have been developed by6

MacKenzie et al. (2002, see also Tyre et al., 2003) to account for potential undetected presence.7

These models estimate the proportion of sites occupied by a species while accounting for the8

imperfect detection of the species during field surveys (MacKenzie et al., 2002). Since a single9

visit is not sufficient to distinguish between a present but undetected species and its true ab-10

sence from a site, MacKenzie et al. (2002) showed that repeated visits to the same site enable11

the estimation of the false-negative error rate, defined as the probability that a species present12

at a site remains undetected during a visit. Over the last decade, the development of new, non-13

invasive monitoring techniques such as camera traps (e.g. Hofmeester et al., 2019; Parsons et al.,14

2017), autonomous acoustic recording units (e.g. Shonfield and Bayne, 2017;Wrege et al., 2017)15

and environmental DNA sampling (e.g. Da Silva Neto et al., 2020; Griffin et al., 2020) has deeply16

changed data collection for biodiversity monitoring. The integration of passive sensor technolo-17

gies into conservation projects is expanding, driven by technical improvements that facilitate the18

efficient monitoring of multiple species, including cryptic taxa, across large areas and challeng-19

ing environments (Burton et al., 2015). However, these emerging methods are not exempt from20

imperfect detection. Indeed, certain discrete taxa may remain silent, do not trigger camera traps,21

or leave minimal detectable traces (Belmont et al., 2022; Goldman et al., 2023), so it remains22

essential to consider the probability of detecting them, regardless of the observation method23

used.24

Within the context of sensor-based assessment method, data are massive and need to be25

processed before being analyzed. In particular, this involves identifying the taxon of interest in a26

large amount of collected data, eithermanually by operators (Swanson et al., 2015;Welbourne et27

al., 2015), through automated deep learning algorithms (Duggan et al., 2021; Tabak et al., 2019),28

or a combination of both (Augustine et al., 2023; Campos-Cerqueira and Aide, 2016). This step29

raises many statistical challenges (Hartig et al., 2024). For images and acoustic data, combining30

manual and automated processing helps to control classification errors; such as misidentifying31

one species as another (Barré et al., 2019). Similarly, environmental DNA studies also generate32

large datasets from which presence data must be extracted (Hunter et al., 2015; Schmidt et al.,33

2013; Thomsen et al., 2012). Detecting an organism’s presence from its DNA in the environ-34

ment is subject to various sources of variability, including the molecular techniques employed,35

laboratory procedures, and the amount of DNA collected (Doi et al., 2019; Willoughby et al.,36

2016). Despite the sensitivity of molecular techniques, once data are processed, distinguishing37

between real absences and those resulting from poor sampling or identification errors remains38

challenging (Goldberg et al., 2016). Thus, it is essential to consider both mis-identification and39

mis-detection in eDNA surveys. In eco-epidemiology studies, site occupancy models are used40

to estimate the occurrence of pathogens responsible for wildlife diseases within a sample unit,41

providing insights into spatial patterns and disease dynamics (McClintock et al., 2010b). The42

challenge for wildlife disease surveys is similar to that in camera-trapping for conservation, as43

both involve estimating occupancy parameters based on imperfect diagnostic tests (Lachish et44

al., 2012; McClintock et al., 2010b; Thompson, 2007).45
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Célian Monchy et al. 3

The challenges of studies based on new biomonitoring technologies stem from the sequen-46

tial nature of the detection and identification processes, each of which introduces two types of47

errors. A false-negative mis-identification occurs when a species is detected (e.g., the camera48

is triggered) but not correctly identified. Conversely, a false-positive mis-identification occurs49

when a species is not detected, but an error in data processing leads to its accidental identifica-50

tion. This two-step process increases the likelihood of errors in eDNA or sensor-based studies,51

compared to conventional surveys (Hartig et al., 2024). Failure to account for these identification52

errors can result in biased estimates of the actual proportion of occupied sites (MacKenzie et al.,53

2002; Spiers et al., 2022; Tyre et al., 2003). The standard site occupancymodel accounts for false-54

negative errors by estimating the probability of imperfect detection, but it does not account for55

the possibility of false-positive detections, where a species is incorrectly identified at a site it56

does not occupy. False-positive errors, if unaddressed, can lead to overestimating occupancy57

probability (McClintock et al., 2010a; Miller et al., 2011; Royle and Link, 2006). Consequently,58

several authors have proposed extending MacKenzie’s site occupancy model by accounting for59

false detection, although these extensions face identifiability issues (Chambert et al., 2015) of-60

ten resolved by incorporating additional data sources, including one without errors. For example,61

