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ABSTRACT 11 

The InsectChange database (van Klink et al. 2021) underlying the meta-analysis by van Klink 12 
et al. (2020a) compiles worldwide time series of the abundance and biomass of 13 
invertebrates reported as insects and arachnids, as well as ecological data likely to have 14 
influenced the observed trends. On the basis of a comprehensive review of the original 15 
studies, we highlight numerous issues in this database, such as errors in insect counts, 16 
sampling biases, inclusion of noninsects driving assemblage trends, omission of drivers 17 
investigated in original studies and inaccurate assessment of local cropland cover. We show 18 
that in more than half of the original studies, the factors investigated were experimentally 19 
manipulated or were strong -often not natural- disturbances. These internal drivers created 20 
situations more frequently favouring an increase than a decrease in insects and were 21 
unlikely to be representative of habitat conditions worldwide. We demonstrate that when 22 
both groups were available in original freshwater studies, selecting all invertebrates rather 23 
than only insects led to an overestimation of the “insect” trend. We argue that the lack of 24 
standardisation of insect density units disparate and non-standardised units of 25 
measurements among studies may have detrimental consequences for users, as was the 26 
case for van Klink et al. (2020a, 2022) who log10(x+1)-transformed these heterogeneous 27 
data, biasing compromising the comparison of temporal trends between datasets and the 28 
estimation of the overall trend estimation. We show that geographical coordinates 29 
assigned by InsectChange to insect sampling areas are inadequate for the analysis of the 30 
local influence of agriculture, urbanisation and climate on insect change for 68% of the 31 
datasets. In terrestrial data, the local cropland cover is strongly overestimated, which may 32 
incorrectly dismiss agriculture as a driving force behind the decline in insects. Therefore, in 33 
its current state, this database enables the study of neither the temporal trends of insects 34 
worldwide nor their drivers. The supplementary information accompanying our paper 35 
presents in detail each problem identified and makes numerous suggestions that can be 36 
used as a basis for improvement.  37 
 38 
 39 
Keywords: Insects, Terrestrial invertebrates, Freshwater invertebrates, Insect abundance, 40 
Insect decline, Time series meta-analysis, Methodological biases, Agriculture, Landcover  41 
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Introduction 43 

Currently, experts agree that biodiversity is shrinking in the face of global changes of 44 

anthropogenic origin (IPBES, 2019). However, with respect to insects, which provide invaluable 45 

ecosystem services, the extent to which declines vary among insect groups and regions is still 46 

the subject of intensive investigation, with trend assessments hampered by lack of data and 47 

analytical weaknesses (Didham et al., 2020; Duchenne et al., 2022). There is also no consensus 48 

on the main drivers of insect changes, including land use (urbanisation/agriculture), climate 49 

change, pesticides, other pollution types and invasive species, mostly because these drivers are 50 

not easily disentangled or may act in synergy (Wagner et al., 2021; Outhwaite et al., 2022).  51 

While many authors have warned of insect extinctions worldwide (Cardoso et al., 2020), van 52 

Klink et al. (2020a) added to the debate by estimating a smaller decline in the abundance of 53 

terrestrial insects than reported by previous authors, and further proposed that freshwater 54 

insects were increasing rather than decreasing. They found that increasing cropland cover was 55 

not associated with terrestrial insect decline and proposed that improved water quality was a 56 

driver of increasing abundance of insects in freshwaters. Yet their meta-analysis gave rise to 57 

comments by various authors regarding (1) their data selection and methodology (Desquilbet 58 

et al., 2020), which led to some corrections (van Klink et al., 2020b); (2) the limitations of 59 

abundance and biomass as sole indicators of insect trends, masking the possible replacement 60 

of sensitive species by stress-tolerant ones (Jähnig et al., 2021); and (3) the heterogeneity in 61 

temporal coverage, with a lack of old baselines (Duchenne et al., 2022). 62 

The study of insect trends and their drivers addresses major environmental, societal, 63 

political and economic issues. This sensitive subject therefore requires, first and foremost, the 64 

utmost rigor in databases intended to serve as references. The InsectChange database (van 65 

Klink et al., 2021) underlying the analysis by van Klink et al. (2020a) includes time series of the 66 

abundance and biomass of invertebrates reported as insects and arachnids in terrestrial and 67 

freshwater realms worldwide, together with ecological data on anthropogenic changes likely 68 

to have influenced trends. We conducted a comprehensive and in-depth analysis of the 69 

relevance and accuracy of the InsectChange datasets by systematically reviewing the original 70 

studies. Our analysis highlights numerous limitations in the constitution of this database, the 71 

accumulation of which is likely to bias any assessment of insect change and drivers of change. 72 

1 Different issues in the InsectChange database  73 

The invertebrate taxa included in InsectChange are not only insects and arachnids as 74 

described in the title and abstract, but also entognaths (i.e., noninsect arthropods comprising 75 

springtails, diplurans and proturans), as indicated only in the keywords and appendices. 76 

Considering them within the scope of InsectChange and updating the analysis of Desquilbet et 77 

al. (2020) after the erratum by van Klink et al (2020b), we found that the sum of the remaining 78 

issues affected 161 of the 165 datasets. We found 553 issues, which belong to 17 types of 79 

problems pertaining to errors (153), inconsistencies (40), methodological issues (279) and 80 

information gaps (81), with 3.4 ± 1.6 problem types per dataset (Table 1, Figure 1a), as well as a 81 

methodological issue concerning the entire database. These multiple problems and the 82 

consequences they may have for the assessment of insect trends are detailed in Table 1. There 83 

were more problem types per dataset in the freshwater realm than in the terrestrial realm 84 
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(Figure 1b, Appendix S1, Problems.xlsx), mainly because freshwater datasets were more 85 

affected than terrestrial datasets by problems related to the inclusion of invertebrates other 86 

than insects, the inclusion of studies with internal drivers and the assignment of inadequate 87 

geographic coordinates for local-scale analysis (Appendix 1, Figure 2b). 88 

Table 1 – Description of the problem types, their frequencies and their possible impact 89 
on insect trend analysis 90 

Problem 
category 

Problem type # (%) of 
studies 

Definition Consequences and risks 
 

Er
ro

rs
 

Insect group 
inadequately reported 

55 
(33.3%) 

The group reported in the table 
DataSource.csv and/or in column 
“GroupInData” of the table 
SampleData.csv does not correspond to 
the group that was actually extracted from 
the source study. 

- Misidentification of insect group  
- Erroneous analysis of changes in 
specific groups of insects. 

 Noninsects/ 
arachnids/entognaths 
considered 

35 
(21.2%) 
 

The group of invertebrates included in 
InsectChange includes taxa (most often 
macroinvertebrates) that are not insects, 
arachnids or entognaths. 

- Abundance (and to an even greater 
extent, biomass) affected 
- Misanalysis of change in taxa 
interpreted as insects, the 
consequence of which depends on the 
weight of included noninsects and its 
variation over time.  

Errors in insect counts 25 
(15.2%) 

The abundance and/or biomass numbers 
reported in the table 
InsectAbundanceBiomass.csv do not 
correspond to the actual numbers 
reported in the source study. 

Erroneous analysis of insect change. 

Unaccounted-for 
change in sampling 
effort or sampling 
method 

18 
(10.9%) 

A change in sampling effort over time 
records in the source study was not 
considered when reporting the abundance 
and/or biomass numbers of the source 
study in the table 
InsectAbundanceBiomass.csv; or time 
records with different sampling methods 
were mixed despite warnings by the 
authors of the source study about 
resulting errors.  

