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ABSTRACT 

It is generally thought that behavioral flexibility, the ability to change behavior when 
circumstances change, plays an important role in the ability of a species to rapidly expand 
their geographic range (e.g., Lefebvre et al. (1997), Griffin and Guez (2014), Chow et al. 
(2016), Sol and Lefebvre (2000), Sol et al. (2002), Sol et al. (2005), Sol et al. (2007)). 
However, it is alternatively possible that an increase in the amount of suitable habitat can be 
the primary facilitator for a range expansion. Great-tailed grackles (Quiscalus mexicanus) are 
a social, polygamous species that is rapidly expanding its geographic range (Wehtje (2003)) 
and eats a variety of human foods in addition to foraging on insects and on the ground for 
other natural food items (Johnson and Peer (2001)). They are behaviorally flexible (C. Logan 
(2016)) and highly associated with human-modified environments (Johnson and Peer (2001)), 
thus offering an opportunity to assess the role of behavior and habitat change over the course 
of their expansion. We first aim to compare behavior in wild-caught grackled from three 
populations across their range (core, middle of the expansion front, northern edge) to 
investigate whether: 1) certain behaviors (flexibility, innovativeness, exploration, and 
persistence) have higher averages and variances in some populations relative to others, and 2) 
individuals in a more recently established population exhibit more dispersal behavior (i.e., 
individuals are more likely to move away from their parents). Secondly, we aim to investigate 
whether habitat availability, not necessarily inherent species differences, can explain why 
great-tailed grackles are able to much more rapidly expand their range than their closest 
relative, boat-tailed grackles (Q. major) (Post et al. (1996), Wehtje (2003)). We will examine 
temporal habitat changes over the past few decades using existing databases on 
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presence/absence of both grackle species and compare habitat variables to determine whether: 
3) these species use different habitats, habitat availability and connectivity has increased 
across their range, and what proportion of suitable habitat both species occupy. Results will 
elucidate whether the rapid geographic range expansion of great-tailed grackles is associated 
with individuals differentially expressing particular behaviors or whether the expansion is 
facilitated by the alignment of their natural behaviors with an increase in suitable habitat (i.e., 
human-modified environments). 

A. STATE OF THE DATA 

This preregistration was written (Mar 2020) prior to collecting any data from the edge and 
core populations. Some of the relatedness data from the middle population (Arizona) has 
already been analyzed for other purposes (n=57 individuals, see Sevchik et al. (2019)), 
therefore it will be considered secondary data: data that are in the process of being collected 
for other investigations. However, we have now collected blood samples from many more 
grackles in Arizona, therefore we will redo the analyses from the Arizona population in the 
analyses involved in the current preregistration. In May 2020, we completed data collection 
for other variables at the Arizona field site: flexibility and innovation (Logan et al. 2019), and 
exploration (McCune KB et al. 2019), and we will soon analyze this data, therefore it will also 
be considered secondary data. This preregistration was submitted in May 2020 to PCI 
Ecology for pre-study peer review. 

Level of data blindness: Logan, McCune, and MacPherson collect the behavioral data (H1) 
and therefore have seen this data for the Arizona population. Lukas has access to the Arizona 
data and has seen some of the summaries in presentations. Chen has not seen any data. 

B. PARTITIONING THE RESULTS 

We may decide to present the results from different hypotheses in separate articles. We may 
also decide to test these hypotheses in additional species. 

C. HYPOTHESES 

Note: There could be multiple mechanisms underpinning the results we find, however our aim 
here is to narrow down the relative roles of changes in behavior and changes in habitats in the 
range expansion of great-tailed grackles. 

H1 (4 behaviors): Changes in behavioral traits (flexibility, innovation, exploration, and 
persistence) facilitate the great-tailed grackle’s geographic range expansion (Fig. 1 & 2). 