Miller et al. (2011) proposed a multiple detection state model in which both certain and ambigu-62

ous data are used at each site. Building on this, Chambert et al. (2015) introduced the concept of63

“reference sites” exempt from detection error, and McKibben et al. (2023) revisited the notion64

of detection ambiguity introduced by Miller et al. (2011) by scoring observer confidence levels.65

While these studies offer solutions for addressing detection errors, especially false positives,66

they rely on the integration of different data sources, which represents a strong constraint that67

cannot always be met. Indeed, great logistics and human efforts are often needed to design sam-68

pling protocols, collect and/or verify data, and to finally get several sources of data with some of69

them guaranteed to be error free. Although error-free data are rarely available, some knowledge70

about the reliability of the identification process may still be accessible (e.g., expert beliefs, cali-71

bration experiments or performance metrics). In this case, eliciting informative prior distribution72

may be an alternative to the combination of several sources of data (Cruickshank et al., 2019;73

Guillera-Arroita et al., 2017). The use of Bayesian statistics allows the integration of information74

through informative prior, which has been shown to increase confidence in the results (Choy et75

al., 2009; McCarthy and Masters, 2005). In occupancy studies with sparse data, a precise choice76

of priors influences trend occupancy estimates (Outhwaite et al., 2018). However, those informa-77

tive priors must be chosen carefully, in accordance with the available knowledge, otherwise the78

parameter estimates could be biased (Morris et al., 2015). Here, we propose a hierarchical model79

that builds on the classical occupancy model to account for identification errors across different80

types of data. We first provide a probabilistic description of the model, discuss the limitations81

of a frequentist approach for fitting this model, and then propose to overcome these limitations82

using a Bayesian framework that allows incorporating available information through informative83

priors. Through simulations, we compare the effectiveness of the different approaches.84

Model Description85

Standard Occupancy model86

Detection and non-detection data on a species are collected from S sites, visited J times.
These repeated visits help differentiate between siteswhere the species is truly absent and those
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4 Célian Monchy et al.

where the species is present but not detected. In the hierarchical formulation of the occupancy
model (MacKenzie et al., 2002) the latent occupancy state of a site i is a Bernoulli distributed
random variable of parameterψ, hence the species is present on a site i (Zi = 1) with a probability
ψ:

Zi
i .i .d∼ Bernoulli(ψ)(1)

Yij |Zi
i .i .d∼ Bernoulli(Zi × p)

Furthermore, it is assumed that species presence at one site is independent of its presence at87

other sites, meaning that Zi (with i from 1 to S ) are independent. Given the species is present88

at site i , Yij represents the detection state during visit j . It follows a Bernoulli distribution with89

parameter p, such as the species may be detected with a probability p during the j th visit on90

the occupied site i , and missed with probability 1 − p. In this model, each visit is considered as91

an observation, the species being detected or not. Conditionally on the presence (Zi = 1), the92

history of detection is a set of independent observations for a site, represented by a vector of93

detections (1) and non-detections (0).94

While this model is appropriate for traditional field observations, it can be adapted according95

to the monitoring method. For some species, passive biomonitoring techniques offer a cost-96

effective alternative to field observations, but introduce new challenges. Unlike direct field ob-97

servations, sensor data must be processed to determine species presence, and this introduces98

potential errors in detection history, including false positives, which are not accounted for in the99

standard occupancy model.100

Extended model to identification level101

To address these challenges, we extend the original model by introducing an additional iden-102

tification process that accounts for potential errors in species identification. This step is particu-103

larly important when working with data where species identification can be ambiguous.104

In this extended model, the potential detection becomes a latent variable Yij and we add105

a second layer to account for potential error in the identification process: an observation may106

correspond to a record (acoustic or image) where the species is identified (either correctly or107

incorrectly). Detection, however remains an unknown variable, referring to the sensor triggering108

and capturing the species’ presence. In some cases, where the quality of the recorded file is109

too poor or for species difficult to differentiate, the species may be detected but not correctly110

identified (Findlay et al., 2020). Thus it is impossible to deduce the detection state from the111

record alone.112

To formalize this, we denoteWij as the species identification at site i on visit j .Wij equals 1 if113

the species is identified and 0 otherwise. The identification process is imperfect and suffers from114

two types of error related to the detection or non-detection of the species, each with its own115

probability (Fig. 1). The probability to identify the species in the j th visit from site i if it has been116

detected is wA, and it is equivalent to the probability of correctly identify the detected species.117

This is related to the true positive probability, also known as sensitivity or recall. Otherwise,118

the probability to falsely identify the species while it has not been detected is 1 − wB , usually119

referred to as the false positive rate (also known as fall-out), and corresponding to the probability120

of associating an observation to the wrong species.121
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Célian Monchy et al. 5

