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Abstract1

Ecologists differ in the degree to which they consider the linear Type I functional response to2

be an unrealistic versus sufficient representation of predator feeding rates. Empiricists tend to3

consider it unsuitably non-mechanistic and theoreticians tend to consider it necessarily simple.4

Holling’s original rectilinear model
:::::
Type

:
I
::::::::::
response

:
is dismissed by satisfying neither desire,5

with most compromising on the smoothly saturating Type II response for which searching and6

handling are assumed to be mutually exclusive activities. We derive a “multiple-prey-at-a-time”7

functional response and a generalization that includes the Type III to reflect predators that can8

continue to search when handling an arbitrary number of already-captured prey. The multi-9

prey model clarifies the empirical relevance of Holling’s
:::
the

:
linear and rectilinear models and10

the conditions under which linearity can be a mechanistically-reasoned description of predator11

feeding rates, even when handling times are long. We find support for the presence of linearity in12

35% of 2,591 compiled empirical datasets , and find evidence
:::
and

::::::::
support

:::
for

::::
the

::::::::::
hypothesis

:
that13

larger predator-prey body-mass ratios permit predators to search while handling greater numbers14

of prey. Incorporating the multi-prey response into the Rosenzweig-MacArthur population-15

dynamics model reveals that a non-exclusivity of searching and handling can lead to coexistence16

states and dynamics that are not anticipated by theory built on Holling’s traditional
:::
the

::::::
Type17

:
I,
::::
II,

::
or

::::
III

:::::::::
response

:
models. In particular, it can lead to bistable fixed-point and limit-cycle18

dynamics with long-term crawl-by transients between them under conditions where abundance19

ratios reflect top-heavy food webs and the functional response is linear. We conclude that20

functional response linearity should not be considered empirically unrealistic but also that that21

more bounded conclusions
:::::
more

:::::::::
cautious

::::::::::
inferences

:
should be drawn in theory presuming the22

:::::
linear

:
Type I to be appropriate.23

Keywords: type 0 functional response, generalized Holling model, predator-prey body-mass ra-24

tio, consumer-resource cycles, long transients, alternative states, top-heavy food webs,
::::::::::
digestion,25
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Introduction27

The way that predator feeding rates respond to changes in prey abundance, their functional28

response, is key to determining how species affect each other’s populations (Murdoch & Oaten,29

1975). The challenge of empirically understanding and appropriately modeling functional re-30

sponses is therefore central to myriad lines of ecological research that extend even to the pro-31

jection of Earth’s rapidly changing climate (DeLong, 2021; Rohr et al., 2023).32

The simplest functional response model, the Holling Type I response, describes feeding rates33

as increasing linearly with prey abundance. Interpreted to represent an analytically-tractable34

first-order approximation to all other prey-dependent forms (Lotka, 1925; Volterra, 1926), its35

simplicity has caused the Type I to become foundational to theory across Ecology’s many sub-36

disciplines. Nonetheless, there is a common and persistent belief among empirically-minded37

ecologists that the Type I response is unrealistic and artifactual. Indeed, it is typically dismissed38

a priori from both empirical and theoretical efforts to “mechanistically” characterize predator39

feeding rates (e.g., Baudrot et al., 2016; Kalinkat et al., 2023). This dismissal is similarly levied at40

the piecewise rectilinear (a.k.a. Type 0) model, originally depicted by Holling (1959b)
::::::::
response41

::::::::::::::::::::::::
(e.g., Koen-Alonso, 2007)

:
,
::::::::::
originally

::::::::
referred

::
to

:::
by

::::::::::::::::
Holling (1959a) as the Type I (Denny, 2014)42

::::::::
response

::::::::::::::::::::::::::::
(Denny, 2014; Holling, 1965), in which feeding rates increase linearly with prey abun-43

dance to an abrupt maximum(e.g., Koen-Alonso, 2007)
:
a
::::::::::
relatively

:::::::
abrupt

:::::::::::
maximum. Support44

comes from syntheses concluding functional response linearity to be rare, with feeding rates45

more consistent with smoothly saturating Type II responses being by far the more frequently46
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inferred (Dunn & Hovel, 2020; Jeschke et al., 2004).47

Countering justifications for the continued use of the linear Type I response in theory relate48

to the challenge of extrapolating the inferences of mostly small-scale experiments to natural field49

conditions (DeLong, 2021; Griffen, 2021; Jeschke et al., 2004; Li et al., 2018; Novak & Stouffer,50

2021b; Novak et al., 2017; Uiterwaal et al., 2018). For example, prey abundances in the field may51

vary relatively little over relevant scales, making linearity a sufficiently good approximation for52

how species affect each other (Wootton & Emmerson, 2005). Further, prey abundances in nature53

are typically much lower than those used in experiments to elicit predator saturation (Coblentz54

et al., 2023), which may consequently be rare in nature (but see Jeschke, 2007). Functional55

responses could therefore be approximately linear even for predator-prey interactions having56

very long handling times (e.g., Novak, 2010).57

Here, our goal is to offer a further way of resolving ecologists’ views on the linear and58

rectilinear models by considering a reason for feeding rates to exhibit linear prey dependence59

over a large range of prey abundances. This reason is not one of experimental design or variation60

in prey abundances per se, but rather is attributable to the mechanics of predator-prey biology:61

the ability of predator individuals to handle and search for more than just one prey individual62

at a time (i.e. the non-exclusivity of handling and searching). Although it is straightforward63

to show how the
::::::
linear

:
Type I can emerge when handling times are assumed to be entirely64

inconsequential, and although functional response forms that could result from a non-exclusivity65

of handling and searching have been considered before (Jeschke et al., 2002; 2004; Mills, 1982;66
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Sjöberg, 1980; Stouffer & Novak, 2021), we contend that the empirical relevance and potential67

prevalence of such “multiple-prey-at-a-time” feeding (henceforth multi-prey feeding) are not68

sufficiently understood due to an inappropriately literal interpretation of the “handling time”69

parameter of functional response models (see Discussion and DeLong, 2021; Jeschke et al., 2002;70

2004). Likewise, the potential implications of multi-prey feeding for predator-prey coexistence71

and population dynamics have not, to our knowledge, been assessed.72

We begin by providing a derivation of a simple multi-prey functional response model for73

a single predator population feeding on a single prey species that relaxes the assumption of74

searching and handling being exclusive activities. This derivation helps clarify the empirical75

relevance of Holling’s
:::
the linear and rectilinear models and the conditions under which these76

can be good descriptions of feeding rates (Jeschke et al., 2004). We then further generalize the77

multi-prey model to include the Holling-Real Type III response and fit all models to a large78

number of datasets assembled in a new version of the FoRAGE compilation (Uiterwaal et al.,79

2022). This allows us to quantify the potential prevalence of multi-prey feeding and to test the80

hypothesis that larger predator-prey body-mass ratios permit predators to handle and search for81

more prey at a time. We also assess the predicted association between larger body-mass ratios82

and more pronounced Type III responses. Finally, we incorporate the multi-prey response into83

the Rosenzweig & MacArthur (1963) “paradox of enrichment” population-dynamic model to84

assess its potential influence on predator-prey coexistence and dynamics.85

With our statistical analyses demonstrating that many datasets are indeed consistent with86
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multi-prey feeding and that larger predator-prey body-mass ratios are indeed more conducive87

to multi-prey feeding (and more pronounced Type III responses), our mathematical analyses88

demonstrate that even small increases in the number of prey that a predator can handle at a89

time can lead to dynamics that are not anticipated by theory assuming Holling’s traditional90

functional response forms
:::::
Type

::
I,
:::
II,

:::
or

:::
III

:::::::::
response

::::::::
models.91

A functional response for multi-prey feeding92

Holling’s Type II response93

The multi-prey model may be understood most easily by a contrast to Holling’s Type II model94

(a. k.a. the disc equation).
:::::::::::::::::::::::::::::::::::::::
(a.k.a. the disc equation, Holling, 1959b).

