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Abstract8

One of the more difficult challenges in community ecology is inferring species interactions on the basis of pat-9

terns in the spatial distribution of organisms. At its core, the problem is that distributional patterns reflect the10

‘realized niche’, the net result of a complex interplay of processes involving dispersal, environmental, and interac-11

tion effects. Disentangling these effects can be difficult on at least two distinct levels. From a statistical point of12

view, splitting a population’s variation into contributions from its interaction partners, abiotic environment and13

spatial proximity requires ‘natural experiments’ where all three factors somehow vary independently from each14

other. On a more theoretical
:::::::::
conceptual level, it is not even clear how to meaningfully separate these processes:15

for instance, species interactions could depend in many ways on the state of the
:::::
abiotic

::::
and

:::::
biotic

:
environment,16

and these two processes may combine in highly non-additive ways. Here we show that these issues arise almost17

unescapably
::
the

::::::
latter

::::
issue

:::::
arises

::::::
almost

::::::::::
inescapably, even in a simple theoretical setting designed to minimize18

them
:
it. Using a model of

:::::::::
competitive

:
metacommunity dynamics where direct species interactions are assumed19

to be context-independent, we show that inferring these interactions accurately from cross-species correlations is20

a major challenge under all but the most restrictive assumptions. However, we also find that it is possible to21

estimate the statistical moments (mean value and variance) of the species interactions distribution much more22

robustly, even if the precise values cannot be inferred. Consequently, we argue that study of multi-species spa-23

tial patterns can still be informative for theoretical approaches that build on statistical distributions of species24

parameters to predict macroscopic outcomes of community assembly.25

A central issue in community ecology is to identify which processes and mechanisms are most important in deter-26

mining species presence and abundance across space and time in given communities. While this can be accomplished27

by carefully designed experimental methods, this is often logistically impractical and indirect inference is used: we28

attempt to infer parameter values for a process-based model via the analysis of naturally-occurring patterns of29

species distributions. While early work focused on the direct analysis of co-distributions (i.e. correlations) in the30

abundances or occurrences of species, there has, over time, become apparent that this can be misleading and an31

increasingly sophisticated set of analytical tools that try to do this has emerged.32

To give context to this issue, we examine the challenges in using distribution patterns to evaluate species interac-33

tions in the critiques and subsequent debate in response to Diamond (1975)’s ‘Assembly Rules’ that were proposed to34

explain coexistence patterns in relation to interspecific competition in community and biogeographic data. Diamond35

(1975)’s assembly rules focused especially on looking at the significance of negative co-distributions in community36

patterns among potentially competing species (i.e. so called ‘checkerboard’ patterns of coexistence). While a long-37

lasting debate ensued on the statistical significance of these patterns (Connor & Simberloff, 1979; Gotelli & McCabe,38

2002) and the use of ‘null models’ (Gotelli & Graves, 1996), few, if any, questioned the basic hypothesis that negative39

co-distributions were in fact robust indicators of competition until much later.40

More recent work has increasingly recognized the confounding roles of environment, disturbance, isolation and41

dispersal and proposed more sophisticated methods for the study of co-distributions, e.g. (Patterson & Atmar, 1986;42

Leibold & Mikkelson, 2002; Peres-Neto et al., 2006). These issues have been resurfacing especially in microbial ecology43
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due to a tide of data (Berry & Widder, 2014). Additionally, there has developed a broader focus on other types44

of species interactions (e.g. Cazelles et al. 2015). The analysis of species interactions in general, and accounting45

for environmental, space and dispersal have been merged by the more recent development of more sophisticated46

methods such as joint species distribution models e.g. (Ovaskainen et al., 2017) and related methods that aim to47

partition distribution patterns in relation to ‘abiotic’ (environmental), ‘biotic’ (involving interactions among species)48

and ‘movement’ (involving spatial effects mediated by dispersal effects). While the sophistication of such methods is49

rapidly developing, especially in addressing computational and statistical issues, this work is increasingly revealing50

that inferring process from pattern is not trivial (Barner et al., 2018; Thurman et al., 2019; Blanchet et al., 2020;51

Poggiato et al., 2021).52

In parallel with these developments in biogeographic ecology, the same issues arise
:::::
issues

:::::
have

::::::
arisen in work53

that is more narrowly focused on inferring species interactions from relative abundance patterns in homogeneous54

communities. Here the data and the inferences ignore the environmental and dispersaldynamics
:
a

::::::::::::
homogeneous55

::::::
setting

::::::::::::::::::::::::::
(Levine, 1976; Lawlor, 1979).

:::::
This

:::::
work

:::::::
ignores

::::::::::::
confounding

::::::
effects

::
of
::::::::::::

environment
::::
and

:::::::::
dispersal, usually56

by applying the studies to
::::::::
focusing

:::
on situations where these are constrained (experimentally) or assumed to be57

negligible (by the selection of data). The roots of these approaches can be found in early work focusing on indirect58

effects involving species interactions in multispecies communities (Levine, 1976; Lawlor, 1979) who recognized that59

pairwise species interactions could be separated into direct components (where species affected each other directly60

by proximate effects on birth or death rates) or indirect effects (where the effect of a specieson another was mediated61

by direct effects on other mediating species by chains of direct effects).This work highlighted that observable effects62

of species on each other were most often related to ‘net effects’ that involved the entire network of possible indirect63

and direct effects and showed that net interaction between pairs of
:
It
:::::::::
typically

::::::::
attempts

::
to

:::::
infer

:::::::
pairwise

:::::::::::
interactions64

::
by

::::::::::
comparing

:::::::::::
abundances

::::::
across

::::::::
different

::::::::::
overlapping

::::
sets

:::
of speciesinvolving such indirect effects might have little65

similarity to the direct interactions that drive them. These authors proposed that such net interactions could be66

derived in the case of linear models as the coefficients in the inverse of the community matrix that describes direct67

interactions , suggesting one way forward for analyzing community data to interpreting the resulting distributions68

(see below).69

Schaffer (1981), pointed out that this was not likely to work in the case where qualitative differences in the species70

composition (presence of absence of individual species in the community)could strongly, and even qualitatively, modify71

the nature of net interactions among pairs of species. This problem could even involve rare (and thus perhaps hard to72

detect) species effects. More recently the idea that the inverse of the community matrix could help model net effects73

has been tentatively invoked as a way forward for interpreting ,
::::

see
::::
e.g.

:::::::::::::::::::
(Barbier et al., 2021)

:
.
::::::::
Another

::::::::
problem74

:::::::
remains:

:::::
how

:::::::
species

:::::::::::
interactions

:::::::
depend

::
on

:::::
their

::::::
biotic

::::::::
context,

::
as

::
it
::
is
::::
not

:::::::
obvious

:::::
that

:::
two

:::::::
species

::::::::
interact

:::
the75

::::
same

::::
way

::::::::::
regardless

::
of

::::::
which

:::::
other

::::::
species

::::
are

:::::::
present.

::::
We

::::
wish

:::
to

:::::
argue

::::
here

:::::
that

:::::::::
ecological

::::::::
dynamics

:::::::::::
inescapably76

:::
give

::::
rise

:::
to

:::::
some

:::::::
context

:::::::::::
dependence.

::::
To

::::::
clarify,

::::::
while

:::
one

:::::
may

:::::::::
intuitively

::::::
think

::
of

::::::
biotic

:::::::::::
interactions

::
as

::::
how

::::
one77

:::::::
species’

::::::::::
abundance

:::::::
impacts

::::::::::
another’s,

:::::::::::
abundances

:::
do

::::
not

:::::::
directly

::::::
cause

::::
each

::::::
other.

::::::::
Rather,

:::::::
species

:::::::::::
abundances78

:::::::
directly

::::::::
influence

:::::::::
processes

::::::::
(species

::::::::::
dynamics),

::::
and

:::::
these

:::::::::
processes

:::
in

::::
turn

:::::::
control

::::::::
changes

::
in

:::::::::::
abundances

:::
in

:::
the79

::::
short

:::
or

::::
long

::::::
term.