In contrast to the standard model from MacKenzie et al. (2002), where the identification122

errors are not considered, assuming that wA = 1 and wB = 1, this extended model explicitly123

accounts for the possibility of false identifications. In other words, the probability of failing to124

identify a species that has been detected is zero, as is the probability of confusing an undetected125

species with a detected one.126

Given this extended framework, the conditional probability of identifying a species Wij = 1127

given that it is detected or not is written as:128

Wij |Yij =

{
Wij |(Yij = 0) ∼ Bernoulli(1 − wB,ij)

Wij |(Yij = 1) ∼ Bernoulli(wA,ij)
(2)

In this hierarchical model, Zi and Yij are latent variables respectively related to occupancy129

state and detection state of the target species at site i during visit j , and whereWij is the obser-130

vation data related to identification (Fig. 1).131

Zi = 1

Yij = 1

Wij = 1

wA

Wij = 0

1 − wA

p

Yij = 0

Wij = 1

1 − wB

Wij = 0

wB

1 − p

ψ

Zi = 0

Yij = 0

Wij = 1

1 − wB

Wij = 0

wB

1 − ψ

Figure 1 – Tree diagram illustrating the structure of the extended hierarchical model
accounting for identification in occupancy. The nodes represent the possible events for
the latent occupancy and detection variables, Z and Y , respectively associated with the
occurrence probabilities ψ and p, defined along the branches. The leaves indicate the
observed data,Wij , recorded during visit j at site i , which depend on the detection state
Yij and the associated identification probability : wA if the species is detected (Yij = 1),
and wB otherwise. The detection of the target species (Yij = 1) occurs with probability
ψ at an occupied site i (i.e Zi = 1).

For each site, the identification record of the target species is compiled on the basis of visits.
We can derive the probability to observe w (w = 0 or 1) at visit j on site i by considering the
different possible states for Yij :

π1(w) := Pr (Wij = w |Zi = 1)

= Pr (Wik = w , Yij = 1 |Zi = 1) + Pr (Wij = w ,Yij = 0 |Zi = 1)

= Pr (Wij = w |Yij = 1)Pr (Yij = 1 |Zi = 1) + Pr (Wij = w |Yik = 0)Pr (Yij = 0 |Zi = 1)(3)

= ww
A (1 − wA)

1−wp + (1 − wB)
w (wB)

1−w (1 − p)

π0(w) := Pr (Wij = w |Zi = 0)

= Pr (Wij = w , Yij = 0 |Zi = 0)

= Pr (Wij = w |Yij = 0)Pr (Yij = 0 |Zi = 0)(4)

= (1 − wB)
w (wB)

1−w

5



6 Célian Monchy et al.

For example, at a site visited three times, where the species is identified only during the132

second visit, the identification history would be 010. Out of these three visits, the occupancy133

state of the site is unknown but the species was identified once so we combine equations 3, 4,134

which account for the site’s occupancy state. This may be a true identification; in which case the135

species is present on the site but not easily identifiable. Otherwise, because this model includes136

false-positives, the species may have beenwrongly identified and the site would not be occupied137

(Fig. 1). Without including false-positives in the identification process, the site would have been138

necessarily considered occupied.139

Conditionally on the site occupancy status and given that the visits are assumed to be inde-
pendent, the probability to observe the identification historyWi = (0, 1, 0) is given by:

Pr (Wi = (0, 1, 0)) = Pr (Wi = (0, 1, 0), Zi = 1) + Pr (Wi = (0, 1, 0), Zi = 0)

= Pr (Wi = (0, 1, 0) |Zi = 1)Pr (Zi = 1) + Pr (Wi = (0, 1, 0) |Zi = 0)Pr (Zi = 0)(5)

= ψπ1(wi1)π1(wi2)π1(wi3) + (1 − ψ)π0(w11)π0(w12)π0(w13)

Finally, for S independent sites, each with J independent visits - where j∗i denotes positive iden-140

tification - and assuming constant parameters across visits and sites, the model likelihood can141

be expressed as :142

L(wA,wB , p,ψ |data) =
N∏
i=1

Pr(Wi ) =
N∏
i=1

(Pr(Wi ,Zi = 1) + Pr(Wi ,Zi = 0))

=
N∏
i=1

[
ψ [(1 − wB)(1 − p) + wAp]

j∗i [wB(1 − p) + (1 − wA)p]
J−j∗i +

(1 − ψ)w
J−j∗i
B (1 − wB)

j∗i

]
(6)