::
There are several ways95

to derive the Type II (Garay, 2019), but the most common approach takes the perspective of a96

single predator individual that can either be searching or “handling” a single prey individual at97

any point in time: In the time TS that a predator spends searching it will encounter prey at a98

rate proportional to their abundance N , thus the number of prey eaten is Ne = aNTS where a99

is the attack rate. Rearranging we have TS = Ne/aN . With a handling time h for each prey,100

the length of time spent handling all eaten prey will be TH = hNe. Given the presumed mutual101

exclusivity of the two activities, TS = T − TH where T is the total time available. Substituting102

the second and third equations into the fourth, it follows that Ne = aNT/(1+ ahN). We arrive103

at the predator individual’s feeding rate by dividing by T , presuming steady-state predator104

behavior and constant prey abundances.105

An alternative derivation on which we build to derive the multi-prey model considers a tem-106
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poral snapshot of a predator population composed of many identical and independent individuals107

(see also Real (1977) and the Supplementary Materials). Assuming constant prey abundance108

and steady-state conditions, the rate at which searching individuals PS become handling indi-109

viduals PH must equal the rate at which handling individuals become searching individuals such110

that aNPS = 1
hPH , visually represented as111

PS

N
a
1/h

Ne

PH .112

113

PS

N
a
1/h

Ne

PH .

:::::::::::::::::

(1)114

Given the mutual exclusivity of searching and handling, PS = P − PH , where P is the total115

number of predators. Substituting this second equation into the first, it follows that the total116

number of handling predators PH = ahNP/(1 + ahN). Eaten prey are generated at rate 1
hPH117

by all these predators as they revert back to searching. We thus obtain Holling’s Type II118

(per-predator) model by multiplying the proportion of handling predators, PH/P , by 1
h .119

The multi-prey response120

The derivation of the multi-prey response follows the same logic but assumes that searching121

and handling are not mutually exclusive activities until an arbitrary count of n prey individuals122

are being handled (see the Supplementary Materials for a more explicit derivation); handling123

need not reflect literal handling but rather could also reflect a process of digestion and stomach124

fullness.125
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With constant prey abundance and steady-state conditions as before, we assume that preda-126

tors continue to handle each prey with handling time h and that predators handling less than127

n prey continue to search for and encounter prey at rate aN . The rate at which searching128

individuals PS become PH1 individuals handling one prey is then equal to the rate at which they129

revert back to being searching individuals with no prey, thus PH1 = ahNPS . Likewise, the rate130

at which PH1 individuals become PH2 individuals handling two prey must equal the rate these131

revert back to handling just one prey, thus PH2 = ahNPH1 = (ahN)2PS . That is,132

PS

N
a
1/h

Ne

PH1

N
a
1/h

Ne

PH2

N
a
1/h

Ne

. . .
N

a
1/h

Ne

PHn .133

134

PS

N
a
1/h

Ne

PH1

N
a
1/h

Ne

PH2

N
a
1/h

Ne

. . .
N

a
1/h

Ne

PHn .

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(2)135

Generalizing by induction, the number of predators PHi handling i prey will be (ahN)iPS for136

i ∈ {1, 2, 3, . . . , n}. The proportion of predators handling i prey at any point in time will then137

be138

PHi

P
=

(ahN)iPS

PS + PH1 + . . .+ PHn

=
(ahN)i

1 +
n∑

i=1
(ahN)i

(3)139

(Fig. S.1). With each of these groups generating eaten prey at rate 1
hPHi , the per predator140

feeding rate of the population is obtained by a summation across all groups, giving141

f(N) =

1
h

n∑
i=1

(ahN)i

1 +
n∑

i=1
(ahN)i

(4)142

(Fig. 1). This is the multi-prey model for integer values of n. However, because the geometric143

series
∑n

i=1 x
i = x(1 − xn)/(1 − x) for x ̸= 1, we can also write the model more generally for144
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arbitrary values of n as145

f(N) =
aN(1− (ahN)n)

1− (ahN)n+1
(5)146

to reflect predator populations capable of searching while handling a non-integer (e.g., average)147

number of prey individuals.148

We note that Sjöberg (1980) derived equivalent formulations in Michaelis-Menten enzyme-149

kinematics form with parameters having correspondingly different statistical properties (Novak150

& Stouffer, 2021a; Rohr et al., 2022). We also note that despite the appearance of two sum-151

mations in eqn. 4 and the unusual appearance of subtractions in eqn. 5 (see Supplementary152

Materials), the model has only three parameters and thus has a parametric complexity no153

greater than that of the Holling-Real Type III model and many others (see Table 1 of Novak154

& Stouffer, 2021a). In fact, for subsequent model-fitting, we will combine the multi-prey and155

Holling-Real models to a four-parameter generalization,156

f(N) =
aNϕ(1− (ahNϕ)n)

1− (ahNϕ)n+1
, (6)157

which can be simplified to the other models when ϕ = 1. Parameter ϕ (a.k.a. the Hill exponent)158

can be interpreted as the number of prey encounters a predator must experience before its159

feeding efficiency is maximized (Real, 1977).160

Relevance of the Type I response161

The conditions under which Holling’s
:::
the

:
linear, rectilinear, and Type II models can be good162

descriptions of predator feeding rates are clarified by observing that the multi-prey response163
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simplifies to the Type II when n = 1 and approaches the rectilinear model as n increases164

(Fig. 1). Further, the linear Type I is obtained when n = ∞ (Fig. 1) because the infinite165

power series
∑∞

i=1 x
i = x/(1 − x) for |x| < 1. Incorporating this infinite power series into166

eqn. 3 shows that the expected proportion of predators handling prey at any given time will167

be ahN under the Type I. Importantly, this proportion differs from the expectation of zero168

that would be inferred to emerge by letting h → 0 in the way the Type I is typically derived169

(e.g., Rohr et al., 2022)
:::::::::::::::::::::::::::::::::::::
(e.g., Holling, 1965; Rohr et al., 2022). In other words, the multi-prey170

model shows that handling times need not be inconsequential for the functional response to171

exhibit linear density dependence (Jeschke et al., 2004). Rather, even the Type I can be a172

very good approximation of feeding rates when n is high and less than 100% of predators are173

handling prey (i.e. ahN < 1), which requires that prey abundances remain less than 1/ah.174

(For comparison, note that under the Type II the quantity 1/ah reflects the prey abundance175

at which 50% of predators will be handling prey (i.e. the per predator feeding rate is at half176

its maximum of 1/h) ; it
::::::
which

:
is equivalent to the half-saturation constant of the Michaelis-177

Menten formulation. )
::
Of

:::::::
futher

:::::
note

::
is
:::::
that

:::::::
under

::::
the

:::::::::::
multi-prey

:::::::
model,

::::::
1/ah

::
is
:::::
also

::::
the178

::::
prey

:::::::::::
abundance

:::
at

:::::::
which

::::
the

::::::::::::
proportions

::
of

::::::::::
predators

::::::::::
handling

::::::::::
1, 2, . . . , n

:::::
prey

::::
are

:::
all

::::::
equal179

:::::
(Fig.

::::::
S.1).)

:
180

Empirical support for multi-prey feeding181

The multi-prey model shows that a spectrum of functional response forms can exist between the182

extremes of the Type I and Type II when handling and searching are not assumed to be mutually183
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Figure 1: The potential forms of the multi-prey response. The multi-prey model diverges from
the Type II (for which n = 1) and approaches the rectilinear model as the number n of prey
individuals that a predator can handle while continuing to search increases. When n = ∞ it
reduces to the linear Type I which can remain a biologically appropriate description of predator
feeding rates so long as ahN < 1 (indicated by non-dashed region of the black line). Parameter
values: attack rate a = 0.1 and handling time h = 4.

exclusive (Fig. 1). This motivated us to test two main hypotheses using the large number of184

empirical functional response studies that exist in the literature. The first hypothesis was that185

prior syntheses indicating the Type I response to be rare (Dunn & Hovel, 2020; Jeschke et al.,186

2004) were biased against the Type I despite its potential empirical appropriateness. That is,187

feeding rates may have had response shapes between the Type II and rectilinear model (close188

to the Type I for prey abundances < 1/ah) but were classified as Type II due to the lack of a189

sufficiently simple rectilinear-approaching model in prior analyses. The second hypothesis was190

due to Sjöberg (1980) who motivated parameter n by considering it to be a measure of food191

particle size relative to a zooplankter’s gut capacity, with low n reflecting capacity for few large192

prey and high n reflecting capacity for many small prey. We thus expected predator-prey pairs193

with larger body-mass ratios to exhibit larger estimates of n when their functional responses194
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were assumed to follow the multi-prey model. For generality and to safeguard against potential195

statistical model-comparison issues (see below), we included the Type I, II, III, multi-prey, and196

the generalized (eqn. 6) model in our comparisons. We were thus also able to test an additional197

hypothesis, due to Hassell et al. (1977), that larger body-mass ratios are associated with more198

pronounced Type III responses (i.e. larger values of ϕ).199

We used the FoRAGE database of published functional response datasets to assess these200

hypotheses (Uiterwaal et al., 2022). Our v4 update contains 3013 different datasets representing201