:::::
Even

::
if

:::
the

::::::
direct

::::::
effects

::
of

::::
one

::::::
species

:::
on

:::::::::
another’s

::::::::
dynamics

:::::
were

:::::::::::::::::::
context-independent,

:::
its

:::
net80

:::::
effects

:::
on

:::::::::::
abundances

::
in

::::
the

::::
long

::::
term

::::
can

:::
be

::::::::
mediated

::::::
many

:::::
other

:::::::
species,

:::::
along

::::::
chains

:::
of

:::::::
indirect

:::::::
impacts

:::::::
playing81

:::
out

::::
over

::::::
time,

::::
and

::::
can

:::::
thus

:::::::
depend

:::
on

::::
the

::::::
whole

::::::::::::
community’s

:::::::::::
composition

::::::::::::::::::::::::::::::::
(Schaffer, 1981; Zelnik et al., 2024).82

:::
We

:::::
must

:::::::::
therefore

::::::::
carefully

::::::
define

::::::
direct

::::
and

::::
net

::::::
effects

::::
and

:::::::
specify

::::::
which

:::
we

::::
are

::::::
trying

:::
to

:::::
infer.

:::
It
::::

has
:::::

been83

::::::::
proposed

::::
that

:
co-distribution patterns

:::::
across

::::::
space

::::
can

:::
be

:::::
used

::
to

:::::::
deduce

::
a
:::::
fixed

:::::::
matrix

::
of

::::
net

::::::
effects

::::::::
between84

::::::
species (Ovaskainen et al., 2017), but this assumes that the variation is driven by environmental variables that85

affect the carrying capacity of individual species (and not the interaction coefficients) and that the composition of86

the community (presence-absence)
::::::
species

:::::::::::
composition

:
does not change over the metacommunity. This method is87

consequently not likely to be sufficiently robust to apply except under very highly controlled or limited conditions.88

Nevertheless, the analysis of distribution and co-distribution patterns of species in metacommunities show thatwhile89

these can be complex, some features can often
:::::::
suggests

:::::
that,

::::::
while

:::::::::
obtaining

::::::::::
exhaustive

::::::::::
parameter

:::::::::
estimates

::
is90

:::
still

:::::::::::
challenging

::::
(e.g.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Blanchet et al., 2020; Poggiato et al., 2021; Leibold et al., 2022),

:::::
some

::::::::
broader

:::::::
features

::::
can91

be related to
:::
the

:
processes that generate them (Ovaskainen et al., 2017; Ovaskainen & Abrego, 2020; Leibold92

et al., 2022). For instance, it may be possible to obtain good estimates of the average competition strength in93

a community (Fort, 2018). On the other hand, deriving more exhaustive parameter estimates is still challenging94

(
:
A

::::::
body

::
of

::::::::::
theoretical

::::::
work

:::
on

::::::::
so-called

:::::::::::
“disordered

:::::::::
systems”

::::::::::::::::::::
(Barbier et al., 2018)

::::::::
proposes

:::::
that,

:::::
when

::::::
biotic95

::::::::::
interactions

::::
are

:::::::::
numerous

::::::::
enough

::::
and

::::::::::
sufficiently

::::::::::::
independent

:::::
from

:::::
each

:::::
other

::::::::::::::
(unstructured,

::::::::
contrary

:::
to

:
e.g.96

(Blanchet et al., 2020; Poggiato et al., 2021; Leibold et al., 2022)
:
a
:::::::::::
competitive

::::::::::
hierarchy),

:::::
they

::::
can

:::
be

:::::::
treated

:::
as97

:::::::::::
random-like,

::::
and

:::::
only

:::::
their

:::::
mean

::::
and

::::::::
variance

:::::::
matter

:::
in

:::::::::::
determining

:::::::::
outcomes

:::
of

::::::::::
community

:::::::::
assembly

:::::
such

::
as98
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:::::::
diversity

:::
or

::::::::
stability. Inspired by theory on community assembly in highly diverse biotas under the simplifying99

assumptions of ‘highly disordered’ interactions (Barbier et al., 2018)
::::
this

::::::
theory, we hypothesized that statistical fea-100

tures (e.g. mean and variance of either direct or net effects) may be a more robust inference target than the precise101

network of interactions. We further wondered if these statistical properties might also be robust to some of the102

other concerns outlined above such as the existence of composition change, the amount of dispersal and degree of103

environmental variation.104

Here, we propose to explore limits to inference that stem from the very nature of the dynamical processes,105

which entangle contributions from the environment and from multiple species in ways that might or might not106

be possible to disentangle at all. We use process-based simulations of community assembly in disordered com-107

munities (Barbier et al., 2018)
:::
(as

:::::::
defined

::::::
above)

:
to generate simulated data under different conditions involving108

species niches, environmental gradients, dispersal and interaction strength. We
:::::::
consider

:::::::::::::
predominantly

:::::::::::
competitive109

:::::::::::
interactions,

::::::::
although

:::
we

::::::
believe

::::
that

:::::
many

::
of

::::
our

::::::
results

:::::
would

:::::::
extend

::
to

::::::::::
facilitation,

::::::::
because

:::
our

::::::
simple

:::::::::::::
Lotka-Volterra110

:::::
model

::::
can

:::
be

::::::::
unstable

:::::
under

::::::
strong

:::::::::::
facilitation.

:::
We

:
then infer parameters from the analysis of resulting patterns to111

evaluate how well they can be used under these various scenarios.112

Given that previous studies have already established that biotic interactions can strongly bias our estimates of113

species’ environmental preferences (Poggiato et al., 2021), we go one step further to show that, even in a setting where114

we could assume a good estimate of these environmental preferences, we may still be unable to correctly extract115

species’ interactions from their spatial co-occurrence. Yet we find that, even when species interactions cannot be116

estimated in detail, it remains possible to correctly infer their community-level statistics, i.e. how strong and diverse117

biotic interactions are overall in the ecological dynamics of the community. This suggests that we may extract more118

robust information out of spatial patterns by asking for a less detailed description of the underlying processes.119

1 Methods120

To evaluate how we might infer processes involving species interaction coefficients from patterns in species distribu-121

tions in a landscape or metacommunity, we considered a highly simplified modeling framework as a limiting case. We122

assumed that species interacted in a spatially continuous lattice in which local (within cells) interactions could be123

described by simple Lotka-Volterra equations connected by dispersal from nearby cells. Previous work on inferring124

species interactions from possible distribution patterns suggested that this could work under similar assumptions,125

at least under some limiting conditions) (Levine, 1976; Lawlor, 1979). We assume that more complex assumptions126

(e.g. non-linear interactions, heterogeneous dispersal etc), would make the inferences we are interested in even less127

likely and our approach should thus be seen as an ‘optimistic’ evaluation. In essence, we are asking “how well can128

we hope to do in making such inferences with current approaches?”129

We intuit that a significant obstacle to inferring the details of species interactions is the covariation between the130

abundances of all interaction partners, and between each of those
::::
them

:
and the environmental factors: we cannot131

discriminate how strongly each of these factors impacts the presence of any given species if our observations do not132

provide ‘natural experiments’ where they vary independently (or actual experiments that impose various species133

compositions in the same environmental conditions (Barbier et al., 2021)). Therefore, we start by focusing on two134

highly contrasting cases. In one case, we model a scenario that is most likely to be successful in inferring interactions135

parameters from distributions, because many species compositions are realized for each environmental condition in136

the absence of local dispersal. We then contrast this with a scenario that includes dispersal that allows environmental137

tracking by species in the metacommunity.138

Within these two scenarios, we analyze a number of simulations that vary in the mean and variance of species’139

interaction strengths, while remaining in .
::::

We
::::::

know
:::::
from

:::::
prior

:::::::::
literature,

::::
e.g.

:::::::::::::::::::::::::::::::
Roy et al. (2020); Hu et al. (2021),140

::::
that

:::
our

::::::::::
simulation

::::::
model

:::::
may

:::::::
exhibit

::::::::
complex

:::::::::
dynamics,

:::::
such

::
as

:::::::
chaotic

::::::::::::
fluctuations,

:::::
when

:::::::
species

:::::::::::
interactions141

:::
are

::::::::::
sufficiently

:::::::
strong.