Prediction 1: If behavior modifications are needed to adapt to new locations, then there will 
be a higher average and/or larger variance of at least some traits thought to be involved in 
range expansions (behavioral flexibility: speed at reversing a previously learned color 
preference; innovativeness: number of options solved on a puzzle box; exploration: latency to 
approach/touch a novel object; and persistence: proportion of trials participated in with higher 
numbers indicating a more persistent individual) in the grackles sampled from the recently 
established population relative to the individuals sampled in the older populations (Table 1). 
Higher averages in behavioral traits indicate that each individual can exhibit more of that trait 
(e.g., they are more flexible/innovative/exploratory/persistent). Perhaps in newly established 
populations, individuals need to learn about and innovate new foraging techniques or find 
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new food sources. Perhaps grackles require flexibility to visit these resources according to 
their temporal availability and the individual’s food preferences. Perhaps solving such 
problems requires more exploration and persistence. Higher variances in behavioral traits 
indicate that there is a larger diversity of individuals in the population, which means that there 
is a higher chance that at least some individuals in the population could innovate foraging 
techniques and be more flexible, exploratory, and persistent, which could be learned by 
conspecifics and/or future generations. 

Prediction 1 alternative 1: Human-modified environments are suitable habitat for grackles 
(e.g., Selander and Giller (1961), Johnson and Peer (2001), Wehtje (2003)), and the amount of 
human-modified environments has and is increasing (e.g., Liu et al. (2020)). If the original 
behaviors exhibited by this species happen to be suited to the uniformity of human-modified 
landscapes (e.g., urban, agricultural, etc. environments are modified in similar ways across 
Central and North America), then the averages and/or variances of these traits will be similar 
in the grackles sampled from populations across their range (Table 1). This supports the 
hypothesis that, because this species is closely associated with human-modified environments, 
which may be similar across the geographic range of this species, individuals in new areas 
may not need to learn very much about their new environment: they can eat familiar foods 
and access these foods in similar ways across their range (e.g., fast food restaurant chains 
likely make the same food and package it in the same packaging in Central and North 
America, outdoor cafes and garbage cans also look the same across their range). 
Alternatively, it is possible that 2.9 generations at the edge site is too long after their original 
establishment date to detect differences in the averages and/or variances. If the sampled 
individuals had already been living at this location for long enough (or for their whole lives) 
to have learned what they need about this particular environment (e.g., there may no longer be 
evidence of increased flexibility/innovativeness/exploration/persisence), there may be no 
reason to maintain population diversity in these traits to continue to learn about this 
environment. We will not be able to distinguish between these two alternatives within 
alternative 1 because populations closer to the northern edge of this species’ range were too 
small for us to establish such a field site. 
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Figure 1. What plays a larger role in a rapid range expansion: behavior changes or suitable 
habitat changes? A visual representation of H1 (top) and H2 (bottom). 



 

Figure 2. Measuring flexibility (reversal learning), innovation (multi-access log), exploration, 
and persistence. 

H2 (dispersal behavior): Changes in dispersal behavior, particularly for females, which 
is the sex that appears to be philopatric in the middle of the range expansion, facilitate 
the great-tailed grackle’s geographic range expansion (Fig. 1, Table 1). 

Prediction 2: If a change in dispersal behavior is facilitating the expansion, then we predict 
more dispersal at the edge: a higher proportion of individuals disperse in a more recently 
established population and, accordingly, fewer individuals are closely related to each other. 

Prediction 2 alternative 1: If the original dispersal behavior was already well adapted to 
facilitate a range expansion, we predict that the proportion of individuals dispersing is not 
related to when the population established at a particular site and, accordingly, the average 
relatedness is similar across populations. 