- Slope of insect dynamics often 
affected. 
- Erroneous analysis of insect change. 

Overlapping 
studies/plotsdata 

13 
(7.9%) 

Insect data overlap owing to a site 
included in dDifferent studies as two plots 
or to a plot that is actually include the 
same plots, or a plot in a given study is 
actually a pooling of other plots in of the 
same study also included in InsectChange, 
resulting in insect overlaps in insect data 
and double-counting. 

- Overweighting of some insect 
populations in the global analysis. 
- Erroneous analysis of insect change. 

Error in insect stratum  7 
(4.2%) 

The insect stratum (i.e., underground/soil 
surface/water/herb layer/trees/air) 
reported in the table SampleData.csv is 
erroneous. 

Erroneous analysis of insect change 
conducted at the stratum level.  

  91 

a mis en forme le tableau
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Table 1 – Continued 92 

M
et

ho
do

lo
gi

ca
l i

ss
ue

s 

Disparate and 
often non-
standardised units 
of measurement of 
insect densities 
across datasets 

General 
issue of 
the 
database  

The metrics, sampling methods, spatial scales 
and units of measurement in the table 
SampleData.csv vary between datasets and 
the data in the table -
InsectAbundanceBiomass.csv are not 
harmonised. 

- Temporal slopes between datasets 
not directly comparable due to data 
heterogeneity, and not comparable 
in the case of a log10(x+1)-
transformation of the dependent 
variable. 
- Compromised estimation of the 
overall insect trend. 

Inadequate 
geographic 
coordinates for 
study at local scale 

112 
(67.9%) 

The geographic coordinates provided in the 
table PlotData.csv of InsectChange (column 
“frcCrop900m”) are inexact or not precise at 
the 900m×900m scale required for the 
matching with ESA-CCI land cover estimates. 

- Misestimation of land cover, 
temperature and precipitation at 
local scale.  
- Erroneous analysis of drivers of 
insect change at local scale.  

Studies with 
internal drivers 

88 
(53.3%) 

Studies with controlled or natural experiment, 
focused on a factor/treatment studied 
through experimental or natural variations 
across space and/or time, or studies with a 
major disturbance affecting the habitat or 
creating a habitat conducive to insect 
colonisation. 

- Studies not representative of the 
dynamics of insect populations in 
their naturally disturbed habitats, 
since half of them concern artificial or 
excessively disturbed habitats. 
- Biased analysis of insect change. 

Inadequate 
cropland cover 
estimation  

51 
(49.5%*) 

Inadequate estimation of the local cropland 
cover in column “frcCrop900m” of the table 
PlotData.csv.  

Erroneous analysis of the impact of 
land use on insect change at the local 
scale.  

Only two years of 
records 

22 
(13.3%) 

Although the times series cover a period of at 
least 9 years, some series have only two 
records (first and last year) in the table 
InsectAbundanceBiomass.csv. 

- Lack of records given the 
nonmonotonic dynamics of insect 
populations. 
- Possible misinterpretation of insect 
trends. 

Inflation of 
studies/plots 

6 
(3.6%) 

Some time series (without overlapping data) 
included in different studies instead of 
different plots in the same study and/or split 
between several plots instead of compiled in 
a single plot, inconsistently with the 
methodology used for others. 

- Overweighting of some time series 
in the statistical analyses. 
- Non-consideration of possible 
spatial correlation in the data. 

In
fo

rm
at

io
n 

ga
ps

 

Omission of 
internal driver  

61 
(37%) 

In studies with controlled or natural 
experiments or with a major disturbance, the 
factor or disturbance was not mentioned in 
columns “DetailsPlots” or 
“ExperimentalTreatment” of the table 
PlotData.csv. 

Risk of erroneously attributing insect 
changes to external drivers, when 
they more directly reflect habitat 
changes caused by drivers originally 
investigated in the source studies. 

Dates missing 
when several 
sampling days  

20 
(12.1%) 

The table InsectAbundanceBiomass.csv 
provides several samplings in a given period 
but does not indicate their chronology due to 
unreported sampling dates. 

- Consideration of samples as 
interchangeable replicates when they 
are time-dependent. 
- Erroneous analysis of insect change. 

Problem 
category 

Problem type # (%) of 
studies 

Definition Consequences and risks 
 

In
co

ns
ist

en
ci

es
 

Unfounded 
inclusion/exclusion/ 
pooling of plots 

14 
(8.5%) 

Some plots were inconsistently either 
included, or excluded, or pooled. 

Included plots not representative of 
sites in source studies.  

Inadequate 
temporal resolution 

12 
(7.3%) 

The methodology (p. 17 of InsectChange file 
MetadataS1) stating that the temporal 
resolution was as fine as possible between 
the week and the year (except for 6 datasets 
sampled 6 to 8 times in any month) was not 
respected. 

Erroneous analysis of insect change. 

Inconsistency of 
taxa among 
plots/metrics 

7 
(4.2%) 

For the same study, the insect group differs 
between plots or between metrics 
(abundance/biomass) but this cannot be 
known because the table SampleData.csv 
provides information at the study level but 
not the plot level or for abundance but not 
biomass.  

- Erroneous comparative analysis of a 
given group of insects among plots or 
metrics.  
- Biased analysis of insect change. 

Unfounded exclusion 
of 
metrics/insects/years 

7 
(4.2%) 

A metric (abundance or biomass), insect 
groups, or years of the source study were not 
included in InsectChange. 

- Data not representative of the 
source data. 
- Biased analysis of insect change. 

a mis en forme : Anglais (États-Unis)

a mis en forme : Retrait : Gauche :  1,5 cm, Droite :  1,5
cm, Éviter veuves et orphelines, Avec coupure mots

a mis en forme : Police :Non Gras
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All the files listed in the ‘Definition’ column refer to InsectChange filesThe files .csv refer to 93 
InsectChange tables. *Percentage of datasets with inadequate cropland cover estimation provided 94 
only for terrestrial datasets. 95 

96 
(b)(a)

Information 
gaps

Methodological
issues

Inconsistencies

Errors

 97 

Figure 1 – Distribution of the types of problems encountered in the InsectChange 98 
database (details in Problems.xlsx). (a) Mean (± SE) number of problem types per dataset 99 
and distribution of datasets according to the number of problem types. Each dot refers 100 
to a dataset; thus, the occurrence of i dots on the y line indicates that i datasets have y 101 
problem types. (b) Comparison of the mean number and distribution of problem types 102 
per dataset between freshwater and terrestrial realms. The problem type related to 103 
cropland cover, which was only assessed for the terrestrial realm, was not included in 104 
this comparative analysis, as well as the general problem of data heterogeneity. White 105 
stars were placed in the ‘Freshwater’ barplot when, on the basis of binary logistic 106 
regression, the problem type affected significantly more freshwater datasets than 107 
terrestrial datasets (Appendix 1). Terrestrial datasets were never significantly more 108 
affected by a given problem type than freshwater datasets were. *:0.01<P<0.05; 109 
**:0.001<P<0.01;***:P<0.001. 110 

1.1 Errors 111 

a mis en forme : PCJ table legend, Éviter veuves et
orphelines, Avec coupure mots

a mis en forme : Droite

Code de champ modifié
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Among the errors, the composition of the invertebrate group selected from the source 112 

datasets was misreported in 55 datasets, often because the authors of InsectChange neglected 113 

to specify that they had selected only certain taxa from the original community (e.g., Figure 2a). 114 

