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Abstract1

Uncertainty is an irreducible part of predictive science, causing us to over- or underestimate2

the magnitude of change that a system of interest will face. In a reductionist approach, we may3

use predictions at the level of individual system components (e.g. species biomass), and combine4

them to generate predictions for system-level properties (e.g. ecosystem function). Here we5

show that this process of scaling up uncertain predictions to higher levels of organization has6

a surprising consequence: it will systematically underestimate the magnitude of system-level7

change, an effect whose significance grows with the system’s dimensionality. This stems from a8

geometrical observation: in high dimensions there are more ways to be more different, than ways9

to be more similar. This general remark applies to any complex system. Here we will focus on10

ecosystems thus, on ecosystem-level predictions generated from the combination of predictions at11

the species-level. In this setting, we show that higher
::
the

:
ecosystem

:
’s

:
dimension

::::
ality

::
is

::
a

:::::::
measure12

::
of

::
its

:
does not necessarily mean more constituent species, but more diversity. Furthermore, while13

:::
We

:::::::
explain

::::
why dimensional effects can be obscured

::
do

:::
not

::::
play

::::
out when predicting change of a14

single linear aggregate property (e.g. total biomass), they
:::
yet

:
are revealed when predicting change15

of non-linear aggregate properties (e.g. absolute biomass change, stability or diversity), and when16

several properties are considered at once to describe the ecosystem, as in multi-functional ecology.17

Our findings highlight the
:::
and

::::::::
describe

:::
the

:::::::::::::::
counter-intuitive

:
dimensionaleffects

::
of

::::::
scaling

:::
up

:
that18

inevitably play out when uncertain predictions, are scaled up, and are therefore relevant to19

:::::
effects

:::::
that

::::
will

:::::
occur

::
in

:
any field of science where a reductionist approach is used to generate20

predictions.21

Keywords: Ecological Complexity, Diversity Metrics, Dimensionality, Mechanistic prediction,22

Multi-functionality, Multiple Stressors, Reductionism.23
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1 Introduction24

In natural sciences, uncertainty of any given prediction is ubiquitous (Dovers & Handmer,25

1992). When considering predictions of change, uncertainty has directional consequences:26

uncertain predictions will lead to either over- or underestimation of actual change. The27

reductionist approach to complex systems is to gather and use knowledge about individual28

components before scaling up predictions to the system-level (Levins & Lewontin, 1985; Wu,29

Jones, Li, & Loucks, 2006). Although scaling up to higher levels of organisation is general30

to the study of any complex systems, it is particularly well-defined in ecology. In this field,31

knowledge about the components at lower levels of organisation (individuals, populations)32

is commonly used to understand the systems at higher levels of organisation (communities,33

ecosystems) (Loreau, 2010; Woodward, Perkins, & Brown, 2010).34

An unbiased prediction of an individual component is one that makes no systematic bias35

towards over- or underestimation for that component (Box 1). But what happens when we36

scale up unbiased predictions to higher levels of organisation? If we do not systematically37

underestimate the change of individual components, will this still be true when considering38

many components at once? When addressing this question, one must be wary of basic intuitions39

as the problem is inherently multi-dimensional, thus hard to properly visualize.40

As a thought experiment, consider two ecological communities, one species-poor (low dimension)41

and the other species-rich (high-dimension). Both communities experience perturbations that42

change species biomass, and we assume that we have an unbiased prediction for this change,43

up to some level of uncertainty. We then scale up our predictions to the community-level,44

focusing on the change in Shannon’s diversity index, caused by the perturbations. By45

comparing predicted and observed change we can quantify the degree of underestimation of our46

predictions, at the species and community-level. If we simulate this thought experiment (Fig. 147

and Appendix S4) we observe the following puzzling results, which motivate our subsequent48

analysis. Predictions of species biomass change may be unbiased (bottom row of Fig. 1), but49

when scaled up to
::::
the system level for the species-rich community, but not the species-poor50

community, we see a clear bias towards underestimation of change (top right corner of Fig. 1).51

As we shall explain in depth, the reason for this emergent bias is that in high dimensions there52

are more ways to be more different, than ways to be more similar(Fig. 6a).
:
.
:

Our goal is53

to make this statement quantitative and generally relevant to ecological problems. We start54

from a geometric approach showing that, in two dimensions, our claim can be visualised to55

reveal a positive relationship between magnitude of uncertainty and underestimation of change.56

Visualisation is only possible in low dimensions, but a more abstract reasoning demonstrates57

that as dimensionality increases so does the bias towards underestimation, which is further58
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Figure 1: Simulated communities of 2 species (left) and 20 species (right) experienced 1000 perturbations
(change in species biomass), for which we assume unbiased predictions at the species-level. Uncertainty around
those predictions is simulated as a random terms of zero mean, independent across species. Histograms
show the distribution of relative underestimation, defined as the difference between realized and predicted
change expressed relatively to the predicted magnitude of change. By construction, there is no bias towards
underestimation at the species level (bottom row). We then scale up our predictions to the community level
to generate predictions for Shannon’s diversity index (top row). For the first, species poor community, this
upscaling does not generate any bias. However, for the species rich community a bias emerges as approximately
75% of realizations show an underestimated magnitude of change. In this article, we explain in depth the
statistical mechanisms behind this bias.

strengthened by larger uncertainty. We note that dimensionality is not necessarily an integer59

value. We propose that the effective dimensionality most relevant to ecological upscaling of60

predictions is not the number of species, but instead is a specific diversity metric, the Inverse61

Participation Ratio (IPR) (Wegner, 1980; Suweis, Grilli, Banavar, Allesina, & Maritan, 2015),62

comparable (but not equivalent) to Hill’s diversity indices (Hill, 1973).63

We then explain why the effect of dimensionality depends on how change is measured at64

the system-level (Fig. 6b
::::
Box

::
1). If a single linear function is used to aggregate components65

(e.g. total biomass), dimensionality has no effect. An unbiased prediction for individual66

components trivially scales up to produce an unbiased system-level prediction. But this is not67

true in general. Non-linear functions (e.g. Shannon’s diversity index as in Fig. 1), can remain68

sensitive to dimensional effects. Predictions of change of these properties, even if constructed69

from unbiased predictions of individual components will be systematically underestimated.70
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The significance of this effect will depend on the relative significance of non-linearities in the71

function of interest.72

On simulated examples we will examine the behaviour of common ecosystem-level properties:73

diversity, stability and total biomass. More generally, we emphasise that dimensional effects74

will occur as soon as system-level change is measured as a change in multiple properties at once75

(whether they are linear or not), as is the case in multi-functional descriptions of ecosystems76

(Manning et al., 2018).77

As a seemingly different kind of ecological case-study, we then revisit core questions of multiple-78

stressor research in the light of our theory. In this field, there is a clear prediction (additivity79

of stressor effects), a high prevalence of uncertainty about the the way stressors interact80

(resulting in non-additivity) and, ultimately, great interest in the ecosystem-level consequences81

of non-additive stressor interactions (synergism or antagonism) (Côté, Darling, & Brown, 2016;82

Jackson, Loewen, Vinebrooke, & Chimimba, 2016; Piggott, Townsend, & Matthaei, 2015).83

Expressed in this context, our theory predicts the generation of bias towards synergism when84

multiple-stressor predictions are scaled up to higher levels of organisation.85

Research has primarily focused on the causes of uncertainty, working hard to reduce it (Petchey86

et al., 2015). Here we take a complementary approach by investigating the generic consequences87

of uncertainty, regardless of the nature of the system studied or the underlying causes of88

uncertainty. Our theory becomes more relevant as the degree of uncertainty increases, which89

makes it particularly relevant for ecological problems. But, in fact, our findings could inform90

any field of science that takes a reductionist approach in the study of complex systems (e.g.91

economics, energy supply, demography, finance – see Box 2), demonstrating how dimensional92

effects can play a critical role when scaling up predictions.93

2 Geometric Approach94

The central claim of this article is that in high dimensions there are more ways to be more95

different, than ways to be more similar. We propose an implication: a system-level predic-96

tion based on unbiased predictions for individual components, will tend to underestimate the97

magnitude of system-level change.98

To understand these statements, it is useful to take a geometrical approach to represent the99

classic reductionist perspective, starting in two dimensions (Fig. 2a). Picture two intersecting100

circles in a system’s state-space (one blue, one red in Fig. 2). The first, blue circle is centred101

on the system’s initial state and its radius corresponds to the predicted magnitude of change.102

The second, red circle is centred at the predicted state (which lies on the blue circle) and its103
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Box 1: Lexicon of Concepts

Reductionist view of complex systems

• Components: Individuals variables Bi that together form a system (e.g. biomass of S species and abiotic
compartments forming an ecosystem).