Table 1. Population characteristics for each of the three field sites in H1 and H2. The number 
of generations at a site is based on a generation length of 5.6 years for this species 
(International (2018)) and on the first year in which this species was reported to breed at the 
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location (Wehtje (2003) for Arizona, Steve Hampton’s pers. comm. reported in Pandolfino et 
al. (2009) for Woodland, California). The first confirmed nest sighting in Woodland, 
California was reported in the Yolo Audubon Society’s newsletter The Burrowing Owl (July 
2004), which Steve Hampton shared with Logan. For Central America, there is no data on the 
first year in which they started breeding because this species originates in this region, 
therefore we used the age of the species: 800,000 years (Johnson and Cicero (2004)). 

Central America 
Core 
Unknown 
800000 
142857.1 
Johnson & Cicero 2004 
Tempe, Arizona 
Middle of expansion 
1936 
66 
11.8 
Wehtje 2003 
Woodland, California 
Northern edge 
2004 
16 
2.9 
Burrowing Owl July 2004, Pandolfino et al. 2009 
Loading... 

H3 (suitable habitat GTGR & BTGR): The availability of habitat, not inherent species 
differences, explains why great-tailed grackles (GTGR) are able to much more rapidly 
expand their range than boat-tailed grackles (BTGR) (Fig. 3; Wehtje (2003), Selander 
and Giller (1961)). 

Prediction 3: GTGR and BTGR use different habitats, and the habitat of GTGR, but not that 
of BTGR, has increased in availability and connectivity over the past few decades. 

Prediction 4: Over the past few decades, GTGR has increased the habitat breadth that they 
can occupy, whereas BTGR continues to use the same limited habitat types. 

Prediction 5: Some inherent trait allows GTGR to expand even though both species have 
unused habitat available to them. 
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Figure 3. What plays a larger role in a rapid range expansion: behavior changes or suitable 
habitat changes? Comparing the availability of suitable habitat between great-tailed grackles 
(GTGR), which are rapidly expanding their geographic range, and boat-tailed grackles 
(BTGR), which are not. Map credit: eBird.org. 

D. METHODS 

Planned Sample (H1 & H2) 

Great-tailed grackles are caught in the wild in Woodland, California and at a site to be 
determined in Central America. We apply colored leg bands in unique combinations for 
individual identification. Some individuals (~20) are brought temporarily into aviaries for 
behavioral choice tests, and then are released back to the wild at their point of capture. We 
catch grackles with a variety of methods (e.g., walk-in traps, mist nets, bow nets), some of 
which decrease the likelihood of a selection bias for exploratory and bold individuals because 
grackles cannot see the traps (i.e., mist nets). Grackles are individually housed in an aviary 
(each 244cm long by 122cm wide by 213cm tall) for a maximum of six months where they 
have ad lib access to water at all times and are fed Mazuri Small Bird maintenance diet ad lib 
during non-testing hours (minimum 20h per day), and various other food items (e.g., peanuts, 
bread) during testing (up to 4h per day per bird). Individuals are given three to four days to 
habituate to the aviaries and then their test battery begins on the fourth or fifth day (birds are 
usually tested six days per week, therefore if their fourth day occurs on a day off, they are 
tested on the fifth day instead). 
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While the above is our ideal plan, due to restrictions around COVID-19, it may not be 
possible for us to accomplish all of our goals within our current funding period. We think it 
will be possible to collect data at one more site (which would be the second of three planned 
sites) and we will attempt to also include a third field site. 

Sample size rationale (H1 & H2) 

We test as many birds as we can during the approximately one year we spend at each site 
given that the birds are only brought into the aviaries during the non-breeding season 
(approximately September through March). It is time intensive to conduct the aviary test 
battery (2-6 months per bird at the Arizona field site), therefore we approximate that the 
minimum sample size at each site will be 20 grackles with the aim that half of the grackles 
tested at each site are female. 

Data collection stopping rule (H1 & H2) 

We will stop collecting data on wild-caught grackles in H1 and H2 (data for H3 are collected 
from the literature) once we have completed one year at each of the California and Central 
America sites (likely complete in summer 2022), which coincides with the period in which we 
currently have funding (until early 2023). If we are not able to collect data at a third site, we 
will attempt to collect more data during a second year at the second site (Woodland, CA). 