:::
To

:::::::
situate

::::::::
ourselves

::::::
again

::
in

::::
the

:::::
most

:::::::::
favorable

::::::
setting

::::
for

:::::::::
inference,

:::
we

::::::
choose

:::::::::
moderate142

::::::::::
interactions

::::
and

::::::::
dispersal,

:::
to

::::::
remain

::::::
within

:
a dynamical regime of

:::
that

:::::::::::
corresponds

::
to

::::
the ‘species sorting’ (Leibold et al., 2004)143

where we expect species abundances to
::::::::
paradigm

::
of

::::::::::::::
metacommunity

::::::
theory

:::::::::::::::::::
(Leibold et al., 2004)

:
:
:::::::
species

::::::::::
abundances144

reach a stable equilibrium that reflects how favored they are in their local abiotic and biotic environment. In each145

simulation, we then attempt to infer interactions in detail, as well as derive their mean and variances.146

1.1 Model setting147

We consider a metacommunity on a 2D landscape of 64 × 64 pixels, each represented by a coordinate vector x. At
each point, we model a single environmental factor E(x) whose values range in [−50, 150] (Fig. 1). We then simulate
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Figure 1: Environmental factor and final species abundances across the landscape in an example simulation run.
(a) Landscape E(x) with x a two-dimensional coordinate vector (64 × 64 pixels

:::::
called

:::::::
patches). (b) Histogram

P (E) of values of the environmental factor. (c) Centers ci (dots) and width wi (bars) of abiotic niches for all 20
species. (d-e) Equilibrium abundances Ni(x) for all species (rescaled by extinction threshold Nc = 10−3 so that
values less than 1 indicate local extinction). The two colonization scenarios described in Sec. 1.2 are represented
here: (d) environment tracking, where every species is initially seeded in every patch (or are allowed small but
non-zero

::::::::
moderate

:
dispersal), and (e) dispersal limitation, where species are seeded independently in 50% of patches

::
at

::::::::
random,

:
and cannot disperse. We note

:
In

::::
the

::::::
latter

:::::
case,

:::::::
species

:
that

:::::
would

:::::::::::
outcompete

::::::
others

:::
in

::
a

:::::
given

::::::::::::
environmental

:::::::::
condition

::::::
might

:::
be

::::::
absent

:::
by

:::::::
chance

::
in

:::::
some

:::::::
patches

:::::
with

:::::
that

:::::::::
condition.

::::::
Thus,

:
several species go

fully extinct at the landscape level from
:::
due

:::
to competition in the environment tracking scenario (d)whereas

:
,
:::::
while

all species are present in at least part of the landscape in (e). Parameters: 〈wi〉 = 50, 〈Aij〉 = −0.3, std(Aij) = 0.09,
D = 0.
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Lotka-Volterra dynamics with dispersal from neighboring patches y

dNi(x, t)

dt
= Ni(x, t)

Ki(x) +AiiNi(x, t) +
∑
j 6=i

AijNj(x, t)

 +D
∑

y∈nei(x)

(Ni(y, t)−Ni(x, t)) (1)

Furthermore, species are considered extinct when Ni < Nc = 10−3: their abundances
:
,
::::
but

:::
are

:::::::
allowed

:::
to

::::::
invade148

:::::
again:

:::::
their

:::::::
growth

::::
rate

::::::
dNi/dt::

is
::::::::
replaced

:::
by

::::::::::::::
max(0, dNi/dt),::::::

which
::::
may

:::::
allow

:::::
them

:::
to

::::::
regrow

::::::
above

:::
the

:::::::::
extinction149

::::::::
threshold

::
if
::::
this

::::
rate

::::::::
remains

:::::::
positive.

::::
At

:::
the

::::
end

::
of

::::
the

::::::::::
simulation,

:::
the

:::::::::::
abundances

:::
of

::::::
species

::::::
under

:::
the

:::::::::
threshold150

are set to zero, and only allowed to vary if their net growth rate d logNi/dt becomes positive (corresponding to an151

invasion)
::
to

::
be

:::::::
ignored

:::
in

:::
our

::::::::
analyses.152

Intra-specific competition is set to Aii = −1 for all species, while inter-specific interaction coefficients Aij are153

independent of the environment and drawn randomly for each species pair (i, j) from a normal distribution with154

prescribed mean 〈A〉, standard deviation stdA, and symmetry symA = corr(Aij , Aji). ::
We

:::::::::
typically

::::
take

::
a
:::::
large155

:::::::
negative

::::::
mean,

:::
so

::::
that

:::::::::::
coefficients

:::
are

::::::::::::::
predominantly

:::::::::::
competitive,

:::
to

::::::
avoid

:::
the

::::::::::
breakdown

:::
of

::::
the

:::::::::::::
Lotka-Volterra156

:::::
model

:::::
with

::::::
strong

:::::::::::
facilitation.157

The coefficients Ki determine each species’ carrying capacities (equilibrium abundance in monoculture) since158

Aii = −1, and thus Ni = Ki at equilibrium in the absence of other species and of dispersal. These carrying159

capacities are modelled using a unimodal “niche” function of the environmental factor:160

Ki(x) = e−(E(x)−ci)2/2w2
i − µi (2)

with ”mortalities” µi drawn uniformly between 0 and 0.5, niche centers drawn uniformly ci ∈ [0, 100] and widths wi161

normal i.i.d. (see parameters in SI). The addition of µi ensures that Ki < 0 when the environment deviates enough162

from species’ optimum, i.e. species may not grow at all in sites that are too unfavorable.163

Previous
::
As

::::::
noted

::::::
above,

::::::::
previous

:
theoretical and numerical work (Bunin, 2017; Zelnik et al., 2021) has allowed164

us to choose parameters in this model in order to select a regime of ‘species sorting’, i.e. species abundances reaching165

a stable equilibrium in each site based on local environment and interactions: this requires that stdA is small enough166

to avoid loss of stability leading to complex nonequilibrium dynamics (Bunin, 2017), and D is small enough to avoid167

significant source-sink dynamics and mass effects, i.e. situations where local abundance are strongly driven by fluxes168

from neighboring sites (Leibold et al., 2004; Zelnik et al., 2019). These other situations may also be of ecological169

relevance, but the regime considered here was the most appropriate considering the questions we wish to tackle, as170

argued in Discussion.171

1.2 Colonization scenarios and dispersal172

We expect that interactions can be inferred more successfully in biodiversity experiments where different species173

compositions are imposed in the same environmental conditions (Barbier et al., 2021). This suggests testing two174

distinct scenarios for how species are distributed in the landscape (Fig. 1):175

(DL) “Dispersal limited” scenario where each species is only seeded (i.e. given positive initial abundance) in half176

of the patches at random, and cannot disperse between patches.177

(ET) “Environment tracking” scenario where all species are initially seeded in every cell (or can freely disperse,178

usually setting D = 10−3, see below), and survive or go extinct deterministically because of abiotic and biotic179

conditions.180

We will also vary the dispersal coefficient D, to check whether the DL scenario disappears and ET prevails as soon181

as D > 0 or at some higher value of dispersal.182

1.3 Defining direct and net effects183

The matrix Aij represents direct effects, i.e. the instantaneous impact of species j’s abundance Nj on the
::::::::
dynamics184

:
(per capita growth rate)

:
of species i at a given time t. By assumption, in the generalized Lotka-Volterra equation185

(1), these effects are context-independent – they are characteristic of each species pair, and fixed
:::::::
constant

:
across186

environmental conditions and across the landscape. This provides an important test case for our ability to infer187

species interactions, since it entails that we can truly assign a ‘ground truth’ value to these interactions that we may188

hope to recover through some inference method.189
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::::::::
However,

:::::
these

::::::
direct

::::::
effects

:::
are

:::
not

::::::::::
necessarily

:::::
what

:::
we

:::
try

:::
to

::::
infer

:::::
from

:::::::::
empirical

::::::::::::::
metacommunity

:::::
data,

::::::
where190

::
we

::::::
rarely

:::::
have

::::::
access

:::
to

:::
per

::::::
capita

:::::::
growth

::::::
rates.

