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Abstract

Predation often deviates from the law of mass action: many micro- and meso-scale exper-
iments have shown that consumption saturates with resource abundance, and decreases due
to interference between consumers. But does this observation hold at macro-ecological scales,
spanning many species and orders of magnitude in biomass? If so, what are its consequences
for large-scale ecological patterns and dynamics?

We perform a meta-analysis of predator-prey pairs of mammals, birds and reptiles, and
show that predation losses appear to increase, not as the product of predator and prey densities
following the Lotka-Volterra (mass action) model, but rather as the square root of that prod-
uct. This suggests a phenomenological power-law expression of the effective cross-ecosystem
functional response. We discuss whether the same power-law may hold dynamically within an
ecosystem, and assuming that it does, we explore its consequences in a simple food chain model.
The empirical exponents fall close to the boundary between regimes of donor and consumer
limitation. Exponents on this boundary are singular in multiple ways. First, they maximize
predator abundance and some stability metrics. Second, they create proportionality relations
between biomass and productivity, both within and between trophic levels. These intuitive
relations do not hold in general in mass action models, yet they are widely observed empirically.

These results provide evidence of mechanisms limiting predation across multiple ecological
scales. Some of this evidence was previously associated with donor control, but we show that
it supports a wider range of possibilities, including forms of consumer control. As limiting
consumption counter-intuitively allows larger populations, it is worthwhile to reconsider whether
the observed functional response arises from microscopic mechanisms, or could hint at selective
pressure at the population level.

1 Introduction

Many dynamical food web models attempt to represent population-level dynamics by zooming out
from the microscopic complexity of individual predator and prey behavior, physiology and ecology.
Since Lindeman 1 , these models have shared the same fundamental structure, i.e. a balance of
energy gains and losses from predation and from non-trophic processes. The hidden complexity and
specificity of a given ecosystem is generally summarized in a simple function, the predator functional
response, which describes how fluxes between trophic levels (predation) depend on stocks at each level
(predator and prey abundances). The most basic assumption is mass action: encounter probability
increases as the product of predator and prey density. But natural settings often deviate from this
baseline2. The expression of the functional response has been the topic of extensive empirical and
theoretical inquiries, and even major debates3;4.

When we aim at large-scale prediction, such as a management model for the regional populations
of predator and prey species, the functional response in our equations does not represent the concrete
process of predation – instead, its purpose is to express the cumulative effect of many predation events
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on the dynamics of these aggregate variables. For instance, we may hope to predict whether an entire
regional population will show a strong response to invasions or exploitation, such as a trophic cascade
or collapse5. Yet, we often simply resort to functional forms observed at a microscopic scale, such
as the saturating functional response of a single predator, and refit their parameters at the scale
relevant to our prediction.

But there is no reason to expect that a single form of functional response, whether mechanistic or
phenomenological, will be appropriate to model all ecological processes6;7. We may have to derive
different expressions for different questions and scales, from short-term laboratory experiments8,
through multi-generation predator-prey cycles9, to macro-scale food web properties such as biomass
pyramids and stability10.

Here we propose a new, empirically-motivated and phenomenological formulation of the func-
tional response at large spatio-temporal scales. By contrast with mechanistic theories11–14, our aim
is not to ascertain the most realistic expression of predation rates, but to find a simple expression
that can mimick observed rates across multiple scales, and then to understand its consequences for
other food chain properties.

We first perform a meta-analysis of predation rates observed for higher vertebrates in the field,
covering a range of species, study durations and areas. In the existing literature, most measurements
of the functional response (predation rate as a function of predator and prey density) come from
feeding experiments, restricted to time scales far shorter than the predator’s generation time12;15.
While these experimental measurements are valuable for mechanistic models of specific populations,
they may be misleading when extrapolating to macro-scale dynamics6. For the latter, we need
a phenomenological expression that exhibits some form of scale invariance, so that it may hold
across different levels of aggregation. We propose a power-law expression similar to the Cobb-
Douglas production function in economics16. We then find best-fit exponents suggesting a square
root dependence of predation on both predator and prey density. These exponents are starkly lower
than those expected from the simple mass action (Lotka-Volterra) model, suggesting that hidden
mechanisms strongly limit predation.

This empirical trend can only be interpreted as a meaningful functional response if it can be used
to predict large-scale dynamics. This raises multiple questions. Knowing that local populations
undergo many complex processes on short time scales, is it possible to write an effective model
that approximates the dynamics of abundances aggregated over years and over whole landscapes?
What kind of equations and nonlinearities should be used in this effective model? These questions
have been raised in prior studies, mainly within the theoretical literature17–20, which have shown
that effective models can indeed be constructed in some cases, and may be quite different from
the dynamics known at small scales. Being phenomenological, such models often cannot easily be
interpreted in terms of concrete mechanisms or instantaneous demographic events. They generally
do not exhibit the intuitive properties of classical functional responses21. But when successful, they
can provide useful predictions. The present study should be viewed as exploratory, investigating one
hypothetical way of describing large-scale, long-term dynamics by a simple set of effective differential
equations.

An important question remains: how can we parameterize our effective model from observational
data, collected within or across ecosystems? Indeed, the empirical relations between predation rates
and densities of predators and prey do not necessarily translate directly to an effective functional
response, i.e. a true dynamical dependence between these three quantities. Other latent factors
could be varying between measurements, and creating spurious relations. Nevertheless, we find
hints that such confounding variation is weaker than the dependence that we wish to capture. We
therefore assume that the observed scaling law can be inserted directly into a simple dynamical
model, in order to explore its potential ecological consequences.

The empirical scaling exponents occupy a special position in our model, as they correspond to a
maximum in predator abundance and some metrics of stability. While our sublinear model suggests
that predation frequency is much lower than in a classic Lotka-Volterra model, it also leads to larger
standing predator populations. This apparent paradox is closely related to the “hydra effect”, a term
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that originally applies to situations where increasing individual predator mortality leads to larger
predator populations22;23, but can be extended to any situation, such as ours, where consumers
that seem individually less fit (e.g. consume less prey than their competitors) may become more
abundant in the long term24.

A second unexpected consequence is the emergence of consistent scaling relationships between
predator and prey densities, and between production and biomass within each trophic level. Such
scaling laws are widely found in data and postulated in ecosystem models20;25. They are notably
used in contexts of ecosystem management, such as fisheries26;27. But these relationships do not
emerge spontaneously from arbitrary dynamical models, and only prevail under particular ecological
conditions10. Our fitted exponents recover simple proportionality rules that are usually associated
with donor control.

Our work raises the possibility that consumptive saturation and interference may happen at all
scales, not only the classic scale of individual predator behavior2, and that this prevalence is tied
to the empirical robustness of various allometric relationships, and the maximization of predator
abundance and persistence.

2 Methods

2.1 Dataset

We compiled data from 32 observational studies (details in Appendix S4) that reported kill rates
k12 (number of prey killed per predator per year) in the field, as well as prey density N1 and
predator density N2. For each species, we also collected typical body mass measurements w (in kg)
and mass-specific metabolic rate measurements m (in W/kg) from the AnAge database28 and two
studies by White and Seymour 29 and Makarieva et al. 30 , as these traits were rarely reported for
the populations studied in the field31. Whenever multiple values were found, we used the average
values for each species.