1015 unique consumer-resource pairs (i.e. not just predator and prey species, though we continue202

to refer to them as such for simplicity). For our analyses, we excluded datasets having a sample203

size less than 15 observations as well as structured experimental studies that implemented less204

than 4 different treatment levels of prey abundance (see the Supplemental Materials for addi-205

tional details). Our model-fitting procedure followed the approach used by Stouffer & Novak206

(2021) and Novak & Stouffer (2021b), assuming one of two statistical models for each dataset:207

a Poisson likelihood for observational (field) studies and when eaten prey were replaced during208

the course of the experiment, and a binomial likelihood when eaten prey were not replaced.209

Experimental data available in the form of treatment-specific means and uncertainties were an-210

alyzed by a parametric bootstrapping procedure in which new datasets were created assuming211

either a treatment-specific Poisson or binomial process as dictated by the study’s replacement212

of prey. In cases where measures of the uncertainty around non-zero means were not available,213

we interpolated them based on the global log-log-linear relationship between means and stan-214
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dard errors across all datasets following Uiterwaal et al. (2018); for zero means, we interpolated215

missing uncertainty values assuming a linear within-dataset relationship. Unlike in Stouffer &216

Novak (2021) and Novak & Stouffer (2021b), we added a penalty to the likelihoods to discourage217

exceptionally large estimates of n and ϕ (see the Supplementary Materials) and bootstrapped218

data available in non-summarized form as well, using a non-parametric resampling procedure219

that maintained within-treatment sample sizes for treatment-structured datasets. Both replace-220

ment and non-replacement data were bootstrapped 50
:::
100

:
times which was enough to obtain221

sufficient precision on the parameter point estimates.222

Frequency of multi-prey feeding223

We used the Bayesian Information Criterion (BIC) to test our first hypothesis, counting the224

number of datasets whose bootstrapped mean BIC score supported a given model over the other225

models by more than two units (∆BIC > 2). Our choice to use BIC was motivated both by226

its purpose of selecting the generative model (rather than the best out-of-sample predictive227

model, as per AIC) and by its generally stronger penalization of parametrically-complex models228

(thereby favoring simpler models, relative to AIC). Conclusions regarding evidence in support of229

the multi-prey model were thereby made more conservative, with our inclusion of models having230

equal or greater parametric complexity helping to guard against an inappropriate reliance on231

the asymptotic nature of BIC’s consistency property.232

The result of this first analysis was that, overall, 912 (35
::::
925

::::
(36%) of all 2,591 datasets233

provided support for functional response linearity (i.e. the Type I and multi-prey models), with234
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990
:::
998

:
(38%) of all datasets providing support for multi-prey feeding more generally (i.e. the235

Type I, multi-prey, and generalized eqn. 6 models). When considering only those datasets236

that could differentiate among all five of the models, 7 (5.3%) of 132 replacement datasets and237

153 (9.7
:::
143

:::::
(9.1%) of 1575 non-replacement datasets identified the multi-prey model (eqn. 5)238

as the sole best-performing model (Fig. 2a-2b). An additional 36 (27
::
37

::::
(28%) replacement239

and 433 (18
::::
451

::::
(29%) non-replacement datasets identified the multi-prey model as performing240

equivalently well to their best-ranked model(s). Although the Type I and the generalized model241

were the least frequently sole-supported models, they were supported by datasets representing242

all four of the most common predator taxonomic groups that constituted 90% of all datasets in243

FoRAGE (insects, arachnids, crustaceans, and fishes; Fig. S.2).244

Effects of predator-prey body-mass ratio on n and ϕ245

To test the second and third hypotheses, we excluded datasets for which the Type I had alone246

performed best and regressed the remaining datasets’ bootstrapped median point estimates of n247

and ϕ against their study’s predator-prey body-mass ratio (ppmr), these having been compiled248

in FoRAGE for most datasets. (Datasets for which all other models performed better or equally249

well could be included because for them n and ϕ could equal 1.) Although roughly 90% of these250

datasets had estimates of n ≤ 8 and ϕ ≤ 2 (Figs. S.3 and S.4), all three variables exhibited251

substantial variation in magnitude. We therefore performed linear least-squares regression using252

log2(n) and log2(ϕ) versus log10(ppmr).253

Our analysis supported the hypothesis that predator-prey pairs with larger body-mass ratios254
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tend to exhibit larger estimates of n (Fig. 2c; log2(n) = 0.55+0.15 · log10(ppmr), p < 0.01, Table255

S.1), but the predictive utility of this relationship was extremely poor (R2 = 0.03).
:::::::::::
R2 = 0.02).256

We also found support for the hypothesis that larger body-mass ratios are associated with257

larger values of ϕ, although the magnitude of this effect was weaker than it was for n (Fig. S.5;258

log2(ϕ) = 0.27 + 0.06 · log10(ppmr)
:::::::::::::::::::::::::::::::::
log2(ϕ) = 0.26 + 0.06 · log10(ppmr), p < 0.01, Table S.2) and259

was of similarly poor predictive utility (R2 = 0.02).260

To assess the sensitivity of our result for n to variation among datasets, we performed261

additional regressions that restricted the considered datasets to (i) those having estimates of n >262

1 (Fig. 2c, Table S.1), (ii) those with sample sizes exceeding the median sample size of all datasets263

(Fig. S.6, Table S.3), and (iii) the four most common predator taxonomic groups (insects,264

arachnids, crustaceans, and fishes), including for this last regression a two-way interaction term265

between predator group identity and predator-prey body-mass ratio (Fig. 2d, Table S.4). These266

analyses evidenced statistically clear, albeit predictively poor, positive relationships between n267

and predator-prey body-mass ratios for all predators in general and for each predator group268

individually as well.269

Population-dynamic effects of multi-prey feeding270

Given the empirical evidence that multi-prey feeding may indeed be common and a viable way to271

describe functional responses, we next investigated its potential consequences for predator-prey272

dynamics. Our goal was to understand how assuming either a Type I or Type II response could273

lead to incorrect conclusions regarding these dynamics. We used the well-studied Rosenzweig &274
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(a) Replacement studies (b) Non-replacement studies

(c) All studies
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Figure 2: Empirical support for multi-prey feeding. Figs. 2a and 2b depict Venn diagrams
categorizing the datasets of FoRAGE by their support for one or more of the five models as
evaluated using a cut-off of 2 BIC units. Figs. 2c and 2d depict the observed relationship
between estimates of n and the body-mass ratio of the studies’ predator-prey pairs, excluding
datasets for which the Type I model alone performed best. Regression lines in Fig. 2c reflect
all considered datasets or only those with estimates of n > 1 (Table S.1). Regression lines in
Fig. 2d reflect the identity of the four most common predator groups (n ≥ 1, Table S.4).
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MacArthur (1963) model to achieve this goal, employing both graphical (i.e. isocline) analysis275

and simulations.276

The model describes the growth rates of the prey N and predator P populations as277

dN

dt
= rN

(
1− N

K

)
− f(N)P (7a)

dP

dt
= ef(N)P −mP , (7b)

where r and K are the prey’s intrinsic growth rate and carrying capacity, f(N) is the functional278

response, and e and m are the predator’s conversion efficiency and mortality rate. Logistic279

prey growth and Holling’s Type II response have become the component parts of the canonical280

Rosenzweig-MacArthur model for which enrichment in the form of an increasing carrying ca-281

pacity causes the populations’ dynamics to transition from a regime of monotonically-damped282

stable coexistence to damped oscillations to sustained limit cycles (Rosenzweig, 1971). Other283

prey growth and Type II-like functional response forms affect a similar destabilization sequence284

