
Titles: Mark loss can strongly bias demographic rates in multi-state models: a case study with

simulated and empirical datasets

Authors

Frédéric Touzalin1,2, Eric J. Petit3, Emmanuelle Cam4, Claire Stagier1, Emma C. Teeling1, Sébastien 

J. Puechmaille5,6,7

1School of Biology and Environmental Science, Science Centre West, University College Dublin, 

Dublin, Ireland. 

2Bretagne Vivante-SEPNB, Brest, France. 

3DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, Ifremer, Rennes, 

France. 

4Université de Bretagne occidentale, Brest, LEMAR, CNRS, IRD, Ifremer, F-29280 Plouzane, 

France. 

5Zoological Institute and Museum, University of Greifswald, Greifswald, Germany. 

6ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France.

7Institut Universitaire de France, Paris, France

Correspondence

Frédéric Touzalin

Email: fredtouzalin@gmail.com

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2023. ; https://doi.org/10.1101/2022.03.25.485763doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.25.485763
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract 

1. The development of methods for individual identification in wild species and the refinement of 

Capture-Mark-Recapture (CMR) models during the past decades has greatly improved the 

assessment of population demographic rates to answer ecological and conservation questions. In 

particular, multi-state models, with their flexibility for the analysis of complex study systems, have 

become popular in the ecological community. We have addressed here the issue of mark loss and 

the often associated recycling of remarked individuals, which remains to be further explored in the 

context of the increasing use of these models.

2. To explore this knowledge gap we used a wide range of simulation scenarios reflecting frequently

encountered real case studies inspired from the survival rates of 700 vertebrates’ species. We 

estimated the effects of mark loss and recycled individuals on parameter estimates using a multi-

state, Arnason-Schwartz (AS), modelling framework. We explored parameter bias through 

simulations of a metapopulation system with different capture and survival rates. We also illustrated

how mark loss can be easily estimated and accounted for using an empirical long-term (10 years) 

CMR dataset of bats, individually identified using both PIT tag technology as marks that can be 

lost, and multi-locus genotypes as ‘permanent marks’.

3. The results from our simulated scenarios demonstrated that the occurrence of bias and the 

parameters concerned were highly dependent on the study system, and no general rules on 

parameter behaviour can be established a priori. The model structure and the interdependency 

among parameters make it challenging to predict how bias could affect estimates.

4. Our results highlight the need to assess the effect of mark loss when using AS models. Ignoring 

such violations of model assumptions can have important implications for ecological inferences and

conservation policies. In general, the use of permanent marks (e.g. genotype), should always be 

preferred when modelling population dynamics. If not possible, an alternative is to combine two 

independent types of temporary marks (e.g. PIT tags, bands).
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5. Analysis of our empirical dataset on Moytis myotis bats has shown that tag loss is higher in 

juveniles than in adults during the first year after tagging. The tag loss rate can be reduced from 

28% to 19% in juveniles by using surgical glue to close the injection hole, while it did not change 

the tag loss rate in adults (~10%). Main bias appeared in survival rate in our metapopulation system,

with up to 20% of underestimation of survival rate if tag loss is not accounted for. Such a bias can 

lead to misinterpretation of population dynamics trends and wrongly influence conservation 

policies.

KEYWORDS 

Arnason-Schwarz model, Bayesian, bats, capture-mark-recapture, mark retention, Myotis myotis, 

multi-state, surgical glue.

1 Introduction

Capture-mark-recapture (CMR) methods have become a standard approach to estimate 

demographic rates of wild species thanks to the development of a range of different models. 

Accurately quantifying population dynamic parameters is critical to assess the state of populations, 

understand their dynamics, and ultimately make efficient management and conservation decisions. 

However, all CMR models make a number of assumptions of homogeneity (Johnson et al., 1986; 

Williams et al., 2002) that are prone to generate biases if violated. A widespread violation of CMR 

model assumptions, originally identified four decades ago (Nelson et al., 1980), is the loss of marks 

(see Supporting Information 1, Table S2). Mark loss has two consequences: (1) when mark 

shedding occurs it induces non-identifiability of these individuals (detection heterogeneity), which 

implies that they are considered either dead or out of the study area, despite being alive and present;

(2) if these individuals are captured again, they will not be recognized and will be remarked as 

newly recruited individuals, known as “recycled” individuals (Malcolm‐White et al., 2020). In open
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population models, estimates of abundance in the Jolly-Seber (JS) model (Jolly, 1965; G. Seber, 

1965) or of survival in the Cormac-Jolly-Seber (CJS) model (Cormack, 1964; Jolly, 1965; Seber, 

1965) can be affected by mark loss (Arnason & Mills, 1981). Many statistical tools have been 

developed to remove the confounding effect of mark loss in these models (Arnason & Mills, 1981; 

Cowen & Schwarz, 2006; Robson & Regier, 1966; G. A. F. Seber & Felton, 1981). However, the 

multi-state models that have now undergone substantial development (Lebreton et al., 2009) have 

not received such attention and the effect of mark loss on state transition has not been studied.

In multi-state models, if survival is state dependent, survival is the product of true survival and 

mark retention rate for individuals in a particular state (Lebreton et al., 1992; Lebreton et al., 2009). 