The final dataset comprises 46 predator-prey pairs including 26 predator species and 32 prey
species. Predator species belong to classes Mammalia, Aves and Reptilia, while prey species belong
to classes Mammalia, Actinopterygii, Aves and Malacostraca.

For each predator-prey pair, we computed the rate of biomass loss in the prey population due to
predation (in kg/km2/year) as

C = k12w1N2 (1)

and population biomass densities B1 = w1N1 and B2 = w2N2 in kg/km2.

2.2 Food chain model

We investigate a simple food chain model of arbitrary length, where we follow the biomass density
Bi of trophic level i as it changes through time,

dBi(t)

dt
= − Li(t)︸ ︷︷ ︸

internal losses

+ Pi(t)︸ ︷︷ ︸
production

− Ci(t)︸ ︷︷ ︸
predation losses

(2)

where Li and Pi represent internal losses and biomass production at level i, while Ci represents
losses from predation by level i+ 1. Production at level 1 arises from autotrophic growth

P1(t) = g1B1(t) (3)

while at higher levels, we assume

Pi+1(t) = εCi(t) (4)
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where ε (taken here to be constant for simplicity1) is the conversion rate between the biomass lost
through predation at level i and produced at level i + 1. Internal losses can arise from individual
metabolic costs and mortality, µi, and from self-regulation or density-dependent processes such as
competition and pathogens, Di,

Li(t) = µiBi(t) +DiB
2
i (t). (5)

Alternatively, we later consider the possibility of a power-law expression Li(t) = DiB
δ
i (t) which can

interpolate between these two types of losses.
In the following, we only consider stationary properties of the dynamics (2), and thus drop the

time-dependence of all quantities, which are assumed to take their equilibrium values.

2.3 Functional response

Throughout this study, we consider phenomenological functional responses, emerging at the land-
scape level from unknown, potentially complex, underlying spatio-temporal dynamics19. Conse-
quently, these functions may not follow traditional expectations and intuitions for mechanistic func-
tional responses21 – for instance, they might not scale additively with the number of prey or predator
individuals or species.

While our data is always measured over large spatial scales compared to individual organism
sizes, it still covers multiple orders of magnitude in spatial extension and biomass density. This can
inform our choice of mathematical expression for the functional response. Indeed, when considering
phenomena that range over multiple scales, there are two common possibilities: either there is a
scale beyond which the phenomenon vanishes (for instance prey-dependence simply saturates past a
critical density), or the phenomenon remains important at all scales. The second possibility drives
us to search for a “scale-free” mathematical expression, such as a power-law, which does not truly
saturate but exhibits significant variation at all possible scales32.

Following this argument, we choose here to focus on a “scale-free” power-law dependence of
predation losses (see also discussion in Box 1)

Ci ≡ C(Bi, Bi+1) = ABβi B
γ
i+1 (6)

with β, γ ∈ [0, 1], and A a constant which contains the attack rate, i.e. the basic frequency of
encounters for a pair of predator and prey individuals. This attack rate may in principle be specific
to each pair of species, while we assume that exponents β and γ are system-independent.

In this expression, β = γ = 1 recovers the classic mass action (Lotka-Volterra) model. An
exponent β < 1 is our counterpart to the well-studied phenomenon of prey saturation: predation
does not truly saturate here (as the expression is scale-free, see above), but it increases sublinearly
with prey density, meaning that the ability of predators to catch or use each prey decreases with their
availability2. On the other hand, γ < 1 indicates predator interference: larger predator densities lead
to less consumption per capita15. In the following, we will consider various arguments suggesting
that empirical exponents may instead approximately satisfy the relationship β+γ ≈ 1, which would
imply a simpler ratio-dependent form

C(Bi, Bi+1) ∼ Bβi B
1−β
i+1 = Bi+1

(
Bi
Bi+1

)β
(7)

This relationship requires a strong effect of either or both interference and saturation.
These two predation-limiting phenomena are commonly reported and have been studied with

various mathematical models. But classic functional responses generally go against our expectation

1The conversion rate ε is known to vary, but its range is limited compared to other quantities which can span orders
of magnitude, see discussion in Barbier and Loreau 10 . We choose to ignore ecological contexts in which predator
production may be density-dependent even for a fixed amount of consumption, e.g. a reduced offspring number in
denser groups, which could be represented by a function ε(Bi+1).
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Box 1: Dimensional analysis and functional response

The difficulty of building a phenomenological cross-scale functional response is that it should account for both:

• between-systems parameter differences (e.g. different study areas, spatial structures, species traits),

• the within-system range of dynamical variables Bi that can lead to saturation and interference if they
cross system-dependent thresholds.

We first appeal to dimensional analysis35. From (2) we see that predation losses Ci have the dimensions of
biomass density over time, e.g. kg/km2/year. A classic nondimensionalization choice36 is to express these losses
using predator density and mass-specific metabolic rate (see below for other options)

fi =
Ci

mi+1Bi+1
(9)

where fi is the normalized functional response, incorporating all biological mechanisms. Since fi has no dimen-
sion, it can only depend on dimensionless quantities. If we assume that all variation in predation is determined
solely by species densities and metabolic rates, we can only construct two dimensionless ratios π1 and π2 and fi
must take the form

fi = f

(
π1 =

mi

mi+1
, π2 =

Bi

Bi+1

)
(10)

with some arbitrary function f . The choice f(π1, π2) = 1 leads to consumer dependence (Ci = mi+1Bi+1),
while f(π1, π2) = π1π2 leads to donor dependence (Ci = miBi). More generally, the expression (10) is strongly
reminiscent of ratio-dependent functional response37, but it does not posit a specific functional form.
To deviate from this ratio-dependent expression, we must use additional parameters to construct other dimen-
sionless quantities. Setting aside metabolic scaling for now, the functional responses (6) and (8) in the main text
involve Bi and Bi+1 separately, suggesting the form

fi = f

(
Bi

Bi,min
,

Bi+1

Bi+1,min

)
. (11)

Indeed, it is plausible for nonlinear density-dependence in f to involve system-specific thresholds Bi,min (see
discussion in Appendix S1). These thresholds can be derived from other parameters that characterize each system,
such as movement range or body mass. A further possibility, not investigated here, is that other biological rates
may also intervene if metabolic rate cannot be used as a universal “clock” for trophic processes38.
Dimensionless ratios can capture important differences between systems, and a number of heuristics and mathe-
matical theories exist to guide their choice32: for instance, it is often useful to find ratios that are significantly
larger than 1 in some systems and smaller than 1 in others, as this can indicate qualitatively different regimes.
Thresholds such as Bi,min are commonly found in saturating functional responses2, where the density-dependence
vanishes above a certain scale. If instead we expect a density-dependence that persists over a wide range of scales,
we can use a “scale-free” expression for the function f , such as a power-law32.

of a “scale-free” expression: they often assume that some density-dependence vanishes when density
exceeds a particular scale or threshold. This may be realistic when depicting a given small-scale
experimental system, but it is not adequate for data such as ours, compiled from different systems
and scales. For instance, we can consider the standard saturating (Michaelis-Menten or Holling
Type 2) response2 and its extension, the DeAngelis-Beddington model33;34 with both saturation H
and interference I

C(Bi, Bi+1) =
ABiBi+1

1 +HBi + IBi+1
(8)

where H/A is traditionally defined as the handling time. This expression is applicable to short-
term feeding experiments, where consumption is observed for a particular predator-prey species pair
whose densities are imposed. The parameters H and I are contextual: they are expected to depend
on species traits12, but also on the spatial structure and area of each study site. We discuss in
Results and Appendix S4 the difficulties associated with using this expression in a cross-ecosystem
context.
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2.4 Links between statistical and dynamical laws

We seek to identify the dynamical relationship C(B1, B2) between predation losses and the biomasses
of predator and prey in empirical data. In our theoretical analysis, we also discuss model predictions
for another important observation, the scaling relations between production P and biomass B within
and between trophic levels20.

