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Prof. Frangois Munoz
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Dear Prof. Munoz:

The second set of reviews identified several points that needed clarification, and I have revised the
manuscript accordingly. I did not however agree with the major points in Prof. Massol’s review,
which argued that my section 3.3 is neither necessary nor correct. I will contest both points below.

I’'m grateful to you and to both reviewers for your efforts on this manuscript.

Yours

He.

Alan R. Rogers
Detailed responses. (Reviewers’ comments in italic type, my responses in roman.)

Francois Massol

1. in reality, there cannot be any NE consisting only of pure strategies. To realize that, imagine
that A players have gone fishing and K +1 — A have chosen a variety of v values. Obviously,
any one of the K +1— A individuals that has not chosen the smallest v could have done better
by going fishing. So now imagine that A = K and thus only one player tries to harvest. If
it has strategy v > ¢, then all fishermen can do better by choosing any harvesting strategy
between ¢ and v, and the harvester can always do better if v < 1. So there can’t be any NE
consisting only of pure strategies, except for the very trivial one (everybody but one player
going fishing and the last one harvesting at v = c).

I agree and have changed that passage as the reviewer suggests. Point of clarification:
the one exception that the reviewer mentions isn’t really a NE either, because the individual
playing v = ¢ could do better by playing v > c.

2. What is proved in 3.2 is that we can find a mized strategy that is an ESS, using BC theorem
to find it.
I see this differently. A mixed ESS must satisfy two conditions. As Bishop and Cannings
(1978 JTB 70:85, equation 3, p. 90) stated these for pairwise games,

I(I,1)=11(J,I) and II(I,J) > II(J,J)

Section 3.2 of my own manuscript describes a strategy (I) that satisfies the equality condition



but does not discuss the inequality and therefore does not demonstrate that I is an ESS. It
shows only that I is a Nash equilibrium, not that it is an ESS.

. The point that section 3.3 is trying to insert is not a useful one: resisting invasion in game
theory means being an ESS. Since the strategy defined above is an ESS, it does resist invasion
by others.

Section 3.3 addresses an essential point. We cannot decide whether I is an ESS without
evaluating the inequality in equation 3 of Bishop and Cannings (1978 JTB 70:85), which is
analogous to my inequality 14. Section 3.2 does not do this; section 3.3 does.

Furthermore, section 3.3 shows that I is not evolutionarily stable, and this mathematical
result is confirmed by computer simulation. Figures 6 and 7 would be incomprehensible if, as
the reviewer claims, I were an ESS and section 3.3 were incorrect.

. The problem with section 3.3 is that it is based on the prologue of appendiz A, which tries to
compare wy and wy based on the probability that I or J encounters groups of I only or with the
inclusion of one J. However, this is a very bad reasoning: Imagine that J is rare and say we
are looking at the probability that the group of players will count 0, 1 or 2 J players (to make
things simple). Let’s call these probabilities ko, k1 and ko (attention: these are probabilities of
encountering the whole group, not its individual players). Now let’s call Py(I), Py(J), Pi(I)
and Py (J) the respective probabilities for an I player to compete against K I players, for a J
player to compete against K I players, for an I player to compete against 1 J and K —1 1
players, and for a J player to compete against 1 J and K —1 I players. Given the k;s defined
before, we obtain: Py(I) x ko, Po(J) o k1 (the group needs to have exactly one J player),
Pi(I) x k1 (you need to find exactly one J player to compete against) Py(J) x 2ka (you need
to find two J players, one for the focal and one for the unique J opponent, and since players
are not labelled there are two combinations of this configuration for each group containing two
J players) As you see, the Py of I and J are not the same. And the Py of I and J are also
completely different. ... So the whole reasoning presented at the beginning of appendix A is
false. But this is not a problem since what it was trying to reproduce in the first place is the
ESS reasoning that you have already performed!! (and which proves that I is an ESS)

I agree that in a finite population Py(I) # Py(J) and Py (I) # Pi(J). However, I will argue
that the differences between these quantities are small in large populations and disappear
in infinite ones. My manuscript ignores effects of finite population size as is conventional in
evolutionary game theory. In what follows, I will focus on P;(I) and P;(J). The argument
for Py(I) and Py(J) is similar, but I won’t detail it here. Like the reviewer, I will assume for
simplicity that individuals compete in randomly-formed pairs. This makes my inequality 14
identical to the inequality condition of Bishop and Cannings, which I cite above.