Simulation study143

Classical estimation with a frequentist approach144

In this section, we assess the quality of estimates obtained throughmaximum likelihood using145

a simulation study. Specifically, we aim to assess two key aspects: first, whether incorporating the146

identification process and accounting for its two types of error leads to more reliable estimates;147

second, how the number of site visits affects the precision of these estimates.148

In order to investigate these points, we carried out simulations by generating 1000 data sets149

with N=30 sites and J=12 or 36 visits according to our proposed model defined in Equations150

(1), (2). The parameter values used to create the matrices of observations were ψ = 0.8, p =151

0.5, wA = 0.9 and wB = 0.7. These values were chosen based on a site occupancy study of152

the Eurasian lynx (Lynx lynx) population in France (Gimenez et al., 2022). After generating the153

datasets, we applied maximum likelihood estimation by minimizing the negative log-likelihood154

function to obtain parameter estimates (Equ. 6). To examine the influence of the number of visits,155

we compared the precision of estimates between datasets with 12 visits and those with 36 visits.156

The results reveal that the occupancy parameter, ψ, tends to be overestimated when using157

the original model without the identification. This overestimation occurs because, in the absence158

6



Célian Monchy et al. 7

of the identification process, all sites with at least one positive identification are assumed to be159

occupied (mean estimates for 1000 simulations with the original model for 36 visits : ¯̂ψ = 1).160

Identifiability issues161

Previous studies have demonstrated that parameter estimates becomebiased if false-positive162

detections are not properly accounted for. In particular, the detection probability is underesti-163

mated, and occupancy is overestimated (McClintock et al., 2010a; Miller et al., 2011; Royle and164

Link, 2006).165

In our analysis, we used the standard deviation of estimates as a measure of accuracy, which166

decreases as the number of occasions increases (from 0.22 for 12 visits to 0.08 for 36 visits for167

occupancy probability estimates ψ̂)(Fig. 2). However, despite the increase in available data from168

36 visits, the estimates for the detection probability, p̂, and the positive identification probability,169

ŵA, remain biased (Bias(p̂) = 0.17 and Bias(ŵA) = −0.15).170

One way to address these biases is to fix one of the two parameters, wA or p, then the other171

can be estimatedwithout bias (Supplementary A.1). Such parameter redundancy in the likelihood172

function is at the core of model identifiability issues (Supplementary A.2, A.1)(Gimenez et al.,173

2004).174

Figure 2 – Identifiability issues in Site Occupancy Model accounting for false-positive
and false-negative errors in the identification layer. Histogram and kernel estimates of
the distribution of maximum-likelihood estimates for 1000 simulations for J=12 (left col-
umn) or J=36 (right column) visits on N=30 sites, and the initial parameter value use to
create datasets (in red). Estimates are the occupancy probability ψ̂, the detection prob-
ability p̂, the positive identification probability ŵA and the negative identification proba-
bility ŵB .

Addressing identifiability issues with a constraint175

To further address the lack of identifiability in models that incorporate misdetection, Royle176

and Link (2006) suggested to impose constraints on the model. They proposed to set the prob-177

ability to correctly detect a present species higher than the probability to incorrectly detect it178
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8 Célian Monchy et al.

when it is absent. We first explore this recommendation using a frequentist approach, before179

turning on a Bayesian approach using informative priors in order to solve these identifiability180

issues.181

To adapt the recommended constraint to our model, we apply it on the identification prob-182

abilities, such that wA > 1 − wB . This ensures that the probability of correctly identifying the183

species is higher than the probability of making a false positive identification.184

To evaluate the impact of this constraint, we simulated 1000 datasetswith values for the true-185

positive identification probability wA and the true-negative identification probability wB ranging186

between 0.5 and 0.95. We then estimated the parameters of our site occupancy model account-187

ing for both types of error in the identification layer, using maximum likelihood estimation with188

and without the constraint.189

Figure 3 – Bias trend as a function of the probability of correctly identifying the species.
The focus is on parameters likely to be biased by identifiability issues : the detection es-
timates p̂ (on the left), and the correct identification estimates ŵA (on the right). The bias
is contrasted between two optimization cases: under the constraint (in blue) stating that
the probability of correctly identifying the species is higher than the probability of incor-
rectly identifying the species, and without the constraint (in gray). The bias is assessed
according to the true value of wA used in the data simulation, and is calculated based on
the median and the range between the 0.1 and 0.9 quantiles of the maximum-likelihood
estimates.