• System state: Point in state space, represented as a vector B = (B1, ..., BS) jointly describing all system
components.

• Difference (or magnitude of change) between states: the Euclidean distance ||B −B′|| between two joint states
B and B′.

Scaling up uncertain predictions

• Relative error: Magnitude of error caused by uncertainty relative to the magnitude of predicted change.

• Aggregate system-level property: Scalar function of the joint state (e.g. total biomass or diversity index)

– Linear aggregate property: Linear function of joint state variables (e.g. total biomass).

– Non-linear property: Non-linear function of joint state variables (e.g. diversity index).

• Scaled up prediction: A prediction made for the joint state, or a scalar property of the joint state, based on
individual predictions for components.

• Unbiased prediction: A prediction that, despite uncertainties, does not systematically overestimate or underesti-
mate the magnitude of change (of a joint state, a system component or an aggregate property).

Multi-functional view of complex systems

• Multivariate description of a complex system, based on multiple aggregate properties, or functions (production,
diversity, respiration) instead of individual components (species biomass and abiotic compartments). The state
of the system is the joint state F = (F1,, ..., FSF

) of SF functions. Difference between states is the distance
between two joint functional states F and F ′.
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radius corresponds to the magnitude of realized error of the prediction, in other words, the104

realized outcome of the uncertainty associated with the prediction (red circle in Fig. 2). The105

actual final state is thus somewhere on that red circle. If it falls outside the blue circle, the106

prediction has underestimated the magnitude of change. The proportion of the red circle lying107

outside of the blue circle measures the proportion of possible configurations that will lead108

to an underestimation of change. In other words, for a given magnitude of error caused by109

uncertainty, this portion of the circle represents the states that are more different from the110

initial state than predicted. As the relative magnitude of error increases (as the red circle’s111

diameter becomes larger, relative to that of the blue circle) this proportion grows (Fib. 2a).112

In three dimensions these two intersecting circles become two intersecting spheres. The113

proportion of interest is the surface of the spherical cap lying outside of the sphere centred114

on the initial state. Here, a non-intuitive phenomenon occurs: with the same radii as in the115

2D case, in 3D there are now more configurations leading to underestimation. As dimensions116

increase this proportion increases, until the vast majority of possible states now lie in the117

domain where change in underestimated (Fig. 2b). This result can be made quantitative118

from known expressions for the surface of hyper-spherical caps. This gives us an analytical119

expression for the proportion of configurations leading to an underestimation of change, as a120

function of the relative magnitude of error (x) and dimension (S):121

P>0(x) = 1− 1

2
I

1−x2

4

(
S − 1

2
;
1

2

)
; x =

‖error‖
‖prediction‖

(1)

In the above equations || · || stands for the standard Euclidean norm of vectors1, and Is(a, b) is122

the cumulative function of the β-distribution (Appendix S2). This is what we mean by in high123

dimensions there are more ways to be more different, than ways to be more similar. To see how124

this relates to the scaling up of unbiased predictions of individual components
:::::
(Box

::
1), we now125

take a statistical approach. Suppose we uniformly sample the intersecting circles, spheres and126

hyper-spheres defined above and drawn in Fig. 2. The proportion Eq. (1) becomes a probability,127

the probability of having underestimated change. This uniform sampling is precisely what128

happens if the uncertainty of individual variables acts as
:::
are

:
independent random normal129

variables with zero mean (
:
a

:::::::::::
particular

::::
case

:::
of

:::
an

:
unbiased uncertainty at the component level,130

see Appendix S2). This justifies our second claim: a system-level prediction based on unbiased131

predictions for individual components, will tend to underestimate the magnitude of change of132

the system state.133

This reasoning is geometrical, and relies on a computation of the surface of classic shapes such134

as hyper-spheres and spherical caps. But the core mechanism behind the behaviour of the135

1This is the most convenient norm for our geometrical approach but other norms would give similar results.
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Figure 2: (a) Already in two dimensions, the probability of underestimation increases as uncertainty increases.
The centre of the blue circle is the initial state (its actual value is irrelevant) and its radius is defined by the
predicted magnitude of change. The point at the centre of the red circle corresponds to the predicted state,
while its radius represents the magnitude of error made by the prediction. By definition, final states thus fall
on the edges of the red circle. If a final state falls inside the blue circle then there has been an overestimation
of change (it is closer to the initial state than what was predicted). If a final state falls outside the blue circle
(as in the figure) then there has been an underestimation of change (it farther from the initial state than
what was predicted). When uncertainty is small, error will be small thus the radius of the red circle is small,
and the probability of underestimation is close to 0.5. As uncertainty (thus error) increases, however, there
is increasing bias towards underestimation. Eventually when error is twice as large as the prediction only
underestimation is possible. (b) This relationship between uncertainty and underestimation is strengthened
by dimensionality. As dimensions increases there become even more ways to be more different than ways
to be more similar. Each curve corresponds to the probability of underestimation as a function of error for
different dimensions labeled as circled numbers. For a fixed amount of error the probability of underestimation
will increase with dimension. (c) The relationship between uncertainty

::
the

::::::::
relative

::::::::::
magnitude

::
of

:::::
error

:::
(x)

and
:::
the

:::::::
relative

::::::::::
magnitude

::
of

:
underestimation

:::
(y) based on uniform sampling of 1-D, 2-D, 10-D and 20-D

intersecting hyper-spheres defined by unbiased but uncertain predictions. The boundaries of this relationship
are plotted in black and the mean

::::::
median

:
expectation of y =

√
x2 + 1− 1

:::::::::::::::
ỹ =
√
x2 + 1− 1

::
as

:::::::
derived

:::::
from

:::
Eq.

:::
(4)

:
is plotted in red (except for 1-D where there is no bias

::
it

::::
does

::::
not

:::::
apply). The dashed red lines are the

predicted variance of the results based on the number of dimensions. Blue points are simulated results, red
points are the actual mean

:::::::
median values and black points are

::::::
dashed

::::
lines

:::::
show

:
the actual variances

::::::::
quantiles

for vertical subsets of the simulated data. As dimensionality increases the variance
:::::
width

:::
of

:::
the

:::::::::::
distribution

decreases and results converge
::::::::
converges

:
towards the expectation

::
its

:::::::
median, which

:::::::::
effectively

:
increases the

probability of underestimation as can be seen in (b).

probability of underestimation is more general and in a sense, simpler. To see that, let us take136
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a step back and analyse the relative magnitude of underestimation, defined as:137

y =
‖response‖ − ‖prediction‖

‖prediction‖
(2)

Given an angle θ between prediction and error vectors (resp. the vectors that point from initial138

to predicted state, and from predicted state to realized state) we can rearrange Eq. (2) as:139

y(x, θ) =
√
x2 + 2x cos(θ) + 1− 1 (3)

the term cos θ can take any values between −1 and +1. If the uncertainties
:::
For

::::
the

:::::
sake

:::
of140

::::::::::
simplicity,

:::
in

::::::
what

::::::::
follows

::::
we

::::
will

:::::::::
suppose

::::::
that

:::
its

::::::
mean

:::::
and

:::::::::
median

::::
are

:::::
zero.

::::::
This

:::
is

::::
the141

::::
case

::
if
:::::

the
::::::
errors

:
associated with individual variables are independent and with zero mean,142

the error vector can point in any direction so that cos θ will also have zero mean. Thus, in143

this scenario where prediction of individual components are independent and unbiased, the144

expected
::::::
drawn

::::::
from

::::::::::::::
independent

::::::::::::
symmetric

::::::::::::::
distributions

::::::::
centred

::::
on

:::::
zero

:::::::::::
(unbiased

:::::
and145

::::::::::
unskewed

::::::::::::
predictions

:::
at

::::
the

::::::::::::
component

:::::::
level).