If the retention rate starts to drop below one without being considered in the model, while true 

survival remains constant, survival in a particular state is underestimated and becomes confounded 

with the probability of presence of the mark, even more if true survival is high, but it is not clear 

how state transitions are affected. Consider “1011”, a simple four occasions encounter history, 

where “1” implies the individual was caught and “0” not. If we note ϕt the survival rate between 

occasion t and t+1 and pt the capture probability at occasion t (with qt = 1 - pt), this encounter 

history occurs with probability ϕ1q2ϕ2p3ϕ3p4. This probability product can be broken down as 

follows: the individual survive between t1 and t2 (ϕ1) but was not captured in t2 (q2) and survive 

between t2 and t3 (ϕ2) and was captured in t3 (p3) and finally survive between t3 and t4 (ϕ3) and was 

captured in t4 (p4). Now consider the individual can make a transition between 2 states, and its 

history becomes “1022”, with individual in state “1” at t1 and in state “2” at t3 and t4. Two things 

might have happened at t2 when the individual was not detected: either it stayed in state 1 or it made

a transition to state 2. This led us to introduce ψi,j the transition probability from state i to state j (i 

and j in {1,2}), conditional on survival. The new encounter history is now the sum of two 

components to account for the two possible his histories “1122” or “1222”, respectively: 

ϕ1
(1)ψ(1,1)q2

(1)ϕ2
(2)ψ(1,2)p3

(2)ϕ3
(2)ψ(2,2)p4

(2) + ϕ1
(1)ψ(1,2)q2

(2)ϕ2
(2)ψ(2,2)p3

(2)ϕ3
(2)ψ(2,2)p4

(2), with indices for state-
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specific parameters noted in parentheses. But, if this individual loses its mark after its first capture 

and is remarked when recaptured at t3 and not recognized, its encounter history becomes ‘two’ 

different histories from ‘two different’ individuals: one becoming “1000”, the second “0022”. In 

this case, survival and mark loss patterns are different. Not only is survival underestimated (at least 

for the "first" history), but so are the transition probabilities, because there is no longer a change of 

state (the second history starts directly at state 2).

Many CMR studies, despite using different mark types, are affected by mark loss, the rate of which 

varies according to a myriad of factors, such as species (see Supported Information 1, Table S2), 

mark type (Smout et al., 2011a), sex (Conn et al., 2004), mass (Schwarz et al., 2012), size (Acolas 

et al., 2007), mark location (Kaemingk et al., 2011) or physiological stage (Besnard et al., 2007). 

Mark loss has previously been shown to produce negative bias in survival estimates and detection 

(Nichols et al., 1992; Nichols & Hines, 1993). Multi-state models were developed to deal with 

situations where the “state” (e.g. location, behaviour, physiology, reproductive or social status) of an

individual may affect its survival or detection probability, and where the individual can change 

“state” during life (reviewed in Lebreton et al., 2009). These models became popular and widely 

used because of their flexibility to address a large range of study systems and biological questions, 

and because they can be used in a relatively straightforward manner by biologists given the 

development of user‐friendly softwares (e.g. Mark (White & Burnham, 1999), WinBUGS (Lunn et 

al., 2000), JAGS (Plummer, 2003), E-SURGE (Choquet, et al., 2009), MultiBUGS (Goudie et al., 

2020), NIMBLE (de Valpine et al., 2017), STAN (STAN Development Team, 2022)). They are used

to address many ecological and evolutionary hypotheses based on variations in life history traits 

(state transitions) throughout an individual’s life (Nichols & Kendall, 1995; see also Cam 2009 for 

an extensive discussion on the subject), or density dependence effect (Schofield & Barker, 2008), 

co-evolution (Benkman et al., 2005), dispersal probability among subpopulations or living areas 

(Hestbeck et al., 1991; Spendelow et al., 1995), disease prevalence in wild populations (Jennelle et 
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al., 2007). However, the literature dealing with the effect of mark loss on multi-state model 

behaviour is scarce and much remains to be explored (Seber & Schofield, 2019).

To address this gap in knowledge, we used simulation-based Arnason-Schwartz (AS) model 

approaches (Arnason, 1972, 1973; Schwarz et al., 1993) to investigate the impact of mark loss on 

estimates of model parameters within a Bayesian framework. Given the increasing use of such 

multi-states models, our goal is to assess the potential bias in the marginal posterior distributions of 

demographic parameter estimates using a metapopulation context, based on biologically realistic 

scenarios and if possible, provide comprehensive guidelines for both, fieldwork and data analyses. 

The AS model shares assumptions with the CJS model, particularly in relation to mark loss, but it 

assumes in addition that states are recorded without error. Similarly to CJS model, we predicted that

the AS model would potentially be subject to underestimation of survival but also of transitions 

probabilities in case of tag loss and recycling (Nichols & Hines, 1993). As transition probability is 

conditional on survival and detection on state in our AS model, we expected errors in estimates to 

propagate to model parameters in different ways according to state transition rate. 

To illustrate our approach with an empirical example, we used our decade-long mark recapture 

dataset of PIT-tagged and genotyped greater mouse-eared bat (Myotis myotis), a taxonomic group 

particularly susceptible to PIT-tags loss (Freeland & Fry, 1995). We used ‘genotype’ as an 

individual permanent mark to estimate bias between models accounting/not accounting for mark 

loss and recycling, and suggested recommendations for future studies. 

2 Material and method

To quantify the potential bias induced by mark loss on parameter estimates in the AS framework, 

we defined several scenarios corresponding to representative situations inspired from the 

compilation of data from an existing database for tetrapods, the Demographic Species Knowledge 

Index (Conde et al., 2019), and data from the literature for fish and bat species (Fig. 1, Supporting 

Information 1, Table S1). We limited the compilation of these survival data to published CMR 
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studies or data from controlled conditions, i.e. marked individuals of known fate (e.g. in zoos). 