Protocols and open materials 

• Experimental protocols for H1 are online here. 
• Flexibility protocol (from Logan et al. (2019)) using reversal learning with color 

tubes. A light gray tube and a dark gray tube are placed on the table or floor: one color 
always contains a food reward (not visible by the bird) while the other color never 
contains a reward. The bird is allowed to choose one tube per trial. An individual is 
considered to have a preference if it chose the rewarded option at least 17 out of the 
most recent 20 trials (with a minimum of 8 or 9 correct choices out of 10 on the two 
most recent sets of 10 trials). We use a sliding window to look at the most recent 10 
trials for a bird, regardless of when the testing sessions occurred. Once a bird learns to 
prefer one color, the contingency is reversed: food is always in the other color and 
never in the previously rewarded color. The flexibility measure is how many trials it 
takes them to reverse their color preference using the same passing criterion. Note: we 
may modify this protocol by moving the passing criterion sliding window in 1-trial 
increments, rather than 10-trial increments (i.e., a bird could pass criterion at trial 36 
rather than only at trials 20, 30, 40, etc.). 

• Innovativeness protocol (from Logan et al. (2019)) using a multi-access log. A log 
that has four ways of accessing food (pull drawer, push door, lift door up, swing door 
out) is placed on the ground and grackles are allowed to attempt to solve or 
successfully solve one option per trial. Once a bird has successfully solved an option 
three times, it becomes non-functional (the door is locked open and there is no food at 
that locus). The experiment ends when all four loci become non-functional, if a bird 
does not come to the ground within 10 min in three consecutive test sessions, or if a 
bird does not obtain the food within 10 min (or 15 min if the bird was on the ground at 
10 min) in three consecutive test sessions. 

• Exploration protocol (from McCune KB et al. (2019)) for exploration of a novel 
object. A familiar object (that contains no food) is placed in the center of the bird’s 
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aviary, while maintenance diet is available at a far end of the aviary away from the 
object, for 45 min. This is immediately followed by the same set up with a novel 
object instead of a familiar object. Test sessions are video recorded and experimenters 
are out of view of the bird during the sessions. This assay is conducted at Time 1 (3-6 
days after the bird arrives in the aviary) and Time 2 (1 week after Time 1) with the 
same novel object (to control for potential differences in perceived threat or attraction 
between objects) to determine whether measures are repeatable across individuals. 
Note: we might make two modifications to this protocol as a result of analyzing the 
results from the Arizona population: 1) we may reduce the session time from 45 min 
to something shorter if all grackles who came to the ground did so in <45 min in 
Arizona, and 2) we may replace the novel object with a novel environment - we will 
choose the one that correlates with boldness measures in Arizona. If both correlate 
with boldness, we will choose the novel object because it is a simpler test. 

• Persistence is measured as the proportion of trials participated in during the flexibility 
and innovativeness experiments. The higher the number, the more persistent they are. 
We generally offer a grackle the chance to participate in a trial for 5 min. If they don’t 
participate within that time, we record -1 in the data sheet, the apparatus is removed 
and the trial is re-attempted later. 

• Dispersal: DNA is collected from the grackles, processed, and analyzed for pairwise 
relatedness using ddRADseq and Stacks as in Sevchik et al. (2019) (protocol). 

• Suitable habitat: We will conduct ecological niche modeling to investigate grackle 
presence as it overlaps with suitable habitat across their range. Grackles will be 
considered as present or absent in a particular geographic area based on sightings 
reported at eBird.org. We identified suitable habitat variables from Selander and Giller 
(1961), Johnson and Peer (2001), and Post et al. (1996), and we added additional 
variables relevant to our hypotheses. A suitable habitat map will be generated across 
the Americas using GIS. 