:::
In

::::
this

:::::
case

:::::
the

::::::::
median

:
relationship between146

error (x) and underestimation (y) is:147

ỹ =
√
x2 + 1− 1 (4)

which is strictly positive as soon the error x is non zero. This holds true in all dimensions greater148

than one, which can be seen in Fig. 2c. The mean underestimation ȳ
::::::::
median

:::::::::::::::::
underestimation149

:̃
y
:
does not depend on dimension, but the probability of underestimation, P (y > 0;x), does.150

Indeed, P (y > 0;x) is driven by the variance of the
::::::::::::
distribution

::
of

:::::
the

::::::::
random

:
term cos θ in151

Eq. (3). If this variance is small
::::::::::::
distribution

:::
is

::::::::
narrow, realisations of y will fall close to the152

mean ȳ
::̃
y. Because the latter is positive and increases predictably with x, so will the probability153

of any realised y to be positive. A known fact from random geometry (in particular, about the154

angle between randomly drawn vectors , see Appendix S2) is that the variance of cos θ is
::
is155

:::::
that,

::::::
given

::
a
:::::::::
random

::::::::::
isotropic

:::::::
vector

::::
(i.e.

:::
a

:::::::
vector

:::::::
whose

::::::::::
direction

::
is

:::::::::::
uniformly

::::::::::::
distributed156

::
on

:::::
the

::::::::
sphere),

::::
its

::::::
angle

::
θ

:::::
with

:::::
any

::::::
other

::::::
given

:::::::
vector

:::::::::
satisfies157

E(cos θ) = 0; and Var(cos θ) =
1

S
::::::::::::::::::::::::::::::::::

(5)

::
In

::::::
other

::::::::
words,

:::
in

::::::
high

::::::::::::
dimensions

:::::::::
random

::::::::
vectors

::::
are

::::::::::::::::
approximately

::::::::::::
orthogonal,

::::
up

:::
to

::
a158

::::::::
variance

:
inversely proportional to the dimension of state-space:159

Var(cos θ) =
1

S
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In
:
.
::::

In
::::
our

:::::::::
context,

:::::
this

::::::::::::::
corresponds

:::
to

::::::::
normal

:::::
i.i.d.

:::::::::::::::
distributions

:::
of

::::::::
errors,

::
a
:::::::::::
particular160

::::
case

:::
of

:::::::::::::
independent

::::::::::
unbiased

:::::
and

:::::::::::
unskewed

::::::::::::
predictions.

:::::::
This

:::::::::
explains

:::::
why

::::
the

::::::::::::
probability161

::
of

:::::::::::::::::
underestimation

::::::::::
increases

:::
in

:::::
Fig.

:::
3b

:::::
with

::::::
both

:::::::::::
dimension

:::
S

::::
and

::::::
error

:::
x.

:::
In

:
what follows162

we use this expression
:::
the

::::::::::::
expression

:::
for

::::
the

::::::::::
variance

:::
in

::::
Eq.

:
(5) as a definition of effective163

dimension.
:::::::::
effective

::::::::::::
dimension. In doing so, we have an opportunity to

:::
can

:
free ourselves164

from the strict Euclidean representation of Fig. 2, which
:::
and

:::::::::::
generalize

::::
the

::::::::
theory

::::::::
beyond165

:::::
i.i.d.

::::::::
normal

::::::
error

::::::::::::::
distributions.

::::::
This

:
will be useful when applying our theory to ecological166

problems, where components are the biomass of species, are their contribution to ecosystem167

change are not equivalent.
:
,
:::::
thus

::::::
errors

:::::
not

:::::
i.i.d.

:
168

3 Relevance to Ecology169

3.1 Effective Dimensionality170

We now assume that the axes that define state-space represent the biomass of the species171

that form an ecological system. These species may have very different abundances, and thus172

will not all contribute equally to a given change. For instance, in response to environmental173

perturbations, biomass of species typically change in proportion to their unperturbed values174

(Lande, Engen, Saether, et al., 2003; Arnoldi, Bideault, Loreau, & Haegeman, 2018). The175

more abundant species (in the sense of higher biomass) will thus likely contribute more to176

the ecosystem-level change. Thus, if we use species richness as a measure of dimensionality,177

as the above section would suggest, we will surely exaggerate the importance of rare (i.e low178

biomass) species. But using Eq. (5) to define dimensionality, we can resolve that issue. In179

doing so we show that the relevant dimension when applying our ideas to ecological problems180

is really a measure of diversity of the community prior to the change, which may not be an181

integer, and will typically be smaller than the mere number of individual components.182

In fact (Appendix S3), if a species contribution to change is statistically proportional to its183

biomass Bi the effective dimensionality of a system is the Inverse Participation Ratio (IPR) of184

the biomass distribution2, which reads:185

IPR =
(
∑S

i=1B
2
i )

2∑S
i=1 B

4
i

(6)

This non-integer diversity metric was developed in quantum mechanics to study localisation186

of electronic states (Wegner, 1980). The IPR approaches 1 when a single species is much187

more abundant than the others, and approaches S when species have similar abundance – see188

2our theory allows other choices of statistical relationships between biomass and contribution to change,
leading to other diversity metrics, which can be seen as generalization of the Inverse Participation Ratio.
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Suweis et al. (2015) where this metric is used in an ecological context. Note that the IPR is189

closely related (but not equivalent) to Hill (1973)’s evenness measure 2D = (
∑

iBi)
2/
∑
B2
i190

(see Appendix S3).191

Figure 3: Each row corresponds to simulations of 50 species communities with uneven biomass distributions
that have experienced perturbations. The first column shows the biomass distributions of these communities.
The two communities have IPR, and therefore effective dimensionality, of 35.2 and 8.6. The second column
shows the relationship between error and underestimation of these two communities when unbiased predictions
of biomass change are scaled up to change in state-space distance. The variance around the mean expectation
was accurately predicted using the IPR instead of species richness. As the biomass distribution becomes
more uneven the variance

:::::::::
variability around the mean expectation

:::::::
median

::::::::::::::
underestimation

:
increases

:::::::
(dashed

::::
lines

::::
are

:::::::::
quantiles), which

::::::::
effectively

:
reduces the probability of underestimation

::::
that

::
a

:::::
given

:::::::
change

::::
was

:::::::::::::
underestimated. This can be seen in the third column where predictions using the dimension of state-space (50,
black curves) are outperformed by predictions using the IPR (35.2 and 8.6. red curves). Red points show the
actual probabilities of underestimation for vertical subsets of the simulated data and are accurately predicted
using the IPR.

We can show that it is indeed the IPR that determines the variance (over a sampling of192

predictions and associated uncertainties of species biomasses) of the term cos θ in Eq. (3) so193

that:194

Var(cos θ) =
1

IPR
(7)

An uneven biomass distribution thus increases the variance of
::::::
width

:::
of

::::
the

:::::::::::::
distribution

:::
of195

underestimation y therefore reducing the probability of a given realisation of change to196

have been underestimated. As shown
:
If

::::::::
species

:::::::::
richness

::::::::::::
accurately

::::::::::
predicted

::::
the

:::::::
width

:::
of197

:::
the

:::::::::::::
distribution

:::
of

:::::::::::::::::
underestimation

::::
and

::::::::::
therefore

::::
the

::::::::::::
probability

:::
of

::::::::::::::::::
underestimation,

::::
the

::::
two198

::::::::::
simulated

::::::::::::::
communities in Fig. 3 ,

::::::
would

::::::::
behave

:::
in

::::
the

::::::
same

:::::
way.

:::::::::::
However,

::::
the

::::::::::::
probability199

::
of

:::::::::::::::::
underestimation

:::
is

::::::
lower

:::::
than

::::::::::
expected

:::::::
based

:::
on

::::::::::
richness,

::::::::::::
particularly

::::
for

::::
the

::::::::::::
community200
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:::::
with

::
a

:::::
more

::::::::
uneven

:::::::::
biomass

::::::::::::::
distribution.

::::::::
Indeed,

:
replacing richness S by the IPR in Eq. (1)201

provides an excellent approximation of the behaviour of the probability of underestimation .202

:::::
(Fig.