::::::::
Instead,

:::
we

:::::::::
typically

::::
care

::::::
about

::::
how

::::
the

::::::::
presence

:::
of

:
a
:::::::

species191

::::::::
influences

:::::::::
another’s

:::::::::::
abundance.

:::::
Since

::::
this

:::::::::
influence

:::::
could

:::::::
change

::::
over

:::::
time,

:::
we

:::::
must

:::::::
specify

::::
this

::::::::
question

:::::::
further,192

:::
e.g.

::::
ask

::::
how

::
a
:::::::
species

::::::
affects

:::::::::
another’s

::::::::::
abundance

:::
in

:::
the

:::::
long

:::::
term,

:::
at

::::::::::
dynamical

:::::::::::
equilibrium.

:::::
The

:::::
roots

::
of

::::
this193

:::::::
question

::::
can

:::
be

:::::
found

:::
in

:::::
early

:::::
work

::::::::::::::::::::::::::
(Levine, 1976; Lawlor, 1979)

::::
who

:::::::::
recognized

:::::
that

::::::::
pairwise

::::::
species

:::::::::::
interactions194

:::::
could

::
be

:::::::::
separated

::::
into

::::::
direct

:::::
effects

:::::::
(where

::::::
species

::::::::
affected

::::
each

:::::
other

:::::::
directly

:::
by

:::::::::
proximate

::::::
effects

:::
on

::::
birth

:::
or

:::::
death195

:::::
rates)

::::
and

:::::::
indirect

::::::
effects

::::::::::
(mediated

:::
by

::::::
chains

::
of

::::::
direct

::::::
effects

:::::
from

:::
one

:::::::
species

::
to

:::::::::
another).

:::::
This

:::::
work

::::::::::
highlighted196

::::
that

::::::::::
observable

::::::
effects

::
of
:::::::

species
:::

on
:::::

each
:::::
other

:::::
were

:::::
most

::::::
often

:::::::
related

::
to

:::::
‘net

:::::::
effects’,

:::::
that

::::::::
involved

:::
the

::::::
entire197

:::::::
network

::
of

::::::::
possible

::::::::
indirect

::::
and

:::::
direct

:::::::
effects,

::::
and

:::::
may

:::::
have

::::
little

::::::::::
similarity

::
to

::::
the

::::::
direct

:::::::::::
interactions

::::
that

:::::
drive198

:::::
them.

:
199

:::
For

::::::::::::
mathematical

:::::::
reasons

:::::::::
presented

:::::::
briefly

::::
here

::::
and

:::::::::
explained

::
in

:::::
detail

:::
in

::::::::::::::::::
(Zelnik et al., 2024),

:::::::
Levine

::::
and

::::
later200

:::::::
authors

::::::::
proposed

:::::
that

:::
net

::::::::::::
interactions

:::::
could

:::
be

:::::::
derived

:::
as

::::
the

::::::::::
coefficients

::
in

::::
the

:::::::
inverse

::
of
::::

the
:::::::
matrix

::
of

::::::
direct201

:::::::::::
interactions.

:
In the absence of dispersal (D = 0), the equilibrium condition for the subset s(x) of species that coexist202

at location x is given by equation (1) with the content of the parentheses set to 0 (since dNi/dt = 0 but Ni > 0)203

0 = Ki(x) +
∑

j∈s(x)

AijNj(x, t). (3)

This linear system of equations can therefore be inverted (Levine, 1976) to yield the equilibrium abundances204

N∗i (x, t) = −
∑

j∈s(x)

(A∗(x))
−1
ij Kj(x) (4)

with A∗(x) the submatrix of A restricted to the survivors at site x. As a consequence, we can define205

V (x) = − (A∗(x))
−1

(5)

the matrix of net effects at site x, which represents the long-term consequences of interactions: how
:::::::::::
permanently206

changing the carrying capacity Kj of species j (making the local abiotic or biotic environment more or less favorable207

to it) will permanently
:
,
::::
e.g.

::::
via

:::
an

::::::::::::
experimental

:::::::::::
treatment)

::::
will modify the equilibrium abundance of another208

species i.
::::
More

::::::::
broadly,

:::
we

::::
can

::::::
define

:::
Vij:::

as
::::
how

::::
any

::::::::::
permanent

::::::
change

:::
in

:::
the

:::::::::
dynamics

::::::::::
(per-capita

:::::::
growth

:::::
rate)209

::::::::::
d logNj/dt :::::::

modifies
::::
the

::::::::::
equilibrium

::::
N∗i .

:
210

::::::
Clearly

::::
net

::::
and

::::::
direct

::::::
effects

:::
are

::::
not

:::::::::::
immediately

::::::::::::
comparable,

:::::
since

::
A

::::::::::
represents

:::
the

:::::::::::::
instantaneous

:::::::
impact

::
of211

:::
one

:::::::
species’

::::::::::
abundance

:::
on

::::::::
another’s

::::::::::
dynamics,

:::::::
whereas

:::
its

:::::::
inverse

::
V

:::::::::
represents

::::
the

:::::::::
long-term

::::::
impact

::
of
::::
one

:::::::
species’212

::::::::
dynamics

:::
on

:::::::::
another’s

:::::::::::
abundance.

:::::
Yet

::
it
::::

can
:::

be
:::::::

shown
:::::
that,

::::::::
properly

::::::::
defined,

::::
net

::::::
effects

::::
can

:::
be

:::::::::::
understood213

::
as

::::
the

::::
sum

:::
of

:::
all

::::::
chains

:::
of

::::::
direct

::::::
effects

:::::
that

::::::::
connect

::
i
::::
and

::
j

:::
via

::::
any

::::::::
number

:::
of

::::::::::::
intermediate

:::::::
species

::
in

::::
the214

::::::::::
community

:::::::::::::::::
Zelnik et al. (2024)

:
.
:

215

1.4
::::::::::::::::::::::::
Context-dependence

:::
of

:::::
net

::::::::
effects216

::::::::::::::
Schaffer (1981)

::::::
pointed

::::
out

::::
that

::::
the

:::::::
inverse

::
of

::
a

::::::
matrix

::::::::
depends

::::::::::
sensitively

:::
on

:::
all

:::
its

::::::::
elements,

::::
and

:::::
thus,

:::::
even

:::
for217

::::::::::::::::::
context-independent

::::::
direct

:::::::::::
interactions

::::
Aij ,::::

the
:::::::
specific

:::::::::::
composition

::
of

:::::::::
surviving

:::::::
species

::::
can

::::::::
strongly

:::::::
modify

:::
the218

:::::
value

::
or

::::::
nature

:::
of

:::
net

:::::::::::
interactions

::::
Vij .::::

For
::::::::
instance,

:::::::
adding

:
a
:::::
third

:::::::
species

::::
may

::::::
cause

:::
two

:::::::::::
competitors

:::
to

::::::::
facilitate219

::::
each

:::::
other

:::::::::
indirectly

::::::::
through

:::::
their

:::::::::::
competition

:::::
with

:
a
::::::::
common

:::::::
enemy.

::::::
While

:::
it

::::
may

:::::
seem

:::::::::::::::
counter-intuitive

:::::
that,220

:::
say,

::::
net

::::::
effects

::::::::
between

::::
two

:::::::::
dominant

::::::
species

::::::
might

:::::::
change

::::::::::
drastically

::::
even

:::::
from

:::::::
adding

:
a
:::::

rare
:::::
third

:::::::
species,

::
it

::
is221

:::::::::
important

::
to

:::::
point

::::
out

::::
that

:::::
these

::::::
effects

:::
are

::::
fully

::::::::
realized

::::
only

::
in

:::
the

:::::
long

:::::
term:

::::
the

::::::
inverse

::::::
matrix

::::::::
appears

::::::::
naturally222

:::::
when

:::::::::
computing

:::::::::::
equilibrium

::::::::::
abundances

:
(4)

::
so

::::
that

:::::
even

:
a
::::
rare

:::
or

:::::::::::
slow-growing

:::::::
species

:::
has

:::::
time

::
to

:::::
exert

:::
or

:::::::
mediate223

:::::::::
significant

:::::::
impacts

:::
on

:::::::
others.