Among the 700 species considered in six vertebrate classes: Actinopterygii, Chondrichthyes, 

Amphibia, Aves, Reptilia and Mammalia, the distribution of survival rates encompasses a large 

range of values (Fig. 1). The relationship between adult and juvenile survival, available for 143 

species (Supporting Information 1, Fig. S1), shows that low adult survival is associated with low 

juvenile survival, whereas high adult survival can be associated with a wide range of juvenile 

survival. We decided to select values towards the extremes to limit the number of possible scenarios

to explore. Two hypothetical populations, in which juvenile survival differed from adult survival, 

were then considered: the long-lived species with high survival rate in both age classes, (e.g. in 

large mammals) and the short-lived species with low survival rate in both age classes, (e.g. in 

amphibians). For each population, we explored cases where detection was high or low and tested 

for each case three different mark loss rates selected from the relevant literature (Supported 

Information 1, Table S2). We first present the generation of our simulated scenarios and second the 

two different models used to analyse these data: one model not accounting for mark loss; and one 

accounting for it, used as a reference model that better fits the data. Third, we describe the metrics 

used to assess the potential bias in the parameter estimates when not accounting for mark loss in the 

AS framework.

2.1 Data generation

 For each scenario, we simulated data on a study period of 10 capture occasions (e.g. years), and 

between occasions the individuals can change state among 5 possible states : “A”, “B”, “C”, “D” 

and death. As death, state “D” was set as an absorbing state, without possibility to change when it is

reached, which illustrated for example permanent emigration. At the first occasion, individuals in 

state “A”, “B” and “C” were composed of 40 juveniles (sex ratio 1:1) and 60 adults (80% females, 

20% males); there was no individual in state “D”. On each subsequent occasion, 40 juveniles and 5 

adults were marked in each state (“A”, “B”, ”C”) except in state “D”, where it is not possible to 
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recapture individuals but only to observe them. This hypothetical system can be seen as 3 breeding 

sites (“A”, “B”, ”C”) where capture and resighting occur each year, and a surrounding area (“D”), 

where only resighting is possible. This sexual dissymmetry in transition is common in mammals 

(and other taxa) and allows us for example to distinguish permanent emigration (absorbing state) 

from other movements. For each simulated scenario, all juveniles captured at one particular 

occasion are considered adult at the subsequent occasion. All scenarios shared the same data 

generation steps (Fig. 2). We began to simulate survival of individual i at occasion t with Bernoulli 

distribution:

where Ai,t = 1 if the individual i is alive at t or 0 if not, and Φi,t was a state, time and age specific 

survival probability. We allowed stochastic variations in survival rate for each age class and 

occasion. If the individual survived, the state transition was simulated with Categorical distribution:

 where ψi,t was a state, sex and age specific transition probability. For all scenario, females, 

irrespective of their age, were allowed to transition at each occasion between state “A”, “B” and 

“C”, at a time constant rate depending on the state they were before transition, but not in state “D”. 

However, juvenile males were allowed to transition only to the “D” state, in different proportions 

depending on their initial state, while adult males never changed their state (Fig. 3 and Supported 

Information 2, section 1.2). After survival and transition, the mark loss/retention process was 

simulated with Bernoulli distribution:
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with tsi,t a binary variable indicating the presence of the mark on individual i at occasion t and pri,t  

an age and time from marking dependant probability of retention (see Supported Information 2, Fig.

S2), which is the complement of mark loss probability ptl (ptli,t = 1-pri,t).

Finally, the detection process was simulated with Categorical distribution:

where pdi,t was a state specific detection probability (Supported Information 2, section 1.2). We 

considered two different and common ways of re-encountering individuals, physical capture, which 

allowed either recycling (re-mark) or mark checking, and resighting which is a passive detection, 

including only individuals that have retained their mark. This approach is motivated by the fact that 

in most studies, the probability of resighting is typically higher than the probability of recapture, 

therefore they can be differently affected by estimation biases. The probability of detection is 

conditioned by the retention of the mark and was divided into 7 categories:

where pci,t was a state specific capture probability, p.ri,t a state specific resighting probability and pb 

the detection probability in state “D”.

Since we could expect more recycling when recapture rates is high and little recycling otherwise, 

we considered four scenarios (Table 1): (1) long-lived species with high detection rate; (2) long-
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lived species with low detection rate; (3) short-lived species with low detection rate; (4) short-lived 

species with high detection rate. Values of parameter simulated are reported in Table 2. and Fig. 3. 

As mark shedding is often dependant on time since marking and occurs most frequently shortly 

after marking in many species (in our case study; Fabrizio et al., 1999; Fokidis et al., 2006; 

Kremers, 1988; Nichols & Hines, 1993), for each scenario, we investigated a range of mark loss 

rates commonly reported in the literature (Supported Information 1, Table S2). We simulated three 

mark loss probabilities, low (ptl = 0.05), medium (ptl = 0.25) and high (ptl = 0.4), during the first 

year after marking and a constant 0.05 rate thereafter, which generated a diversity of cases of mark 

loss and recycled individuals (Supported Information 2, Fig. S2-3). This process allowed the 

generation of datasets that took into account mark loss in the presence of a second permanent mark. 

To generate datasets in which mark loss was not accounted for (no second permanent mark), we 

created recycled individual with the life history corresponding to the portion of life after mark loss 

and replaced the original life history from mark loss with zeros. For exemple, a life history “1111” 

of an individual that lost its mark between occasion 2 and 3 and is newly remarked at occasion 3, 

became two new histories: (1) “1100”, the first part of life before mark loss; (2) “0011”, a second 

individual, in fact the same but not recognised in the absence of a permanent mark, considered as 

newly recruited. Using this data generation process, we simulated 2 x 50 datasets for each of the 12 

combination of parameters (50 with and 50 without recycling), leading to a total of 1200 simulated 

datasets (Supported Information 2, Fig. S1). The computational codes for a fully reproducible 

example dataset are provided in the Supported Information 2.

2.2 Statistical models

As described, regardless of the scenario or parameter values used, two different datasets for which 

the permanent marking assumption is violated were simulated for each combination: one, where it 

is technically possible to identify individuals even after the loss of mark, thanks to a second 

permanent mark; the second, where recycling occurred due to absence of second permanent 
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marking (Supported Information 2, Fig. S3). We developed two AS models to analyse these data. 