Yet, the problem of relating cross-ecosystem statistical laws to underlying dynamical models is
subtle, due to the potential covariance between variables and parameters. As a simple example, con-
sider the scaling between production and biomass in one trophic level, assuming that the underlying
dynamical law is P (B) = rB with r a fixed growth rate. When we consider many ecosystems at
equilibrium, each with a different growth rate, their values of r and B will likely be correlated. If
they covary perfectly, the apparent trend will be P ∼ B2 and will not be representative of the true
dynamical law.

This issue can be made mathematically explicit in the simple case of an “ecosystem” made of a
single species following logistic growth:

dB

dt
= rB

(
1− B

K

)
= rB︸︷︷︸
P (production)

− DB2︸ ︷︷ ︸
L (internal losses)

(12)

When multiple ecosystems follow the same equation with different parameters, they will reach dif-
ferent equilibria. To avoid confusing the variation within one ecosystem and between different
ecosystems, we denote here the equilibrium values in each ecosystem k by B(k), P (k) and L(k)

(which satisfy P (k) − L(k) = 0). We can imagine two scenarios that lead to different scalings across
systems:

• If systems have the same r(k) = r but different D(k) (and hence different equilibria B(k)), the
relationship P (B) = rB within each system imposes the linear relationship P (k) ∼ B(k) across
systems,

• If r(k) changes across systems while D(k) = D is constant, the relation L(B) = DB2 and
the equilibrium condition P (k) = L(k) within each system impose the quadratic relationship
P (k) ∼ (B(k))2 (in other words, we have a perfect colinearity B(k) ∼ r(k) across systems)

This example highlights the importance of knowing which parameter (here r or D) is most system-
dependent to predict the empirical cross-ecosystem scaling law, and to identify how it differs from
the true within-ecosystem dynamical relationship P (B) = rB.

The same issues occur for all observational scalings, including the scaling of predation losses with
prey and predator densities: if we try to fit the relationship C12 = ABβ1B

γ
2 in (6), we may encounter

the problem of correlations between attack rates and population densities. We now discuss how to
address this problem in the context of an empirical estimation of β and γ.

2.5 Empirical analysis

The empirical identification of a relationship between predation losses and species densities such as

C12 ∼ Bβ1B
γ
2

can be affected by two sources of error: the colinearity between the two variables B1 and B2, and
the colinearity of either of these variables with other factors that may appear in the full expression
of C12 (e.g. the attack rate A defined above).

The first problem is that the colinearity between B1 and B2 (Fig. 1d) may obscure their respective
contributions to C12 = C(B1, B2). We can overcome this difficulty by performing a commonality
analysis, which is a statistical test based on variance partitioning. We use the function regr of the
R package yhat to check the existence of suppression i.e. the distorsion of regression coefficients due

6



to the colinearity between predictors39. This test shows the absence of suppression, allowing us to
directly interpret the respective contributions of B1 and B2 to C(B1, B2) below.

A more important difficulty stems from correlations with other parameters, as suggested in the
previous section. If we suppose that, in each ecosystem k, predation losses follow

C(k)(B1, B2) = A(k)Bβ1B
γ
2 (13)

where we are given no information on the species-dependent parameter A(k), we can only estimate
β and γ from a simple empirical fit if A(k) is weakly correlated with the observed values of B1 and
B2. This could be the case if A(k) varies less between systems, or has less impact, than other factors
that control B1 and B2, such as primary production or mortality (or factors ignored in our model,
such as spatial fluxes, out-of-equilibrium dynamics, and additional interactions).

We employ two distinct methods to identify the exponents β and γ in our proposed power-law
scaling relationship.

The first approach is a direct fit, with the aim of minimizing residual variance: given that C, B1

and B2 span multiple orders of magnitude, any combination of these variables that exhibits much
less spread suggests an interesting regularity, even though the precise values of the exponents may
be incorrectly identified due to colinearities and should be interpreted with care.

The second approach is an attempt to account for at least some unknown factors that may
undermine a naive parameter estimation. We focus on the dynamical food chain model (2) and the
power-law response (6). We then simulate this model for many random combinations of parameter
values (including exponents, but also attack rate, growth rate, mortality, etc.). We only retain
model realizations that give triplets (B1, B2, C) sufficiently close to those found in our empirical
data, giving us a distribution of exponents compatible with this evidence, as well as an estimation
of how other parameters may affect observed species densities and predation rates.

2.5.1 Direct fit

We note that the factor A(k) is not unitless. This may be problematic when fitting data collected at
different scales. Following the discussion in Box 1, we propose to expand A(k) in a way that accounts
for metabolic scaling and nonlinearity thresholds, i.e.

C(k)(B1, B2) = a(k)m2B2

(
m1

m2

)ν (
B1

B1,min

)β (
B2

B2,min

)γ−1

(14)

where m2B2 sets the dimensions of C and all other factors are dimensionless. In particular, a(k) is
an ecosystem-dependent parameter that can be interpreted as a random effect. We will see in the
Results section that many terms in this complex equation appear to have a negligible contribution,
leading back to our simple theoretical expression (6).

We have no direct measurement of the reference densities Bi,min, which are necessary to construct
dimensionless ratios, and which we interpret as thresholds for nonlinearity (saturation or interfer-
ence). Therefore, we must make some assumptions on these values, guided by biological intuitions.
The simplest possible assumption is that these thresholds vary independently of other parameters,
and can be included into the random effect a(k). As a second option, if these density thresholds
were proportional to individual body masses, Bi,min ∼ wi, the relevant variables for our fit would be
population densities Ni rather than biomass densities. A third option, Bi,min ∼ 1/mi, would instead
suggest focusing on Ei = miBi which has commonly been interpreted as an “energy” density40.
For each of these choices, the exponents ν, β and γ may then be identified by a least-squares linear
regression in log space. To identify the correct definition of Bi,min, we test all three possibilities,
and ask which one leads to the best predictions, i.e. the lowest amount of residual variation in a(k).

2.5.2 Dynamical model estimation

Using our dynamical model (2) with (5) and (6), we generate predator-prey pairs with different
parameter values drawn from a broad prior distribution, and compute their equilibrium biomass
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densities B1 and B2 and predation losses C12. We then retain only model realizations for which the
three values (B1, B2, C12) are close to those observed in our data. We repeat this process until we
have retained 2500 model realizations, and use the parameter values of these realizations to compute
a joint posterior distribution for all our parameters, in particular the exponents β and γ that we
wish to identify.