Moreover, 35 datasets considered taxa other than insects, arachnids or entognaths (hereafter 115 

collectively referred to as “insects” for brevity) and most often included the entire invertebrate 116 

assemblage instead of insects only, sometimes changing the insect trend of the original time 117 

series to the point of reversal (e.g., Figure 2b, details in Section 2). Insect counts were 118 

misreported from source studies in 25 datasets because of misinterpretation, calculation 119 

errors, the inversion of numbers, or species counted twice (e.g., Figures 2c and 2d). The stratum 120 

in which insects were sampled was misreported in 7 datasets, for example indicating that 121 

insects were sampled in the herb layer instead of trees. This may affect trend estimates by 122 

stratum, particularly those, such as trees, which are represented by only a few datasets (8 123 

datasets for the tree stratum).  124 
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 126 

Figure 2 – Examples of errors (blue blackground) and inconsistencies (orange 127 
background) in the selection of data, which affected the temporal trends in the original 128 
datasets (Appendix S1, Problems.xlsx, Fig2and5.xlsx). (a-g) Different types of errors; (g-i) 129 
Inconsistencies regarding taxa across plots (g) or metrics (h) and plot inclusion (i). 130 
Problematic insect dynamics are represented by red dashed lines, whereas 131 
nonproblematic or corrected insect dynamics are represented by solid blue lines.  132 

In addition, variation in sampling effort or method over time is a classic methodological bias 133 

in time series (Isaac & Pocock, 2015). It becomes an error when it is not noticed and considered 134 

by authors of meta-analyses, as was the case for 18 InsectChange datasets. This type of error 135 

may affect the insect trend of the included dataset, for example, when the number of sampling 136 

repetitions increased over time but the number of insects was added rather than averaged (e.g., 137 

Figure 2e), or when the authors of the source study specified that the sampling method changed 138 

Code de champ modifié
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between the first and subsequent records and did not themselves create a single time series 139 

from these two types of records, unlike the authors of InsectChange (Figure 2f). 140 

Finally, some datasets or plots had overlapping data for all or part of the time periods (13 141 

datasets), resulting in double counting, either because different datasets included the same 142 

plots or because a plot in a given dataset was actually a pooling of others from the same dataset 143 

(Figure 2g). This leads to overweighting some insect populations in the global analysis. In 9 144 

datasets, the exact same insects were counted twice. For example, InsectChange Study 1452, 145 

which is illustrated in Figure 2g, examined the change in biomass of the invertebrate 146 

assemblage after the creation of the Kama Reservoir in Russia. InsectChange Plots 456, 457 and 147 

458 corresponding to the upper, central and dam sections of the reservoir, respectively, include 148 

data from 2003 to 2015 mainly for insects, and Plot 455, corresponding to the average sampling 149 

in the three sections of the reservoir, includes data from 1955 to 2013 on the entire zoobenthic 150 

assemblage. From 2003 to 2013, insect data from Plot 455 therefore overlap with invertebrate 151 

data from Plots 456, 457 and 458, with the same insects counted twice. In two other 152 

InsectChange datasets, data overlapped because one study reported the abundance dynamics 153 

of ant nests and the other, centred on the same ants, reported the abundance dynamics of the 154 

ants themselves. The last two datasets included the dynamics of grasshoppers in the soil 155 

stratum of the same three sites, obtained by visual counting for one dataset and collection in 156 

pitfall traps for the other. These different cases of overlapping data may affect the analysis of 157 

overall insect trends..  158 

1.2 Inconsistencies 159 

There were also a number of inconsistencies. In 7 datasets, there were inconsistencies of 160 

taxa between plots of the same dataset (e.g., Figure 2g, shows time series considering the entire 161 

assemblage of invertebrates (including invasive molluscs in a plot and insects and crustaceans 162 

in other plots) or between metrics in the same plot (abundance or biomass; e.g, Figure 2h shows 163 

time series of the abundance of moths and beetles and the biomass of moths only). Because 164 

InsectChange does not indicate the insect group at the plot or metric level, users cannot identify 165 

these inconsistencies, which may lead to errors in comparative analyses of insect groups 166 

between different plots or metrics or in the estimation of the global trend of a particular insect 167 

group. Moreover, unfounded inclusion, exclusion (e.g., Figure 2i) or pooling of original sites 168 

affected 14 datasets, with potential consequences for insect trend analysis. In 7 datasets, there 169 

were also unfounded exclusions of data regarding a metric, some insect groups, or some time 170 

records. Furthermore, 12 datasets had temporal resolutions that did not match the resolutions 171 

of the original datasets or those stated in the InsectChange metadata (Table 1, Appendix S1, 172 

Problems.xlsx). While the temporal resolution should have been “as fine as possible between 173 

the week and the year” (“except for 6 datasets sampled 6 to 8 times in any month”), the data 174 

were sometimes averaged at the yearly level even though data for months were available and 175 

there were sometimes more than 8 records per month. All these inconsistencies in data 176 

selection mean that the data are not representative of the source studies.  177 

1.3 Methodological issues and information gaps 178 

With respect to methodological issues and information gaps, the inclusion of studies with 179 

internal drivers, i.e., experimental conditions or major disturbances, and the frequent omission 180 
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of information on these drivers are the focus of Section 3; the adequacy of geographic 181 

coordinates and the estimation of the local cropland cover are the focus of Section 4. 182 

In addition, a major methodological issue affecting the whole database is that the 183 

comparability of temporal trends between datasets is compromised by the heterogeneity of 184 

insect measurements, contrary to what is stated in InsectChange (e.g., p. 24 of MetaDataS1 file). 185 

Harmonisation of measurements was either not possible, due to variations in metrics 186 

(abundance/biomass), sampling methods and spatial scales between datasets, or was possible 187 

using standardisation for a given metric and sampling method, but was not achieved. 188 

Abundance and biomass units were thus not harmonised in the table 189 

InsectAbundanceBiomass.csv of InsectChange and were not clearly and/or systematically 190 

indicated in the table SampleData.csv of InsectChange. For example, abundance could be 191 

expressed as the number of individuals per m², per 0.1 m², or per sample, and biomass in g/m², 192 

mg/m² or g/sample. In many instances, the source and units for biomass data were not 193 

provided, notably when both abundance and biomass were available in the dataset (Appendix 194 

S1). This means that users often need to return to the source data to determine the data units. 195 

This problem may thus have detrimental consequences for users of the database who wish to 196 

estimate insect temporal trends. These detrimental consequences depend on whether the 197 

dependent variable in the model is transformed before analysis or not and on the type of 198 

transformation. For example, to avoid the log of 0 and reduce the high discrepancies in insect 199 

counts, van Klink et al. (2020a) and van Klink et al. (2022) used a log10(x+1)-transformation of 200 

these nonharmonised data, adding 1 to each abundance or biomass number before log-201 

transformation. However, whereas a log10(x)-transformation gives the same regression slope 202 

over time whether the dependent variable in a time series is expressed, for example, in mg/m² 203 

or g/m², a log10(x+1)-transformation gives different regression slopes. This raises a problem in 204 

the case of a meta-analysis focused on trend estimation where the dependent variable is 205 

expressed in different units of measurement. More precisely, in the case of a log10-206 

transformation of x, the slope of x (e.g., biomass in our case) with respect to t (time in our case), 207 

i.e., (log(x2)-log(x1))/(t2-t1) = log(x2/x1)/(t2-t1), expresses the relative variation of x over t (e.g., 208 