ModelA, used for the first dataset, included the estimate of mark loss, while ModelW, for the second

dataset, ignored mark loss (Supplementary Information 2).

To estimate the state, time and age dependant survival Φ for both model we used a Bernoulli 

distribution (see above eq. 1):

where Ai,t is the life status of individual i at time t and coefficient α is a state effect, β a time effect, δ

an age effect and γ a simultaneous effect of state, age and time. Transition and detection processes 

were estimated using the same distributions as described for data generation (see above eq. 2,4,5). 

The difference between the two models lied in the estimation of mark loss, which involved tracking 

the fate of marks (retained or lost) for each individual (ModelA). Several combination of single, 

double, and permanent marks have been used in the past to estimate mark loss (Laake et al., 2014). 

In ModelA, we considered a single mark loss approach, while the second mark is permanent, which 

allowed to identify if the non permanent mark was lost or retained at each capture occasion and 

resighting was conditional on mark retention (Eqn. 5). Using a statespace approach we built directly

mark retention process in the model. While it is possible to model presence-absence of marks as 

states with a transition matrix (McMahon & White, 2009), or as a hidden Markov process for 

unobserved individuals for which we have no information if mark was retained or lost (Laake et al., 

2014), we simply modelled mark retention process using a Bernoulli distribution with tsi,t/tsi,t-1 ~ 

Bernoulli(pri,t) if the individual was marked or retained its mark at t-1 (tsi,t-1 = 1). Three retention 

probabilities (pr) were estimated as a function of age and time since marking: 
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When lost, a new mark was applied if the individual was recaptured, without change of identity in 

modelA contrary to modelW, where mark retention is not modelled and an individual that lost its 

mark was considered as newly recruited if recaptured. The priors used for each parameters are 

described in Supported Information 2 (section 1.6). 

2.3 Application on a bats dataset

We used the simulations both to test general hypotheses about the effect of mark loss on multi-state 

model parameter estimates, but also to validate a parametrisation capable of estimating these 

parameters without bias. On this basis, we can accurately estimate the probability of mark loss in 

our own dataset, but also the relevance of using in the long term a permanent mark, i.e. the 

appropriateness of using double-marking to avoid estimation bias (Juillet et al., 2011). Our 

empirical dataset consisted of a 10-year study of CMR data on the greater-mouse eared bat (Myotis 

myotis) in Brittany (France; 2010-2019). A total of 2,561 individuals were marked in 5 maternity 

roosts: La Roche Bernard (47˚31’N, 2˚18’W), Férel (47˚28’N, 2˚20’W), Noyal-Muzillac (47˚35’N, 

2˚27’W), Béganne (47˚35’N, 2˚14’W) and Limerzel (47˚38’N, 2˚21’W). The bats were individually

tagged using Passive Integrated Transponders (PIT) tags, ID-100C (Troven®), with a unique 10-

digit code. These small tags (2.12x11mm, 0.1gr) allowed identification from passive readers. All 

individuals caught in roosts without PIT-tags were systematically tagged, which included both 

individuals who lost their tag and those which were never tagged before, and genotyped as a second

and permanent marking method. Genotypes were established from DNA extracted from wing 

biopsies from all individuals tagged and from all males untagged caught during swarming surveys 

(n=4,258 samples; details in Supporting Information 3, Fig. S1), as male capture probability at 

roosts after birth was extremely low. A total of 16 microsatellite markers optimised for Myotis 

myotis were used to establish individual genotypes (Foley et al., 2020). To minimize genotyping 

errors, we analysed, when available, 2 different samples per individual and all samples were 
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genotyped and scored twice by two different people. We also performed genetic profile comparisons

to detect errors (Frantz et al., 2003; Puechmaille & Petit, 2007). We hypothesised that the error rate 

of genotypes was low enough to be negligible and did not include this source of uncertainty in the 

models (Winiarski & McGarigal, 2016). We also checked each winter for the presence of lost tags 

on the floor of the maternity roosts, which allowed us to identify, at least in part (61.5% compared 

to the genotype), the individuals that lost their tag, with the rest of losses having occurred outside of

the roosts. Most of these tags were lost during the first year (Supporting Information 3, Fig. S2), 

which is confirmed by the absence of their records from passive reading detectors. In total, 252 

individuals out of 2,561 (~10%) were identified as having lost their tag at least once. From those 

individuals, 94 individuals were recaptured and retagged a second time and three retagged a third 

time. As retagging took place during the last capture occasion for 13 individuals, ignoring tag loss 

for them led to the recycling of a total of 81 individuals out of 94. To analyse these data, we fitted a 

multisite model (where states are maternity roost and transition are movement between these sites), 

similar to the AS model used for simulated data (Supporting Information 3). We defined two age 

classes for survival, juveniles (individuals in their first year of life) and adults (individuals older 

than one year). In order to explore departures from the AS model assumptions, we performed 

goodness-of-fit tests on life history of the adult cohort, using R2ucare (Gimenez et al., 2018), an R 

package based on U-CARE (Choquet et al., 2009). Tests for transience and for memory showed 

minor overdispersion (ĉ3G.SR=1.82 and ĉWBWA = 1.96 respectively). It was not possible to perform the 

other goodness-of-fit tests because the individual contingency tables had insufficient data to provide

statistical values. We then retained our two-age class structure for survival modelling. Unmeasured 

individual survival heterogeneity was also modelled by including a normally distributed random 

effect in the estimation of survival probability, as other covariates do not capture the relevant 

variation. Indeed, individual heterogeneity plays a key role in population dynamics and evolution, 

and it is ubiquitous in wild population (Gimenez et al., 2018). Emigration from the five studied 
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subpopulations was assessed using capture and resighting data obtained between capture occasions 

at swarming and wintering sites. 