:::::::::
Observing

:::::::::::
abundances

::::::::::::::::
out-of-equilibrium

::::::
could

:::::
lessen

::::
the

::::::::::
importance

:::
of

::::
very

:::::::
indirect224

:::::
paths,

::::
and

:::::
limit

:::::::
context

:::::::::::
dependence

::::::::::::::::::
(Zelnik et al., 2024).

:
225

Clearly, if species composition s(x) depends on environmental conditions, then so will net effects, even assuming226

fixed direct effects Aij across the entire landscape. Fig. 2 demonstrates this context-dependence of net effects.227

For non-negligible dispersal D > 0, there is no simple linear relationship between abundances and carrying228

capacities. Therefore, net effects at each site depend not only on local species composition, but also on species229

abundances in other sites as well as the local abundances. A generalization of V near equilibrium can still be made230

using the inverse of the Jacobian matrix for the full multi-patch dynamics (Gravel et al., 2016). Here we always231

retain very small values of dispersal D and this issue does not occur
::::
arise.232
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Figure 2: Net effects vary throughout the landscape due to changes in species composition, as illustrated here in one
example simulation

::::
with

::::::::
dispersal

::::::::::::
(environment

::::::::
tracking

::
in

::::
Fig.

:::
1). While direct effects Aij (instantaneous impact

of species j on growth of i) are fixed by assumption in our model (1), net effects Vij (long-term impact of species j on
equilibrium abundance of i) are context-dependent and vary due to the presence or absence of other species. (a) A
number is assigned to each species composition, and mapped through the landscape. Rare compositions are assigned
number 0. (b) The fixed matrix of direct effects A, and two examples of submatrices restricted to locally surviving
species from two different sites. (c) Inverting these two submatrices gives local matrices of net effects, Vij(x) at each
site x, where individual elements are now different between localities even for pairs that appear in both localities.
(d) Histogram of local net effects for the most abundant species pair in the metacommunity (species 3 and 4). The
net effect V3,4(x) is computed at every site x in the landscape. The mean of these values over the whole landscape
gives the spatial average V ij referenced in Fig. 3 and 4.
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1.5 Inferring abiotic niches233

A frequent objective when modelling species distributions in space is ascertaining the impact of environmental factors,234

also understood as the ‘fundamental niche’ of a species (i.e. what range of abiotic conditions it tolerates), often seen235

as a prior step to deciphering the impact of species interactions. It is however understood that biotic interactions236

transform this fundamental niche into a ‘realized niche’ which can bias our perception of species’ environmental237

preferences: for instance, certain species might only occur in extreme environments because other competing species238

prevent them from occupying the more temperate environments that they would prefer (Poggiato et al., 2021).239

We choose here to explicitly model
::::
Since

::::
our

:::::
focus

::
is

::::::
rather

::
on

::::
the

:::::::::
challenges

::
of
::::::::
inferring

::::::
biotic

:::::::::::
interactions

::::
even240

:::::
under

:::::::::
favorable

::::::::::
conditions,

:::
we

:::
do

::::
not

:::::
delve

::::::
deeply

:::::
into

:::
the

::::::::
problem

::
of
::::::::::::::

simultaneously
:::::::::::
determining

:::::::
abiotic

::::::
niches241

:::
and

::::::::::::
interactions,

:::::
which

::
is
:::::::
central

::
in

:::::
joint

:::::::
Species

:::::::::::
Distribution

:::::::
Models

::::
e.g.

::::::::::::::::::::::
Ovaskainen et al. (2017).

:
242

:::::::::::
Nevertheless,

::::::
using

:::
our

::::::::::
simulated

:::::
data,

:::
we

:::::
could

:::::::
simply

:::
try

:::
to

::
fit

::::
the

::::::::::
parameters

:::
of

::::::::
equation

:
(2)

:
,
:::
i.e.

::::
the

::::
true243

:::::::::
functional

::::
form

:::::
used

::
to

::::::::
generate

::::
the

:::::
data,

:::::::
ignoring

:::::::
species

:::::::::::
interactions.

:::::
This

::::::::
amounts

::
to

:::::::::
modelling

:
abiotic niches as244

carrying capacities Ki that have a Gaussian dependence in the environmental factor E, with species-specific optima245

and widths (Fig. 1).246

Within
::
As

:::
we

:::::
show

::
in

:::::::::
Appendix,

::::::
within

:
the dynamical regime and parameter range considered in our simulations,247

species interactions are indeed distorting the apparent relation between abundance and environment , as illustrated248

in
:
(Fig. S1 and S2, but

:
).
:

249

:::
Yet

:
this distortion remains sufficiently limited

:
in

::::
our

::::
case

:
that an observer would get a passable estimate of each250

species’ environment preferences, i.e. the center of its fundamental niche and a lower bound on its width, simply by251

fitting a Gaussian curve to the maximum abundance seen in each environmental condition (details in Appendix).252

:::::::::
Therefore,

::
in
::::

the
::::
rest

:::
of

:::
the

:::::
main

:::::
text,

:::
we

::::::::
entirely

::::::
bypass

::::
the

:::::
issue

::
of

::::::::
inferring

:::::::
abiotic

::::::
niche,

::::
and

::::::::::
investigate253

::::::::
inference

:::::::::
challenges

:::::
that

:::::::
remain

::::
even

:::::::::
assuming

::::
that

::::
we

::::::::
perfectly

:::::
know

::::
the

::::::::
carrying

:::::::::
capacities

::
of
::::::

every
:::::::
species

::
at254

:::::
every

::::::::
location.

:
255

1.6 Inferring biotic interactions256

We infer biotic interaction effects through multilinear
::::
least

:::::::
squares

:
regression in two distinct ways. On one hand, we257

can infer estimates of net effects V̂ij as the multilinear coefficients in258

Ni(x) =
∑
j

V̂ijKj(x) (6)

On the other hand, following (Xiao et al., 2017; Barbier et al., 2021), we can infer direct effects Âij as the multilinear259

coefficients in260

Ni(x) = Ki(x)−
∑
j 6=i

ÂijNj(x) (7)

In the first case, we need to know the abiotic niches, i.e. carrying capacities Ki(x) across the landscape. In the261

second, we can either use known carrying capacities, or infer them as the (site- or environment-dependent) intercept262

of the relation between the abundance of species i and other species.263

Since we noted above that deducing environmental preferences is not the main
::::
most

::::::
severe obstacle in our chosen264

simulation setting, we hereafter assume that carrying capacities Ki(x) determined by the abiotic factor E(x) are265

known prior to inferring interactions (e.g. if they are measured in experiments or can independently be estimated266

from species distributions). We aim to show that even this favorable case presents considerable difficulties, that exist267

independently from the problem of inferring environmental effects (see Appendix for further discussion).268

2 Results269

2.1 Direct and net effects270

Modern inference methods, e.g. (Ovaskainen et al., 2017), attempt to simultaneously deduce species’ interactions,271

environmental preferences and migration effects from noisy or limited data. Yet significant methodological or concep-272

tual difficulties may arise even with less ambitious goals. Here, we mainly discuss the possibility of estimating species273

interactions under optimal data conditions: sampling the whole landscape at equilibrium, without any measurement274

error, and having full knowledge of carrying capacities Ki(x) (i.e. environmental preferences) for each species.275
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Figure 3: Inferring the full matrix of direct or net effects in the example simulation run under optimal conditions
(noiseless data, full knowledge of the abiotic niche of each species, no dispersal, see Methods). Each point corresponds
to a pairwise effect of species j on species i. Dashed lines indicate linear regressions. Each row corresponds to a
colonization scenario (see Fig. 1 and Sec. 1.2). (a,c) Direct effects. On the y-axis, values Âij inferred through
hyperplane regression of Ni(x) against Nj(x); on the x-axis, ground truth matrix, Aij . (b,d) Net effects Vij . On

the y-axis, values V̂ij inferred through hyperplane regression of Ni(x) against Kj(x). On the x-axis, “ground truth”
obtained by spatial average over local matrices, V ij (see Methods).
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Figure 4: Inferring all interactions or only statistics across many simulation runs with different parameters. Each
point is a simulation run, corresponding to one of two colonization scenarios (ET: orange circles, DL: blue crosses) and
various values of ground truth statistics 〈A〉 ∈ [0.01, 0.03, 0.05, 0.3] (symbol size) and std(A) (symbol color saturation,
obtained by multiplying each value of 〈A〉 by a value in [0.001, 0.01, 0.1, 1]). (a,b) R2 of full matrix inference (see e.g.
Fig. 3 for one simulation run) is only successful for direct effects under dispersal limitation. However, the statistics

of inferred interactions are robustly related to ground truth statistics, for both inferred direct and net effects, Âij

and V̂ij . This relationship is very strong for mean interaction (c,d), and weaker for standard deviation (e,f).
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We
:::::
break

:::::
down

::::
this

:::::
issue

:::::
into

:::
the

:::::::::
inference

:::
of

:::::
direct

::::::
effects

::::
and

:::
net

::::::
effects

::::::
whose

::::::::::
definitions

:::
we

::::::
recall

::::
here276

:::
(see

:::::::::
Methods

:::
for

:::::
more

::::::::
details).