+10%/year) and not the absolute variation (e.g., + 2.7 g/year). With a log(x+1)-transformation, if 209 

x is numerically close to 0, log(x+1) is comparable to x and the slope is almost an absolute 210 

variation. If x is numerically high, log(x+1) is comparable to log(x) and the slope is almost a 211 

relative variation. Therefore, the interpretation of log(x+1) changes with the magnitude order 212 

of x. This issue is especially problematic in InsectChange, where magnitude orders of 213 

nonstandardised data vary between datasets from 10-16 to 106. For these reasons, this 214 

methodological issue compromises the comparison of temporal trends between datasets or 215 

groups of datasets and the overall insect trend estimation, and calls into question the results 216 

obtained from the InsectChange database. 217 

 218 

In additionBesides, 22 datasets had only two years of records (20 of these 22 had two records 219 

per plot), whereas the nonmonotonic dynamics of insect populations require more records 220 

(Roubik, 2001; Didham et al., 2020). It is well known that time series without sufficient records 221 

lack statistical power and are potentially misleading (Roubik, 2001; White, 2018). This problem 222 

of only two record years involves 13.3% of the studies (n = 165) and is not randomly distributed 223 

across continents. For example, it affects a quarter of the datasets and plots in Asia (4 of 16 224 
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datasets and 22 of 84 plots), suggesting that insect trend assessment for this continent on the 225 

basis of InsectChange data is likely biased. This methodological issue of only two record years 226 

is particularly problematic when combined with other types of problems, such as considering 227 

the whole assemblage of invertebrates instead of just insects (Figure 2a), reversing insect 228 

counts (Figure 2c) or failing to correct for a change in sampling effort (Figure 2e) because, as a 229 

result, insect trends may be radically altered compared with those of the original datasets.  230 

Another methodological issue is the inflation of datasets and/or sites (without overlapping 231 

data) compared with the original studies (6 datasets). For example, site inflation may result 232 

from splitting some sites of the original datasets into several InsectChange plots separated by 233 

only a few metres. This leads to overweighting of these datasets in the statistical analyses. This 234 

may also lead uninformed users to carry out statistical analyses without accounting for possible 235 

spatial correlation.  236 

Finally, iIn 20 datasets, dates were not indicated when there were successive samplings per 237 

month. This information gap may lead users to consider samples as interchangeable replicates 238 

when they are time dependent. 239 

Finally, a major methodological issue that we did not include in Table 1 affected the whole 240 

dataset. Abundance and biomass units were not standardised in the table 241 

InsectAbundanceBiomass.csv of InsectChange and were not clearly and/or systematically 242 

indicated in the table SampleData.csv of InsectChange. Abundance was expressed as the 243 

number of individuals per m², per 0.1 m², or per sample without systematically providing the 244 

size of the sample. Biomass was expressed in g/m², mg/m² or g/sample; in many instances, the 245 

source and units for biomass data were not provided in the table SampleData.csv of 246 

InsectChange, notably when abundance and biomass were available in the dataset (see 247 

Appendix S1). This means that users often need to return to the source data to determine the 248 

data units. This problem may have detrimental consequences for users of the dataset, leading 249 

them to use these nonharmonised data inappropriately. For example, to avoid the log of 0 and 250 

reduce the high discrepancies in insect counts, van Klink et al. (2020a) and van Klink et al. (2022) 251 

used a log10(x+1)-transformation of these nonharmonised data, adding 1 to each abundance or 252 

biomass number before log-transformation. However, whereas a log10(x)-transformation gives 253 

the same regression slope over time whether the dependent variable in a time series is 254 

expressed, for example, in mg/m² or g/m², a log10(x+1)-transformation gives different regression 255 

slopes. This raises a problem in the case of a meta-analysis focused on trend estimation where 256 

the dependent variable is expressed in different units of measurement. More precisely, in the 257 

case of a log10-transformation of x, the slope of x (e.g., biomass in our case) with respect to t 258 

(time in our case), i.e., (log(x2)-log(x1))/(t2-t1) = log(x2/x1)/(t2-t1), expresses the relative variation 259 

of x over t (e.g., +10%/year) and not the absolute variation (e.g., + 2.7 g/year). With a log(x+1)-260 

transformation, if x is numerically close to 0, log(x+1) is comparable to x and the slope is almost 261 

an absolute variation. If x is numerically high, log(x+1) is comparable to log(x) and the slope is 262 

almost a relative variation. Therefore, the interpretation of log(x+1) changes with the 263 

magnitude order of x. This issue is especially problematic in InsectChange, where magnitude 264 

orders of nonstandardised data vary between datasets from 10-16 to 106. For these reasons, this 265 

methodological issue compromises the comparison of temporal trends between datasets or 266 

groups of datasets and the overall insect trend estimation. Over and above the problems 267 

already mentioned, it calls into question the results obtained from the InsectChange database. 268 
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2 Focus on the problematic inclusion of clams, snails, worms and shrimp in 269 

freshwater data 270 

In the freshwater realm, 80% (19 of 24) of the biomass datasets and 40% (21 of 54) of the 271 

abundance datasets included invertebrates other than insects. This issue concerned 28 distinct 272 

datasets, 24 of which included the entire freshwater invertebrate assemblage (Figure 3, Table 273 

S1 in Appendix S2). The great majority of these 24 datasets included data on worms, molluscs 274 

and crustaceans, and taxa such as Oligochaeta, Hirudinea, Turbellaria and Amphipoda, which 275 

are often indicative of poor water quality (Enns et al., 2023) (Table S2 in Appendix S2). The 276 

inclusion of these datasets is not consistent with the purpose of the database because the 277 

dynamics of insects cannot be inferred from those of entire invertebrate assemblages. This is 278 

illustrated in Figure 3a, which presents examples from datasets in the study in which insect and 279 

invertebrate assemblages have contrasted trajectories (top), and in which proliferating invasive 280 

molluscs drive the trend of the invertebrate assemblage (bottom, FreshwaterNonInsects.xlsx).  281 

In addition, we calculated that on average insects made up 48.7% ± 31.9% of the entire 282 

assemblage in the 13 datasets (48 plots) with information on all or part of the time records 283 

(Figure 3b, FreshwaterNonInsects.xlsx). The insect share in the assemblage also highly varied 284 

over time (Figure S1 in Appendix S2), with a coefficient of variation averaging 36.5% ± 21.6% in 285 

the nine datasets (42 plots) where information was available for more than one time record. 286 

Therefore, considering noninsects in the assemblage can considerably alter the temporal trend 287 

of abundance or biomass at the scale of the source study. Out of the 53 plots of 15 datasets with 288 

information on invertebrates driving the trend of the entire assemblage, noninsects (invasive 289 

molluscs, opportunistic oligochaetes and/or amphipods, etc.) were found to drive the 290 

assemblage trend in almost half of the plots (25), affecting two-thirds of the datasets (10) 291 

(FreshwaterNonInsects.xlsx). 292 

 293 
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 295 

Figure 3 - Freshwater time-series including noninsects, while the insect share was often 296 
low and variable over time (Appendix S2, FreshwaterNonInsects.xlsx). (a) Case studies 297 
1455 and 1466 (Appendix S1) illustrating (top) contrasted trajectories of the entire 298 
assemblage and insects only, and (bottom) invasive noninsects driving the trend. (b) The 299 
62 freshwater datasets, 28 including noninsects (24 of which included the entire 300 
invertebrate assemblage). The percentage of insects, which could be extracted from 13 301 
of these, averaged 48.7% with a 36.4% coefficient of variation over time. (Appendix S1, 302 
Problems.xlsx). Insect % not computable: the insect data were not available from the 303 
original time series focused on the whole invertebrate assemblage. Insect % ‘sometimes’ 304 
or ‘always’ computable: it was possible to extract the percentage of insects for some or 305 
all records of the time series, respectively. Insects inferred to be mostly dominant: the 306 
percentage of chironomids, which are part of the insects in these InsectChange-selected 307 
data subsets of original datasets, could be calculated for each time record and was most 308 
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frequently well over 50% (Table S1 in Appendix S2). Credits for the photographs are 309 
detailed in Table S3 in Appendix S2. 310 