For two species, our model has 8 parameters, which we draw independently in each model
realization. The exponents β and γ are drawn uniformly in the range [0, 1.5] in order to confirm that
they are expected to be less than 1 (the Lotka-Volterra or mass action limit). Other parameters are
drawn uniformly on a log scale, over a span of 10 orders of magnitude: the attack rate A ∈ [10−5, 105],
prey productivity g1 ∈ [10−4, 106], predator mortality µ2 ∈ [10−8, 102], and prey and predator self-
regulation D1, D2 ∈ [10−5, 105]. Finally, the biomass conversion efficiency is drawn in the realistic
interval ε ∈ [10−2, 1], see discussion in Barbier and Loreau 10 .

We retain only model realizations in which both species survive, and filter the remaining ac-
cording to their similarity to empirical data. To do so, we train a Kernel Density Estimator (KDE,
from the Python library scikit-learn using classes GridSearchCV and KernelDensity) on triplets
(log10B1, log10B2, log10 C12) in the empirical data. We then compute the same triplet in model
realizations, and its score s given by the KDE. We retain each model realization with probability
eθ(s−smax), given smax the highest score given among empirical triplets. We choose θ = 2 as we find
empirically that it gives the best agreement between simulations and data for the variance and range
of B1, B2, C12 and their ratios.

Finally, we compute the posterior distribution of parameters, i.e. histograms of the parameter
values found in accepted model realizations, and study their correlations with each other and with
dynamical variables B1, B2 and C12. For additional tests in Fig. 5 we ran the same procedure while
restricting which parameters vary (sampling only g1 and exponents β and γ, or keeping Di or A12

constant) in order to demonstrate the relationship, discussed in Sec. 2.4, between dynamical and
statistical scaling laws.

3 Results

3.1 Meta-analysis of kill rates

3.1.1 Results from direct fit

Expression y
C

B1

C√
B1B2

C

B2

C

N1

C√
N1N2

C

N2

C

E1

C√
E1E2

C

E2

C

Bβ1B
γ
2

std(log10 y) 0.90 0.77 0.97 1.6 1.5 1.5 0.93 0.77 0.9 0.74

Table 1: Residual standard deviation for ratios of predation losses and biomass density Bi, pop-
ulation density Ni, or “energy” density Ei = miBi. See Fig. 2 for a visualization of the residual
variation with B1/B2 for the first three expressions. For the rightmost expression, we use the best-
fit exponents β = 0.47, γ = 0.30, and see that this contributes only a small reduction of residual
variation compared with the square root expression (second column).

The full expression to be fitted (14) breaks down predation losses C12 into three different contri-
butions: the observed species densities Bi raised to the exponents β and γ; the metabolic rates mi,
which are often assumed to define the time scale for predation processes; and the unknown typical
density scales Bi,min, which we interpret as thresholds for nonlinearity (e.g. the scale for interference
or saturation).

Our first result is that there does not seem to be a systematic effect due to typical density scales
Bi,min. As explained in Sec. 2.5.1, our main three choices for these parameters correspond to using
biomass densities Bi, number densities Ni or “energy” densities Ei = miBi as our fitting variables.
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(a) (b)

(c) (d)

Figure 1: Empirical and simulated scaling relationships betwen biomass densities B1 and B2 and
predation losses C12 in logarithmic scale. We show two panels for each pair among (a) C12 and B1,
(b) C12 and B2, (c) C12 and

√
B1B2, and (d) B2 and B1. Left panels: Each point corresponds to one

study in our meta-analysis, and the dashed line represents the 1:1 relationship. The background color
indicates the density of simulated realizations of our dynamical model, retaining only realizations
that approximate the empirical distribution (see Sec. 2.5.2). Right panels: Histogram of ratio
between the two quantities in our simulated ecosystems.

-

C -
-

-

C

C

Figure 2: Residual variation with log10B1/B2 when assuming strict donor dependence (C ∼ B1),
a symmetric square-root law (C ∼

√
B1B2), or strict consumer dependence (C ∼ B2). Residues

around the square-root law show no trend (p = 0.4, R = 0.08), and have minimal variance (see Table
1).
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To showcase these different options, we detail in Table 1 the residual standard deviation for various
examples of power-laws involving these variables. These examples are only a few representative
points in our systematic exploration of (14), but they illustrate our finding that number densities
give the poorest results, while biomass or energy densities give comparable results. For simplicity,
we then focus on biomass densities Bi, corresponding to the assumption that the reference density
Bi,min is independent of body size or metabolism2.

Our second result is the limited impact of metabolic rates on predation losses. From dimensional
analysis (Box 1), we expected a baseline scaling C12 ∼ m1 or m2. But we find that including mi as
a prefactor has no significant impact on any of our parameter estimates. Furthermore, irrespective
of our choice of variable, our estimates for exponent ν in (14) are all of order ν ≈ 0.1, suggesting
a weak and perhaps spurious dependence in metabolic rates. We therefore eliminate mi from our
expression (14). We performed a similar analysis (not shown here) using body masses wi, with
comparable results.

Given these two simplifications, we are left with the simpler relationship (6) i.e.

C12 ∼ ABβ1B
γ
2

to be fitted. We find the best-fit exponents β = 0.47± 0.17 and γ = 0.30± 0.19. The limited extent
of our dataset implies large uncertainty on the exact exponents, but they are starkly sublinear.

We notice that these exponents lay close to the line β + γ = 1, i.e. a simpler ratio-dependent
model C12 ∼ B2(B1/B2)β which we could have assumed for dimensional reasons (Box 1). If we
impose this relationship by setting γ = 1− β, we find a similar best-fit value β = 0.51± 0.12. Due
to the colinearity between B1 and B2 (R = 0.56, Fig. 1d), we might expect any model of this form
to provide a comparable fit, ranging from β = 1 (donor dependent, see Box 2) to β = 0 (consumer
dependent). Nevertheless, our colinearity analysis strongly indicates β ≈ 1

2 as the most likely value.
This is visualized by the fact that C/B1 and C/B2 both exhibit a residual variation in B1/B2

(p < 10−6, R = 0.61 and R = −0.52 respectively, Fig. 2) whereas our best fit exhibits no residual
variation (p = 0.4, R = −0.08), suggesting that neither strict donor nor consumer dependence
prevails in our data.

3.1.2 Results from dynamical model estimation

We show in Fig. 3 the results of our second method of parameter estimation, described in Sec. 2.5.2,
which consists in simulating our dynamical model with random parameter combinations, and re-
taining those that produce densities and predation losses comparable to those of the data.

This second approach also supports the idea that β + γ (whose distribution is centered close
to 1) is significantly reduced compared to the mass action expectation β + γ = 2. However, we
notice a stark asymmetry in the posterior distributions of β and γ: the distribution of β has a mode
below but close to 1, while the distribution of γ is strictly decreasing from 0. This might lend some
credence to purely donor-dependent trophic fluxes, a hypothesis which lacked support in our direct
fit approach above, see Fig. 2.

We must note that this model exploration is still missing many other factors that may affect B1

and B2 and their relationship to C12, such as non-equilibrium dynamics or interactions with other
prey and predator species, among others. These factors may have a greater impact on predators,
whose populations are typically smaller, slower to attain equilibrium and more easily perturbed.
We could thus expect that measured predator abundances are less strictly related to C12. This
decorrelation may be sufficient to explain the apparent bias toward small γ. We discuss below the
hypothesis that our results are mainly driven by an artificial donor-dependence imposed by the scale
of observation in the data.