::::::
Direct

::::::
effects

::::::::::
correspond

:::
to

:::
the

:::::::
matrix

:::
Aij:::

in
:
(1)

:::::
which

::::::::
describes

:::::
how

:::
the

:::::::
current277

:::::::::
abundance

:::
of

:::::::
species

:
j
::::::::::

influences
:::
the

:::::::::::::
instantaneous

:::::::::
dynamics

::::::::
(growth

::
or

:::::::::
mortality

:::::
rate)

:::
of

::::::
species

::
i.
:::::

Net
::::::
effects278

:::
are

:::::
given

:::
by

::::
the

:::::::
matrix

::::
Vij ::

in
::

(5)
:::::
which

:::::::::
describes

:::::
how

::
a

::::::::::
permanent

:::::::
change

:::
in

:::::::
species

:::
j’s

:::::::::
dynamics

:::::
(e.g.

:::
a279

::::::
change

:::
of

::::::::
carrying

::::::::
capacity,

:::
or

::::::::
removal

:::::
from

::::
the

:::::::::::
community)

::::::
would

:::::::
impact

::::
the

:::::::::::
abundance

::
of

:::::::
species

::
i
::
in

::::
the280

::::
long

:::::
term

:::::::::::::::::
Zelnik et al. (2024)

:
.
::::::
Direct

::::::
effects

::::
are

:::
not

:::::::
usually

:::::
what

:::
we

::::
try

::
to

:::::
infer

::
in
::

a
:::::::::::::
biogeographic

:::::::
context

:::::
since281

::
we

::::::
rarely

:::::
have

::::::
access

::
to

:::
the

::::::::::
population

:::::::
growth

::::::
rates,

:::
but

:::::
they

:::::::
mediate

::::
and

:::::::
explain

::::
net

::::::
effects

:::
on

:::::::::::
abundances.

:
282

:::
We see in Fig. 3(a,c) that the inference of direct effects still depends on the colonization scenario: it is successful283

with dispersal limitation (DL), but not with environment tracking (ET). In the DL scenario, the inferred matrix284

Âij is very similar to the ground truth matrix Aij , missing only a few interactions for species that are never present285

together in the landscape. In the ET scenario, estimates Âij are usually wrong and may even have the wrong sign,286

though the inference tends to improve here for stronger interactions (as this leads to fewer species coexisting, and287

thus a simpler inference task).288

As for net effects, in our Lotka-Volterra model they are ill-defined at the landscape scale: the value Vij depends289

on species composition, i.e. the set of surviving species, which varies across the landscape (Fig. 2). Still, we could290

hope that the average value 〈Vij〉 across the landscape (Fig. 2c) is meaningful. In that case, we expect it should291

correlate with the apparent net effect, defined as the regression slope of Ni against Kj (putting together values292

measured across the whole landscape).293

We find in Fig. 3(b,d) that this is not the case, which can be explained by the fact that the value of Vij and Kj294

are actually very correlated across the landscape, so a spatial average of Vij is not representative of local net effects295

(Fig. 2). We conclude that inferring landscape-scale net effects is an ill-posed problem, as they are not well defined296

even when direct effects are assumed constant.297

2.2 Interaction statistics298

While the full matrix inference is unsuccessful in many cases, we see in Fig. 4 that interaction statistics are more299

robustly estimated. Indeed, there is a very strong correlation between the ground truth mean interaction strength 〈A〉,300

and the mean measured over our empirical estimates
〈
Â
〉

, even when the individual elements Âij are unsuccessfully301

estimated.302

Likewise, there is a strong relationship between 〈A〉 and average net effects across the landscape, 〈V 〉 (Fig. 4d).303

These two quantities are not equal even in principle, but a robust relationship suggests that we could use one to304

infer the other. Standard deviations are also correlated between ground truth and inferred values, though more305

weakly (Fig. 4e,f). We notice that they are more sensitive to the colonization scenario (DL or ET) and thus we can306

only roughly deduce the true std(A) from its empirical estimate (especially at small values, stdA < 10−2) without307

knowing which dispersal scenario we are observing. Finally, symmetry is perfectly estimated in the DL scenario, but308

entirely incorrect in the ET scenario (see Appendix, Fig. S4).309

To summarize, it may be possible to infer the full matrix of direct effects for abundant data, with dispersal310

limitation or some other phenomenon decoupling species composition from the environment. The full matrix of311

net effects is not well-defined, and no inference method is successful. Under broader conditions, we can likely only312

estimate statistical features, most reliably the mean interaction strength.313

2.3 Influence of dispersal314

We show in Fig. 5 that, as we increase dispersal coefficient D from zero, the transition between dispersal limitation315

(DL) and environment tracking (ET) scenarios is abrupt in our model, occurring for D ≈ 10−3.316

When dispersal becomes able to overcome the initial absence of a species in a patch, by creating a migrant317

flux above the extinction threshold Nc and thus allowing species that can invade the patch to reach a nonzero318

equilibrium, local species composition becomes entirely determined by each site’s biotic and abiotic environment319

(rather than initial conditions and dispersal) and the ability to separate the influence of various species decreases320

abruptly, as their abundances co-vary much more strongly (which may be seen in Fig. S5 in Appendix).321

The abruptness of the transition is due to the fact that our model has a sharp extinction threshold Nc = 10−3.322

Thus, patches where dispersal cannot bring the abundance above the threshold cannot be colonized by the species.323

Many different species compositions in neighboring patches are preserved until dispersal allows crossing this threshold324

systematically for all species. However the total number of observed species compositions across the landscape is not325

sharp in D (Fig. S6 in Appendix), suggesting that the ability to correctly infer detailed interactions is not tied to326
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the diversity of compositions over the whole landscape, but rather simply to the existence of diverse compositions in327

close proximity.328

Figure 5: Effect of dispersal on the ability to infer the full matrix of direct species interactions Aij . On the x-axis
we represent the dispersal coefficient D in log 10 scale. On the y-axis we show the Pearson R2 of the fit between
true and inferred net effects. Each symbol is a simulation out of sets (all sets share the same landscape, each set
has a distinct interaction matrix, and each simulation within a set differs by its value of dispersal). Below, we show
the final abundance of one species across the landscape in one simulation set, for values of dispersal right below and
above the transition from dispersal limitation to environment tracking. The patchy appearance of the left-hand inset
is due to migrant fluxes from neighboring patches being too weak in many cases to overcome the local extinction
threshold, as explained in Section 2.3.

3 Discussion329

Many statistical and theoretical methods have been proposed to infer ecological interactions between species from330

their spatial co-distributions. The best-studied obstacle to this inference is the possible confounding effect of other331

factors that impact spatial distributions, e.g. the fact that species may appear positively associated because they332

have similar environmental preferences (Ovaskainen et al., 2017). Recent studies have discussed issues with methods333

devised to overcome this obstacle, for instance, that interactions may prevent us from correctly understanding species’334

environmental preferences (Poggiato et al., 2021) Here, we have mainly focused on two further obstacles to the precise335

inference of species interactions, arising even when we are in the most favorable conditions to address the problems336

noted previously.337

3.1
::::::::::::
Statistical

::::::::
issues

:::::
and

::::::::::::::::::::::
non-identifiability338

One obstacle is statistical in nature
:
,
:::
i.e.