To visualise the differences between trends between total invertebrates and insects at the 311 

plot level, we extracted the estimates of regression slopes for each plot and the two assemblage 312 

types when possible (21 plots, 7 datasets, three from the USA, three from Russia, one from 313 

ItaliaItaly). To this end, we first converted data units into international units. Unlike van Klink 314 

et al. (2020a), we did not log10(x+1)-transform the data (Section 1.3) but log10(x)-transformed 315 

them, which was possible given the absence of zeros in the abundance and biomass counts in 316 

this data subset. We ran as many analyses of covariance as there were plots, each on log10(x)-317 

transformed insect densities, using the time covariate expressed in years, the assemblage type 318 

as a factor and the interaction between them as the explanatory variables 319 

(FreshwaterNonInsects.xlsx). The temporal trend estimates were very different for insects and 320 

total invertebrates for most plots and were even reversed for one-third of them (7 out of 21, 321 

Figure 4a).  322 

323 
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Figure 4 – Comparison of temporal trends (in the log10 space) of invertebrate abundance 325 
or biomass between all invertebrates and insects only, for freshwater time series on 326 
whole assemblages and for which the insect share was always computable. (a) 327 
Comparison at the plot level. The trends were very different for insects and total 328 
invertebrates for most plots, and reversed for 7 of the 21 plots. (b) Comparison at a larger 329 
scale (mean estimate for the subset of 7 datasets and 21 plots). The results of the mixed 330 
linear model showing significantly different trend estimates between the two 331 
assemblage types for biomass data, for which a positive trend (β1b) was observed when 332 
all invertebrates were considered and a negative trend (β2b) when only insects were 333 
considered. The overall (abundance and biomass combined) trend estimate was positive 334 
(β1) but not significantly different from zero for all invertebrates, and significantly 335 
negative (β2) for insects (Appendix 2). 336 

To test whether this problem affects the trend on a wider scale than that of the plot, we 337 

compared the mean trends between insects and all invertebrates in this data subset, which was 338 

composed of 21 plots from seven datasets, four with abundance data, and three with biomass 339 

data. To this end, we performed a mixed linear model on the log10-transformed insect densities. 340 

The fixed variables were the same variables as those used previously, and in addition the metric 341 

as a factor and the associated second and third-order interactions. We chose datasets and plots 342 

nested within datasets as random variables, considering them as independent and identically 343 

distributed, such as van Klink et al. (2020a). We found that the temporal trends differed 344 

significantly depending on the assemblage considered (significant interaction with time, 345 

Appendix 2), especially for biomass data (significant third order interaction). While the temporal 346 

trend was negative for abundance and did not differ significantly between assemblage types 347 

(P=0.96), for biomass, the temporal trend was positive for total invertebrates (P=0.0003) but 348 

was significantly lower (P<0.01) for insects for which it tended to be negative (P=0.066) (Figure 349 

4b, Appendix 2, FreshwaterNonInsects.xlsx). This first demonstrates that abundance and 350 

biomass trends can be very different, particularly when considering entire assemblages that 351 

can include large-size and invasive taxa such as certain molluscs. This further demonstrates 352 

that, on a wider scale than that examined in the study, considering entire invertebrate 353 

assemblages rather than only insects can lead to significant overestimation of the temporal 354 

trend (also see results of the post hoc tests for trend comparisons for abundance and biomass 355 

combined with a significant trend difference (P=0.01) between the two assemblage types, 356 

Appendix 2).  357 

3 Inclusion of datasets specifically designed to study particular, often 358 

experimentally manipulated, factors of insect changes  359 

A major limitation of the InsectChange database is that users are inclined to erroneously 360 

attribute insect changes to possible anthropogenic drivers, such as changes in cropland cover, 361 

urban cover or climate, included in InsectChange after extraction from external databases, 362 

when they more directly reflect habitat changes caused by internal drivers, i.e., factors of insect 363 

changes specifically investigated in the original studies. Indeed, 88 out of the 165 datasets were 364 

extracted from controlled or natural experiments or from strongly disturbed contexts, and the 365 

factors that were originally investigated or major disturbances affecting the results were not 366 

mentioned in 69% of these 88 datasets (Table 1, Appendix S3, Problems.xlsx). Among these 88 367 

datasets, 14 concerned controlled experiments testing the effect of one or several treatments 368 
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in different plots (Figure 5a) and 53 concerned natural experiments (Diamond, 1983) 369 

investigating the effect of a natural disturbance by comparing insect abundance in more or less 370 

disturbed plots (Figure 5b) or before and after the disturbance in a plot (Figure 5c). In these 371 

experimental datasets, only control plots, only experimental plots or both types of plots were 372 

inconsistently included in InsectChange. In 21 observational datasets of the 88, a strong 373 

disturbance affected insect trends (Figure 5d).  374 

Among these 88 datasets, the internal factors could be expected to have positive effects, for 375 

example, the effects of cessation of harmful activities, remediation measures (e.g., Figure 5e), 376 

active restoration or creation of new habitats such as nesting sites, reservoirs or ponds (e.g., 377 

Figure 5f) that favour insect recovery or colonisation. The studied factors could also be 378 

negative, such as severe drought, fire or pesticide application, creating deleterious conditions 379 

for insects at the beginning, middle or end of the observation period, followed by recovery, the 380 

timing of which strongly influences insect trends (Appendix S3). An increase in invertebrate 381 

abundance or biomass after a negative factor of pollution was paradoxically expected in six 382 

freshwater studies (Figure 5g, Appendix S3), because only or mostly stress-tolerant 383 

chironomids were considered or proliferating noninsects were included such as oligochaetes, 384 

opportunists in waters affected by eutrophication (Rosa et al., 2014), or invasive amphipods. 385 

Two-thirds (41 of 62) of the freshwater datasets were affected by internal drivers, a 386 

proportion significantly higher than that (one half: 47 of 103) of the terrestrial datasets (χ² = 5.7, 387 

P = 0.02, Figure 4g 5g left and middle, Appendix S3). Among these two-thirds, internal drivers 388 

were found to create situations that favour an increase in the number of insects in 61% of the 389 

cases (25 freshwater datasets in green in Figure 4g5g, left). Considering all the freshwater and 390 

terrestrial datasets impacted by specific drivers (Figure 4g5g, right), there were five times more 391 

situations favouring an increase in insects (42 datasets in green) than those favouring a decline 392 

in insects (nine datasets in brown).   393 
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Figure 5 - Inclusion of datasets specifically designed to study particular factors of insect 396 
change (internal drivers), the combination of which is unlikely to be representative of 397 
habitat conditions worldwide (Appendix S3, Fig2and5.xlsx). Examples of (a-c) controlled 398 
or natural experiments and (d-f) datasets with major disturbances; in (f), dashed and 399 
purple curves represent erroneous and actual data, respectively. (g) Comparison of the 400 
proportions of datasets affected by internal drivers between freshwater and terrestrial 401 
realms, showing the particularly problematic case of freshwater. It is also worth noting 402 
the frequency of situations favouring an increase in insects compared with their 403 
decrease. Red frame: datasets with internal drivers; blue frame: datasets without internal 404 
drivers; green: increases in insects favoured; brown: decreases in insects favoured. 405 