The results show that applying the constraint reduces the bias in the detection probability es-190

timates (p̂ for values of wA and wB around 0.5 ; Supplementary A.3). Moreover, regardless of the191

initial value of wA, the estimates of ŵA are concentrated around 0.7, which leads to a reduction192

in bias as the value of ŵA (Fig. 2). As wA and wB approach higher values, the estimates produced193

with and without the constraint become more similar. Nevertheless, while the constraint helps194

reduce bias, it may not be strong enough to completely eliminate the identifiability issue (Fig. 3).195

This is because, in practice, the true-positive rate, wA, is generally higher than the false-positive196

rate 1 − wB (Guillera-Arroita et al., 2017).197

8



Célian Monchy et al. 9

Using an informative prior to address identifiability issues198

In this section we address the issue of the model identifiability by leveraging knowledge199

about the risk of misidentifications, even in the absence of additional data sources. We adopt a200

Bayesian approach, incorporating this knowledge through the use of an informative prior.201

In many situations, it is possible to have a good knowledge of the false-negative rate in the202

identification process. In particular, we are interested in utilising prior knowledge regarding the203

sensitivity of the identification process as a means of addressing the redundancy between de-204

tection and positive identification parameters, previously described. As the process of species205

identification is inherently imperfect, its performance is evaluated through the implementation206

of tests which compare the predicted identifications to the actual outcomes of a verified dataset.207

Insofar as the underlying truth of the data is not accessible, these performance tests must be car-208

ried out beforehand, thus facilitating the acquisition of knowledge regarding the risk of misidenti-209

fications. Therefore, the inclusion of additional data sources free of one kind of misidentification210

is not necessary.211

In the context of sensor data classified by a deep learning algorithm, labelled data are used212

to evaluate the performance of the classifier before employing it for the classification of unla-213

beled data (Pichler and Hartig, 2023). Performance tests are designed to compute metrics that214

quantify both types of misclassifications. These include the recall defined as the true positive215

rate (or sensitivity) for each class, and which is of particular interest in the context of identifying216

one target species (Pichler and Hartig, 2023). This information is often accessible in the confu-217

sion matrix of a classifier, and the transfer learning ensures the consistency of the classifier’s218

performance on other datasets (Norouzzadeh et al., 2021; Tabak et al., 2019; Vélez et al., 2023).219

Those performance metrics, including sensitivity, may constitute prior knowledge that is more220

or less informative. Here we examine how the contribution of this external information, inte-221

grated into the elicitation of a prior, can be used to address identifiability issues and reduce bias222

in parameter estimates. We attempt to construct the most suitable prior distribution given the223

available knowledge about the identification process, and more particularly on the sensitivity of224

this process modeled by the parameter wA, i.e., the probability that the species will be identified225

when it is detected.226

A highly informative knowledge is characterised by a precise definition of the sensitivity227

with a median value enhanced by a confidence interval. Consequently, the sensitivity can be228

expressed as a density distribution with a mean and a standard deviation (e.g. Griffin et al., 2020229

with 0.81 [0.71,0.90] and Tabak et al., 2020 provide the recall values and 95% confidence inter-230

vals for each studied species with MLWIC2). In this context, a beta distribution is the most ap-231

propriate distribution to elicit a prior on the probability of correctly identifying a species present232

(Banner et al., 2020). In the case of lesser but still informative knowledge, sensitivity can be233

defined as a unique value without any confidence interval (e.g Schneider et al., 2024 give the234

confusion matrices from their open species recognition models, and the Wildlife Insights (2024)235

platform gives its classifier’s performance metrics for many species). We then specified a spread236

beta distribution as a weakly informative prior. In the absence of information concerning the sen-237

sitivity of the identification process, it may be reasonably argued that the probability of correctly238

identifying the target species in an occupancy study is greater than the probability of incorrectly239

identifying it. This vague knowledge justifies the consideration of a flat uniform distribution rang-240

ing from 0.5 to 1 for the positive identification parameter.241
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10 Célian Monchy et al.

Based on Banner et al. (2020) proposition and according to the available knowledge about242

the sensitivity of the identification process, we study 4 different types of prior for parameter wA243

(Supplementary A.4) :244

• a uniform distribution from 0 to 1, as a default non-informative prior for a probability,245

• a flat uniform distribution ranging from0.5 to 1, as a vague non-informative prior adapted246

to the context of identification for occupancy,247

• a spread-out beta distribution, as a weakly informative prior,248

• a tight beta distribution, as a highly informative prior.249

The beta prior distribution was elicited using a matching method to accurately define its250

parameters (Denham and Mengersen, 2007; Falconer et al., 2022). Following the approach pro-251

posed by Wu et al. (2008) we constructed a unimodal beta distribution through a two-step pro-252

cess. First, we aligned the sensitivity value with the mode of the beta distribution, which rep-253

resents the most frequent value. Here the sensitivity value is 0.9 according to the values used254

for the simulations and as a reference to Gimenez et al. (2022). Subsequently, we integrated the255

probability density function by utilizing the confidence interval of the sensitivity as the distribu-256

tion’s range. We simulated 100 observation datasets and we estimated model parameters in a257