Open data (H1 & H2) 

When the study is complete, the data will be published in the Knowledge Network for 
Biocomplexity’s data repository. 

Randomization and counterbalancing (H1 & H2) 

Experimental order: The order of experiments, reversal learning or multiaccess log, will be 
counterbalanced across birds within a site. 

Reversal learning: The first rewarded color in reversal learning is counterbalanced across 
birds at each site. The rewarded option is pseudorandomized for side (and the option on the 
left is always placed first). Pseudorandomization consists of alternating location for the first 
two trials of a session and then keeping the same color on the same side for at most two 
consecutive trials thereafter. A list of all 88 unique trial sequences for a 10-trial session, 
following the pseudorandomization rules, will be generated in advance for experimenters to 
use during testing (e.g., a randomized trial sequence might look like: LRLLRRLRLR, where 
L and R refer to the location, left or right, of the rewarded tube). Randomized trial sequences 
will be assigned randomly to any given 10-trial session using a random number generator 
(random.org) to generate a number from 1-88. 

Blinding during analysis 
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No blinding is involved in this investigation. 

E. ANALYSIS PLAN 

We use simulations and design customized models to determine what sample sizes allow us 
to detect differences between sites (see chapter 5.3 in Bolker (2008) for why simulations 
perform more powerful power analyses). We do not plan to exclude any data and if there are 
missing data (e.g. if a bird participated in one of the two experiments, then it will only be 
included in those analyses for which it has data). Analyses will be conducted in R (current 
version 3.6.3; R Core Team (2017)) and Stan (version 2.18, Carpenter et al. (2017)). 

H1: behavior across the range 

Response variables 

1. Flexibility: number of trials to reverse a color preference. 
2. Innovativeness: total number of loci solved on the multiaccess log (maximum=4) 
3. Exploration: Latency to approach up to 20cm of an object (novel or familiar, that does 

not contain food) in a familiar environment (that contains maintenance diet away from 
the object) - OR - closest approach distance to the object (choose the variable with the 
most data for the analysis). 

4. Persistence: proportion of trials participated in during the flexibility and 
innovativeness experiments 

One model will be run for each response variable 

Explanatory variable 

There is no explanatory variable: we will conduct pairwise comparisons across sites as 
described in the next section. 

Hypothesis-specific mathematical model 

Following procedures in McElreath (2016), we constructed a hypothesis-appropriate 
mathematical model for each of the response variables that examines differences in the 
response variable between sites. These models take the form of: 

y ~ α 

[site] 

y is the response variable (flexibility, innovation, exploration, or persistence). There will be 
one intercept, α 

, per site and we will estimate the site’s average and standard deviation of the response 
variable. 

We will then perform pairwise contrasts to determine at what point we will be able to detect 
differences between sites by manipulating sample size, and α 
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means and standard deviations. Before running the simulations, we decided that a model 
would detect an effect if 89% of the difference between the two posterior distributions was on 
the same side of zero (following McElreath (2016)). We ran these analyses in R (current 
version 3.6.3; R Core Team (2017)) and used the following R packages: rethinking 
(McElreath (2020)), rstan (Stan Development Team (2020)), and Rcpp (Eddelbuettel and 
François (2011)). 

Flexibility analysis 

Model and simulation 

Expected values for reversal learning using color tubes (mean, standard deviation, and range 
of number of trials to reverse a color preference) were based on previously published data on 
great-tailed grackles (C.J. Logan (2016)). This data indicates that the average number of trials 
to reverse a preference is 91 and the standard deviation is 21 (n=7 grackles). The σ 

prior is set to produce only positive values that encompass the range of values shown by the 
Santa Barbara grackles (reversing in 70-130 trials, 130 trials-91 mean is about 40 trials). 

y ~ α 

[site] [the model] 

α 

[site] ~ Normal(μ,σ) [α1 

prior] 

μ 

~ Normal(91,21) [μ 

prior] 

σ 

~ Uniform(0,40) [σ 

prior] 

We then ran the mathematical model and performed pairwise contrasts and determined that 
we will be able to detect differences between sites with a sample size of 15 at each site if the 
average number of trials to reverse a preference differs by >13 trials, and the standard 
deviation is a maximum of 21 at each site (Table 2). For a sample size of 20 at each site, 
which is more like what we expect, we will be able to detect site differences if the average 
number of trials to reverse a preference differs by >11 trials, and the standard deviation is a 
maximum of 23 at each site (Table 2). 