This analysis raises the question of whether the data included in InsectChange are 406 

representative of habitat conditions and associated insect abundances worldwide, particularly 407 

in freshwater. While the selection of data according to specific and consistent criteria is a 408 

necessary condition for a meta-analysis to lead to robust conclusions (Englund et al., 1999), it 409 
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was not met in InsectChange. The inclusion of time series with specific experimental designs to 410 

address ecological questions with differing purposes and expectations raises three issues for 411 

meta-analyses and other syntheses carried out using this database. (1) Such inclusion does not 412 

fit the definition of a meta-analysis as “a set of statistical methods for combining the 413 

magnitudes of the outcomes (effect sizes) across different datasets addressing the same 414 

research question” (Koricheva et al., 2013); (2) it implies that plots within datasets are not 415 

independently and identically distributed, which is not indicated in InsectChange; and (3) it 416 

introduces the problem of the “false baseline effect” (Didham et al., 2020), i.e., any nonrandom 417 

bias towards an above-average or a below-average starting point in a time series comparison, 418 

with a subsequent bias in the overall trend estimation. Therefore, because of these often 419 

artificial situations, which lead to below-average starting points much more frequently than 420 

above-average starting points, the insect trends obtained from InsectChange data (van Klink et 421 

al., 2020a) for freshwater and terrestrial realms are most likely overestimated.  422 

How could data selection be improved in InsectChange? First, to reach more robust and 423 

meaningful conclusions, the best way to proceed would be to select more homogeneous 424 

datasets enabling testing of a single clear hypothesis, or alternatively to control for 425 

heterogeneity among studies with statistical analyses that take these differences into account 426 

with predictor variables. For controlled experiments, it would be relevant to consider only 427 

control sites. For other datasets, care should be taken to ensure the representativeness of 428 

situations and drivers in terms of sites with or without disturbance and in terms of timings of 429 

disturbance, and disturbance types could be weighted according to their frequency (Cardinale 430 

et al., 2018). Maps of human impacts on ecosystems, for example, could guide the choice of data 431 

and/or their weighting (Gonzalez et al., 2016).  432 

In any case, users are exposed to the risk of misinterpreting trend drivers if they use 433 

InsectChange data, i.e., insect changes and local indicators of anthropogenic changes extracted 434 

from external databases, without knowledge of the factors originally investigated in the source 435 

studies.  436 

4 Methodological issues resulting in a strong overestimation of the local 437 

cropland cover 438 

Finally, we found a strong overestimation of local cropland, a possible driver included in 439 

InsectChange, by matching study plots to land covers provided in the European Space Agency 440 

Climate Change Initiative (ESA CCI) database (ESA, 2017) via the geographic coordinates that 441 

were either provided in the source studies or inferred by the authors of InsectChange. According 442 

to our analysis of terrestrial plots, this problem arises because (1) the geographic coordinates 443 

assigned to InsectChange plots are often inadequate for indicating sampling locations and (2) 444 

the interpretation of satellite images to determine land cover at actual sampling locations is 445 

often imperfect. 446 

4.1 Assignment of inadequate geographic coordinates for local analysis 447 

The local scale around each plot is defined in InsectChange as the area of 900 m × 900 m 448 

centred on the 300 m × 300 m ESA-CCI cell encompassing the geographic coordinates assigned 449 

to the plot and including the eight surrounding ESA-CCI cells. This area is used to estimate 450 

cropland or urban cover at the local scale. The adequacy of these local-scale indicators hinges 451 
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on the premise that, for each plot, the geographic coordinates assigned to the plot in 452 

InsectChange are precise enough to point to the insect sampling area, and that this sampling 453 

area is included in a 900 m × 900 m square (hereafter referred to as a “local-scale square”, Figure 454 

6a). However, this was not the case for almost a quarter of the terrestrial plots (233 out of the 455 

985 plots). This methodological issue affected 63 of the 103 terrestrial datasets included in 456 

InsectChange. 457 

We assessed the matching with ESA-CCI as adequate when the actual sampling area was at 458 

the location indicated by InsectChange geographic coordinates and small enough to be 459 

encompassed in a local-scale square (Figure 6a). By this criterion, matching was adequate for 460 

658 out of 985 terrestrial plots of InsectChange. Among these, 357 were assigned different 461 

geographic coordinates. Each of these geographic coordinates adequately indicated the actual 462 

sampling area, which was adequately encompassed in a local-scale square (Figure 6a1). The 463 

remaining 301 plots shared geographic coordinates with others, with a total of 11 distinct 464 

geographic coordinates assigned by InsectChange. Each of these 11 coordinates adequately 465 

pointed to a zone included in the global sampling area of the original study comprising the 466 

sampling areas of different plots assigned a unique pair of geographic coordinates. This global 467 

sampling area was itself small enough to be encompassed in a local-scale square (Figure 6a2).  468 

By contrast, we assessed the matching with ESA-CCI as unclear for 94 plots and inadequate 469 

for 233 terrestrial plots (Figure 6b), as detailed in our supplementary table CroplandCover.xlxs. 470 

We assessed the matching as unclear either when the sampling area was a butterfly transect 471 

and we found no information on the size of this transect, or when several plots shared the 472 

identical geographic coordinates and we found no information on their precise sampling areas.  473 

Among the plots with an inadequate matching, the actual sampling area was larger than a 474 

local-scale square for 190 terrestrial plots, either because a unique InsectChange plot 475 

aggregated data from actual sampling points more than 900 m distant from each other (18 476 

plots; Figure 6b1) or because several InsectChange plots with the same assigned geographic 477 

coordinates corresponded to actual sampling areas more than 900 m distant from each other 478 

(172 plots; Figure 6b2). Both cases contradicted the statement in InsectChange that data on the 479 

cropland cover were extracted “at and surrounding the sampling sites”, which implicitly 480 

assumes that for each plot, the sampling area was fully encompassed in a local-scale square. 481 

Matching with an external database is thus not appropriate, as it provides land cover 482 

information either for only part of the sampling area or for an unsampled area. When 483 

information was available, the maximum distance between sampling points in a sampling area 484 

varied from 1 to 370 km, as shown on the left boxplot in Figure 6b. For example, the 370 km 485 

distance is related to Study 1470, where InsectChange extracted a mean hymenopteran time 486 

series from Belarus in a unique plot and assigned it a location in Belarus where no sampling 487 

actually occurred. The information from the source study gave the names of the areas where 488 

the insects were sampled, allowing calculation of the distances between sampling points, 489 

which ranged up to approximately 370 km. Therefore, the local-scale indicators calculated 490 

around the geographic coordinates assigned to this unique “plot” are not meaningful for 491 

informing on the local conditions around the actual sampling points.  492 

 493 



21 
 

494 



22 
 

(a) InsectChange geographic coordinates (GC) with adequate ESA-CCI matching
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 495 

Figure 6 - Inadequate assignment of geographic coordinates (GCs) for local analysis: the 496 
case of terrestrial plots. (a) adequate InsectChange GCs, (b) unclear or inadequate GCs, 497 
and, for inadequate GCs, boxplots (including the mean in red) of the maximum distance 498 
among sampling points in case of identical InsectChange GCs for different sampling 499 
points (left) and of the distance to the sampling area when the GCs were outside the 500 
sampling area (right).  501 

Code de champ modifié



23 
 

Both cases contradicted the statement in InsectChange that data on the cropland cover 502 

were extracted “at and surrounding the sampling sites”, which implicitly assumes that for each 503 

plot, the sampling area was fully encompassed in a local-scale square. Matching with an 504 

external database is thus not appropriate, as it provides land cover information either for only 505 

part of the sampling area or for an unsampled area. When information was available, the 506 

maximum distance between sampling points in a sampling area varied from 1 to 370 km, as 507 

shown on the left boxplot in Figure 6b. For example, the 370 km distance is related to Study 508 