(e.g., Freedman, 1976; May, 1972; Rosenzweig, 1971; Seo & Wolkowicz, 2018). The location285

of the Hopf bifurcation between asymptotic stability and limit cycles is visually discerned in286

the model’s P vs. N phase plane (Fig. 3) as the point where the vertical N∗ predator iso-287

cline intersects the parabolic P ∗ prey isocline at its maximum, half-way between −1/ah and288

K (Rosenzweig, 1969; Rosenzweig & MacArthur, 1963). That is, the coexistence steady state289

entails a globally-stable fixed point when the isoclines intersect to the right of the maximum290

and entails a locally-unstable fixed point with a globally-stable limit cycle when they intersect291

to the left of the maximum (Seo & Wolkowicz, 2018). Graphically, increasing K destabilizes292
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dynamics by stretching the prey isocline, moving its maximum to the right while the position of293

the vertical predator isocline remains unchanged. In contrast, when logistic growth and a Type294

I are assumed, the prey isocline is a linearly-decreasing function of prey abundance (Fig. 3) and295

predator-prey coexistence entails a globally-stable fixed point for all levels of enrichment.296
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Figure 3: Predator and prey isoclines of the Rosenzweig-MacArthur model modified to include

the multi-prey response correspond to those observed with the Type I and Type II responses

when n = ∞ and n = 1 respectively. As the number n of prey that a predator can handling

while searching increases, the prey abundance at which the predator’s growth rate is zero (i.e. the

vertical predator isocline, N∗) decreases from its value under the Type II response (m/a(e−mh))

and converges rapidly on the value expected under the Type I response (m/ae). In contrast,

predator abundances at which the prey’s growth rate is zero, P ∗, converge on those expected

under the Type I response only at low prey abundances to affect a second region of asymptotically

stable dynamics; the “hump” does not flatten as it would if the handling time were presumed

to be inconsequential (i.e. h = 0). Limit cycles occur when the predator and prey isoclines

intersect on the left flank of the hump. With increasing n, the inflection point between the

low-prey region of stability and limit cycles approaches the prey abundance where all predators

are busy handling predators under the rectilinear model, 1/ah (indicated by non-dashed region

of the black prey isocline). Other parameter values: attack rate a = 0.02, handling time h = 2,

prey growth rate r = 0.5, prey carrying capacity K = 100, conversion efficiency e = 0.25,

predator mortality rate m = 0.08.
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Graphical analysis297

For our analysis we insert the multi-prey response (eqn. 5) for f(N) in eqn. 7. Solving dP/dt = 0298

for the N∗ predator isocline then requires solving299

m

e
= f(N∗) =⇒ N∗ =

m
(
1− (ahN∗)n+1

)
ae (1− (ahN∗)n)

. (8)300

This leads to a solution for N∗ that is independent of the predator’s abundance (i.e. remains301

vertical in the P vs. N phase plane) but is unwieldy for n > 2 (see Supplementary Materials).302

Nonetheless, it represents a generalization of the predator isocline obtained for the Rosenzweig-303

MacArthur model with n = 1, N∗ = m
a(e−mh) , and converges on N∗ = m/ae as n → ∞ when304

ahN∗ < 1, just as obtained assuming the Type I. In fact, N∗ transitions smoothly from the305

former to the latter as n increases (Fig. 3) because eqn. 8 is a monotonically declining function306

of n for ahN∗ < 1.307

Solving dN/dt = 0 for the P ∗ prey isocline leads to the solution308

P ∗ =
rN

f(N)

(
1− N

K

)
=

r(K −N)
(
1− (ahN)n+1

)
aK (1− (ahN)n)

. (9)309

This too represents a generalization of the Rosenzweig-MacArthur model’s prey isocline, P ∗ =310

r(K − N)(1 + ahN)/aK, which is itself a generalization of the isocline P ∗ = r(K − N)/aK311

obtained with the Type I as n → ∞. Between these the prey isocline under the multi-prey312

response transitions from a parabolic dependence on the prey’s abundance to having a second313

region within which it is a declining function of prey abundance (Fig. 3). This second region314

has a slope of −r/aK at its origin regardless of n and is limited to low prey abundances of315
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N < 1/ah; as n increases, the region’s upper extent approaches the prey abundance at which316

all predators are busy handling prey under the rectilinear model. That is, for 1 < n < ∞ the317

“hump” shape of P ∗ does not flatten out as it does when one assumes handling times to become318

negligible. Rather, similar to what can occur for the Type III response (Uszko et al., 2015), the319

prey isocline exhibits two regions of negative prey dependence (where dP ∗

dN < 0) that flank an320

intermediate region of positive prey dependence (where dP ∗

dN > 0).321

Implications for coexistence and dynamics322

The emergence of a second prey abundance region where the slope of the prey isocline is neg-323

ative means that a second asymptotically-stable coexistence equilibrium — one having a high324

predator-to-prey abundance ratio — is possible should the two isoclines intersect within it. The325

fact that this may occur is discerned by noting that N∗ (eqn. 8) is independent of r and K,326

and that P ∗ (eqn. 9) is independent of m and e; the positions of the two isoclines are thus327

independent except via the functional response parameters a, h, and n. In fact, because N∗
328

decreases while the upper limit of the low prey abundance region of P ∗ increases towards 1/ah329

as n increases, it is readily possible — conditional on the values of the other parameters — to330

observe a stable state at n = 1 to first transition to limit cycles and then return to fixed-point331

stability as n alone is increased. This is illustrated by Fig. 4 in the context of enrichment for332

values of K between approximately 75 and 115. Multi-prey feeding may thus be seen as another333

mechanism contributing to stability at high productivity (Roy & Chattopadhyay, 2007). In-334

deed, in addition to rescuing predators from deterministic extinction at low levels of enrichment335
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where a single-prey-at-a-time predator could not persist (20 < K < 40 in Fig. 4), sufficiently336

large values of n can preclude the occurrence of limit cycles altogether (n > 9 in Fig. 4).337

Figure 4: The destabilization with enrichment that is seen under the classic Rosenzweig-

MacArthur model (where n = 1) is altered when predators can search for and handle multiple

prey at a time (n > 1). At low prey carrying capacities (K < 40), multi-prey feeding rescues

predators from deterministic extinction. At intermediate carrying capacities (40 < K < 110),

low levels of multi-prey feeding destabilize dynamics by causing perturbation responses to tran-

sition from a transient regime of monotonic damping to one of damped oscillations or from

damped oscillations to a persistent limit cycle regime. Further increases in multi-prey feeding

can have a qualitatively stabilizing influence on dynamics, with sufficiently high n precluding a

transition to limit cycles altogether so long as perturbations are sufficiently small. Large per-

turbations, on the other hand, will cause a transition to an alternative stable state consisting of

limit cycle dynamics (see Fig. 5). Other parameter values as in Fig. 3.

Notably, however, the just-described high-predator low-prey steady state is only a locally338

21



stable fixed point and coexists with a stable limit cycle that surrounds it (Figs. 4 and 5). The339

high-predator low-prey state thus exhibits bi-stability. The consequences of this bi-stability are340

that predator-prey interactions with multi-prey feeding are destined to exhibit (i) transitions to341

persistent limit cycles when subjected to large perturbations that send abundances beyond the342

domain of attraction of the fixed-point steady state (Fig. 5a,c), and (ii) transient dynamics that343

are prone to damped oscillations (rather than monotonic damping) in response to small per-344

turbations within the domain of attraction. These transient oscillations occur for substantially345

lower levels of enrichment than is the case for single prey-at-a-time predators (Fig. 4). Moreover,346

their temporal duration can be exceedingly long (Fig. 5b) because the limit cycle acts akin to a347

crawl-by attractor (Hastings et al., 2018) that impinges upon the steady state’s local resilience.348

Thus, when subjected to continual perturbations in an explicitly stochastic setting (Barraquand349

et al., 2017), the system can readily transition between the stable fixed-point attractor and the350

stable limit cycle attractor that surrounds it (Fig. 6), resulting in dynamical epochs of irregular351

duration that are characteristic of many empirical time-series (Blasius et al., 2020; Rubin et al.,352