:::
3).

:
203

3.2 Aggregate Properties and Non-Linearity204

When scaling up predictions, there are different ways of measuring system-level change
:::::
(Box

:::
1).205

The classic reductionist approach is to quantify change via the Euclidean distance in state-206

space, thus keeping track of the motion of joint configurations. This is what we have done207

so far. Ecologically, this could correspond to measuring the absolute biomass change of a208

community. Here, by construction, our theory is directly relevant.209

But other, non reductionist, ways of quantifying change at the system-level are possible. In210

ecology, this could correspond to measuring changes in the diversity, stability or functioning211

of the ecosystem. Yet, if differences in these properties between two states correlate with the212

distance in the reductionist state-space, then our theory will remain relevant. As can be seen213

in Fig. 4 this can be the case for diversity (Shannon’s index) and stability (invariability of214

total biomass (Haegeman et al., 2016)). Our theory thus applies to those ecosystem-level215

properties. This leads us to the conclusion that their degree of change will be systematically216

underestimated by predictions built from species-level predictions.217

On the other hand, changes in ecosystem functioning (total biomass
::
of

:::::
total

:::::::::
biomass

:::::::::::
(ecosystem218

::::::::::::
functioning) do not correlate well with changes in state-space Euclidean distance. This is219

due to the fact that total biomass is a linear function of species biomass (i.e. the sum). In220

fact, quantifying system-level change via a linear function acts as a projection from the state221

space onto a one-dimensional space defined by the function. Thus, despite the fact that the222

ecosystem might be constituted of many species (intrinsically high dimensional) the problem223

of scaling up predictions is essentially one dimensional. As a result,
:::::
This

::
is

:::::
why

:
bottom-up224

predictions of change of total biomass will show no additional bias towards underestimation.225

More generally, when the linear part of the aggregate property of interest is dominant,226

dimensional effects are obscured. However, as soon as we consider changes of multiple227

properties at once, as in multi-functionality approaches in ecology (Box 1), dimensional effects228

will play out – even if all aggregate properties are essentially linear.229

3.3 Multi-Functionality230

Scaling up predictions from individual components to an aggregate property can lead to a231

bias towards underestimation, due to dimensional effects. We explained that this occurs for232

non-linear aggregate properties, and not linear ones (such as total biomass). Is this to say that233
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Figure 4: Simulated communities of 5 (grey), 10 (red) and 50 (blue) species experienced some change in their
biomass. Unbiased predictions of species’ biomass change were scaled up to predictions of change in aggregate
properties commonly used in ecological research. The relationship between uncertainty and the probability of
underestimation is show for changes in: (1) absolute biomass, (2) diversity, specifically the Shannon index, (3)
stability, specifically invariability and (4) total biomass. Subplots show the relationship between changes in
each aggregate property and changes in Euclidean distance. Absolute biomass change is analogous to Euclidean
distance. Diversity and stability (non-linear functions) show some correlation with Euclidean distance and are
therefore sensitive to dimensional effects. Total biomass (linear function) does not correlate with Euclidean
distance so scaled up predictions of change of this aggregate property remain unbiased.

our theory is only relevant when predicting the change of non-linear system-level properties?234

Yes, but only in the restricted realm of one-dimensional approaches to complex systems.235

There is, in ecology, a growing interest in multi-functionality approaches (Manning et al.,236

2018). These approaches are multivariate descriptions of ecosystems, an alternative to the237

reductionist perspective to account for the multidimensional nature of ecological systems238

12



(Box 1). By considering the change of multiple functions at once, even if these functions are239

essentially linear, dimensional effects will resurface.240

Figure 5: (a) The relationship between prediction error caused by uncertainty and the probability of
underestimation for five simulations each scaling up predictions to a different number of aggregate properties
(SF ). A community of 20 species, with IPR of 9.9, experienced change in biomass over 50,000 simulations.
Unbiased predictions at the species level were scaled up to the community level using 1, 2, 3, 5 and 10 randomly
drawn aggregate properties. Simulated results fall short of theoretical expectations for the probability of
underestimation when the effective dimensionality is presumed to be the number of functions. The blue and
red circles being projected onto a blue and red line represents a 2-D system being projected into 1-D functional
space. (b) There is an interaction between the number of functions and the underlying dimensionality (IPR),
which is illustrated by the heat-map. Usually the effective dimensionality is determined by the lower value of
SF and IPR. However, when these values are similar (e.g. diamond: 10 functions and IPR of 9.9) the effective
dimensionality (∼5) is much lower than either value.

To be clear, we still assume that we scale up predictions from the species to the ecosystem241

level. Only now we scale up predictions from species to several system-level properties at once,242

that describe the ecosystem’s state from a multi-functional point of view (Box 1). Let us243

suppose, for simplicity, that those aggregate properties (or functions) are essentially linear.244

We have seen that considering a single linear function, in terms of upscaling of predictions,245

essentially reduces the problem to a single dimension. Likewise, considering multiple linear246

functions essentially reduces the effective dimensionality to the number of functions. Subtleties247

arise when the number of functions (Sf ) and the dimensionality of the underlying system (e.g.248

IPR) are similar, and/or if the considered functions are colinear (see Appendix S3). For Sf249

independent functions measured on a community we find that the effective dimensionality (the250

one that determines the probability of underestimation of change) is:251

Seff ≈
1

1
IPR

+ 1
Sf

(8)

For example, if the change of an ecosystem with an IPR of 10 is measured using 10 linear252

functions at once, the effective dimensionality is ∼5 (Fig. 5). If functions are colinear the253
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effective dimensionality will be even lower than Sf . This is to be expected, especially when254

thinking of an extreme case: if we measure the same function multiple times we should see no255

dimensional effects. In summary, in a multivariate description of complex systems, dimensional256

effects will inevitably play out, in more or less intricate ways, whenever a prediction is scaled257

up from individual components to the system-level.258

4 Discussion259

Our work demonstrates that a bias towards underestimation of change emerges when predictions260

of individual components (e.g. species biomass) are scaled up to the system-level (e.g. ecosystem261

function). Our geometric approach reveals a direct relationship between the probability of262

underestimation, the magnitude of error caused by uncertainty and a system’s effective263

dimensionality. We noted that the effective dimensionality is not necessarily the number of264

individual components that form a system, but rather a measure of diversity sensu Hill (1973).265

In essence, these results come from the fact that in high dimensions there are more ways to be266

more different, than ways to be more similar .
::::
(Fig.

::::
6).

:
Our goal was to make this remark267

quantitative and generally relevant to ecological problems.268

We explained why it is non-linear aggregate properties (e.g. absolute biomass change, stability269

or diversity) that are sensitive to dimensional effects .
::::
(Fig.

::::
6).

:
For linear properties (e.g. total270

biomass), scaling up does not generate bias. Yet, even in this case, dimensional
:::::::
effects will271

play out if several functions are considered at once to describe the state of a system
:::::::::::
ecosystem,272

as in multi-functional approaches in ecology.273

Natural systems are intrinsically complex and the way that we describe them is necessarily274

multivariate (Loreau, 2010). It is generally accepted, in ecology, that there is a need for275

mechanistic predictive models, built from individual components and scaled up to the ecosystem-276

level (Poff, 1997; Mouquet et al., 2015; Harfoot et al., 2014; Woodward et al., 2010). We277

have shown that dimensional effects will play out in this scaling-up, generating additional bias278

towards underestimation of any predicted system-level change. This is not to say that scaling279

up predictions is a faulty approach, rather that one must keep track of dimensional effects280

when doing so. Our work provides generic expectations needed to appropriately interpret281

predictions of mechanistic models.282

Our theory provides a generic expectation for the consequences of uncertainty when predictions283

are scaled up from individual components to the system as a whole. As a result, it provides284

a baseline, of what to expect if only dimensional effects are at play, against which we can285

test biological (or other) effects. To inform empirical work, it is important to recognise286

that there are two ways that a result can deviate from our generic expectation. Focusing287
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Figure 6:
::
An

::::::::
overview

::::
our

::
of

:::::
main

::::::::
findings.