Table 2. Simulation outputs from varying sample size (n), and α 

means and standard deviations. From the pairwise contrasts, if the difference between the 
distributions crosses zero (yes), then we are not able to detect differences between the two 
sites. If they do not cross zero (no), then we are able to detect differences between the two 
sites. Note that for latency, there is no mu_sd, but rather one phi that is the same for all sites. 

trials to reverse 
60 
91 
101 
81 
21 
21 
21 
Yes 
No 
No 
trials to reverse 
60 
91 
115 
81 
21 
21 
21 
Yes 
No 
No 
trials to reverse 
60 
91 
120 
81 
21 
21 
21 
No 
Yes 
No 
trials to reverse 
60 
91 
120 
79 
21 
21 
21 
No 
No 



No 
trials to reverse 
60 
91 
120 
79 
22 
22 
22 
No 
No 
No 
trials to reverse 
60 
91 
120 
79 
23 
23 
23 
No 
No 
No 
trials to reverse 
60 
91 
120 
79 
24 
24 
24 
No 
Yes 
No 
trials to reverse 
45 
91 
120 
79 
21 
21 
21 
No 
Yes 
No 
trials to reverse 
45 
91 
120 
77 



21 
21 
21 
No 
No 
No 
trials to reverse 
45 
91 
120 
77 
24 
22 
23 
No 
Yes 
No 
1-10 of 104 rows 
... 
Loading... 

Results (using our actual data) 

We will analyze our data using the above model once all of the data have been collected. 

Innovation analysis 

Model and simulation 

Expected values for the number of options solved on the multiaccess log were set to 0-4 (out 
of 4 options maximum) because this apparatus had been used on two species of jays who 
exhibited individual variation in the number of loci solved between 0-4 (California scrub-jays 
and Mexican jays: McCune (2018), Kelsey B McCune et al. (2019)). 

locisolved ~ Binomial(4, p) [likelihood] 

logit(p) ~ α 

[site] [model] 

locisolved is the number of loci solved on the multiaccess box, 4 is the total number of loci on 
the multiaccess box, p is the probability of solving any one locus across the whole 
experiment, α 

is the intercept, and each site gets its own intercept. After running simulations, we identified 
the following distribution to be the most likely priors for our expected data: 

α 



~ Normal(0,1) [α 

prior] 

We used a normal distribution for α 

because it is a sum (see Figure 10.6 in McElreath (2016)) and a logit link to ensure the values 
are between 0 and 1. We set the mean to 0 on a logit scale, which means an individual solves 
2 loci on average on the actual scale at a probability of 0.5. 

We then ran the mathematical model and performed pairwise contrasts and determined that 
we will be able to detect differences between sites with a sample size of 15 at each site if the 
average number of loci solved differs by 1.2 loci or more and the standard deviation is 
generally a maximum of 0.9 at each site (Table 2). For a sample size of 20 at each site, we 
will be able to detect site differences if the average number of loci solved differs by 0.7 of a 
locus or more and the standard deviation is generally a maximum of 1 at each site (Table 2). 
Note: the Arizona sample size is 11 for the multiaccess log and 17 on a similar multiaccess 
box. 

Results (using our actual data) 

We will analyze our data using the above model once all of the data have been collected. 