2This is consistent with ssuming that the thresholds B1,min and B2,min are equal or proportional to the minimal
sustainable population densities for prey and predators. Cross-species data from Hatton et al. 20 and Stephens et al. 41

suggest that the minimal numeric density is roughly inversely proportional to body mass, Ni,min ∼ 1/wi. Therefore,
Bi,min = wiNi,min is expected to be size-independent, and exhibits no known link to metabolism.
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Figure 3: Posterior distributions of exponents β and γ in power-law functional response (6) for
simulations selected to reproduce the empirical distribution of densities B1 and B2 and predation
losses C12 (Fig. 1). The prior distribution was uniform over the interval [0, 1.5]. The posterior
distributions remain broad, showing that exponents are only weakly constrained by our empirical
evidence (with almost no correlation between exponents, R = 0.11). The most likely values are
β ≈ 0.9, γ ≈ 0 which approximate the classic model of linear donor-dependence (Box 2), while the
median values are more symmetrical, β ≈ 0.8, γ ≈ 0.5 and hence β + γ ≈ 1.3. Both show significant
departure from the mass action (Lotka-Volterra) hypothesis β = γ = 1 (dashed lines).

3.1.3 Comparison with a classic functional response

The DeAngelis-Beddington (DAB) model (8), or Holling Type 2 with predator interference, can be
fitted to our data, but while it may be useful as a mechanistic model for a single system7, it is
unsatisfactory in our macro-ecological approach.

This expression faces the following problem: the thresholds for prey saturation H and predator
interference I are not only particular to each pair of species (e.g. via their body sizes12), but they
also depend on the spatio-temporal structure and scale of each system. For instance, a day-long
experiment in a closed arena may reveal saturation with prey density due to predator handling
and satiety. But over a month in an open landscape, a different saturating effect could appear
due to prey refuges. If we measure multiple systems at different scales, each may have a different
saturation constant, and we cannot fit them all using the same saturating function with fixed, or
even independently varying, values of H and I. We tried to construct some plausible expressions
for system-dependent H and I using other known parameters for each system (e.g. body sizes,
metabolic rates and spatial extension), but could not find a successful approcah. Assuming H and I
to be constant instead, we perform a fit and find (Appendix S4) that almost all predator-prey pairs
are in the saturated part of the function, i.e. HB1 + IB2 � 1. This suggests that the DAB model
best approximates the data in the limit where it becomes linear in either B1 or B2, which is also a
special case of our power-law model.

Furthermore, we show in Appendix S4 that the colinearity B1 ∼ B2 can make it difficult to
differentiate between an additive law, HB1 + IB2, and a multiplicative law with exponents adding
up to one, B1−β

1 Bβ2 , in the denominator of the functional response. This has been put forward as an
important criticism of the Cobb-Douglas production function42 which resembles our power-law model
(6). But we find here that prey and predator appear to be both limiting. This requires a fine-tuning
of the ratio of handling time to interference, H/I, so thatHB1 and IB2 are comparable in magnitude.
This is found in our best fit of the DAB model (8) but is difficult to justify mechanisticially, whereas
the same reality may be more clearly and simply encapsulated by our ratio-dependent (β + γ ≈ 1)
expression with β < 1.

3.2 Theoretical properties and consequences of empirical exponents
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Box 2: Definitions

We introduce two sets of terms to distinguish:

• what sort of dependence is assumed for predation losses C

donor-dependent predation A model where C(B1, B2) = C(B1)

consumer-dependent predation A model where C(B1, B2) = C(B2)

ratio-dependent predation A model where C(B1, B2) = B2 C(B1/B2)

• which of predation or non-trophic losses is the limiting factor for abundances:

regulated regime A solution of our model where prey stocks are limited by self-regulation, as in logistic
growth. If we increase the predators’ individual consumption (attack rate A and exponents β and
γ), more predators coexist at equilibrium.

depleted regime A solution of our model where prey stocks are strongly depleted by consumption,
so predators compete for the flux of prey production. If we increase individual consumption (i.e.
per-predator uptake from that flux), fewer predators coexist at equilibrium.

These definitions should be distinguished from terms of control (e.g. donor control, bottom-up and top-down
control), which are often used in more complex statements about the dynamics, i.e. what determines biomass
repartition across predators and prey and response to perturbations. For instance, donor-dependence is not
required for donor (bottom-up) control10. Hence, we employ a distinct terminology throughout this study to
avoid possible confusions surrounding these terms.

3.2.1 Population sizes

We consider two trophic levels, and investigate equilibrium predator density B∗
2 in Fig. 4a as a

function of both exponents β and γ. We observe two distinct regimes: there is only one stable
equilibrium throughout the parameter space, but it is dominated either by species self-regulation,
or by trophic regulation.

These regimes can be understood by first assuming that self-regulation can be neglected at both
levels. In that case, our dynamical model (2) with the power-law functional response (6) has the
equilibrium solution (see Appendix S1)

B∗
1 ≈

(
g1−γ1 (µ2/ε)

γ

A12

) 1
β+γ−1

B∗
2 ≈

(
gβ1 (µ2/ε)

1−β

A12

) 1
β+γ−1

if Di → 0, (15)

where we see that β+ γ = 1 leads to a singularity, meaning that self-regulation cannot be neglected
for these exponents.

The first regime is found when β + γ > 1, and we call it the depleted regime (see Box 2 and
Fig. 4b). In this case, the solution (15) is a good approximation at low self-regulation (small Di).
We notice that this solution has two counter-intuitive properties: predator biomass B2 decreases
with attack rate A12 and exponents β and γ, and increases with predator mortality µ2 (if there
is saturation, β < 1). This is because prey stocks are brought to low levels, so predators simply
divide between themselves the flux of prey production: the more each predator consumes per capita,
the fewer predators can coexist. As we discuss below, this inverse relationship between individual
fitness (high attack rate, low mortality) and population abundance has been demonstrated in various
models and called the “hydra effect”22;23.

If β+γ < 1, the solution without self-regulation (15) becomes unstable. In the stable equilibrium,
the biomass of prey will be mainly determined by their self-regulation i.e. B∗

1 ≈ g1/D1, leading to
what we call the regulated regime (Box 2 and Fig. 4c). In that case, predator biomass

B∗
2 ≈

(
εA12

µ2

) 1
1−γ

(
g1
D1

) β
1−γ

(16)
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increases with attack rate and with exponents β and γ. The fact that the previous equilibrium (15)
is unstable reveals a type of Allee effect: if initial prey levels are below a threhsold, predators will
consume all the prey (consumption will decrease too slowly to adjust to the falling resource level)
then collapse.

We show in Fig. 4 that predator abundance is maximized at the boundary between these two
regimes. This boundary lies close to the line β + γ = 1, where predation losses scale as

C(B1, B2) ∼ Bβ1B
1−β
2

which is close to the exponents suggested by our meta-analysis. We however note that the regime
boundary moves away from this line as we decrease attack rates A12 and increase self-regulation
Di at both levels. For sufficiently high self-regulation, even Lotka-Volterra dynamics can enter the
regulated regime, which we interpreted as bottom-up control in previous work10.