2023). Therefore, multi-prey feeding does not provide a robust mechanism against instability353

at high productivity but rather leads to a richer range of population dynamics and coexistence354

states than can result from Type I, II
:
, or III responses alone.355

Discussion356

Our study was motivated by the apparent disconnect that exists between the way that many357

empirically-minded ecologists perceive the Type I model
:::::::::
functional

:::::::::
response

:::::::::
linearity

:
and the358

22



(a)
Prey

Predator

0 50 100 150 200
0

10

20

30

40

50

60

Time

A
bu
nd
an
ce

(b)

0 20 40 60 80 100
0

10

20

30

40

50

60

Prey

P
re
da
to
r

(c)

0 200 400 600 800 1000
0

10

20

30

40

50

60

Time

A
bu
nd
an
ce

(d)

0 20 40 60 80 100
0

10

20

30

40

50

60

Prey

P
re
da
to
r

(e)

9000 9200 9400 9600 9800 10000
0

10

20

30

40

50

60

Time

A
bu
nd
an
ce

(f)

0 20 40 60 80 100
0

10

20

30

40

50

60

Prey

P
re
da
to
r

Figure 5: Because of the system’s bi-stability at high predator-to-prey abundance ratios, even

small differences in the size of a perturbation to the steady state can affect a large change in

the duration of the system’s transient response (compare panels a and b with c and d) and

can even cause the system to become entrained in a stable limit cycle (illustrated in panels e

and f ). The only difference between each of the above panel rows is that the predator’s initial

population size P (0) is perturbed away from its P ∗ steady state as: (a, b) P (0) = P ∗−6; (c, d)

P (0) = P ∗ − 7.0645; and (e, f ) P (0) = P ∗ − 7.065. For all cases N(0) = N∗. Parameter values

as Fig. 3 with n = 10.
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Figure 6: When subjected to continually-occurring stochastic perturbations, the high-predator

low-prey coexistence state can exhibit time periods during which its dynamics are influenced

primarily by the stable fixed-point attractor and time periods during which dynamics are pri-

marily influenced by the alternative stable limit cycle attractor, switching between these on

an irregular basis. Simulation implemented using an Itô integral process
:::::::::
stochastic

:::::::::::
differential

:::::::::
equations

:
as dN = rN(1 − N/K) − f(N)P dt + σNdW and dP = ef(N) − mP dt − σPdW ,

with f(N) as in eqn. 5 and Gaussian white environmental noise dW (t) of volatility σ = 0.04 (cf.

Barraquand, 2023). Other parameter values and initial population sizes as in Fig. 5c-d.

way that many modelers and theory-minded ecologists justify its use in their representations359

of consumer-resource interactions. While the former are prone to dismiss the Type I as being360

overly simplistic and hence unsuitable for describing predator feeding rates, the latter are prone361

to rely on and justify its sufficiency for the sake of computational ease and analytically-tractable362

insight. Since the potential for predators to feed on multiple prey at a time (i.e. the non-363

exclusivity of handling and searching activities) has been little considered by either group, we364

set out to address three aspects of this disconnect: (i) deriving a multiple-prey-at-a-time model365

that mechanistically connects the linear and rectilinear models to the more empirically palatable366

Type II model, (ii) assessing the extent to which published datasets provide support for multi-367
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prey feeding, and (iii) investigating how multi-prey feeding and the linear density dependence it368

can impose on feeding rates can alter our understanding of predator-prey coexistence. Because369

they bear insight with which to elaborate on the circumstances under which linearity may be370

empirically relevant, we structure the discussion of our work by considering the latter two aspects371

first.372

Empirical support373

Our statistical analysis of the datasets compiled in FoRAGE demonstrates that both the Type374

I and multi-prey models are viable descriptions (sensu Skalski & Gilliam, 2001) of the feeding375

rates that predators have exhibited in many single-prey experiments (Figs. 2a-2b). This result376

is consistent with handling and searching being non-exclusive activities for a substantial number377

of predator-prey pairs. Although this
:::
our

:::::::
result

:
contrasts with the prior syntheses of Jeschke378

et al. (2004) and Dunn & Hovel (2020), these (i) did not consider models capable of response379

forms in between the strictly linear Type I and Type II forms and (ii) either relied on the380

conclusions reached by each studies’ original authors (who used varied model-fitting and com-381

parison approaches) or visually assessed functional response forms from plotted data. One might382

argue that many of the datasets providing sole support to the Type I in our analysis came from383

experiments using prey abundances that were insufficient to elicit saturation (see also Coblentz384

et al., 2023), but the point can be made that, from an information-theoretic perspective, the385

Type I performed best across the range of prey abundances that the original authors consid-386

ered empirically reasonable (and logistically feasible). The even greater number of datasets that387
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provided sole support to the multi-prey model, along with the result that many of the point388

estimates for parameter n (the maximum number of prey eaten at a time) were sufficiently large389

to affect a response approaching a rectilinear response (cf. Figs. 1 and 2c), indicates that feeding390

rates exhibited a significant region of linearity for many predator-prey interactions having long391

handling times as well. Moreover, the statistically-clear positive relationships we observed in our392

subsequent regression analyses of n and predator-prey body-mass ratios (Figs. 2c-2d) confirm393

:::::::
support

:
Sjöberg’s hypothesis regarding a proximate reason for this linearity;

:
,
:
it being more394

likely to occur for larger predators feeding on small prey because handling is less preclusive of395

searching.396

Unfortunately, the amount of variation in n that was explained by body-mass ratio alone was397

extremely low, making the relationship of little predictive utility relative to several other body-398

mass relationships (e.g., Brose et al., 2006; Coblentz et al., 2023; Hatton et al., 2015; Rall et al.,399

2012). That said, the relationship’s low explanatory power is not unsurprising given that none400

of the experiments in FoRAGE was designed with the multi-prey model in mind. In particular,401

and although most estimates of n were of a seemingly reasonable magnitude (Fig. S.3), we402

caution against giving too much credence to the very large-valued estimates we observed. This403

is for two primary reasons. First, given that a given dataset’s ability to distinguish between404

possible values of n diminishes rapidly as n increases (Fig. 1), datasets exhibiting saturation at405

high prey abundances but having few or no observations near the inflection point of 1/ah will406

have been sensitive to issues of parameter identifiability. Low identifiability will have caused an407
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inflation of estimates despite our effort to guard against it by removing datasets with fewer than408

4 prey abundance levels. Second, given that initiating experiments with predator individuals409

having empty guts is a common protocol (Griffen, 2021; Li et al., 2018), many experiments410

will have strictly violated the assumption of predator behavior being at steady state. This will411

also have inflated estimates of n by causing transient rates of prey ingestion to exceed rates412

of handling completion (i.e. aN > 1/h) to affect faster-than-steady-state feeding, especially at413

prey abundances below 1/ah. We therefore suggest that the very large estimates of n observed414

in our analyses be better interpreted as qualitative (rather than quantitative) support for the415

non-exclusivity of searching and handling and encourage future experiments and analyses with416

additional covariate predictors to better understand the biological sources of variation in n.417

(Similar issues pertain to the estimation and interpretation of ϕ.)418

Mechanistic approximations419

The multi-prey model may be considered a mechanistic model in that its derivation and each420

of its parameters has at least one biologically-specific interpretation. However, it is also rather421

phenomenological in that it encodes only an essence of the biologically possible non-exclusivity of422

searching and handling processes. For example, the model’s derivation assumes that the attack423

rate and handling time remain constant and independent of the number of prey that predators424

are already handling (below the maximum number n). Although this assumption may result in425

a very good approximation to feeding rates, it is unlikely to reflect biological reality particularly426

as the number of prey being handled by a given predator approaches n. In such circumstances427
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either or both searching and handling process rates are likely to become dependent on the feeding428

rate and thereby on prey abundance (see also Okuyama, 2010; Stouffer & Novak, 2021).429

Functional responses where such dependence is important may be better and more mech-430

anistically described by more flexible models (see also Novak & Stouffer, 2021a). Prominent431

among these is the extended Steady State Saturation model (SSS1) of Jeschke et al. (2004) in432

which handling and digestion are explicitly distinguished (see Supplementary Materials). In433

this four-parameter model, searching and handling are mutually exclusive, but searching and434

digestion are not because the predator’s search effort depends on its gut fullness (i.e. hunger435

level) and is thus dictated by the digestion rate. A phenomenological shape parameter controls436

the non-linearity of the search-effort hunger-level relationship. For high values of this shape pa-437

rameter (reflecting predators that search at their maximum rate even when their guts are quite438

full) and inconsequential handling times, the model approaches the rectilinear model, just like439

the multi-prey model at high n, while for consequential handling times it retains a saturating440

curvature at low prey abundances (see Figs. A1 and A2 of Jeschke et al., 2004).441