Exploration analysis 

Model and simulation 

We modeled the average latency to approach an object and compared these between sites. We 
simulated data and set the model as follows: 

latency ~ gamma-Poisson(λi 

, ϕ 

) [likelihood] 

log(λi 

) ~ α 

[site] [the model] 

latency is the average latency to approach an object, λi 

is the rate (probability of approaching the object in each second) per bird (and we take the log 
of it to make sure it is always positive; birds with a higher rate have a smaller latency), ϕ is 
the dispersion of the rates across birds, and α 



is the intercept for the rate per site. 

Expected values for the latency to approach a novel object range from 0-2700 sec, which 
encompasses the time period during which they are exposed to the object (sessions last up to 
45 min). However, we do not provide an upper limit for the model because those birds that do 
not approach within 2700 sec would eventually have had to approach the object to access their 
food (it is just that sessions did not run that long). After running simulations, we identified the 
following distribution and priors to be the most likely for our expected data: 

ϕ 

~ 1/(Exponential(1)) [ϕ 

prior] 

α 

~ Normal(1350,500) [α 

prior] 

We used a gamma-Poisson distribution for latency because it constrains the values to be 
positive. For ϕ 

, we used an exponential distribution because it is standard for this paramter. We used a 
normal distribution for α because it is a sum with a large mean (see Figure 10.6 in McElreath 
(2016)). We estimate that the grackles might approach the object at any time in the session, 
therefore we held the α mean of 1350 sec in mind as we conducted the modeling. We set the 
α 

standard deviation to 500 because this puts the range of seconds for the distribution in the 
possible range. 

We then ran the mathematical model and performed pairwise contrasts and determined that 
we will be able to detect differences between sites with a sample size of 15 at each site or 20 
at each site if the average latency to approach the object differs by at least 450 sec at each site 
(Table 2). We kept the shape of the curve (which can be thought of as similar to a standard 
deviation) the same across sites because we do not think this assumption will change across 
populations (i.e., there will be lots of variation at each site with some individuals approaching 
almost immediately, others in the middle of the session, and others near the end). 

Results (using our actual data) 

We will analyze our data using the above model once all of the data have been collected. 

Persistence analysis 

Model and simulation 



Expected values for the number of trials not participated in could range from 0-125 (likely 
maxima: 300 trials reversal learning [70 trials initial discrimination, 130 trials reversal, ~100 
non-participation trials], 50 trials multiaccess log [~25 non-participation trials]). After 
running simulations, we identified the following distribution and priors most likely for our 
expected data: 

participated ~ Binomial(totaltrials, p) [likelihood] 

logit(p) ~ α 

[site] [model] 

participated indicates whether the bird participated or not in a given trial, total trials is the 
total number of trials offered to the individual (those participated in plus those not 
participated in), p is the probability of participating in a trial, α 

is the intercept, and each site gets its own intercept. We used a logit link to constrain the 
output to between 0 and 1. After running simulations, we identified the following distribution 
and priors most likely for our expected data: 

α 

~ Normal(0,0.5) [α 

prior] 

We used a normal distribution for α 

because it is a sum (see Figure 10.6 in McElreath (2016)). We set the mean to 0 (on a logit 
scale, which is a probability of 0.5 that a bird will participate in every other trial on average 
on the actual scale). 

We then ran the mathematical model and performed pairwise contrasts and determined that 
we will be able to detect differences between sites with a sample size of 15 per site or 20 per 
site if the average proportion of trials participated in differs by at least 0.08 and the standard 
deviation is generally a maximum of 0.25 at each site (Table 2). 

Results (using our actual data) 

We will analyze our data using the above model once all of the data have been collected. 