1470, where InsectChange extracted a mean hymenopteran time series from Belarus in a 509 

unique plot and assigned it a location in Belarus where no sampling actually occurred. The 510 

information from the source study gave the names of the areas where the insects were sampled, 511 

allowing calculation of the distances between sampling points, which ranged up to 512 

approximately 370 km. Therefore, the local-scale indicators calculated around the geographic 513 

coordinates assigned to this unique “plot” are not meaningful for informing on the local 514 

conditions around the actual sampling points.  515 

For the remaining 43 plots with inadequate matching, the geographic coordinates were 516 

included in a local-scale square that was outside the sampling area (Figure 6b3). When 517 

information was available, the distance between the InsectChange geographic coordinates and 518 

the actual sampling area varied from 400 m to 450 km, as shown in the right boxplot on Figure 519 

6b. For example, from the columns PlotName, Location and DetailsPlot in the table PlotData.csv 520 

of InsectChange, Plots 1656 (Study 1266) and 1670 (Study 1006) represent the Cairngorms site 521 

of the UK Environmental Change Network, but were inadequately assigned the geographic 522 

coordinates of the 450 km-distant Yr Wyddfa/Snowdon site. Other sources of inadequacy are 523 

detailed in our supplementary table CroplandCover.xlxs. They include the use of different 524 

geographic coordinates than those provided in the source study, an error when transforming 525 

geographic coordinates to the decimal format, the inexact attribution of geographic 526 

coordinates in cases when they were not provided in the original study, and the use of 527 

geographic coordinates that were approximate or erroneous in the original publication or 528 

database from which they were extracted. 529 

4.2 Overestimation of cropland cover at the local scale 530 

To assess the local cropland cover area, we used information available in the original 531 

studies, in other publications, on Google Earth around the correct sampling areas, on satellite 532 

images from Landsat 8 or Sentinel 2 for more dates, on the internet and in ESA CCI. The 533 

information available generally did not allow us to establish precise cropland covers, but often 534 

enabled us to determine whether InsectChange estimates of the percentages of land covered 535 

by crops were of an adequate order of magnitude, overestimated or underestimated, on the 536 

basis of clearly identifiable parts of local land covers. In some cases, we were unable to make a 537 

decision, either because the precise sampling location was unknown and could include crops, 538 

or because satellite images were difficult to interpret, and we found no other source of 539 

information. We found that the assessment of local cropland cover was inadequate for half (486 540 

of 985) of the terrestrial plots, with a very uneven distribution of errors (Figure 7a1, 541 

CroplandCover.xlsx). Most plots assessed as having no surrounding crops were well assessed 542 

(455 of 486 plots), whereas most plots assessed as having surrounding crops suffered from an 543 

overestimation of the cropland cover (353 of 496 499 plots), with 71% of these 353 (252 plots) 544 
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in fact having no surrounding crops. On the basis of only clearly identifiable parts of the land 545 

cover, we found that for 129 geographic coordinates for which assessment was possible, the 546 

assessment errors were very wide-ranging: the minimum overestimation of the cropland cover 547 

varied between 3% and 100% (mean: 45%, median: 36%, N = 114) and its minimum 548 

underestimation varied between 1% and 67% (mean: 15%, median: 12%, N = 15, Figure 7a2). 549 

Because of the strong overestimation of cropland cover, we argue that InsectChange cannot 550 

provide a reliable analysis of the impact of local cropland cover on insect changes and could 551 

lead to incorrect dismissal of the impact of cropland cover on insect decline.  552 

  553 
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Figure 7 - Overestimation of local cropland cover (CroplandCover.xlsx). (a) Assessment 556 
errors of the cropland cover of plots and their unevenness: 1) InsectChange assessment 557 
of local cropland cover of an adequate order of magnitude, overestimated, 558 
underestimated or inadequate or unclear (without a possible assessment); 2) Minimum 559 
error in cropland cover assessment, based on clearly identifiable parts of the land cover, 560 
for geographic coordinates with inadequate cropland cover assessment. (b) Example of 561 
overestimation of the local cropland cover in Study 1102 (van Klink et al., 2019), Plot 567, 562 
with adequate geographic coordinates (latitude: 52.77986, longitude: 6.57968, last year 563 
in study: 2016, cell scale: 300 m × 300 m); 1) InsectChange assessment of cropland cover 564 
shown in red = (8 × 100%)/9 = 89% from ESA-CCI 2015 coding, i.e., 8 yellow cells (ESA-CCI 565 
code 10, “cropland, rainfed”) coded as cropland in InsectChange and one brown cell 566 
(ESA-CCI code 110, “mosaic herbaceous cover > 50%/tree and shrubs < 50%”) coded as 567 
uncropped in InsectChange; 2) Our assessment of cropland cover on the basis of 568 
information from the source study and Google Earth satellite image from May 2, 2016, 569 
showing the local area surrounding the plot in Hullenzand heathland (Netherlands). Most 570 
of the area was heath land, whereas the northwestern green area outlined in blue, 571 
representing ≈ 2% of the local-scale square, was cropland or grassland. The local 572 
cropland cover was therefore either 0% or ≈ 2%. On this basis, the 89% assessment in the 573 
database was coded as overestimated in our analysis (Appendix S1, Problems.xlsx). 574 

Inadequate geographic coordinates explained only 18.3% of inadequate cropland cover 575 

assessments. Indeed, for more than half (127 out of 233) of the plots that were assigned 576 
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inadequate geographic coordinates, the actual sampling area and the local surroundings 577 

totally lacked crops, in line with the InsectChange assessment for these plots. In most cases, 578 

therefore, the inadequacy of geographical coordinates had no impact on the assessment of 579 

local cropland cover. The main reason for inadequate cropland cover assessments was the 580 

inaccurate interpretation of satellite images by the ESA-CCI database (CroplandCover.xlsx), 581 

notably because grasslands, heathlands, steppes, barrens, prairies, shrublands, marshlands, 582 

natural vegetation areas, parks or golf courses may inaccurately be coded as croplands (Peng 583 

et al., 2017; Liu et al., 2018), and the representation of land cover is imprecise when used at a 584 

local scale composed of nine 300 m × 300 m squares with rough cropland cover assigned to each 585 

of them (63.2% of inadequate cropland cover assessments, CroplandCover.xlsx, example in 586 

Figure 7b). For some plots (but not systematically for all plots), we checked whether cropland 587 

covers were adequately retrieved from ESA-CCI. We found that this was not the case for 8.2% of 588 

cropland covers, were the InsectChange assessment did not match with ESA-CCI information. 589 

Finally, 10.3% of the cropland cover assessments were inadequate for other reasons (for 590 

example, insufficient resolution of satellite images at the beginning of the 1990s, tree cover, 591 

parking lots, and shadow on the top of a mountain incorrectly coded as cropland). 592 

In terms of freshwater, 49 of the 62 studies matched with ESA-CCI information included 593 

inadequate geographic coordinates that should be used with caution. We did not check local 594 

cropland cover estimates, as the water quality at the sampling points may be more dependent 595 

on upstream land use than on land use of immediately adjoining plots (Allan, 2004; Desquilbet 596 

et al., 2020). For terrestrial and freshwater datasets, a quality check of the accuracy of estimates 597 

provided for other possible drivers of insect change, notably local-scale drivers (urban cover 598 

and climate change) similarly affected by the inadequacy of geographic coordinates, is strongly 599 

recommended. 600 

Conclusion 601 

The numerous problems affecting the InsectChange database call for corrections and 602 

extreme vigilance in its use. They call into question the results obtained thus far from this 603 

database, in the first place those of van Klink et al. (2020a), which were widely covered by 604 

various media reaching a broad readership (Kimbrough, 2020; McGrath, 2020; Ritchie, 2024). 605 