::::
(a)

::::
Two

::::::::::::
components,

::
A

::::
and

::
B

:::
are

::::
(b)

::::::::::
considered

::
at

:::::
once

::
to

:::::
define

::
a

::::
joint

:::::
state

:::
(I).

::::::::
Suppose

:::
this

:::::
state

:::::::
changes

::::
and

::::
falls

::::
near

:
a
:::::::::
predicted

:::::
state

::::
(P).

:::::
Then

:::::
there

:::
are

::::
more

:::::
ways

::
for

::::
this

:::::
state

::
to

:::
be

::::
more

::::::::
different

:::::
from

:::
(I),

::::
than

:::::
ways

::
to

:::
be

:::::
more

:::::::
similar;

:::::
more

::
of

:::
the

:::
red

::::
disk

::
is

:::::::
outside

:::
the

::::
blue

:::::
circle

::::
than

::::::
inside.

:::::::::::::
Consequently,

:::::
when

::::::::::
predictions

:::
of

::::::
change

::::::
(blue)

:::
for

:::::::::
individual

:::::::::::
components

:::
are

::::::
scaled

:::
up

::
to

::::::::::
predictions

::
of

::::::
change

::
of

:::::
their

:::::
joint

:::::
state,

::::::::
unbiased

::::::::::::
uncertainties

:::::
(red)

:::::::
become

::::::
biased

:::::::
towards

:::::::::::::::
underestimation.

::
In

:::::::
section

:::::::::
Geometric

:::::::::
Approach

::
we

:::::::::
quantified

:::::
these

::::::::::
surprising

:::::::::::
dimensional

::::::
effects

::::
and

::::::::::
investigate

:::::::
beyond

:::
the

::::
basic

:::::::::::::::
two-dimensional

:::::
case

::::::
shown

:::::
here.

::::
(c)

::::::::::
Magnitude

::
of

:::::::::::
system-level

:::::::
change

::::
can

:::
be

:::::::::
measured

::
as

::::::::
distance

::
in

:::::
state

::::::
space

::
or

:::
by

::::::
some

:::::
other

:::::::::
aggregate

:::::::::
property.

:::
If
::::

an
:::::::::
aggregate

::::::::
property

:::
is

::::::::
sensitive

:::
to

:::::::
changes

:::
in

:::::::
distance

::
of

::::
the

::::::::::
underlying

::::::::::
state-space,

:::::::::::
dimensional

:::::::
effects,

::::
and

::::::::
therefore

::
a

::::
bias

:::::::
towards

:::::::::::::::
underestimation,

::::
will

::
be

::::::::::
conserved.

:::
As

:::
we

:::::::::
explained

::
in

:::::::
section

:::::::::
Aggregate

:::::::::
Properties

::::
and

:::::::::::::
Non-Linearity

:
,
::
it

::
is

:::
the

:::::::::
non-linear

:::::
part

::
of

::
an

:::::::::
aggregate

::::::::
property

:::::
that

:::::::
controls

:::
its

::::::::::
sensitivity

::
to

::::::::
changes

::
in

:::::::::::
state-space

::::::::
distance

::::
and

::::
thus

::::
the

::::::::
tendency

::
of

::
its

:::::::
degree

::
of

:::::::
change

::
to

:::
be

::::::::::::::
underestimated

:::
by

::::::::
upscaled

:::::::::::
predictions.

on the relationship between uncertainty and underestimation of change shown in Figs. 2-3,288

the mean
:::::::
median

:
can be shifted due to a systematic bias caused by interactions between289

component uncertainties, which are assumed independent
:::
and

:
in our framework. Furthermore,290

the variance around this mean
::::::::::::
distribution

::::::::
around

::::
this

::::::::
median

:
can be more than or less than291

expected, which indicates either wrong estimation of effective dimensionality, or a systematic292

effect caused by something other than geometry .
::::
(e.g.

:::::::::
skewed

::::::::::::::
distributions

:::
of

:::::::
errors

:::
or293

::::::::::::::
interactions).

:
Having a clear baseline against which to identify non-geometric effects can294

improve our understanding of complex systems.295
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:::
We

:::::
only

::::::::::::
considered

::::
two

:::::::
levels

::
of

::::::::::::::
organisation:

:::::
the

:::::
level

:::::::
where

::::::::::::
predictions

::::
are

::::::
made

:::::
and

::::
the296

:::::
level

:::::::
where

::::::::::::
predictions

::::
are

:::::::
scaled

::::
up

::::
to.

:::::::::::
However,

::::::::::::::
intermediate

:::::::
levels

:::::::
could,

:::
in

::::::::::
principle,297

::
be

:::::::::::::
considered.

:::::
For

::::::::::
instance,

::::::
given

:::::
the

:::::::::::
increasing

:::::::::::
resolution

:::
of

:::::::::::
ecological

::::::
data,

::::::::::::
predictions298

::
of

::::::::
change

:::::
may

:::::::::::
originally

:::
be

:::::::
based

:::
at

:::::
the

:::::
level

:::
of

::::::::::::
individual

:::::::::::
organisms

:::::
and

::::::
could

::::::
first

:::
be299

::::::
scaled

:::
up

:::
to

:::::::::::::
species-level

::::::::::::
predictions

::::
and

::::::::::::::
subsequently

::::::
scaled

:::
up

:::
to

::::::::::::::::
ecosystem-level

:::::::::::::
predictions.300

:::::
Here,

:::
if

:::::::::::
non-linear

:::::::::::
aggregate

:::::::::::
properties

::::
are

:::::::
used,

:::::::::::::
dimensional

:::::::
effects

:::::
will

:::::
bias

:::::::::::::
species-level301

:::::::::::
predictions

:::::::::
towards

::::::::::::::::::
underestimation

:::::
and

::::
will

:::::::::
further

:::::::::
increase

::::
this

::::::
bias

:::
for

:::::::::::::::::
ecosystem-level302

::::::::::::
predictions.

:::::::
With

:::
an

::::::::::::::::
ever-increasing

:::::::::::
resolution

:::
of

::::::
data,

::::::::
scaling

:::::::::::::
predictions

:::::::
across

:::::::::
multiple303

:::::
levels

:::
of

::::::::::::::
organisation,

:::::
and

::::::::::::
potentially

::::::::::::
introducing

:::::::::::::
dimensional

:::::::
effects

:::
at

:::::::::
multiple

:::::::
levels,

:::::
may304

::::::::
become

::::::
more

:::::::::
common

:::
in

::::
the

::::::
study

:::
of

:::::::::
complex

:::::::::
systems.

:
305

Our work is theoretical and, in essence abstract. Yet it may be relevant for highly practical306

domains of ecology. To make this point, we
::::
will

:
now discuss some implications of our theory307

to multiple-stressor ecological research, an essentially empirical field that explicitly deals with308

considerable uncertainty of predictions and holds great interest in its consequences.309

4.1 Multiple-Stressor Research310

In the light of our theory, we now
::::::::
propose

:::
to

:
revisit a seemingly unrelated question

:::::::::
problem of311

wide ecological interest: what is the combined effect of multiple stressors on a given ecosystem?312

By translating our theory into the language of multiple-stressor research we aim to highlight313

some implications and to inspire further generalization.314

The combined effect of stressors on an ecological system of interest is generally predicted based315

on the sum of their isolated effectsusing
:
,
::::
i.e.

:
an “additive null model” (Folt, Chen, Moore, &316

Burnaford, 1999; Schäfer & Piggott, 2018). Uncertainty of
:::::::
around

:
this additive prediction,317

which is ubiquitous in empirical studies (Crain, Kroeker, & Halpern, 2008; Jackson et al., 2016;318

Holmstrup et al., 2010), causes prediction errors called “non-additivity”. Uncertain predictions319

will either overestimate or underestimate the combined effect of stressors, respectively creating320

“antagonism” and “synergism” (Folt et al., 1999; Piggott et al., 2015). This translation will
::
of321

::::::::
stressor

::::::::::::
interactions

:::
in

:::::::
terms

::
of

:::::::::::
prediction

:::::::::::::
uncertainty

::::
and

::::::::
under-

:::
or

::::::::::::::::
over-estimation

:
lead us322

to the conclusion that scaling up uncertain multiple-stressor predictions will generate
:::::::::
generates323

bias towards synergism.324

In this context
:::::
Here, scaling up predictions refers to multiple-stressor predictions

::::
(e.g.