Population-dynamic effects442

The population-dynamic consequences of the extended SSS model remain unstudied, but our443

analysis of the simpler multi-prey model reveals the relevance of it and other models for un-444

derstanding how the linearity of multi-prey feeding can impact predator-prey dynamics. These445

other models are the arctangent and hyperbolic tangent models because for these it has been446

1We would be remiss not to point out that all functional response models of which we are aware assume steady
state conditions at the behavioral foraging scale. The SSS model’s name does not, therefore, reflect a limitation
that is unique to it.
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more rigorously shown that two limit cycles — one stable and the other unstable — can co-occur447

with a locally-stable fixed point at low prey abundances (Seo & Kot, 2008; Seo & Wolkowicz,448

2015; 2018), just as we observed for the multi-prey model (see also Freedman, 1980). The key449

feature common to all three models is that they affect a prey isocline that decreases from a450

finite-valued origin at zero prey abundance. This differs from the Type II and other functional451

responses that exhibit saturating curvature
:::
are

::::::::
concave

::::
and

::::::::::
increasing

:::::
with

:::::
prey

::::::::
density at low452

prey abundance. For these the prey isocline increases from a finite-valued origin, the low-prey453

fixed point is unstable, and only the stable limit cycle is thus of relevance under logistic prey454

growth. It also differs from functional responses that accelerate at low prey abundances (e.g., the455

Type III) and from consumer-resource models more generally in which, for example, prey have456

a physical refuge, exhibit sublinear density-dependence, or experience density-independent im-457

migration. For these the prey isocline decreases from an origin that approaches infinity and the458

low prey steady state is a stable fixed point around which limit cycles do not occur (e.g., Case,459

2000; Uszko et al., 2015). We surmise that the linearity brought about by the non-exclusivity of460

searching and handling in the multi-prey model is (i) replicated by the more phenomenological461

arctangent and hyperbolic tangent models, and that (ii) it is the cause of the greater range of462

dynamical outcomes that these functional responses affect as compared to responses exhibiting463

nonlinearity at low prey abundances.464

The broader implication of our analysis is that population-dynamic theory that relies on the465

Type I may not be as globally relevant from a biological perspective as its mathematics would466
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suggest. In particular, it shows that the stabilization which the Type I contributes to dynamics467

is dependent on perturbation magnitude. More specifically, the relevance of theory that relies468

on the Type I is limited to perturbations that are small enough to preclude the influence of the469

attracting stable limit cycle that will exist when the functional response is described as having470

a potentially unobserved maximum feeding rate.471

Our consideration of enrichment effects illustrates a specific example of this. When the472

functional response is assumed to be Type I, the fixed point is globally-stable and perturbations473

to it decay monotonically. In contrast, when the functional response is linear only at low474

prey abundances, as when multi-prey feeding occurs, the fixed point is only locally stable and475

perturbations can elicit cycles that may persist for many generations or even indefinitely. In476

fact, as indicated by Rubin et al. (2023) in their analysis of a stochastic implementation of477

the Rosenzweig-MacArthur model, the dynamics will additionally be influenced by the crawl-by478

inducing origin (dual extinction) and prey-only (carrying capacity) steady states that will extend479

the lifetime of long-term transients even further. This influence, too, will not be observed when480

a Type I is assumed because these unstable steady states will rarely if ever be approached.481

Relevance revisited482

As discussed above (see Relevance of Type I response), the multi-prey model shows that handling483

times need not be inconsequential to observe linear prey dependence when the number of prey484

that a predator individual can handle at a time is relatively high and the maximum proportion of485

individuals in a predator population that are simultaneously handling prey remains sufficiently486
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low. This is not to say that other factors and processes cannot cause functional responses to be487

very nonlinear, but within the confines of our work’s assumptions the latter condition can be488

satisfied as long as prey abundances remain less than 1/ah.489

Our statistical and mathematical analyses add insight into when the conditions for linearity490

are more likely to be met. Specifically, functional responses are more likely to exhibit linearity491

when predator-to-prey body-mass ratios are high (Fig. 2c), when predator-to-prey abundance492

ratios are high (Fig. 3), and thus, we predict, in top-heavy systems with high predator-to-prey493

biomass ratios. Top-heavy interactions and food webs more generally occur in all ecosystem494

types (McCauley et al., 2018), but are more likely for ectothermic and invertebrate consumers,495

in aquatic habitats, among higher trophic levels, and in ecosystems of low total biomass (Brose496

et al., 2006; Hatton et al., 2015; Perkins et al., 2022). The development of methods for gaug-497

ing the nonlinearity of functional responses in diverse field settings (e.g., Novak et al., 2017;498

Uiterwaal & DeLong, 2024) will be useful for directly testing our prediction that these same499

systems should also exhibit more linear functional responses. New methods that make use of500

the greater information content associated with counts of the numbers of prey being handled501

(Fig. S.1) should be particularly useful.502

Importantly, our work also shows that predator-prey dynamics need not be destabilized503

by food web top-heaviness. Rather, paralleling theory assuming Type III responses (Kalinkat504

et al., 2013; Uszko et al., 2015), increases in top-heaviness can lead to greater food web stability505

— be it stable coexistence potential or perturbation resilience (Fig. S.7) — when multi-prey506
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feeding occurs, provided that perturbations are small enough for population abundances to507

remain well within the local attractor of the stable fixed point (Fig. 5). This contrasts with508

existing theory on top-heavy food webs that has largely assumed Type II responses (McCauley509

et al., 2018). Indeed, our analyses show that even small departures from mutual exclusivity510

can lead to qualitatively different coexistence states and dynamics than predicted by existing511

theory, including the possibility of long-term transients and the just-mentioned bi-stability of512

fixed-point and limit-cycle dynamics. Food web models that incorporate multi-prey feeding513

and how its prevalence may change with species- and system-level attributes will be useful for514

understanding just how much multi-prey feeding must occur within food webs as a whole to alter515

their
:::::::::::
community

:
structure and dynamics. A first step towards such food web models will be516

to extend the multi-prey model to multi-species formulations appropriate for generalist rather517

than single-prey-species predators.518

Conclusions for bridging theory and empirical insight519

Natural history observations show that diverse types of predators are capable of (literally) han-520

dling and searching for prey simultaneously: sea otters capture several snails on a dive; crabs521

process mussels with their mouthparts while picking up more with their claws; spiders capture522

insects in their webs while processing others for later ingestion. Many more situations relevant523

to multi-prey feeding become apparent and potentially relevant to the context of functional re-524

sponses when it is recognized that the “handling time” parameter of most models represents not525

just the literal manipulation of prey (e.g., that may be seen by an observer of the interaction)526
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but rather reflects the feeding process that limits a predator’s maximum feeding rate, including527

possible limits to stomach fullness and digestion (DeLong, 2021; Jeschke et al., 2002; 2004).528

Sculpin fishes, for example, have been observed with over 300 identifiable mayflies in their stom-529

achs (Preston et al., 2018), the majority of which could not have been captured simultaneously530

and for which literal handling must therefore have been inconsequential relative to digestion.531

The degree to which searching and (general) handling actually represent mutually exclu-532

sive activities, and the degree to which each of the many processes potentially encapsulated533

by a handling time parameter measurably contributes to a predator’s functional response, is534

nonetheless poorly discerned from observation alone. Knowing that handling times are short or535

long, or that searching and literal handling do or do not overlap, is neither sufficient to dismiss536

or assume a given functional response model on a priori grounds. This is because all models537

are phenomenological approximations of biological process at some level. This applies as much538

to predator-prey interactions studied in controlled experiments as it does to those studied in539

natural settings, and is particularly true in the context of building understanding and theory540

when extrapolating the former to the latter across Ecology’s wide-ranging scales.541

We thus
::
In

::::
this

::::::::
context

::::
we

:
draw two overarching conclusions :

::::
from

:::::
our

:::::::::
analyses:

:
that542

functional response linearity should not be dismissed by empiricists as an irrelevant description of543

predator feeding rates, and that modelers and theoreticians should be more cautious in reaching544

empirical conclusions of system dynamics when presuming the
:::::
linear

:
Type I response to be545

appropriate. In even broader terms, our research demonstrates how disagreements between546
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different perspectives can be addressed by identifying and easing the fundamental assumptions547

that underpin them, and how improved communication between empiricists and theoreticians548

will benefit Ecology as a whole (Grainger et al., 2022).549
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Multi-prey functional response model

Derivations

More explicit derivations of the Type II and multi-prey models are as follows.