We defined eight possible detection states which allowed us to estimate separately, capture and 

resighting probabilities (see Supporting Information 3, Table S1). As empirical data suggested the 

possible movement of individuals between all subpopulations and outside, we did not constrain 

transition between subpopulations except for movement of juveniles from outside the maternity 

roosts which was not possible (there was no tagging outside the 5 roosts) and therefore set to 0 (see 

Supporting Information 3, Fig. S3). In this study, we also tested the effect of surgical adhesive 

(Vetbond®) after PIT-tag injection, in order to assess tag-loss reduction in comparison with self-

healing (Lebl & Ruf, 2010; van Harten et al., 2020). In this model, tag retention probabilities were 

modelled similarly to equation 7, by accounting for time since marking (two discrete classes: first 

year or subsequent years), individual age class (juvenile or adult), but also use of surgical adhesive 

(yes or no). As per the simulated datasets, two models were run on two datasets, a first one allowing

tag loss estimation thanks to the genotyping (second permanent mark), and a second model ignoring

this information on a transformed dataset including recycled individuals (following the same 

process as simulated data).

2.4 Estimation procedures and assessments

Despite a frequentist approach was possible for simulated data analyses (Lebreton et al., 2009), we 

chose a Bayesian approach to be consistent with the analysis of empirical data where these methods 

are more flexible in accounting for individual heterogeneity in survival (Gimenez, et al., 2018). 

Simulated and empirical data were analysed with JAGS (Kruschke, 2014; Plummer, 2003) through 

the jagsUI package (Kellner, 2016) from R 3.6.0 (R Core Team, 2019). We used four Monte Carlo 

Markov chains (MCMC) with 150,000 iterations each and drew samples from posterior 

distributions after discarding the first 50,000 iterations (burn-in). We retained every twentieth 

iteration generating 20,000 samples from the posterior distribution for each parameter. Chain 
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convergence was assessed with the Gelman-Rubin statistic denoted R-hat (Brooks & Gelman, 

1998). Among the 1,200 simulations, some parameters showed R-hat values > 1.05, indicating 

convergence failure. Less than 0.4% of the estimated parameters for the model accounting for mark 

loss failed to converge (Supporting Information 2, Table S1), in particular coefficient γ (combined 

effect of state, time and age on survival probability) and γ.c (combined effect of state and time on 

detection probability). The mean R-hat values of these parameters was less than 1.2 (Supporting 

Information 2, Fig. S4). For models not accounting for mark loss, 1.3% of the estimated parameters 

did not converge (Supporting Information 2, Table S2), in particular for scenario where either 

detection or both detection and survival were low (respectively scenario 2 and 3) and mark loss 

probability was set to 0.25 or 0.4. Again, in most case, parameters that failed to converge showed a 

mean R-hat value less than 1.2, only a few exceeded 1.5 (Supporting Information 2, Fig. S5). Of all 

the simulations, no convergence failures concerned the probability of mark loss. To avoid 

prohibitively long computing time, we did not attempt to increase the number of iterations to 

achieve the complete convergence of MCMC chains for these parameters in the simulations 

concerned. Our results are based on 50 simulated datasets per scenario, and it was assumed that lack

of convergence for these few parameters has no substantial influence on our results.

For assessing bias in parameter estimates when mark loss or recycling is not accounted for, we 

computed the Earth Mover Distance (EMD), using the EMD-L1 algorithm (Ling & Okada, 2007), a 

distance function that quantifies the difference between two distributions. This metric measures the 

minimum cost of turning, point by point, a distribution into another. We also estimated a ROPE 

(Region Of Practical Equivalence, Kruschke, 2018) for each scenario to assess the degree of 

difference between distribution represented by the EMD metric. To define this ROPE for each 

scenario, we randomly built 1,000 pairs of models from the 50 simulations and calculated the 

associated 1,000 EMDs from the posterior distributions of the estimated parameters (for more 

details see Supporting Information 2, Fig. S76). The obtained distributions of EMD represented 
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variations expected for inferences obtained from simulations initiated with the same parameter 

values. The ROPE was then defined between 0 and the upper value of the 80% highest posterior 

density interval (hdi) from the distribution of these EMD. Finally, the proportion of EMD for each 

simulated case outside the ROPE was computed, giving a direct indication of bias, the higher this 

proportion, the higher the bias. Comparisons of EMD between the models that did and did not 

account for tag loss and recycling to their respective ROPE is a way to illustrate cases in which not 

accounting for tag loss leads to estimates that substantially differ from estimates obtained when 

accounting for tag loss. We also assessed parameter bias as the difference between the median of the

posterior distribution and the true value simulated (median – truth). With the empirical data, the 

median of the posterior distribution of parameters from the model accounting for a secondary 

permanent mark was used as truth. Finally, precision (mean squared errors MSE = bias2 + variance) 

of the parameter estimates was also calculated for the simulated data.

3 Results

3.1 Simulation results

The number of mark lost and individuals recycled increased in scenarios with higher survival, 

detection and mark loss rate (Supported Information 2, Fig. S3). As expected, for an equivalent rate 

of mark loss, the proportion of individuals recycled relative to the number of marks lost was higher 

when the recapture rate was high (i.e. in scenario 1 and 4). Irrespective of scenarios, no estimation 

bias appeared on demographic parameters when mark loss was set to 0.05 (Supporting Information 

2, Fig. S28-S31). The number of parameters for which estimates were biased increased with the rate

of mark loss, but the magnitude was not consistent across the simulated scenarios. In particular, 

some adult and juvenile survival showed substantial underestimation in scenario 1 (Fig. 4 & 5). The

probability of remaining in the same state was also underestimated among juveniles, and therefore 

their probability of transitioning to another state was overestimated (Fig. 4 & 6). The resighting 
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probability was underestimated in all state but B (Fig. 4 & 6). The state transition biases were 

particularly high for transitions to absorbing states as it is the case in our simulations for juveniles 

who transit to the "D" state (Supporting Information 2, Fig. S57-S71). For simulations with a mark 

loss rate of 0.4, scenarios 1 and 4, that share both high recapture probabilities, showed 

underestimates of adult survival in the early years of the study only (Supporting Information 2, Fig. 