::::
an325

::::::::
additive

::::::::
model)

:
at one level (e.g., individuals, populations) being used to build multiple-326

stressor predictions at higher levels of biological organisation (e.g. communities, ecosystems),327

an approach for which there is growing interest (Orr et al., 2020; Thompson, MacLennan, &328

Vinebrooke, 2018; Kroeker, Kordas, & Harley, 2017; Côté et al., 2016). To be clear, scaling up329
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predictions is not equivalent to simply scaling up investigations; our theory does not predict330

greater synergism at higher levels of organisation. If, however, multiple-stressor predictions331

of
::
In

:::::
fact,

::::
we

::::
are

::::
not

::::::::
making

::::::::::::
predictions

:::::::
about

:::::
how

::::::::::
stressors

::::
will

::::::::
behave

:::
at

:::::::
higher

::::::
levels

:::
of332

:::::::::::::
organization.

:::::::
What

::::
we

::::::
claim

:::::::::
instead

::
is

::::::
that,

::
if
::::
we

:::::
have

::
a
::::::::

model
:::
for

::::
the

:::::::::::
combined

::::::
effect

:::
of333

:::::::::
stressors

:::
at

::::
one

:::::
level

:::
of

::::::::::::::
organization

::::
and

:::::
use

:::::
that

:::::::
model

:::
to

::::::::
deduce

:::::
their

:::::::::::
combined

::::::
effect

:::
at334

::::::
higher

:::::::
levels,

::::
the

::::::::
process

:::
of

:::::::
scaling

::::
up

:::
the

:::::::
model

:::::
will

::::::::::
introduce

:
a system are constructed from335

the bottom up (i.e. reductionist approach) a bias towards synergism emerges in a predicable336

way
::
an

::::::::::
observed

:::::::::
synergy

:::::::::
between

::::::::::
stressors,

:::::
even

::
if

:::
no

::::::::::::
systematic

::::::::
synergy

:::::
was

:::::::::
observed

:::
at

::::
the337

:::::
lower

::::::
level.338

Our theory has consequences for the interpretation of stressor interactions and is therefore339

relevant to the debate surrounding multiple-stressor null models (Griffen, Belgrad, Cannizzo,340

Knotts, & Hancock, 2016; Liess, Foit, Knillmann, Schäfer, & Liess, 2016; De Laender, 2018;341

Schäfer & Piggott, 2018). Our findings are especially relevant to the Compositional Null Model,342

which employs a reductionist approach to the construction of multiple-stressor predictions343

(Thompson et al., 2018). In such an approach, the baseline against which biological effects are344

tested must be shifted. Dimensional effects, quantified by the effective dimensionality of the345

underlying system and the non-linearity of aggregate properties, need to be accounted for to346

decipher a biological synergism from merely a statistical synergism.347

4.2 Conclusions348

In this paper we have addressed a subproblem of the reductionist program (Levins & Lewontin,349

1985; Wan, 2013; Loreau, 2010). We investigated the consequences of uncertainty when350

unbiased predictions of individual components are scaled up to predictions of system-level351

change. Due to a geometric observation that in high dimensions there are more ways to be more352

different, than ways to be more similar, scaling up uncertain predictions can underestimate353

system-level change. These dimensional effects manifest when non-linear, but not linear,354

aggregate properties are used to measured change at the system level, and when multiple355

functions are considered at once. Although we have primarily focused on ecology, and in356

particular on the response of ecosystems to perturbations; our general findings could inform any357

field of science where predictions about whole systems are constructed from joint predictions358

on their individual components, such as economics, finance, energy supply, and demography359

(Box 2).360

Acknowledgements361

We thank Matthieu Barbier, Nuria Galiana and Yuval Zelnik for discussions and review of362

previous versions of this work. JFA and ALJ were supported by an Irish Research Council363

17



Laureate Award IRCLA/2017/186. JO was supported by an Irish Research Council Laureate364

Award IRCLA/2017/112 and TCD Provost’s PhD Award held by JP.365

18



Box 2: Generalisation Beyond Ecology

Scaling up prediction to higher levels of organisation is not unique to ecology. Our basic
:::
Our

:
findings could be relevant

to other fields of science . Whenever
:::::
where: (i) there is interest in predicting change of complex systems based on

knowledge about their individual components, and (ii) systems are described using multivariate coordinates and/or
using non-linear properties of individual components.

• In economics, a region’s economy can be viewed as a complex system comprised of individual sectors (e.g.
agriculture, tourism, technology). Predictions of how employment numbers will change in individual sectors due
to some perturbation could be scaled up to predictions of change of economy-level properties of interest such as
stability, measured as, for example, the evenness of employment across sectors (Halpern et al., 2012; Malizia &
Ke, 1993; Dissart, 2003).

• In the study of energy supply, different fuel or energy sources of a country (e.g. solar, wind, oil) can be
considered together in a country’s energy portfolio. Predictions of change of energy generation in each individual
source could be scaled up to predictions of change of portfolio-level properties. Energy security is a system-level
property of great interest that is quantified using diversity metrics (Stirling, 1994; Chalvatzis & Ioannidis, 2017)
or variance-based approaches (Roques, Newbery, & Nuttall, 2008) based on Mean-Variance Portfolio Theory,
which was originally developed to study risk or volatility of investment portfolios (Markowitz & Todd, 2000).

• In demography, populations can be thought of as systems comprised of multiple different groups that are
defined by traits (e.g. gender, age, ethnicity). Again, diversity is a system-level property of great interest in the
study of populations that is quantified using non-linear aggregate functions (Reardon & Firebaugh, 2002; White,
1986). Changes in diversity of human populations is pertinent to many social sciences including sociology,
economics and politics.

• In finance, markets are complex systems whose individual components are stocks. Predictions of how the
capital of individual stocks will change could be scaled up to predictions of how stock market indices will change.
Certain stock market indices, for example diversity-weighted indices, are non-linear aggregate properties that will
be sensitive to dimensional effects (Fernholz, Garvy, & Hannon, 1998; Chow, Hsu, Kalesnik, & Little, 2011). At
a different financial scale, our theory may also be relevant to the study of investment portfolios. Here, analogous
to energy security, portfolios are systems comprised of individual assets and the volatility or risk tolerance of a
portfolio (measured using non-linear aggregate properties) is of great interest to investors (Markowitz & Todd,
2000; Bera & Park, 2008).
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Liess, M., Foit, K., Knillmann, S., Schäfer, R. B., & Liess, H.-D. (2016). Predicting the417

synergy of multiple stress effects. Scientific Reports , 6 , 32965.418

Loreau, M. (2010). From populations to ecosystems: Theoretical foundations for a new419

ecological synthesis (mpb-46) (Vol. 46). Princeton University Press.420

Malizia, E. E., & Ke, S. (1993). The influence of economic diversity on unemployment and421

stability. Journal of Regional Science, 33 (2), 221–235.422

Manning, P., van der Plas, F., Soliveres, S., Allan, E., Maestre, F. T., Mace, G., . . . Fischer,423

M. (2018). Redefining ecosystem multifunctionality. Nature Ecology & Evolution, 2 (3),424

427–436.425

Markowitz, H. M., & Todd, G. P. (2000). Mean-variance analysis in portfolio choice and426

capital markets (Vol. 66). John Wiley & Sons.427

Mouquet, N., Lagadeuc, Y., Devictor, V., Doyen, L., Duputié, A., Eveillard, D., . . . others428
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S1 Geometrical model472

Consider a complex system whose states are given by points in RS (thus determined by S473

individual variables, e.g species biomass). Let v ∈ RS be an expectation for a change of state.474

Let w be the actual change that is observed, and define the error vector u such that w = v+ u.475

From u and v we define a scalar measure x of relative error as476

x =
||u||2
||v||2

We formalize the question of whether there has been more change observed than predicted, by477

defining478

y =
||w||2 − ||v||2
||v||2

In both of the above expressions || · ||p denotes the Lp norm of vectors. p = 2 corresponds to479