Bayesian framework (using NIMBLE v1.2.0; de Valpine et al., 2024) for each prior distributions258

of wA (the distribution priors of all the others parameters are default prior i.e U(0, 1)). We used259

a block sampler accounting for the correlation between the detection p, and the positive iden-260

tification wA, parameters. The model convergence was analysed for different values of positive261

identification probability as a simulation parameter (Supplementary A.5, A.6).

Figure 4 – Boxplot of the difference between the median values of the posterior dis-
tributions and the parameter values calculated from simulated datasets.Occupancy pa-
rameters are set to fixed values to simulate 100 datasets : ψ = 0.8, p = 0.5, wA = 0.9,
wB = 0.7. The sensitivity parameter (wA) is introduced as (A) a default non-informative
prior with a uniform distribution U(0, 1), (B) a vague prior with a uniform distribution like
U(0.5, 1), (C) a weakly informative prior with a beta distribution like B(8.8, 1.9), and (D) a
highly informative prior with a beta distribution like B(45, 5).

262
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Célian Monchy et al. 11

Using non-informative priors for identification parameters leads to biased posterior distribu-263

tions, especially for the detection and positive identification parameters. The mean bias associ-264

ated with the median of the posterior for p̂ and ŵA are 0.13 and −0.19, respectively, when using265

a default non-informative prior for sensitivity. Notably the negative bias on the positive iden-266

tification parameter, wA, is not fully compensated by the bias on the detection parameter. The267

inference for the detection probability p̂ improves when an informative prior for sensitivity is268

applied. In this case, the mean bias associated with the median of the posterior for p̂ decreases269

to -0.02 with a highly informative prior (Fig. 4). A vague non-informative prior slightly reduces270

the mean bias in the median of the posteriors of ψ̂. The informative priors used represent two271

different approaches to integrate information about the identification process, and both perform272

comparably concerning the estimate of the occupancy probability. Actually, the median values273

of ψ̂ posteriors, obtained for 100 simulations are only weakly affected by the type of prior.274

Discussion275

We proposed a single-species occupancy model that can be applied to various data types, in-276

cluding images, acoustic recordings, and molecular data. This model acknowledges the two-step277

structure of the observation process, consisting of detection and identification. Our hierarchical278

occupancy model considers both detection and identification processes, which are independent279

sources of errors. On the one hand, we account for false negatives in detection using the detec-280

tion parameter p, and on the other hand, we address identification errors, whether in favor of the281

target species or not, with parameters wA and wB . Initially, we implemented our model within282

a maximum-likelihood framework, but we encountered biases in some estimates due to model283

mis-specifications and identifiability issues. By shifting to a Bayesian approach and using infor-284

mative priors based on identification performance metrics, such as sensitivity, we successfully285

mitigated these identifiability issues.286

The deployment of sensors andmolecular techniques generatesmore data than conventional287

sampling methods, and because these data are not inherently specific to any species, they re-288

quire further sorting to identify the target species. Particularly with sensor data, this secondary289

stage may involve multiple observers, through crowd-sourced projects (e.g. Zooniverse 2024)290

for images classification, or expert analysis for acoustic data (e.g. Shonfield and Bayne, 2017;291

Zwart et al., 2014). Automated species recognition can reduce processing time, but without hu-292

man verification which is time-consuming (Barré et al., 2019; Spiers et al., 2022), identification293

errors can distort inferences (Ferguson et al., 2015; Lonsinger et al., 2023; McClintock et al.,294

2010a). Accounting for these identification errors in addition to detection errors requires devel-295

oping different versions of the site occupancy model. Firstly, the model developed by Nichols296

et al. (2008) considered multiple detection methods at the sampling occasion scale, and so intro-297

duced the idea we are following, that a visit on a site may be a set of observations. In essence,298

dividing a visit into two different detection events is equivalent to the two-stage survey protocol299

proposed by Guillera-Arroita et al. (2017), which we rely on. Finally, by reducing data processing300

time through automation and the absence of human validation, potential identification errors are301

introduced,which, especially false positives,may have a severe impact on inferences. As the num-302

ber of model parameters increases to better accommodate different sampling levels, the price303

to pay is that some parameters become difficult to estimate. Several authors have therefore sug-304

gested combining multiple sources of information (Chambert et al., 2015; Guillera-Arroita et al.,305
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12 Célian Monchy et al.