S21-S22 and S27). Juvenile survival was less biased, nevertheless moderate underestimations 

occurred for high mark loss rate in particular for state A and B in scenario 1 and 4 (Supporting 

Information 2, Fig. S21-S22 and S27). Lack of precision in the estimate of juvenile survival was 

also observed for model not accounting for tag loss when mark loss rate was high. Resighting 

probability showed substantial bias, with underestimates mainly in state “A” and “C” (Fig. 4 and 

7.a), as well as lack of precision for all scenarios and mark loss rates (Supporting Information 2, 

Fig. S28-S49). However, recapture, our second component of detection, showed little bias except 

during the second capture occasion for state “A” and “C” in scenario 1 when mark loss rate was 

0.25 and scenario 1 and 4 when mark loss rate was 0.4. This came along with a decrease in the 

precision of the latter parameter at high mark loss. A large percentage of the transition probabilities 

estimates were biased when mark loss and recycling were ignored (Fig. 6.b-e), with in general an 

underestimate of the probability to remain in the same state and, as a corollary, an overestimates of 

the probability of changing state, with a decrease in precision mainly at high mark loss rate 

(Supporting Information 2, Fig. S50-S71). Overestimations occurred in juvenile males except from 

state “C”, where transition rate to state “D” was the highest (0.9). For females, when mark loss was 

set at a high level, the same pattern was observed in states "A" and "B", from which states 

transitions were set at a low level. On the contrary, for transition from state “C” to “B” (set high = 

0.4), we observed an underestimation of the transition probability and an overestimation of the 

probability to remain in state “C” with scenarios set with low detection rates (scenario 2 and 3, 

Supporting Information 2, Fig. S67-S70).
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3.2 Bat metapopulation

Most of the estimated parameters (survival, capture, resighting and state transition probabilities) 

showed both negative and positive biases, with no clear pattern (Fig. 7, Supporting Information 3, 

Fig. S4-S11). Larger biases were apparent in survival estimates, with underestimation of median 

survival reaching over 0.26 in juveniles (Fig. 7a) and 0.21 in adults (Fig. 7b). Emigration, i.e., 

movement outside ("Out") the maternity sites studied, was overestimated by an average of 0.05 

throughout the study (Fig. 7b). The probability of recapture was overestimated and underestimated 

by up to 0.1, depending on occasion and roost (Fig. 7c). The estimated bias in the other parameters 

was small (Fig. 7 d and e). The estimated tag loss probability was high for juveniles but 

substantially reduced by the use of surgical glue (Fig. 8), decreasing by one third from 0.28 

(90%hdi [0.23,0.33]) to 0.19 (90%hdi [0.16,0.22]). In adults, the use of surgical glue did not affect 

tag loss rate, with an overlap of 69% of the probability distributions. The adult tag loss rate was 

around 0.1 which is two times less than in juveniles when surgical glue was used. Considering the 

period following one-year post-tagging, the probability of tag loss when surgical glue was used is 

higher (median 0.03, 90%hdi [0.02, 0.04]) versus not used (median 0.02, 90%hdi [0.01, 0.02]). This

difference may be in fact an artefact due to a lack of search for lost tags on the ground of the 

maternity roost in the first year of the study (Supplementary Information 3, part 3 and Fig. S12). 

Other parameter estimates can be found in Supporting Information 3, part 2.6.

4 Discussion

Mark loss as a violation of CMR model assumptions, has been the subject of numerous studies and 

model developments. Most work has focused on survival, birth or population size estimates in the  

framework of Jolly-Seber models (Arnason & Mills, 1981; Malcolm‐White et al., 2020; Schwarz et 

al., 2012; Smout et al., 2011a), recovery models (Kremers, 1988; Robson & Regier, 1966), CJS 

models (Laake et al., 2014; Nelson et al., 1980), and integrated population model (Riecke et al., 
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2019). However, for AS models, few developments have been proposed to account for mark loss 

(Besnard et al., 2007; Conn et al., 2004; Johnson et al., 2016), all used a similar approach, implicitly

modelling mark status or using an adjustment factor (Nishizawa et al., 2018). Furthermore, we 

found no exploratory studies on the effect of mark loss in parameter estimates. Here, we fill this gap

by exploring both the effect of mark loss and recycled individuals on parameter estimates using 

simulations, and by modelling the state of the mark (retained or lost) as an intendant Bernoulli 

process. In particular, this allow us to explore how mark loss can affect state transition of individual

states when capture and survival probabilities varied over time, survival varied also among age 

classes and mark loss processes depended on time since marking.