The main consequence is that InsectChange conveys unsubstantiated information to scientists, 606 

decision-makers and the general public. We argue that InsectChange, in its current state, does 607 

not allow the study of insect trends worldwide or their drivers and is particularly unsuitable for 608 

the analysis of the influence of agriculture on insects, or for the study of changes in freshwater 609 

insect assemblages. We have outlined ways of improving data selection to make the data more 610 

representative of habitat conditions and insect numbers at a global scale. Our detailed 611 

appendices are designed to facilitate data consolidation. More generally, this careful 612 

reviewcomment underlines the need for relevant matching with external databases. Our 613 

careful review also illustrates the value of contacting dataset owners to ensure their 614 

appropriate use and calls for vigilance to avoid transferring errors across databases, as 615 

occurred for 11 datasets incorporated from the Global Population Dynamics Database 616 

(Prendergast et al., 2010) and/or Biotime (Dornelas et al., 2018) into InsectChange (Appendix 617 

S1). Finally, our in-depth analysis highlights the attention that should be given to the data and 618 
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their meaning to ensure that large databases built from individual datasets participate in a 619 

cumulative knowledge process.  620 
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Appendices 621 

Appendix 1 - Results of the binary logistic regressions testing for an effect of realm on 622 
each problem type. 623 

Problem 
category 

Dependent variable  
(problem type) 

Characteristic Log(OR)1 95% CI2 p-value 

Er
ro

rs
 

Inexact insect group Intercept -0.26 -0.77, 0.24 0.3 
 Freshwater realm — —  
 Terrestrial realm -0.73 -1.4, -0.06 0.032 
Noninsects Intercept -0.19 -0.70, 0.30 0.4 
 Freshwater realm — —  
 Terrestrial realm -2.4 -3.4, -1.6 <0.001 
Insect count error Intercept -1.8 -2.5, -1.1 <0.001 
 Freshwater realm — —  
 Terrestrial realm 0.08 -0.79, 1.0 0.9 
Unaccounted sampling 
effort/method 

Intercept -3.0 -4.4, -2.0 <0.001 
Freshwater realm — —  
Terrestrial realm 1.2 0.05, 2.7 0.065 

Overlapping studies or sitesdata Intercept -2.2 -3.2, -1.5 <0.001 
 Freshwater realm — —  
 Terrestrial realm -0.38 -1.5, 0.79 0.5 
Insect stratum error Intercept -21 -815, 66 >0.9 
 Freshwater realm — —  
 Terrestrial realm 18 -194, NA >0.9 

In
co

ns
is

te
nc

ie
s 

Taxa inconsistency Intercept -2.4 -3.5, -1.6 <0.001 
 Freshwater realm — —  
 Terrestrial realm 0.09 -1.0, 1.3 0.9 
Site inconsistency Intercept -3.4 -5.2, -2.2 <0.001 
 Freshwater realm — —  
 Terrestrial realm 0.43 -1.1, 2.4 0.6 
Inadequate temporal resolution Intercept -2.7 -3.9, -1.8 <0.001 
 Freshwater realm — —  
 Terrestrial realm 0.20-0.83 -2.5, 0.7 0.3 
Data exclusion Intercept -2.7 -3.9, -1.8 <0.001 
 Freshwater realm — —  
 Terrestrial realm 0.20 -1.0, 1.6 0. 8 

M
et

ho
do

lo
gi

ca
l i

ss
ue

s 

Internal driver(s) Intercept 0.67 0.15, 1.2 0.013 
 Freshwater realm — —  
 Terrestrial realm -0.84 -1.5, -0.20 0.011 
Inadequate geographic coordinates 
for study at local scale 

Intercept 1.3 0.75, 2.0 <0.001 
Freshwater realm — —  
Terrestrial realm -0.87 -1.6, -0.16 0.019 

Only two years of records Intercept -1.9 -2.7, -1.2 <0.001 
 Freshwater realm — —  
 Terrestrial realm 0.06 -0.85, 1.0 0.9 
Study or site inflation Intercept -21 -815, 66 >0.9 
 Freshwater realm — —  
 Terrestrial realm 18 -209, NA >0.9 

In
fo

rm
at

io
n 

ga
ps

 

Omission of drivers Intercept 0.00 -0.50, 0.50 >0.9 
 Freshwater realm — —  
 Terrestrial realm -0.89 -1.6, -0.24 0.008 
Omission of dates Intercept -2.7 -3.9, -1.8 <0.001 
 Freshwater realm — —  
 Terrestrial realm 0.98 -0.08, 2.3 0.093 

 1 OR = Odds Ratio, 2 CI = Confidence Interval 
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Appendix 2 – Effects of considering total freshwater invertebrates instead of freshwater 625 
insects only on trend estimation. (a) Results of mixed model testing for effects on insect 626 
density (log10-transformed) of fixed variables with respect to time, type of assemblage 627 
considered and metric and random variables with respect to datasets and plots within 628 
datasets. (b) Trend estimation (in the log10 space) between the different groups and tests 629 
for their differences. 630 

(a) Mixed linear model on log10(insect density) dependent variable 

- Type III ANOVA-like table with Satterthwaite's method for the fixed effects 

Independent variable Sum of squares Mean 
square 

Num.df Den.df F value P value 

Assemblage type 0.799 0.799 1 124.85 6.351 0.013 * 
Metric 0.356 0.356 1 125.80 2.861 0.093 
Time 0.137 0.137 1 125.53 1.104 0.295 
Assemblage type * Metric 1.271 1.271 1 124.85 10.220 0.002 ** 
Time * Assemblage type 0.832 0.832 1 124.84 6.694 0.011 * 
Time *Metric 0.240 0.240 1 125.53 1.938 0.166 
Assemblage type*Time*Metric 1.290 1.290 1 124.84 10.371 0.002 ** 

      - ANOVA-like table for the random effects 

npar  logLik AIC LRT Df P value 
none 11 -77.573 177.15    
1 | Dataset_ID 10 -78.422 176.84 1.697 1 0.193 
1 | Dataset_ID : Plot_ID 10 -90.546 201.09 25.946 1 3.5e-07*** 

(b)    Time trend estimates for each group 

Assemblage type Metric Time.trend SE df  t.ratio  P value 
Total invertebrates Abundance -0.00705 a 0.00353 126 -1.995 0.048 * 
Insects Abundance -0.00417 a 0.00353 126 -1.181 0.240 
Total invertebrates Biomass  0.01399  b 0.00371 124 3.768 0.0003 *** 
Insects Biomass -0.01242 a 0.00669 125 -1.855 0.066 . 
Total invertebrates Abundance + Biomass  0.00347 a’ 0.00256 125 1.353 0.1786 
Insects Abundance + Biomass -0.00830 b’ 0.00378 125 -2.192 0.0302 * 
*: P < 0.05, **: P < 0.01, and  ***: P < 0.001 
Different letters were associated with the trend estimates when they were significantly different from each other 
according to post hoc pairwise tests with Satterthwaite's method and Holm’s correction for multiple comparisons. 
The model run without the non-significant factor Dataset_ID gave comparable results and was not better according 
to the Akaike information criterion (AIC) with a AIC difference of only 0.3. 
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