2017; Miller et al., 2011) to overcome the problem of identifiability. However, since increasing306

data sources is costly, we propose using performance metrics from the identification process to307

inform priors.308

In the context of molecular data, a species is detected if its DNA is present in the sample, and309

it is identified if its DNA is observed in a PCR analysis replicate (Schmidt et al., 2013). Sensitivity310

is thus defined as the probability of correctly identifying the species, or pathogen, in the replicate.311

Unlike acoustic or camera trap methods, where detection and identification can be separated,312

this distinction is more challenging in eDNA surveys, where the sample composition remains un-313

known until molecular and bioinformatics analysis are performed (Goldberg et al., 2016). Some314

studies use additional surveys to verify species presence and calibrate eDNA sensitivity, while315

others rely on experimental or statistical methods (e.g. Griffin et al., 2020; Mathieu et al., 2020).316

The use of positive control involving foreign DNA, can help to identify PCR inhibition and pro-317

vide information on the false-positive rate (e.g. Furlan et al., 2016; Goldberg et al., 2016)(Hyatt et318

al., 2007). Nevertheless, quantifying sensitivity remains challenging across studies using similar319

methodologies due to high variability in taxa, environmental, and experimental conditions (Gold320

et al., 2023; Keller et al., 2022; Thomsen et al., 2012). Despite this, eDNA is generally more sensi-321

tive than other sampling methods (Darling andMahon, 2011), though this heightened sensitivity322

may increase the likelihood of false positives (Cristescu and Hebert, 2018). Taking into account323

the identification process is therefore crucial, although the positive identification rate (wA) must324

be close enough to 1 to guarantee the convergence of the model.325

The main limitation of our approach lies in the fact that we need to gather knowledge on the326

performance of the identification process to construct a relevant informative prior. While this327

knowledge is necessary, it is still less costly than incorporating additional data sources, especially328

if sensitivity information is provided by another study, or as a parameter of the identification tool329

(e.g. Tabak et al., 2020, Rigoudy et al., 2023). Indeed, we suggest that when using deep learn-330

ing algorithms for species classification, or following a molecular and bioinformatics pipeline for331

eDNA, the performance metrics of the methods should be made accessible. Simulations indi-332

cate that even with non-informative priors, our model produces reliable posterior estimates of333

the presence parameter (ψ). When only presence is of interest, we recommend using this model334

with non-informative priors to handle misidentifications and detection errors while disregarding335

identifiability issues in the detection parameter. However, when the detection parameter is of336

concern, using an informative prior is necessary to address parameter redundancy. Cruickshank337

et al. (2019) successfully avoided identifiability issues related to false-positive errors by integrat-338

ing informative prior based reasonable assumptions from volunteer-collected monitoring data.339

Similarly, our approach, which incorporates prior information about the identification process,340

produces robust posterior estimates and provides an alternative to approaches requiring addi-341

tional datasets. Also, as in many studies using a Bayesian approach, the choice of a wrong prior342

for a parameter may cause bias in the definition of the posterior distribution for this parameter343

(Northrup and Gerber, 2018).344

Passive sensors like camera traps and autonomous recording units offer valuable opportu-345

nities for addressing a wide range of ecological and conservation questions. Combined with346

approaches like eDNA sampling, these technologies enable ecologists to collect data at large347

spatial scales or fine temporal resolutions and study cryptic species (Ross et al., 2023; Sahu et348
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Célian Monchy et al. 13

al., 2023). For such large and complex datasets, accurate taxonomic identification is challeng-349

ing, but accounting for the noise generated during processing is essential. In this context, our350

proposed model can be included in the ecologist’s toolbox for analyzing sensor and molecular351

biological data to address questions in conservation biology, wildlife management and disease352

ecology.353
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Appendix A. Supplementary Results354

A.1. Identifiability issues355

Figure A.1 – Distribution of maximum-likelihood estimates for 1000 simulations when
a parameter is set to a constant value (in columns).Detection (p) and identification pa-
rameters (wA and wB ) are successively excluded from the estimation, since their value
are fixed in the expression of the likelihood function.