We showed that not only survival, but capture, resighting and state transition probabilities estimates 

can be substantially affected by this violation of CMR model assumptions. Survival is mainly 

underestimated in cases where capture and detection are high. This trend is accentuated when 

survival is also high, which moderates previous studies suggesting that biases mainly occur in 

species with both high survival rates, catchability and mark loss (Diefenbach & Alt, 1998). Our 

simulation results confirmed that the inaccuracy of model estimates is positively linked to the rate 

of mark loss, but can also occur when tag loss rate is low (5%) and can be independent of survival 

and capture rates. Indeed, in datasets with few recycled individuals, i.e. with low survival and 

capture rates, transition and resighting probabilities can be severely biased if mark loss is high. This

suggests that results from studies where survival and capture are low should also be interpreted with

caution if mark loss is suspected but not taken into consideration. In particular, the probability to 

stay in the same state is underestimated when transition from this state is low but become 

overestimated for high transition probabilities. Severity of bias can also vary over time, with bias in 

survival and recapture decreasing with time as in our simulated datasets. This is partly due to the 

mark loss pattern we chose, stressing the fact that, even in studies conducted over short periods, 
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parameters can be substantially biased. In cases where mark loss increases with time since marking 

(not investigated here), we would expect an increase of bias with time.

The combination of the simulation and empirical study results highlight how the complexity and 

interdependence of parameters can compound or counteract estimation biases in the absence of 

mark loss modelling. While the simulations showed some global rules on the direction of the biases,

the real example showed instead how unexpected the bias patterns can be. In our simulation, 

although we intended to cover demographic variations classically observed across vertebrates, they 

have not been carried out under the immense range of parameters combinations that can be 

encountered in nature. Most study systems and monitoring methods have their own specificities and

a priori prediction of bias without simulating them can be misleading. The propagation of 

uncertainty in parameter estimates due to mark loss is still challenging to predict and increases with 

system complexity. Therefore, prior to planning a CMR study, we advocate that 

researchers/managers run simulations to evaluate in which conditions (i.e. under which parameters 

combination) their study would provide reliable estimates of the parameters of interest (e.g. 

demographic, state transition). Preliminary studies with multiple marks could also be considered 

when possible (Smout et al., 2011a). This would allow CMR study design to be optimised prior to 

the study being conducted and hence limit biases from the onset.

AS models have been preliminary developed to estimate movement between sites, recruitment, 

dispersal, temporary or permanent emigration (Lebreton et al., 2003, 2009; Schaub et al., 2004). 

Our simulation results suggest that state transition probabilities are sensitive to mark loss, even at 

low rates, e.g. the probability to stay in the same state (philopatry if transitions are movements) or 

to change state (e.g. emigration) showed both under and overestimations. These parameters are 

often of central interest in many studies to answer ecological and demographic questions and are 

used for management and conservation purposes (Cam et al., 2004; Horton et al., 2011). Although 

the loss of marks is regularly reported for a wide variety of tags and taxa, it is only marginally 
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considered in studies interested in estimates of population dynamics parameters (Nelson et al., 

1980; Ostrand et al., 2012; Smout et al., 2011b; Tavecchia et al., 2012). Most model developments 

to account for mark loss have focussed on the JS model for abundance estimates, where mark loss 

and recycling is prone to generate serious biases (Malcolm‐White et al., 2020). The loss of the mark

remains largely unconsidered despite an increasing use of AS models in ecology, demography, 

management and conservation (Huntsman et al., 2020; Melnychuk et al., 2017). In light of our 

study, we recommend the use of permanent or double temporary marks, ideally independent in loss 

or where dependence in loss is taken into account (Laake et al., 2014; McMahon & White, 2009; 

Schwarz et al., 2012), as any analysis of CMR data is potentially affected by this violation of model

assumption (Riecke et al., 2019).

Despite the fact that PIT tags are suitable in an increasing number of studies and allow the 

collection of data without physically re-capturing individuals, our case study highlights the 

importance of a second marking method to avoid potential bias in estimations of demographic rates.

Tag loss has long been known in small mammal species, in particular those that fly or glide 

(Freeland & Fry, 1995). Here we confirmed that PIT-tag shedding in the short term can be reduced 

by the use of surgical adhesive (Lebl & Ruf, 2010; van Harten et al., 2020). 

As illustrated, surgical adhesive is not sufficient to reduce tag loss to zero, and the use of additional 

data (e.g. evidence of tag loss) or of a permanent mark (e.g. genotype) is required, for all or part of 

the population studied (Laake et al., 2014). Similar situations, where permanent marks should be 

considered, arise when marks deteriorate and become unreadable, equivalent to an increase of mark 

loss with time, like neck collars or ear tags (Conn et al., 2004; Diefenbach & Alt, 1998). In this 

case, we expect a decrease in accuracy of model parameter estimates for the duration of the study, 

and further supports the use of permanent marks for CMR studies.

Mark loss is typically not considered from ecological and management perspectives except when 

researchers are interested in understanding factors influencing mark failures or in improving their 
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marking methods. Our results highlight the need to assess the effect of mark loss each time mark 

failure is suspected, to avoid spurious conclusions about the dynamics of their studied species. In 

our experience and according to the literature, PIT-tags are prone to being shed regardless of the 

studied taxa, often in the short but sometimes in the long term. A recent study, that assess tag loss on

Gould's wattled bats (Chalinolobus gouldii), over a relatively short period of 13-14 months, showed

that tag shedding was low (2.7%) and generalised these results to all insectivorous bats (van Harten 

et al., 2020). Our study proves that this generalisation is partly wrong, and rather suggests that it is 

difficult to generalise such a conclusion and that the pattern of mark loss is highly species 

dependent, among other parameters. Mark loss should therefore be carefully considered in all CMR 

analyses and possibly also in other studies using similar datasets, and should be explicitly modelled 

when necessary for more accurate estimations of population dynamics.
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Figure 1: Density of probability of survival across age class and taxa for 700 species. Sample size 
are indicated by labels, with colour corresponding to the state of individual sampled.
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Scenario Survival Detection
Scenario 1 Long-lived (high survival) High detection rate (capture & resighting)
Scenario 2 Long-lived (high survival) Low detection rate (capture & resighting)
Scenario 3 Short-lived (low survival) Low detection rate (capture & resighting)
Scenario 4 Short-lived (low survival) High detection rate (capture & resighting)

Table 1: Summary of the characteristics of each simulated scenario.