Euclidean distance, we sill
::::
still

:
see bellow that other values of p can occur in our formalism.480

Also, our results hold for other choices of norm in defining x and y. The Euclidian norm is481

however, the most convenient for a geometrical approach. A reorganization of y gives482

y = y(x, θ) =
√

1 + x2 + 2x cos θ − 1

where θ is the angle between error u and prediction v, that is483

cos θ =
〈u|v〉

||u||2 ||v||2

S2 Random ensemble484

We now assume that u and v are random variables (but the prediction v could also be given).485

We assume however that the components of ui have zero mean –the
::::
and

::::::::
median

::
–

:::
the

:
prediction486

of individual variables is unbiased
::::
and

::::::::::
unskewed. Then Eu 〈u|v〉 = 0, thus E cos θ = 0. This487
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implies that488

EM
::uy≈=

:

√
1 + x2 − 1

At fixed error x, the variance of understimation y is thus approximately proportional to489

::::::::::::
distribution

::::::::
around

:::::
this

::::::::
median

::
is

:::::::
driven

::::
by variance of cos θ, over random draws of vectors490

u and v. We first define the covariance matrices Cu = (Cu
ij) = Eu (uiuj), and Cv = (Cv

ij) =491

Ev (vivj). We then have that492

Eu,v 〈u|v〉2 = Eu,v 〈v|u〉 〈u|v〉
= Ev 〈v|Cuv〉
= TrCuCv

and similarly493

Eu,v||u||2||v||2 = TrCuTrCv

Thus494

E cos2 θ ' TrCuCv

TrCuTrCv
(S1)

Example495

Suppose that Cu = σ2I where I is the identity matrix. This implies that uncertainties of the496

individual variables are independent random variables with similar variance
::::::::
variance

:::
σ2. We497

then have498

Eu 〈u|v〉2 = σ2||v||2

while499

Eu||u||2 = Sσ2

so that500

Eu cos2 θ ' 1

S

S2.1 Probability of underestimation501

Given an imprecision level x, the theory has underestimated the actual response if y(x, θ) ≥ 0502

and thus if the angle θ between the theoretical prediction v and the vector of unaccounted503

change u satisfies504

cos θ ≥ −x
2

If cos θ is approximately normally distributed with zero mean and variance σ2 = 1
S

, than505

P(y ≥ 0 : x) ' 1√
2πσ2

∫ ∞
−x

2

exp(− s2

2σ2
)ds
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hence, by the properties of the cumulative distribution function of standard normal distributions,506

one gets507

P(y ≥ 0 : x) ' 1

2

[
1 + erf

(
x

2

√
S

2

)]
where erf is the error function. This expression should be compared to the exact solution508

in the case of a uniform sampling over the direction of u (which is the case if ui ∼ N (0, 1)509

–uncertainties of individual variables are independent and normaly distributed). In this special510

case the problem of deriving the probability of synergism
:::::::::::::::::
underestimation

:
becomes purely511

geometrical: it is the surface of a ball of radius x and centered on the unit sphere, that is512

contained in the unit ball. One then gets513

P(y ≥ 0 : x) = 1− 1

2
I

1−x2

2

(
S − 1

2
;
1

2

)
Where Is(a, b) is the regularized β−function (the cumulative distribution of the β-distribution).514

In fact those two expression converge at high diversity S. In any case, we see here that the515

probability of underestimation will grow with S.516

S3 Effective diversity517

S may not always be the relevant measure of diversity. Indeed if ui = N
p
2
i u
′
i where Ni is the518

abundance (or biomass) of species i and Cu′ ∝ I then Cu ∝ Dp where D is a diagonal matrix519

with Dii = Ni. If vi obeys a similar rule, so that Cv ∝ Dq then520

TrCuCv ∝ ||N ||p+qp+q

while521

TrCuTrCv ∝ ||N ||pp||N ||qq

so that522

E cos2 θ '
||N ||p+qp+q

||N ||qq||N ||pp
=:

1

IPRq,p(N)

In particular, for q = p = 2 we get that523

E cos2 θ ' 1

IPR(N)

where IPR(N) is the Inverse Participation Ratio, a measure of diversity of the abundance524

distribution N . The more general expression above can also be seen as a measure of effective525
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diversity. It can be compared to Hill’s diversity metrics with index Q = p+ q526

QD =
(∑

pQi

) 1
1−Q

=

(
||N ||1
||N ||Q

) Q
Q−1

=

(
||N ||p1||N ||

q
1

||N ||p+qp+q

) 1
p+q−1

where pi is the relative abundance of species i. We indeed see that QD coincides with IPRq,p527

when q = p = 1, and stays closely related in general. In fact, using the inequality528

||N ||p ≤ ||N ||1 ≤ S1− 1
p ||N ||p; p ≥ 1

one gets, for p, q ≥ 1529

S2−Q × QDQ−1 ≤ IPRq,p ≤ QDQ−1

S3.1 Probability of underestimation530

If cos θ is approximately normally distributed with zero mean and variance σ2 = 1
Seff

(where531

Seff ≤ S would be an effective dimensionality as defined in the previous sections), than532

P(y ≥ 0 : x) ' 1

2

[
1 + erf

(
x

2

√
Seff

2

)]
This expression should be compared to the exact solution derived above in the case of a533

uniform sampling over the direction of u (the case if ui ∼ N (0, 1)), which suggest the Ansatz534

P(y ≥ 0 : x) = 1− 1

2
I

1−x2

2

(
Seff − 1

2
;
1

2

)
when the effective dimensionality is not necessarily S or even an integer (the two expressions535

uniformly converge towards one another as Seff grows).536

S3.2 Projection on linear functions537

Suppose now that we measure SF linear functions Fα of species biomass .
::
of

::::
the

:::::
form

:
538

Fα(B) =
S∑
i=1

Fα,iBi α = 1, ..., SF

:::::::::::::::::::::::::::::::::
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We must now project the covariance matrices onto the space spanned by the gradient if
:::::
(Fα,i)539

::
of

:
the functions. If Pα = (Fα,iFα,j) the projector on the function Fα, we can do this as540

Eu,v cos2 θF '
∑

α,β TrPαC
uPβC

v∑
α,β TrPαCuTrPβCv

When taking a ensemble average of functions, with EPα = P =(EFiFj), we must take care541

in differentiating terms in sums for which α 6= β and terms where α = β. In the former case542

the projectors Pα and Pβ are independent random variables and we can replace them by their543

mean P . In the latter case, we must first define P̂α as the linear operator that maps a matrix544

M to PαMPα; its ensemble mean P̂ encodes the 4th moments of Fα. We then get545

E cos2 θF '
(SF − 1)TrPCuPCv + TrP̂(Cu)Cv

SFTrPCuTrPCv

Example 1546

:::::
This

:::::::::
example

:::
is

:::::
the

::::
one

:::::::::
treated

:::
in

:::::
the

::::::
main

::::::
text,

::::::::
where

::::
the

:::::::::::
functions

::::
are

:::::::::::::
statistically547

:::::::::::::
independent

:::
of

::::
one

::::::::::
another.

::
Suppose as before that Cu = Cv = D2 (p = q = 1) and548

EFi = 0 EFiFj = δij (isotropic functions)one
::::
this

::::::::::
condition

:::
is

:::::
what

::::
we

::::::
mean

::::
by

::::::::::::
statistically549

::::::::::::::
independent).