ŵA or p̂ are estimated without bias when the other parameter is set to a fixed value in the356

expression of likelihood. This result reflects parameter redundancy in the likelihood function.357

We consider the profile deviance on p to investigate model identifiability.358

Figure A.2 – Profile deviance on p

Deviance (−2Log − Likelihood ) is constant for p greater than 0.45, beyond this value the359

model is not identifiable, which means that p̂ and ŵA cannot be distinguished.360

The model is not globally identifiable (Cole et al., 2010) since there are different sets of pa-361

rameters that give rise to the same likelihood function value.362

As pointed out by Royle and Link (2006), including false positives raises concerns about363

model identifiability . To address this issue of parameter redundancy, the authors proposed to set364

14
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Table A.1 – Profile deviance on detection parameter p

ψ̂ p ŵA ŵB Likelihood
0.7419 0.9 0.6592 0.6777 719.6974
0.7421 0.8 0.7013 0.6777 719.6974
0.7419 0.7 0.7554 0.6778 719.6974
0.7422 0.6 0.8276 0.6776 719.6974
0.7419 0.5 0.9286 0.6777 719.6974

a constraint during likelihood optimization. Specifically, they suggest ensuring that the probabil-365

ity of correctly detecting a species is higher than the probability of falsely detecting it. Applying366

this constraint to our model with an identification layer means that correctly identifying the367

target species is more likely than falsely identifying it when it has not been detected.368

Figure A.3 – Distribution of ψ̂ and p̂ for 1000 simulated data sets for different values of
identification parameters in the simulated data.With wA set between 0.5 and 0.95 (top)
and wB set between 0.5 and 0.95 (bottom). Distributions of occupancy (ψ̂) and detection
p̂ parameters are the results of optimization under the constraint ŵA > 1 − ŵB (in gray)
and without it (in blue). The true value of parameters are indicated by the red vertical
bar.

The constraint proposed does not help to fix the estimation issue in the detection probability,369

however for small values of wA or p, close to 0.5, occupancy estimates are reliable.370

A.2. Using an informative prior to address identifiability issues371

We evaluate the posterior distributions of the occupancy estimates according to four pri-372

ors with different level of informativeness for the positive identification parameter, wA, called373

sensitivity.374

15



16 Célian Monchy et al.

Figure A.4 – Prior distributions for the positive identification parameter or sensitivity
wA. Non informative prior (in blue) are uniform distributions : from 0 to 1 (in dark blue)
and from 0.5 to 1 (in light blue). Informative priors (in orange) are beta distributions such
as B(8.8, 1.9) is weakly informative (in light orange) and B(76, 9.3) is highly informative
(in dark orange).

We elicited the beta priors by solving a 2 equations system explicating the mode and the
density probability function with the beta distribution parameters, α and β, unknown (in the
manner of the location and intervals method of Wu et al. (2008)) :

mode =
α− 1

α+ β − 2
(7) ∫ R

0

xα−1(1 − x)β−1

B(α,β)
dx − 0.01 = 0 for P(x < R) = 0.01(8)

For both priors the mode is set to 0.9 which is the value chosen to simulate data. R is defined as375

the threshold below which the probability to find the value of sensitivity is nearly null : it is 0.5376

in the case of a weakly informative prior and 0.8 in the case of the highly informative one.377

We ran with NIMBLE (v1.2.0; de Valpine et al., 2024) 2 chains on 4000 iterations following a378

1000 iterations burn-in period. We assessed the model convergence through the R-hat and the379

trace and density plots (MCMCvis R package v0.16.3; Youngflesh, 2018), for each alternative380

priors .381
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Figure A.5 – Chain trace and density plots of occupancy, ψ̂, and detection, p̂, posterior
distribution, according 4 different priors on sensitivity parameter, wA. On each of the
4 panels, the trace plots (on the left) represent the evolution of both chains on 4000
iterations, and the density plots (on the right) represent the posterior distribution for
each chain. The distribution priors on wA are (A) U(0, 1), (B) U(0.5, 1), (C) B(8.8, 1.9) and
(D) B(76, 9.3).

Chains convergence is reached for ψ whatever the prior on wA, however only the most infor-382

mative prior enable a satisfying mix of chains for the detection parameter p (R-hat=1.01).383

Finally, we drove a sensitivity analysis for 3 values of wA (0.2, 0.5 and 0.8) used to simulate384

data.We used a highly informative prior in order to evaluate the impact of the value ofwA on the385

convergence. The chains for the occupancy estimates do not converge when the positive identi-

Figure A.6 – Sensitivity analysis of the extended occupancy model using an highly in-
formative on the positive identification parameter, wA. Data are simulated for 30 sites
visited 36 times with fixed generative values (red dashed line) except for wA.

17
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386

fication rate is below 0.5, though this scenario seems unrealistic. This model should only be used387

when the sensitivity of the identification process is high (greater than 0.75). Indeed, if sensitivity388

falls below this threshold, the identification process should be considered too underperforming389

for use in occupancy studies.390
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