The overarching pattern is that the predator density first increases with attack rate A12 and
exponents β and γ, when predation losses are still negligible for the prey, up to the regime boundary
described above. Past this point, faster consumption leads to significant resource depletion and a
drop in predator population25, as competition increases more than growth.

3.2.2 Dynamical stability

We also observe how functional response exponents affect the stability of predator populations.
Fig. 4(d,e) represents the invariability (inverse of the coefficient of variation over time) of predator
abundance, computed in two scenarios: demographic stochasticity, where fluctuations (arising from
birth and death processes) are proportional to

√
B2, and environmental perturbations which affect

the predators proportionally to their abundance B2, see Arnoldi et al. 43 . Other scenarios and
more stability metrics (including asymptotic resilience) are represented in Fig. S1 in Supporting
Information, and show qualitatively similar patterns.

We make three main observations. First, the optimal parameter values for stability depend on the
perturbation scenario (e.g. demographic or environmental noise) and the choice of stability metric,
as having a larger abundance leads to higher stability in some metrics43. It is therefore important
to know which scenario and metric are relevant for empirical dynamics, and different ecosystems
may possibly have different optima. Second, all the cases studied here display a ridge of increased
predator stability at the maximum of its abundance, close to the transition line β + γ = 1, and a
drop in stability right after this ridge. Third, while abundance depends almost symmetrically on β
and γ, and is maximized close to the transition between regimes, stability favors systems closer to
donor-dependence. Moving toward larger β along the line β + γ = 1 reduces the likelihood of cycles
and widens the region of parameters with high stability both to demographic and environmental
noise (Fig. 4d and e). More generally, stability to environmental perturbations can be improved by
having lower γ than what would maximize abundance (i.e. going toward the bottom of Fig. 4e).

3.3 Scaling of biomass and production across levels

Previous literature has reported scaling laws between biomass and production within one trophic
level,

Pi ∼ Bδi (17)

and between biomasses at different trophic levels20

Bi+1 ∼ Bαi . (18)

As discussed in Barbier and Loreau 10 , neither of these laws can arise for more than two levels in a
classic Lotka-Volterra model without self-regulation (β = γ = 1, Di = 0).

In the following, we illustrate how such empirical scalings can emerge from underlying dynamical
relationships, and how the measured exponents will depend on which parameters drive the cross-
ecosystem variation in predator and prey density. There are only two ways in which scaling laws
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Figure 4: Equilibrium predator abundance and persistence in the dynamical predator-prey model
(Di = 10−3 at both levels, g1 = 1, µ2 = 2, ε = 0.8). On panels (a,d,e) the red dot indicates the
exponents obtained by direct regression β ≈ 0.5, γ ≈ 0.3, while the purple dot indicates the median
exponents from our dynamical model fit, β ≈ 0.8, γ ≈ 0.5. (a) Predator biomass density B∗

2 (in log
scale) varies with exponents β and γ in the power-law functional response (6). It is maximized on
a boundary (lightest color on the graph) separating two different regimes (b and c). This boundary
is close to the dashed line β + γ = 1, but deviates toward larger β due to prey self-regulation (the
deviation increases with D1). (b) For β+ γ > 1, the resource is largely depleted by predation, and
predator population decreases with attack rate, going extinct (for simplicity, set here to B2 < 1) at
Amax. (c) For β+ γ < 1, predator biomass (solid line) increases with attack rate, since the resource
is mainly limited by its own self-regulation. The predator survives only if A > Amin, but high
attack rates A > Amax give rise to an unstable equilibrium (dashed line) under which populations
can go extinct. The stable equilibrium disappears at higher A. (f) For the predator to persist in
both regimes and for all initial conditions, we must have Amin < A < Amax (shaded region). This
interval expands with increasing β (less saturation) and prey growth g1. (d,e) Predator invariability
(1/coefficient of variation) around equilibrium (see e.g. Barbier and Loreau 10 ; Arnoldi et al. 43) in
response to (d) demographic fluctuations and (e) environmental perturbations affecting the predator.
For large γ and intermediate β, the equilibrum is unstable and replaced by limit cycles. This area is
left blank as invariability cannot be computed analytically, but it remains well-defined in simulations.
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can hold consistently across multiple trophic levels: either they are imposed by a narrow class of
functional responses, or they originate from an equilibrium balance between trophic processes and
other losses.

The first possibility requires internal losses to be negligible, i.e. Li = 0 in (2), and predation to
be strictly donor-dependent or consumer-dependent (γ = 0 or β = 0). The functional response then
completely determines the scaling between production and biomass,

Pi ∼ Bβi or Pi ∼ Bγi−1 (19)

and since Li = 0,
Pi+1 = εPi ⇒ Bi+1 ∼ Bi (20)

which entails a strict proportionality between predator and prey biomass (exponent α = 1). This has
been widely discussed by proponents of the ratio-dependent functional response37, and the existence
of such proportionality laws was put forward as evidence of donor control. But since we find nonzero
β and γ, this possibility is excluded by our data.

The second possibility arises in our model with a power-law functional response (6). Following
Appendix S3, we illustrate our reasoning in the case where the scaling Pi ∼ Bδi emerges from the
density-dependence of internal losses. If we assume that all three terms Ci ∼ Li ∼ Pi in the
dynamics (2) remain of comparable magnitude at equilibrium (i.e. that a finite fraction of biomass
is always lost to predation and to internal losses both), the expression of Li can indeed impose a
scaling between production and biomass:

Li = DiB
δ
i and Li ∼ Pi ⇒ Pi ∼ Bδi . (21)

(this requires that the cross-ecosystem variation in densities Bi be mostly due to other parameters,
with the exponent δ and coefficients Di varying little between systems, see Sec. 2.4, but a parallel
argument can be made when other parameters are held constant). For instance, we have δ = 1 for
individual mortality, and δ = 2 when a self-regulating process, such as intra-specific competition or
pathogens, is the main contributor to internal losses. We show in Appendix S3 that a relationship
then emerges between the exponents defined in (17) and (18) and the functional response exponents

α(δ − γ) = β. (22)

We illustrate this relationship numerically in Fig. 5, using the simulated runs discussed in Sec. 2.5.2
where some parameters are kept constant. We bin simulation runs by their exponents β and γ,
then compute the scaling exponents α and δ within each bin, by running regressions for the scaling
laws (17) and (18). We find that our prediction (22) is successful when self-regulation is constant,
and especially when ecosystems differ only by their prey productivity. On the other hand, when
self-regulation varies largely, colinearities between parameters and equilibrium densities confound
the empirical scaling laws, as discussed in Sec. 2.4, and lead to a violation of this prediction. Sim-
ilar calculations can however be performed for any assumption about which parameter is mainly
responsible for cross-ecosystem differences in predator and prey density.

Commonly assumed scaling exponents for biomass and production are α = δ = 1, i.e. simple
proportionality between predator and prey biomass, and between production and biomass at each
level. These relations are used in various mass-balanced models5 or theory on biomass pyramids26.
They entail β = 1− γ, meaning that the relationship between predation losses and biomasses would
be the ratio-dependent expression C12 ∼ B2(B1/B2)β which we have discussed in previous sections.