Holling Type II model

Assuming a predator population P of fixed size that is composed of only PS searching and PH

handling sub-populations, let the rate of change in abundance of the two sub-populations be
described by

dPS

dt
= −aNPS + 1

hPH (S.1a)

dPH

dt
= aNPS − 1

hPH . (S.1b)

Correspondingly, the rate at which eaten prey Ne are generated is

dNe

dt
= 1

hPH . (S.2)

As in the main text, a is the per capita attack rate, h the handling time, and N the prey’s
abundance (which is also assumed fixed at the behavioral time scale we are considering).

Setting dPH
dt = 0 (i.e. assuming steady state conditions), we substitute (P − PH) for PS and

rearrange to determine the proportion of the whole population that is busy handling:

aN(P − PH) = 1
hPH (S.3a)

=⇒ aNP = aNPH + 1
hPH (S.3b)

= (aN + 1
h)PH (S.3c)

=⇒ PH

P
=

aN

aN + 1
h

(S.3d)

=
ahN

1 + ahN
. (S.3e)

The total number of handling predators is thus

PH =
ahNP

1 + ahN
. (S.4)

Since the rate at which each these PH predators finishes handling its prey is 1
h , it follows that

the rate at which eaten prey are “generated” by the whole predator population is

dNe

dt
=

1

h
PH =

aNP

1 + ahN
(S.5)

and thus that the per predator feeding rate (the functional response) is

f(N) =
1

P

dNe

dt
=

1

h

PH

P
=

aN

1 + ahN
. (S.6)
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Multi-prey model

Again assume a predator population P of fixed size that is composed of PS searching and
handling sub-populations, but now split handling predators into those capable of searching
while handling less than n prey individuals at any moment time. We therefore have that

P = PS + PH1 + PH2 + . . .+ PHn (S.7)

and describe the rate of change for each sub-populations by

dPS

dt
= −aNPS + 1

hPH1 (S.8a)

dPH1

dt
= aNPS − 1

hPH1 (S.8b)

dPH2

dt
= aNPH1 − 1

hPH2 (S.8c)

...

dPHn

dt
= aNPH(n−1)

− 1
hPHn . (S.8d)

Correspondingly, the rate at which eaten prey Ne are generated is now

dNe

dt
= 1

h

n∑
i=1

PHi . (S.9)

By setting
dPHi
dt = 0 for all sub-populations, rearranging, and iteratively substituting, we have

that

aNPS = 1
hPH1 =⇒ PH1 = ahNPS (S.10a)

aNPH1 = 1
hPH2 =⇒ PH2 = ahNPH1 (S.10b)

= ahN(ahNPS) (S.10c)

= (ahN)2PS (S.10d)

aNPH2 = 1
hPH3 =⇒ PH3 = ahNPH2 (S.10e)

= ahN((ahN)2PS) (S.10f)

= (ahN)3PS (S.10g)

...

aNPH(n−1)
= 1

hPHn =⇒ PHn = ahNPH(n−1)
(S.10h)

= ahN((ahN)n−1PS) (S.10i)

= (ahN)nPS , (S.10j)
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with the last lines for PHn inferred by induction. The proportional abundance of each ith
sub-population is thus

PHi

P
=

(ahN)iPS

P
(S.11a)

=
(ahN)iPS

PS + PH1 + PH2 + . . .+ PHn

(S.11b)

=
(ahN)iPS

PS + ahNPS + . . .+ (ahN)nPS
(S.11c)

=
(ahN)i

1 + ahN + . . .+ (ahN)n
(S.11d)

=
(ahN)i

1 +
n∑

k=1

(ahN)k
. (S.11e)

Each of the sub-populations generates eaten prey at rate 1
h , thus the rate at which eaten prey

are generated by the whole population is

dNe

dt
= 1

h

n∑
i=1

PHi (S.12a)

= 1
h

n∑
i=1

PHi

P
P (S.12b)

= 1
h

n∑
i=1

(ahN)i

1 +
n∑

k=1

(ahN)k
P (S.12c)

=

1
h

n∑
i=1

(ahN)i

1 +
n∑

i=1
(ahN)i

P . (S.12d)

The per predator feeding rate is therefore

f(N) =
1

P

dNe

dt
=

1
h

n∑
i=1

(ahN)i

1 +
n∑

i=1
(ahN)i

(S.13)

as given in eqn. 4 of the main text.
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Proportion of predators feeding on 1 to n prey

Prey at a time (n)
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Figure S.1: The expected proportions of predator individuals that will be observed not feeding

or handling i = 1, 2, 3 or 4 prey changes with prey abundance (here visualized for a predator

population whose individuals can handle up to n = 4 prey at a time). Individuals from each of

the handling groups consumes prey at rate 1/h, thus the predator population’s (i.e. the average

individual’s) functional response is the product of 1/h and the sum of these handling-predator

proportions. The prey abundance at which the expected proportions of individuals handling 0,

1, 2, 3 or 4 prey are all equal occurs at prey abundance 1/ah. Parameter values: the attack

rate is a = 0.1 and the handling time is h = 4.
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Equivalence of eqns. 4 and 5 for integer values of n

Letting n = 1, we have

f(N) =
aN(1− (ahN)n)

1− (ahN)n+1
=

aN(1− (ahN))

1− (ahN)2
=

aN(1− ahN)

12 − (ahN)2

=
aN(1− ahN)

(1 + ahN)(1− ahN)

=
aN

1 + ahN
.

Letting n = 2, we have

f(N) =
aN(1− (ahN)n)

1− (ahN)n+1
=

aN(1− (ahN)2)

1− (ahN)3
=

aN(1 + ahN)(1− ahN)

(1 + ahN + (ahN)2)(1− ahN)

=
aN(1 + ahN)

1 + ahN + (ahN)2

=

1
h

2∑
i=1

(ahN)i

1 +
2∑

i=1
(ahN)i

.

Letting n = 3, we have

f(N) =
aN(1− (ahN)n)

1− (ahN)n+1
=

aN(1− (ahN)3)

1− (ahN)4
=

aN(1 + ahN + (ahN)2)(1− ahN)

(1 + ahN + (ahN)2 + (ahN)3)(1− ahN)

=
aN(1 + ahN + (ahN)2)

1 + ahN + (ahN)2 + (ahN)3)

=

1
h

3∑
i=1

(ahN)i

1 +
3∑

i=1
(ahN)i

.

Their equivalence for higher integer values of n follows similarly.
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Analysis of FoRAGE datasets

Data exclusions and re-scaling

The most recent version of FoRAGE (v.4) contains a total of 3013 datasets from which we
excluded 422 for our analyses. Most of these were excluded because they entailed less than 4
prey-abundance treatment levels or because they had fewer than 15 data points (i.e. replicates)
overall, but we also excluded several datasets because they provided prey abundances as densities
for treatments that were implemented using arenas of varying size without specifying what
those arena sizes were; entailed feeding rates of a variable but unspecified number of predators
known to exhibit predator-dependent feeding rates; and/or entailed feeding rates of variable but
unspecified experimental duration. Nine datasets were excluded because our models failed to
reach convergence.