:::::
One

:
gets that550

E cos2 θF '
1

IPR
+

1

SF
− 1

SF

1

IPR
=

1

Seff
::::::

::
so

:::::
that

:::
at

:::::
first

:::::::
order,

::::
the

:::::::::
effective

:::::::::::::::
dimensionality

:::::
Seff ::

is
::::
the

::::::::::
harmonic

:::::::
mean551

Seff ≈
1

1
SF

+ 1
IPR

::::::::::::::::

::
as

:::::::::::
presented

::
in

:::::
Eq. (8)552

Example 2553

Assume
:::
For

:::::
the

:::::
sake

:::
of

:::::::::::::::
completeness

:::
we

::::::
treat

::::::
here

::::
the

::::::
case

:::::::
where

::::
the

::::::::::
functions

:::::
are

::::
not554

::::::::::::
statistically

:::::::::::::
independent

::::
due

:::
to

:::
the

:::::
fact thatm1 = E (Fj) 6= 0

::::
(the

:::::::::
average

:::::::
species

::::::::::::::
contributions555

::
to

:::::::::::
functions

::::::
tends

::::
to

:::
be

::::::::
either

:::::::::::::::
systematically

::::::::::
positive

:::
or

:::::::::::
negative). In this case P =556

m2
1P1 + (m2 −m2

1)I, where P1 is a matrix whose elements are all equal to 1, and mn are the557
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n-th moments of Fi. We have that558

Tr(PD2) = Tr(m2
1P1D

2 + (m2 −m2
1)D2)

= m2 ‖N‖2
2

and so559

Tr
(
PD2

)2
= m4

1 ‖N‖
4
2 + (m2

2 −m4
1) ‖N‖4

4

on the other hand, one can show that560

TrP̂(D2)D2 = m2
2 ‖N‖

4
2 + (m4 −m2

2) ‖N‖4
4

if561

1

Sm
=
m4

1

m2
2

we get that562

(SF − 1)Tr(PD2)2

SF (TrPD2)2
=

1

Sm
+

1

IPR
− 1

Sm

1

IPR
− 1

SF

1

Sm
− 1

SF

1

IPR
+

1

SF

1

Sm

1

IPR

on the other hand563

1

SF

TrP̂(D2)D2

(TrPD2)2
=

1

SF
− 1

SF

1

IPR
+
m4

m2
2

1

SF

1

IPR

summing the two gives564

− 1

Sm

1

IPR
− 1

SF

1

Sm
+ (

m4

m2
2

− 2)
1

SF

1

IPR
+

1

SF

1

Sm

1

IPR

565

E cos2 θF ≈ 1
SF

+ 1
Sm

+ 1
IPR

− 1
Sm

1
IPR
− 1

SF

1
Sm

+(m4

m2
2
− 2) 1

SF

1
IPR

+ 1
Sm

1
SF

1
IPR

for a normal distribution566

m4 = −2m4
1 + 3m2

2

thus567

m4

m2
2

− 2 = 1− 2

Sm

we then have568

E cos2 θF ≈ 1
SF

+ 1
Sm

+ 1
IPR

− 1
SF

1
Sm
− 1

SF

1
IPR
− 1

Sm

1
IPR

− 1
Sm

1
SF

1
IPR

We see here interactions between the various dimensions Sm, SF and IPR, with a potential569

dominance of Sm when all other are much larger. This effective dimensionality emerges due to570
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the collinearity of functions, which thus span a subspace of potentially much smaller dimension571

than SF .572

S3.3 Change of metric573

Consider a non euclidean metric tensor H (i.e a positive definite matrix). Distances must now574

be measured as575

‖w‖2 → 〈w|Hw〉 ; ‖v‖2 → 〈v|Hv〉 ; ‖u‖2 → 〈u|Hu〉

y =
〈w|Hw〉 − 〈v|Hv〉

〈v|Hv〉
=
〈u|Hu〉
〈v|Hv〉

+ 2

√
〈u|Hu〉
〈v|Hv〉

〈u|Hv〉√
〈v|Hv〉 〈u|Hu〉

y(xH) = x2
H + 2xH

〈u|Hv〉√
〈v|Hv〉 〈u|Hu〉

Eu,v 〈u|Hv〉2 = Eu,v 〈v|Hu〉 〈uH|v〉
= Ev 〈v|HCuHv〉
= TrCvHCuH

Eu 〈u|Hu〉 = Eu 〈u|Hu〉
= TrCuH

Thus576

Eu,v(
〈u|Hv〉√

〈v|Hv〉 〈u|Hu〉
)2 ≈ TrCvHCuH

TrCvHTrCuH
=

1

SH

the change of metric can thus change the effective dimensionality. In particular, if Cu ∝ Cv ∝ I577

this gives578

1

SH
=

∑S
i=1 λ

2
i

(
∑S

i=1 λi)
2

where λi are the eigenvalues of H. Note that H could be the Hessian function (second579

derivatives) of a non linear function, computed near the initial state. This explains how580

non linear functions can induce a dimensionality effect on the probability of underestimating581

change, as illustrated in Fig. S1.582
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Figure S1: (a) Biomass distributions of three 50-species communities with IPR and therefore effective
dimensionality of 46.6 (blue), 20.9 (red) and 7.1 (grey). (a) The non-linear contribution of diversity (the
Shannon index) and stability (invariability) towards the probability of underestimation; it is the non-linear
part of a function that is sensitive to the dimensionality of the underlying system.

S4 Simulations583

Initially, the theoretical relationship between error, underestimation and dimensionality was584

tested using numerical simulations (Fib. 2(c)). These simulations uniformly sampled the585

intersecting circles, spheres and hyper-spheres defined by a prediction of change and relative586

error (Fig. 2). This was done for 1-D, 2-D, 10-D and 20-D systems over 10
::
20,000 simulations.587

Specifically:588

• a prediction of change and was randomly generated from a normal distribution of mean589

0 and standard deviation 1 (defining the blue circle in Fig. 2a).590
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• a direction of error was randomly generated from a normal distribution of mean 0 and591

standard deviation 1, and a magnitude of error was randomly generated from a uniform592

distribution between 0 and 2 (defining the the red circle in Fig. 2a).593

• From these values, error (x) and underestimation (y) were calculated based on Euclidean594

distance and subsequently plotted in Fig. 2c).595

• The probability of underestimation P (y > 0;x) was calculated from the simulated results596

of error and underestimation.597

As a next step, these simulations were modified to fit ecological problems. In Fig. 1 and Fig. 4598

the intersecting shapes that are uniformly sampled had dimensions determined by the number599

of species in a simulated community. However, the dimensions of state space were given600

unequal weighting of how they respond to change in the form of uneven biomass distributions601

randomly generated from a log normal distribution of mean 0 and standard deviation 0.05.602

In Fig. 3 and Fig. S1 communities of 50 species were given unequal biomass distributions by603

drawing species’ biomass from a log scale of varying range; the wider the range of the log604

scale the more uneven the biomass distribution. Underestimation (y) was calculated using605

Euclidean distance and a number of ecological relevant aggregate properties: the Shannon606

index (diversity), invariability (stability) and total biomass (functioning).607

For Fig. 5 our simulations were modified to illustrate that additional dimensional effects608

come into play when changes in multiple functions are considered at once. Over 50,000609

simulations 20-D hyper-spheres (community of 20 species) with unequal weighting (IPR of610

9.9) were uniformly sampled and the results were projected into functional space. Specifically,611

underestimation was measured for 1, 2, 3, 5 and 10 aggregate functions.
::::::
Linear

:::::::::::
aggregate612

:::::::::
functions

:::
of

::::
the

::::::
form613

F (B) =
S∑
i=1

FiBi

:::::::::::::::::

:::::
were

::::::::
defined

:::
via

::::
the

::::::::::::
coefficients

:::
Fi,::::

i.e.
::::::
their

:::::::::::
sensitivity

::
to

::::
the

::::::::
change

::
in

::::
the

:::::::::
biomass

::
of

::::::::
species614

:
i.
::::::

The
:::::::::::
sensitivity

::
of

:::
an

:::::::::::
aggregate

:::::::::
function

::
to

::::::
each

:::::::
species

:::::
was

::::::::::
randomly

:::::::
drawn

:::::
from

::
a
::::::::
normal615

::::::::::::
distribution

:::
of

::::::
mean

::
0

::::
and

::::::::::
standard

::::::::::
deviation

:::
1.

:::::
This

:::::::::::::
corresponds

:::
to

::::
the

:::::
case

:::
of

::::::::::::
statistically616

:::::::::::::
independent

::::::::::
functions

:::::
(see

:::::::::
example

::
1

:::
in

:::::::::::
subsection

:::::::
S3.2).

:
State space was then defined by617

the number of functions.618

Simulations were conducted in Python with the Matplotlib, NumPy and SciPy libraries
:
.
::::::
Code619

::
is

:::::::::
available

:::
in

:::
a

::::::::
Jupyter

:::::::::::
Notebook

::::
on

:::::::::
GitHub:

::
https://github.com/jamesaorr/scaling620

-up-uncertain-predictions.621
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