4 Discussion

The predator functional response, describing how predation rates depend on predator and prey
abundances, is a crucial component of trophic ecology that has a considerable impact on predator-
prey dynamics2. Long-standing debates have opposed advocates of various forms of functional
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Figure 5: Numerical test of the theoretical relation between scaling laws, α(δ−γ) = β in (22), derived
in the example of constant self-regulation coefficients Di across ecosystems. We vary exponents β
and γ in the power-law functional response, and perform regressions to compute the exponents of
empirical scaling laws: α for the predator-prey density scaling, and δ for the prey’s production-
density scaling. (a,d) Simulations that differ only through their prey productivity g1 and exponents
β and γ. (b,e) Simulations where all parameters vary except self-regulation coefficients D1 and
D2. (c,f) Simulations where all parameters vary except attack rate A12. We see that the predicted
scaling laws depend on which parameter is expected to vary most, so that different calculations may
need to be performed depending on which features play the largest role in differentiating observed
ecosystems.
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response, such as prey-dependent or ratio-dependent expressions3;4. The current consensus seems to
be that there is no correct universal expression; rather, different functional responses are appropriate
in different settings, and they should be derived mechanistically for each studied ecosystem4;7.

From a macro-ecological point of view, however, what matters is how the functional response
scales up across several orders of magnitude in abundance, body size and area. Experiments typically
measure predation rates for a given pair of species, and how they respond to varying the number of
prey and predator individuals, on a short time scale and in an enclosed space. Here, we used kill
rates recorded in the field to estimate how predation rates over long times (e.g. a year) vary between
species (mainly terrestrial vertebrates) and across much larger spatial scales.

Our empirical analysis points to a phenomenological power-law, which differs from commonly-
studied functional responses. If this law does hold dynamically within each ecosystem, it may have
striking theoretical implications. The empirical exponents fall close to the boundary between two
qualitatively distinct dynamical regimes (approximately the line β+γ = 1). This boundary has two
properties in our food chain model: predator abundance is maximized, and simple allometric scaling
laws appear between different ecosystem functions and between trophic levels. We may then ask
whether these two important macroscopic properties arise accidentally from a functional response
shaped by other constraints, or whether the functional response is in fact selected for its dynamical
consequences.

4.1 Is the empirical functional response an artefact of donor-dependence?

Our theoretical model suggests that both saturation and interference can lead to similar qualitative
consequences for many ecosystem properties. Yet, two main empirical results suggest that reality
is closer to classic donor-dependence, i.e. assuming that trophic fluxes are only determined by the
amount of resource, and in turn determine the abundance of consumers, and not the reverse. The
first clue is the fact that C12/B1 is largely below 1, and the second is that exponent γ is consistently
lower than β. As discussed previously, the precise values of these exponents are weakly constrained
empirically and could be confounded by unknown latent factors, disguising an underlying process
where β = 1 and γ = 0.

To properly assess the value of these clues, it is important to recognize that donor-dependence is
not a necessity. Predation losses are in principle limited not by standing biomass, but by production,

Ci . Pi

which can be much larger than standing biomass. For instance, a Lotka-Volterra model with a
classic biomass pyramid Bi+1 ∼ Bi would predict the predation and production of all consumers
to scale quadratically with biomass, as Bi+1Bi ∼ B2

i . In other words, more and more productive
systems would exhibit more and more predation, but populations would only increase as the square
root of these fluxes, and prey density B1 would not represent a bound on predation. A supralinear
scaling of production and losses with biomass is not implausible. Analogous relationships have been
proposed in economic systems, with empirical exponents ranging from 1.16 (economic growth as a
function of city size44) to 1.6 (stock trading rate as a function of number of shares45). We could
also invoke empirical facts that have been interpreted as evidence for the Allee effect46, since this
effect assumes that per-capita growth rate increases with density, and hence, that production Pi is
supralinear with biomass Bi.

There is, however, an important reason for expecting donor-dependence to prevail, especially at
large spatial and temporal scales where many ecological processes are aggregated: the possibility
of a bottleneck in the dynamics. In various ecological contexts, only a fraction of possible prey
(or predators) are available for predation events. This can include the existence of prey refuges in
space47, or the specialization of predators on particular age classes. The rate at which prey become
available can be the limiting factor in the overall predation intensity, which therefore becomes purely
donor-dependent. For example, if predators target prey of age one and above, these prey must have
appeared in the previous year’s census, imposing an insuperable bound Ci < Bi (with a year’s delay,
ignored under equilibrium assumptions).
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The evidence for or against this possibility is unclear here. In most of the data that we study, C12

is sufficiently small compared with B1 that it could still plausibly increase with predator abundance,
and there is no systematic preference for mature prey. On the other hand, our estimate of B1

might miss other factors (such as refuges) limiting prey availability, as we discuss next. While a
broader analysis across taxonomic groups, timescales and life histories would be needed to test for
possible artefacts such as those suggested above, our provisional conclusion is that this empirical
scaling of predation with densities is indeed meaningful, and goes beyond restating the classic donor-
dependence hypothesis.

4.2 Is this functional response a consequence of biological constraints?

Nonlinear functional responses, with saturation and interference, are generally assumed to be im-
posed by a broad range of microscopic or mechanistic factors (physiology, behavior, spatial structure,
individual trade-offs between competition and consumption, etc). In various ways, these factors limit
the space or time available for encounters, leading to less predation than under mass action.

The most immediate candidate mechanism to explain a pattern that holds across ecosystems
and scales is spatial structure. For instance, local prey refuges have been proposed as a classic
explanation for a donor-dependent47 or DeAngelis-Beddington response48. More generally, spatial
structure has been shown to lead to power-law-like functional responses in agent-based or spatially
explicit simulations7;49. But this seems to allow a wide range of possible exponents, and therefore,
it does not provide an unequivocal explanation for our observations.

A functional response C12 ∼
√
B1B2 (β, γ ≈ 1

2 ), similar to our measurements, could be imposed
by spatial structure in two dimensions, if prey and predators occupy almost mutually exclusive
regions and only meet at the boundaries (given that the periphery of a region scales like the square
root of its area). This could happen due to local prey depletion by predators, a plausible explanation
although it requires very strong negative correlations in space50, and would predict a different scaling
in three-dimensional settings12 which remains to be tested.

We cannot conclude, based on our data alone, that spatial heterogeneity is the main driver of our
empirical functional response. Spatially explicit data may be necessary to test this hypothesis. If
spatial structure does not impose an exponent, but allows a range of possibilities, it could provide the
means through which predators and prey organize to achieve a functional response that is selected
by other processes51;52.

4.3 Can this functional response emerge from selection?

The functional response and exponents found here are close to those which theoretically maximizes
predator abundance and some metrics of stability. Yet this comes at an apparent cost to the individ-
ual predator, which consumes less here than under a classic Lotka-Volterra (mass action) scenario.
We recall the so-called hydra effect22;23, a counter-intuitive but common phenomenon in resource-
based dynamics: decreasing the fitness of individual consumers, e.g. increasing their mortality or
reducing attack rates, can lead to larger populations in the long run, when this reduces competition
more than it reduces growth. We showed that a similar effect applies here to consumptive satura-
tion and interference, as represented by the power-law exponents β and γ in the functional response.
Maximal predator abundance is reached for exponents close to the relationship β + γ = 1, which
holds approximately in data3.