Our analyses required integer counts of prey abundance and eaten prey because we assumed
binomial and Poisson likelihood functions to accommodate the increasing variance that accom-
panies an increase in the expected number of eaten prey (Novak & Stouffer, 2021b). For most
datasets in which prey abundances were expressed as prey densities and/or predation was ex-
pressed as feeding rates, integer counts of prey abundance and prey eaten could be calculated
using provided information on the area size(s) used (area or volume), the number of predators
per treatment, and experimental duration(s). For raw-data datasets where this information
was not provided, as well as datasets expressing densities and feeding rates on a mass basis
(e.g., micro-grams of prey available or eaten), we (i) multiplied prey densities by the minimum
scalar value necessary to obtain integer values across all prey densities (which we then used as
prey abundance counts), and (ii) multiplied prey feeding rates by the minimum scalar value
necessary to obtain integer values across all feeding rates (which we then used as counts of
prey eaten). We multiplied prey abundances by an additional minimum scalar value for non-
replacement datasets (reported as raw-data or as means) where the units in which densities and
feeding rates were measured caused there to be more prey eaten than were seemingly available.
Although these procedures will have altered the interpretation of the attack rate and handling
time parameters (i.e. our estimates of a and h are not comparable across datasets), neither pro-
cedure will have affected our estimates of n for the multi-prey model (because it is dimensionless)
except, potentially, through an influence on the variance of the likelihood models (larger counts
of prey eaten being permitted a higher variance than low counts of prey eaten). Although we
did not observe any relationship between estimates of n and the magnitudes of re-scaling across
our datasets, its potential influence is worthy of future analytical study.

Penalized likelihood

Many datasets were not sufficiently informative to constrain estimates of n and ϕ. We therefore
implemented a penalized likelihood approach, augmenting the two aforementioned likelihood
functions with a penalty term proportional to the values of n and ϕ to discourage large values
of n and ϕ. More specifically, we performed model fitting using

Lp = L+ λ · ln(n) + λ · ln(ϕ) (S.14)

as the loss function, where L is the negative log-likelihood and λ determines the strength of
the penalty for values of n and ϕ. Although it is possible to treat λ as a free parameter that
is estimated for each dataset, we set λ = 1/ ln(20). A value of n or ϕ equal to 20 therefore
penalized the negative log-likelihood by 1 unit (equivalent to 1/2 the penalty associated with
each parameter of a model under AIC).
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Supplementary figures and statistical tables

(a) Insects (b) Arachnids

(c) Crustaceans (d) Fishes

Figure S.2: Venn diagrams categorizing the datasets of the four most common predator groups
by their support for one or more of the considered models based on their BIC scores.
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Figure S.3: Cumulative probability distribution of the estimates of n (assuming the multi-prey
model) from across all datasets excluding those for which the Type I model alone performed
best.
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Figure S.4: Cumulative probability distribution of the estimates of ϕ (assuming the Holling-
Real Type III model) from across all datasets excluding those for which the Type I model alone
performed best.
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Figure S.5: The relationship between log2(ϕ) and log10(PPMR) assuming the Holling-Real model
excluding datasets for which the Type I model alone performed best (Table S.2).
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Figure S.6: The relationship between log2(n) and log10(PPMR) assuming the multi-prey model
when considering only those datasets having a sample size greater than the median sample size
of all datasets excluding those for which the Type I model alone performed best (Table S.3).
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Table S.1: Summary statistics (with 95% confidence intervals) for the least-squares linear re-
gressions of log2(n) of the multi-prey model on log10(PPMR) when considering all studies (n ≥
1) or only those studies for which n >1.

Estimates
n ≥ 1 n >1

Intercept 0.546∗∗∗ (0.455, 0.638) 1.976∗∗∗ (1.806, 2.147)
log10(PPMR) 0.145∗∗∗ (0.106, 0.184) 0.190∗∗∗ (0.122, 0.258)

Observations 2,137 715
R2 0.024 0.041
Adjusted R2 0.024 0.039
Residual Std. Error 1.342 (df = 2135) 1.334 (df = 713)
F Statistic 53.006∗∗∗ (df = 1; 2135) 30.186∗∗∗ (df = 1; 713)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S.2: Summary statistics (with 95% confidence intervals) for the least-squares linear re-
gressions of log2(ϕ) of the Holling-Real Type III on log10(PPMR) when considering all studies
(ϕ ≥ 1) or only those studies for which ϕ >1.

Estimates
ϕ ≥ 1 ϕ >1

Intercept 0.262∗∗∗ (0.222, 0.302) 1.074∗∗∗ (0.974, 1.173)
log10(PPMR) 0.056∗∗∗ (0.039, 0.073) 0.058∗∗∗ (0.020, 0.097)

Observations 2,137 511
R2 0.020 0.017
Adjusted R2 0.019 0.015
Residual Std. Error 0.583 (df = 2135) 0.667 (df = 509)
F Statistic 42.597∗∗∗ (df = 1; 2135) 8.810∗∗∗ (df = 1; 509)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table S.3: Summary statistics (with 95% confidence intervals) for the least-squares linear re-
gression of log2(n) of the multi-prey model on log10(PPMR) when considering only those studies
having a sample size greater than the median sample size of all studies.

Sample size >36

Intercept 0.440∗∗∗ (0.309, 0.571)
log10(PPMR) 0.228∗∗∗ (0.167, 0.289)

Observations 981
R2 0.052
Adjusted R2 0.051
Residual Std. Error 1.289 (df = 979)
F Statistic 53.442∗∗∗ (df = 1; 979)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S.4: Summary statistics (with 95% confidence intervals) for the multiple least-squares
linear regression of log2(n) of the multi-prey model on log10(PPMR) × predator group for the
four most common predator taxonomic groups.

Focal predators

Intercept (Insect) 0.544∗∗∗ (0.409, 0.678)
log10(PPMR) 0.167∗∗∗ (0.090, 0.244)
Arachnid −0.305∗∗ (−0.580, −0.029)
Crustacean 0.208 (−0.063, 0.479)
Fish −0.164 (−0.680, 0.352)
log10(PPMR):Arachnid 0.269∗∗ (0.050, 0.488)
log10(PPMR):Crustacean −0.061 (−0.165, 0.044)
log10(PPMR):Fish −0.029 (−0.201, 0.144)

Observations 1,917
R2 0.032
Adjusted R2 0.029
Residual Std. Error 1.318 (df = 1909)
F Statistic 9.150∗∗∗ (df = 7; 1909)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Population-dynamic effects

Supplementary figures
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Figure S.7: The coexistence state is asymptotically stable when the real part of the dominant

eigenvalue Re(λ1) is negative. This occurs for n ≈ 1 where it is globally stable and for n > 5

where it is only locally stable. Post-perturbation dynamics towards the stable equilibrium exhibit

monotonic damping when the imaginary part Im(λ1) is zero as occurs for n ≈ 1, but exhibit

damped oscillations when Im(λ > 0) as occurs for higher n. Other parameter values as in Fig. 3.
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A reformulation of the extended Steady State Saturation model

Jeschke et al. (2004) introduced a functional response model that, like the multi-prey model, is
capable of exhibiting a continuum of shapes between the Type I and Type II response forms.
In its original formulation, their model is written as

e(1 + aN(b+ c))−
√
e (4acN + e(1 + aN(b− c))2)

2c(e(1 + abN)− 1)
, (S.15)

where N is the prey’s abundance, a is the attack rate, b is the handling time, c is the digestion
time, and e is a dimensionless shape parameter interpreted as affecting the trade-off between
search effort and hunger level (i.e. gut fullness). The model approaches the rectilinear model as
e → ∞ when b = 0 (see Fig. A2 of Jeschke et al., 2004). For e = 1 it reduces to the “Steady
State Saturation” (SSS) model of Jeschke et al. (2002), written in its original formulation as

1 + aN(b+ c)−
√

1 + aN (2(b+ c) + aN(b− c)2)

2abcN
. (S.16)

Both models may be expressed in a formulation more similar to the Holling form that eases
a comparison to other functional response models. This may be done by deriving them using
the citardauq formula. The SSS may thereby be rewritten as

2aN

1 + aN(b+ c) +
√
1 + aN (2(b+ c) + aN(b− c)2)

. (S.17)

(Note that the equation presented in the original version of Novak & Stouffer (2021a) is incor-
rect but has subsequently been corrected (Novak & Stouffer, 2024).) The extended SSS with
parameter e may be rewritten as

2aN

1 + aN(b+ c) + 1
e

√
e (4acN + e(1 + aN(b− c))2)

. (S.18)

With four parameters, the extended SSS model is capable of exhibiting more variation in shape
than the three-parameter multi-prey model. In particular, with sufficiently high e and appropri-
ately chosen non-zero values of b and c, it exhibits curvature at the low prey abundances where
the multi-prey model with high n is effectively linear (see Figs. A1 and A2 of Jeschke et al.,
2004).
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