Table 2: Parameter values used to simulate the 4 scenarios. For random values generated, the 
corresponding distribution is indicated with N (a, b) the normal distribution with mean a and 
variance b, and U(a,b) the uniform distribution with lower bound a and upper bound b. The square 
brackets show mean values on the probability scale. To simulate survival for short-lived species, we
used the same distribution on as long-lived species but subtract generated values by 0.3 for adults 
and 0.2 for juveniles. In the same way, we obtained the low values of probability of capture and re-
sighting by subtracting 0.5 from the high values. The probability of capture in state “D” is set to 0, 
as no capture is possible when individuals are in this state. For the transition values between states 
see Fig. 3. 
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Figure 2: The possible fates of an individual between occasion t and t+1. We first consider 
the state transition process: if the individual dies between occasions, it can only remain dead
and can no longer be detected, both with probability 1 (absorbing state). The individual can,
however, survive between occasions with probability φ (depending on time and state at t) 
and can then change state with probability ψ (see Fig. 1). Second, the mark retention 
process: if it survives between occasions, then the individual can retain its mark with 
probability pr (depending on age and time since marking) or lose its mark with probability 
ptl = 1-pr. Thirdly, the detection process: if this individual has lost his mark between 
occasions, he may possibly be recaptured with a probability pc (depending on time and state
at t+1) and if this happens, he is marked again before being released. However, if the mark 
is retained, other events may occur: the individual may also be captured with probability pc,
but it may also be resighted with probability p.r (depending on the state at t+1), or both with
probability pc*p.r, or finally not be detected at all with probability 1-pd = (1-pc)*(1-p.r).
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Figure 3: Schematic description of parameter values used to simulate data under 
scenario 2 (long-lived species with low detection). Central graph: solid arrows 
correspond to possible transitions of females and dashed arrows to those of males. The 
size of the arrows is proportional to the probability of transition indicated next to them, 
all were kept constant over time. Peripheral graph: simulated survival (Surv.) and 
detection (Det.) probabilities were displayed for states “A”, “B” and “C”. The light 
blue lines correspond to adult survival, the orange lines to juvenile survival and the 
green lines to the probability of capture, which are derived from Normal and Uniform 
distribution and therefore fluctuate over the years (see Table 1). The grey lines 
correspond to the probability of resighting, they differed between state but were set 
constant in time.
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Figure 4: Comparison of bias for estimates of juvenile (a) and adult (c) survival, transition (b and 
d), capture (e) and resighting (f) probabilities between model accounting for mark loss (AML) or 
not (WML). All violin plots show the distribution of bias over 50 simulations from scenario 1 (long-
lived species and high detection probabilities), with a simulated probability of mark loss of 0.4. The 
median of each simulated distribution is shown with a horizontal line. The numbers 1 to 9 are the 
recapture opportunities, the letters from A to D represent the different states, AdtF the adult females,
AdtM the adult males, JuvF the juvenile females and JuvM the juvenile males.
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Figure 5: Tile-plots of the proportion of the distribution of the Earth Mover Distance 
(across 50 simulated datasets) out of the Region of Practical Equivalence (ROPE), 
between the model accounting for tag loss and recycling (ModelA) and the model 
ignoring them (ModelW). The ROPE corresponds to the interval including 80% hdi of the
posterior density distribution of the “true value“ of a parameter which was estimated 
with ModelA. Each tile represents annual (right axis) juvenile survival (a), adult survival 
(b) and capture probability (c) for each scenario (y axis) and tag loss probabilities (x 
axis). The scenarios indicated at the bottom are: (1) long-lived species and high detection
rate; (2) long-lived species and low detection rate; (3) short-lived species and low 
detection rate; (4) short-lived species and high detection rate. At the top of each panel, A,
B, C and D correspond to the states.
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Figure 6: Tile-plots of the proportion of the distribution of the Earth Mover Distance (across 50 
simulated datasets) out of the Region of Practical Equivalence (ROPE), between model accounting 
for tag loss and recycling (ModelA) and the model ignoring them (ModelW) for each simulated 
cases. The ROPE corresponds to the interval including 80% hdi of the posterior density distribution
of the “true value“ of a parameter which was estimated with ModelA. Each tile represents 
resighting probability (a) and transition probabilities between subpopulations (direction, “from-
to”, are indicated above each tile-plot, e.g “A-B” correspond to state transition from A to B) of 
juvenile female (b), adult female (c), juvenile male (d) and adult male (e) for each scenario and tag 
loss probabilities. The scenario are indicated at the bottom: (1) long-lived species and high 
detection rate; (2) long-lived species and low detection rate; (3) short-lived species and low 
detection rate; (4) short-lived species and high detection rate. At the top of each panel, A, B, C and 
D correspond to the states.
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Figure 7: Differences in the medians of the posterior distributions of juvenile (a) and adult (b) 
survival, capture (c) resighting (d) and transition (e) probabilities between the model accounting for
tag-loss and the model ignoring it, both estimated from the empirical data. Colonies are 
abbreviated: Beg = Beganne; Fer = Férel; LIM = Limerzel; LRB = La Roche Bernard; NM = 
Noyal-Muzillac. Movements between sites are indicated on x axis with direction “from-to”. 
Movements (e) are specified by age (Adt. = Adulte, Juv. = juvenile) and sex classes (M = male, F = 
Female), indicated on the right side of the plot (e).
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Figure 8: Posterior distribution of the tag loss probabilities according to age classes and time after 
marking in the Myotis myotis dataset. Left panel correspond to tag shedding rate during the year 
following the tag injection and the right panel for the following years (constant in time). In blue, 
distribution if surgical adhesive was used after tag injection and in red, without surgical adhesive.
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