This resonates with long-standing debates in ecology and evolution, in particular the group selec-
tion controversy53 and its accounts of selection for population abundance54 or persistence55. Should
we conclude here that consumption rates are selected to optimize population-level properties? And
would this optimization require population-level selection, or can it arise strictly at the individual
level? We now show that these are valid possibilities in our setting.

3More precisely, predator abundance is maximized at the boundary between two dynamical regimes, which is given
by β + γ = 1 when species self-regulation is low, but moves toward higher exponents as we increase self-regulation
and can be seen in Lotka-Volterra models10.
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A first possibility is that our proposed functional response is outcompeted at the individual level,
but selected at the population level, due to some positive consequences of having larger abundances.
Extending our model to include simple adaptive dynamics of attack rate and scaling exponents,
we indeed find that this functional response is dominated by other strategies (Appendix S2). We
observe maladaptive evolution: mutants with ever faster consumption will outcompete and replace
residents, reaching ever lower equilibrium abundances, up until the point where the predators go
extinct. A classic solution is to invoke competition between groups in a spatial setting53;54, as a
larger group can send out more propagules and will often disperse faster56. These intuitions pervade
a large literature on the evolution of “prudent” predation strategies through group selection, also
known as the milker-killer dilemma51;52;57;58.

A less commonly considered possibility is that our functional response is favored even at the indi-
vidual level, as a result of direct competitive interactions. The dominance of faster consumers relies
on the assumption that competition takes place only through resource consumption. In the presence
of other competitive interactions that are not tied to resource levels, a larger standing population
can resist invasion both by mutants and by other species. We suggest in Appendix S2 that, for
the resident population to be evolutionarily stable, this non-consumptive competition must induce
higher mortality in individuals that search for more resources, regardless of their success. This fea-
ture seems plausible for territorial behavior and aggression as widely displayed by higher vertebrates
4, but could also be induced e.g. by allelopathy in other organisms. Under these conditions, slow
consumers can avoid being overtaken by fast consumers, even within a single population.

As a further perspective, all our arguments so far have taken the viewpoint of the predator’s
strategy and abundance, despite the fact that our empirical results suggests a roughly equal role of
predator and prey density in limiting predation. Our best-fit exponents situate real systems close to
the limit between a regime where prey suffer from predation, and a regime where they are mainly
self-regulated. It is thus possible that prey strategies, or a balance between prey and predator
selective pressures, are at play.

We conclude that selection on the functional reponse exponents to maximize population size
can easily arise in variations of our model, provided that we include non-consumptive processes
(from dispersal to aggression). Some of these explanations involve competition between populations,
while others take place within a single population, but all favor strategies that maximize predator
abundance.

4.4 Can this functional response explain other power-law relations be-
tween ecosystem functions?

Relations between production and biomass, and between predator and prey densities are widely
assumed and observed to take linear or power-law forms20;26. Yet, we have shown here and in
previous work10 that such relations do not emerge universally from arbitrary dynamical models.
They require particular ecological conditions, where internal losses Li within trophic level i are
comparable to, or larger than, predation losses Ci (both in their magnitude and in their density-
dependence). For instance, in a Lotka-Volterra model, strong density-dependent self-regulation
within a trophic level is required to observe linear (isometric) relations between different functions
and between levels, creating classic biomass and energy pyramids10. Alternatively, exponents β+γ =
1 in our proposed functional response recover the same linear relations and pyramids. When these
conditions are not satisfied and predation losses are larger, the predator-prey dynamics can enter
a depleted regime (see Box 2) in which prey stocks are exhausted and may not follow any scaling
relationship to either prey productivity or predator stocks, a property which has already been
proposed as evidence for top-down control of prey by predators60.

4 As an illustration, lions are both outliers in our dataset, since they display lower consumption rates than the
general trend (see Appendix S5), and are a major cause of mortality among other carnivores59. These two features
together may indicate a counter-intuitive predator strategy, which involves both consuming less prey and spending
more time in non-consumptive competition, leading to and benefitting from population maximization.
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A recent meta-analysis by Hatton et al. 20 found sublinear scalings of production with biomass
(with exponent α) and of predator density with prey density (with exponent δ), following α ≈ δ ≈ 3

4 ,
reminiscent of metabolic allometry. Assuming that this cross-ecosystem law also holds dynamically
within one system, so that our model results apply, this requires strong interference and saturation,
β + γ < 1. The empirical evidence is too weak to decide whether β + γ ≈ 1 (leading to isometry) or
β + γ < 1 (leading to allometry), but both possibilities fall within the range of our estimates.

In summary, the existence of well-defined scaling laws across trophic levels, between ecosystem
functions such as biomass and production, is less self-evident than it may appear. We suggest here
that some empirically-supported laws might be secondary consequences of the mechanisms that
determine our phenomenological functional response.

4.5 Conclusions

We have shown that the intensity of predation across a range of spatial scales and species can be
modeled as a power-law function of both consumer and resource densities, that deviates strongly from
the mass action (Lotka-Volterra) assumption. Classic functional responses cannot be automatically
assumed to be adequate for macroscopic data: descriptions that are valid at small scales may not
always be used at larger scales, as dynamics are driven by very different mechanisms, from individual
behavior all the way to landscape heterogeneity. Similar phenomena, such as saturation and predator
interference, may nevertheless emerge from these different causes. Our empirical investigation should
be extended to other taxonomic groups, and confronted to experimental evidence, to pave the way
for a deeper understanding of the emergent functional response at macro-ecological scales.

This phenomenological power-law model can recover classic donor control as a special case, but
our empirical estimates are also compatible with a more symmetrical expression where predator
and prey are roughly equally limiting, leading to an unusual square root expression. This model
is reminiscent of the Cobb-Douglas production function in economics16, which similarly arises in a
macroscopic context, and is also disputed as either a salient empirical fact or a simple consequence of
colinearity and aggregation42. Nevertheless, the main observation in both fields is that two factors –
labor and capital, or consumers and resources – are co-limiting, so that doubling the output requires
doubling each of the two inputs.

Scaling laws measured across ecosystems do not always hold dynamically within a single ecosys-
tem61: other latent variables could differ between ecosystems, altering the relationship between
predation and abundances that we would observe locally. Our results are also limited by the fact
that we consider only one interaction at a time, as we generally lack data for other prey and preda-
tors interacting with our focal species. Future work should employ data on temporal change to
test whether our proposed functional response truly applies to the dynamics of an ecosystem. If it
does, we have shown that our empirical exponents have important implications for various features
of trophic systems: in particular, they are close to maximizing predator population size and some
measures of stability. This could reflect an universal selection pressure acting upon consumption
rates. We notably discussed the possibility that non-consumptive competition (e.g. territorial exclu-
sion or allelopathy) would prevent the usual dominance of smaller populations of faster consumers,
and offer an explanation for the evolution of strategies that limit predation to maximize predator
abundance.

We hope that future work can address two fundamental questions: (1) whether the functional
response that we observe stems purely from aggregation or from other ecological phenomena, and
(2) whether some universal principle, such as selection for larger populations, could explain this
functional response and, through it, the emergence of other widespread macro-ecological scaling
laws.
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