:::::::::::
difficulties

:::
in

::::::::::
identifying

::::
the

::::::
model

::::
due

:::
to

:::::::::::::::
multi-colinearity. We find339

that we can successfully infer direct species interactions only in scenarios where species composition is forced to340

vary substantially and independently from the environment, for instance due to dispersal limitation or experimental341

manipulation (as in biodiversity experiments). We cannot do so if the same environmental conditions predictably342

lead to the same species composition, a situation that we call “environment tracking”.343

The issue is not only that effects of interacting with particular species may be confounded by environmental effects,344

but they may also be confounded by each other, as the abundances of multiple interaction partners tend to covary345
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positively or negatively based on their similar or dissimilar environmental preferences.
:::::
That

:::::
latter

::::::::
problem

::::::::
decreases346

:::::
when

:::::::::::
interactions

:::::
have

:::::
more

::::::::
variance

:::::
(Fig.

::::
4a)

::
or

::::::
when

:::::::
species

:::
are

::::::::::
differently

::::::::::
influenced

:::
by

::::::
many

:::::::::::
independent347

::::::::::::
environmental

:::::::
factors

::::
(see

::::::::::
Appendix,

::::
Fig.

::::
S7),

:::
but

::::
this

:::::
does

:::
not

::::::
suffice

:::::
here

::
to

::::::::::
completely

:::::::::
eliminate

:::
the

::::::::
problem

::
of348

:::::
model

:::::::::::::
identifiability.

:
349

:::
All

:::
our

::::::
results

:::::
were

::::::::
obtained

::
in

:
a
:::::::
setting

::::
that

::::::
should

:::
be

::::::
highly

::::::::
favorable

::
to

::::
the

::::::::
detection

::::
and

::::::::::
estimation

::
of

::::::
species350

:::::::::::
interactions:

:::::
there

:::
are

:::::::::::::::::::
context-independent

::::::::::
parameters

::::::::
defining

:::::
direct

::::::::::::
interactions,

::::::
species

:::::
often

:::::::
coexist,

:::::
they

:::::
reach351

:::::
stable

:::::::::::
abundances

::::
that

::::::
reflect

:::::
their

:::::::::::
preferences,

::::::::
dispersal

::
is

:::::
small

::::
and

:::::::::
intervenes

:::::::
mainly

::
to

::::::
allow

::::::
species

:::
to

:::::::
colonize352

:::::::
patches

:::::
where

:::::
they

:::::
were

::::
not

::::::
seeded

::::::::
initially

::::
(but

:::::
does

:::
not

::::::::::::
significantly

::::::
distort

:::::::::::
equilibrium

::::::::::::
abundances).

::::::::
Despite353

::
all

:::::
these

:::::::::
favorable

::::::::::::
assumptions,

:::
we

:::::
found

:::::
that

::
it

::::
may

::::
not

::::::
always

:::
be

:::::::
possible

:::
to

::::::::
precisely

::::
infer

::::
the

::::::
details

:::
of

::::::
species354

:::::::::::
interactions.

::::::::
Relaxing

:::::
some

:::
of

:::::
these

:::::::::::
assumptions

:::
to

::::::::
consider

:::::::
stronger

:::
or

:::::
more

:::::::::::::::::
context-dependent

:::::::::::
interactions

::::
(e.g.355

:::::::
priority

::::::
effects,

::::::::::::::
environmental

:::::::::::::
modification),

:::::
more

::::::::
complex

:::::::::
dynamics

:::::::
(chaos,

::::::::::
transients,

::::::::
external

::::::::::::::
perturbations),356

:::::::
stronger

:::::::
spatial

::::::
fluxes,

::::
and

:::::::::::::
observational

:::::
issues

::::::
(data

::::::::::
limitation,

::::::
errors

::::
and

:::::::
biases),

::
is
::::::
likely

::
to

:::::::::
introduce

:::::::
further357

:::::::::
difficulties

:::
but

::::::::
perhaps

::::
also

:::::::
different

:::::::::::::
opportunities

:::
for

:::
the

::::::::
inference

::
of

::::::::::::
interactions.

:::::::
Indeed,

:::
we

::::::::
speculate

::::
that

:::::::
various358

::::::::
obstacles

:::::
could

:::::
work

:::::::
against

:::::
each

:::::
other:

:::::::::
stronger

:::::::::::::
non-linearities

::::
may

:::::::::
somewhat

::::::::
alleviate

::::::
model

:::::::::::::::::
non-identifiability;359

:::::::::
conversely,

:::::::
having

:
a
:::::

large
::::::::

number
::
of

:::::::
species

::::
and

::::::::::
parameters

::::
may

::::
end

:::
up

::::::
being

:::
the

:::::
main

:::::::::
challenge

::
in

::::::
model

::::::
fitting360

:::
and

::::::::
override

:::
the

:::::::::::
importance

::
of

::::::
details

:::
of

::::
how

::::
each

::::::::::
interaction

::
is

:::::::::
modelled;

:::::::
finally,

:::::
other

:::::::::
dynamical

::::::::
settings,

:::::
such

::
as361

::::::
species

:::::::::::
abundances

::::::::::
fluctuating

::::::::::
chaotically

::::::
rather

:::::
than

:::::
being

:::
at

:::::::::::
equilibrium,

:::::
may

::::::
require

::::::::
entirely

:::::::
distinct

::::::::
methods362

::::
with

::::::::
different

::::::::::
challenges.

:
363

A more conceptual problem is
:::
lies

::
in

:
the context-dependence of interactions: there might not exist any constant364

number that would adequately represent “the effect of species j on species i” across a whole metacommunity, in which365

case our inference problem is ill-posed from the start. On the one hand, the Lotka-Volterra model used here (1) can366

be thought of as giving a lower bound on the amount of context-dependence we can expect in a plausible ecological367

setting. The model assumes total context-independence of all direct effects (per-capita instantaneous impacts on368

growth rates) between species. Yet, the ‘net effects’ between species, defined to include all indirect impacts arising369

over time and through intermediates (e.g. indirectly helping a species by directly hindering its competitors), are370

found to be highly context-dependent as soon as interaction strength is not very small (?)
:::::::::::::::::
(Zelnik et al., 2024). On371

the other hand, our choice of looking at long-term abundance patterns, letting species reach an equilibrium, is giving372

maximal opportunity for such indirect effects to play out – even a rare or slow-growing species has time to exert373

or mediate significant impacts on others, hence the fact that the matrix of net effects can change drastically when374

we remove a species, no matter how rare. Thus it may be that observing abundances out of equilibrium, driven375

by more complex ecological dynamics or external perturbations, and tracking temporal (or spatio-temporal) rather376

than purely spatial co-distributions, could lessen the interference that might be due to this context dependence and377

entanglement arising in communities at equilibrium.378

:::
Our

::::::
work

:::::::
stresses

::::
the

:::::::::::
importance

:::
of

:::::::::
correctly

:::::::::
specifying

::::::
which

::::::::
concept

:::
of

::::::
biotic

::::::::::
interaction

::::
one

:::
is

::::::
trying379

::
to

:::::
infer:

::::
for

:::::::::
instance,

::::::::::
estimating

::::::::::::::::::
context-independent

::::::
direct

:::::::
effects

::
is

::::::::::
sometimes

::::::::
possible

:::::
even

:::::
when

::::
net

::::::
effects380

::::
vary

::::::::::::
dramatically

::::::
across

:::
the

::::::::::
landscape.

::::::
This

::
is

:::
of

:::::::::
particular

:::::::::
relevance

:::
to

:::::::::
statistical

::::::::::
approaches

:::::::::
focusing

:::
on

:::
the381

:::::::::::::
co-distribution

::
of

:::::::
species,

::::
e.g.

:::::
joint

:::::::
Species

::::::::::::
Distribution

:::::::
Models

::::::::::::::::::::::
Ovaskainen et al. (2017).