Repeatability of exploration and persistence 

Analysis: We will obtain repeatability estimates that account for the observed and latent 
scales, and then compare them with the raw repeatability estimate from the null model. The 
repeatability estimate indicates how much of the total variance, after accounting for fixed and 
random effects, is explained by individual differences (bird ID). We will run this GLMM 
using the MCMCglmm function in the MCMCglmm package ((Hadfield 2010)) with a 
Poisson distribution and log link using 13,000 iterations with a thinning interval of 10, a 



burnin of 3,000, and minimal priors (V=1, nu=0) (Hadfield 2014). We will ensure the GLMM 
shows acceptable convergence (i.e., lag time autocorrelation values <0.01; (Hadfield 2010)), 
and adjust parameters if necessary. 

H2: dispersal 

Response variable 

1. Average relatedness between all pairs of individuals within one sex 

Explanatory variables 

1. Site diameter (meters) 
2. Site sample size 
3. Number of generations at a site 

One model will be run per sex 

The data will be analyzed as in Sevchik et al. (2019). To summarize, blood is collected from 
the bird, DNA is extracted (by Aaron Blackwell at Washington State University), size 
selected (between 400-700 base pairs), and sequenced using ddRADseq (at Cornell University 
Lab of Ornithology) on an Illumina NextSeq500 machine using the mid-output setting for 150 
base pair single end reads. Data are post processed to generate single nucleotide 
polymorphisms (SNPs) as in Thrasher et al. (2018). Genetic relatedness between all pairs of 
individuals is calculated using the package “related” (Pew et al. (2015)) in R (as in Thrasher 
et al. (2018)). Permutations (i.e., randomly assigning site ID to individuals) and general linear 
models estimating average relatedness of each individual to all others at that site will be used 
to determine whether individuals at one site are more closely related to each other than the 
individuals at another site. 

Model and simulation 

Expected values for average relatedness per bird were based on the fact that average 
relatedness with these estimators has to range between -1 and 1 and because it is an average 
we expect a normal distribution. 

averagerelatedness ~ α 

[site] [the model] 

α 

[site] ~ Normal(μ,σ) [α1 

prior] 

μ 

~ Normal(0,1) [μ 



prior] 

σ 

~ Uniform(0,1) [σ 

prior] 

H3: suitable habitat 

P3: GTGR & BTGR use different habitats and GTGR’s habitat has increased over time 
and P4: GTGR increased habitat breadth over time, but BTGR did not 

Response variable: Presence/absence of GTGR and BTGR 

Explanatory variable 

1. Land cover (e.g., forest, urban, crop land, coastal marsh, coastal prairie, coastal plain, 
grassland, brush, mangrove, distance from road/water body/wetland/water treatment 
plant) 

2. Elevation 
3. Climate (e.g., daily/annual temperature range) 
4. Predator density 
5. Distance to the next suitable habitat patch weighted by nearest mountain range/forest 
6. Distance to the nearest conspecific population 10 years previous to the point in time 

being investigated 

One model will be run for GTGR and a separate model will be run for BTGR 

Analysis 

1. Download and preprocess eBird data. Conduct spatial filtering to account for sampling 
bias 

2. Clean the species occurrence data: remove any uncertain records or geographic 
outliers 

3. Import climactic variables from WorldClim and landscape data from MODIS and crop 
to region of interest 

4. Match environmental data to grackle occurrence records 
5. Fit models with maxent to get predicted distributions and estimate 

importance/contribution of each environmental variable 

We will refer to Strimas-Mackey et al. (2016) best practices for using eBird data when 
extracting data on grackle presence in a region from eBird.org. We will gather environmental 
data from databases, including a database that maps global urban change from 1985-2015 to a 
high (30 m) resolution (Liu et al. (2020)). We will use a variety of R packages, including auk 
(Strimas-Mackey et al. (2018)), dismo (Hijmans et al. (2017)), raster (Hijmans (2020)), 
maptools (Bivand and Lewin-Koh (2019)), tidyverse (Wickham et al. (2019)), rgdal (Bivand 
et al. (2019)), rJava (Urbanek (2020)), and elevatr (Hollister and Tarak Shah (2017)). 
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