In a population of size N, suppose that x individuals play J and the rest play I. The
probability that an I’s opponent is a J equals P;(I) = /(N — 1), because that is the fraction
of Js among the remaining N — 1 individuals. But if our focal individual is a J rather than
an I, this probability becomes P;(J) = (x —1)/(N —1).

In the reviewer’s notation, an I’s opponent is a J with probability

k1
P(l)= ——— 1
(D) = 5 (1)
and a J’s opponent is a J with probability
2ko
Pi(J)= 2



The reviewer claims that Pj(I) o« ki, and Pi(J) o« 2kz. But this is not so, because the
denominators of (1) and (2) are different. The k; can be expressed in terms of z and N as:

v = (5 (50)
b= 2(5) (33)
= () (73)

Substituting these into Eqns. 1 and 2 gives

T z—1
Pl(_[):ﬁ and Pl(J):N—l

just as in the simpler argument above. In the limit as x and N increase without bounds while
x /N remains constant, these probabilities approach the same value, /N. In my appendix A,
I ignore the distinction between P;(I) and Pj(J) as is appropriate in a model of infinite
population size. I have added a footnote that points this out.

This approximation also underlies the classic result of Bishop and Cannings (1978 JTB
70:85, equation 3) and is standard in evolutionary game theory. The reviewer is thus arguing
not only against me, but also against Bishop, Cannings, Maynard Smith, and all the other
game theorists of the last half century.

5. Just to convince you completely, there is also the argument of the quantities to compare:
(I, JUIKY vs. TI(J, JUR). If K = 1 (i.e. there are only two players per arena), then the
comparison turns out to be II(1,J) against II(J, J). How can such a comparison inform us
about the invasion of I by J (since II(J, J) is about the still non-existent case in which two
rare-strategy players would compete against each other)? In fact, this is touching the crucial
part: the comparison induced by BC theorem (i.e. TI(J, I') vs. TI(I, I%)) is the only one that
counts when J is rare.

This comparison becomes important when I1(.J, I*) = II(I, I*), as is the case when I is a
mixed equilibrium.

6. In the simulations, you mention the existence of “oscillations” when 2K x ¢ < 1. However,
since the points raised by appendix A are now moot, I guess this effect has more to do with
the question of invaisibility by 1: given a mized strategy J, close to I, can I invade? (see
FEshel 1983 on the CSS criterion)

From this point on, the reviewer offers suggestions about how to rescue the manuscript from
the problems identified earlier. I have not followed these suggestions because (as discussed
above) I don’t think the problems are real. Nonetheless, the reviewer’s suggested approach
sounds interesting, and I hope he will let me know if he makes further progress.

Jeremy Van Cleve

7. page 11 “dynamics may be chaotic.” Given that its notoriously difficult to distinguish deter-
ministic chaos from stochastic time series, I think its safer to attribute the noise in the time
series simply to stochasticity, which is of course definitely present.

Good point. That passage now reads:



Although there are no obvious cycles, it is impossible to tell whether the dynam-
ics are cyclical or chaotic. Cycles may be obscured by the stochasticity of the
simulation.

8. In the response, the author that “AD uses a “smart” model of mutation, which perturbs a
mutant’s fitness in a direction that increases its fitness”. This isn’t true. Mutations are often
assumed to have a mormal distribution around the resident trait value and its the selection
gradient that creates the deterministic trajectory in the direction of increased mutant fitness.
I mention this because one could, as Dr. Massol suggests, use AD to see quantitatively just
how the mixed strategy evolves. This kind of analysis might be the place where cycling could
be observed.

I suspect this is a good idea, but I lack the expertise.

9. On point 29 of the response, I want to clarify what I meant in my previous review if its of
use. Theorem 2 of BC78 says that for two mized strateqgy ESSs, one can’t be contained within
the support of the other. My comment refers to their proof on page 113, which uses Theorem
1. Then Theorem 2 powers Theorem 3.

Thank you. I see how this works.