:::::
The

:::::::
residual

::::::::::
covariance382

:::::::
between

:::::::
species

:::::
across

::::
the

:::::
whole

:::::::::
landscape

::::
can

::
be

:::::::::::
understood

::
as

::::
the

::::::
spatial

:::::::::::
aggregation

::
of

::::::
locally

:::::::
varying

:::
net

::::::
effects383

:::::
which

:::
we

:::::::
believe

::::
(see

::::::::::
Appendix:

:::::::::::
Estimating

:::::::::::
interactions

::::
from

::::::::
residual

:::::::
species

::::::::::::
co-variation)

::
is

:::
not

:::
an

:::::::::::
appropriate384

::::
path

::
to

:::::::
deduce

::::::
direct

::::::
effects.

:
385

3.2
:::::::::
Getting

:::::::
more

::::::
from

:::::
less386

Despite these two obstacles, we also found that the community-wide statistical properties, i.e. mean and variance, of387

direct interaction coefficients could be relatively well inferred from the observed species distribution patterns, even388

when our detailed estimates of pairwise interactions were entirely incorrect. We did not attempt here to develop389

novel techniques specifically for the purpose of inferring moments of the distribution of interaction strengths. Instead,390

we used simple methods to estimate all pairwise interactions, and then computed the moments of these estimates,391

even when they were individually wrong. It is likely that methods that would be tailored to capture statistical392

moments directly would be even more robust. But it is rather striking that applying the ‘wrong’ method still393

provides reasonable estimates of the moments: it suggests that, even when observational or experimental attempts394

at measuring interaction strengths (e.g. (Barbier et al., 2021)) yield incorrect numbers, these numbers might still have395

the right statistics to characterize how important and diverse species interactions are overall in the community-level396

ecological dynamics.397

All our results were obtained in a setting that should be highly favorable to the detection and estimation of species398

interactions: there are
::::
From

:::
an

:::::::::
empirical

:::::
point

:::
of

:::::
view,

::::
our

::::::
results

:::::
thus

:::::
carry

::::::::::::
encouraging

::
as

::::
well

:::
as

::::::::::
cautionary399
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:::::
notes.

::::::::::::
Species-level

:::::::::
questions

::::
may

:::::::
require

:::
the

:::::::
precise

::::::::
inference

:::
of

:
a
:::::
given

::::::::
pairwise

:::::::::::
interaction,

::::
and

:::
our

:::::
work

::::::
comes400

::::
here

::
as

::
a
::::::::

warning
:::

to
:::::
keep

::
in

::::::
mind

:::::::
possible

::::::::
barriers

:::
to

::::
that

:::::::::
inference

::::::
when

:::
we

:::
do

::::
not

::::
have

::::::::
grounds

:::
to

:::::::
assume401

:::::::
‘natural

::::::::::::
experiments’

::::
such

:::
as

::::::::::
permitted

::::
here

:::
by

::::::
strong

:::::::::
dispersal

::::::::::
limitation.

::::
On

:::
the

::::::
other

::::::
hand,

:::
we

:::
feel

:::::
that

:::
for402

:::::::::
empiricists

::::::::::
interested

::
in

::::::::::
estimating

::::
the

::::::::
intensity

:::
of

::::::
biotic

:::::::::::
interactions

::
in

::
a
:::::::::::
community

::
as

::
a
:::::::
whole,

:::
e.g.

::::
to

:::::
know403

:::::::
whether

:::::::::::
community

:::::::::::
composition

::
is
::

a
::::::
better

:::::::::
indicator

:::
of

:::::::::::::
environmental

::::::
states

::
or

::::::::
internal

::::::::::
dynamics,

:::
our

::::::::
findings404

:::::
bring

:::::
some

:::::
home

::::
and

:
a
::::::::::
suggestion

::
to

:::::
turn

::
to

::::::::
methods

::::
that

::::::
strive

::
to

::::::::
estimate

:::::::::::::::
community-wide

:::::::::
statistics

::::::
rather

::::
than405

:::::::::
individual

::::::::
pairwise

::::::
species

::::::::::::
interactions.406

:::::::
Finally,

::
we

:::::
must

::::::::
consider

:::
the

:::::::::
empirical

::::::::
relevance

::
of
::::
our

:::::::
study’s

::::::::::
assumption

::::
that

::::::
direct

::::::
species

::::::
effects

::::
are context-407

independent parameters defining direct interactions, species often coexist, they reach stable abundances that reflect408

their preferences, dispersal is small and intervenes mainly to allow species to colonize patches where they were not409

seeded initially (but does not significantly distort equilibrium abundances). Despite all these favorable assumptions,410

we found that it may not always be possible to precisely infer the
:::
and

:::::::
simply

::::::::
additive

::::
with

:::::
each

:::::
other

::::
and

:::::
with411

::::::::::::
environmental

:::::::
effects.

:::::
This

::::
may

:::::
seem

::::
like

::
a

::::::
highly

:::::::::
restrictive

:::::::::::
assumption,

::::::::
limiting

:::
the

:::::
value

:::
of

::::::
trying

::
to

:::::
infer

::::
such412

:::::
direct

:::::::
effects.

::::
We

:::::::::::
nevertheless

:::::::::
speculate

::::
that

::::
two

:::::
facts

::::::
make

::::
this

::::::::::
assumption

::::
less

::::::::::
restrictive

::::
than

:::
it

::::::
seems:

:::::
first,413

:::::::::
additivity

:
is
:::::
more

::::::
likely

::
to

::::
hold

:::::::::::::
approximately

:::
in

:::::
direct

:::::::
effects,

::::::
which

:::::
occur

::::
over

::
a

:::::
short

:::::
time,

::::
than

:::
in

:::::::::
long-term

:::
net414

::::::
effects;

::::
and

:::::::
second,

:::
the

::::::::::
congruence

::
of

:::::
many

::::::
causal

:::::::
factors

:::::::
(species,

:::::::::::::
environmental

:::::::::
variables)

:::::::::
hopefully

::::::
means

::::
that

:::
the415

details of species interactions . Relaxing some of these assumptions to consider stronger or more context-dependent416

interactions(e. g. priority effects, environmental modification), more complex dynamics (chaos, transients, external417

perturbations), stronger spatial fluxes, and observational issues (data limitation, errors and biases) , is likely to418

introduce further difficulties but perhaps also different opportunities for the inference of interactions
::::
each

::::
and

::::
how

::::
they419

:::::::
interact

::::::
matter

::::
less,

::::
and

::::::::
additive

::::::
effects

::::
may

:::
be

:
a
::::::::::::::
mechanistically

::::::
wrong

::::
but

::::::::::::::::::
phenomenologically

:::::
useful

:::::::::::
abstraction,420

::
at

::::
least

::::::
when

:::::::
focusing

:::
on

:::::::::::::::
community-wide

:::::::::
statistics

::::
and

::::::::
outcomes

:::
as

:::
we

:::
are

::::::::::
suggesting

::::
here.421

3.3
::::::::::::::
Conclusions422

In conclusion, metacommunity ecology provides a more comprehensive conceptual framework than the approaches423

that set the stage for inferring species interactions from co-distributions (Diamond, 1975; Connor & Simberloff,424

1979). Work to date relating metacommunity ecology to species co-distribution patterns (Morueta-Holme et al.,425

2016; Ovaskainen et al., 2017; Leibold et al., 2022; Christopher D. Terry et al., 2023) is providing some exciting426

new tools, but the connection between distribution patterns and ecological mechanisms remains elusive. This is,427

in large part, because correlations between species are highly sensitive, entangling multiple ecological processes and428

potentially the entire biota, as put forward by Schaffer (1981).429

We find that progress might be made by focusing on less detailed and more robust descriptions of distribution430

patterns. While it may rarely be possible to infer the full set of parameters describing a metacommunity, it might431

be more feasible to parameterize models inspired by statistical mechanics, e.g. (Gravel et al., 2016; Bunin, 2017),432

in which only overall statistics of parameters are used to predict a variety of ecological outcomes such as abun-433

dance distributions, dynamics and stability. In these so-called “disordered systems” models, outcomes are robust434

to changing many details of interaction coefficients, as long as species are not organized in a well-ordered structure435

such as a strict competitive hierarchy. Further refinements of these models have been proposed to capture important436

large-scale features of the ecological structure of interactions (Barbier et al., 2018). First steps toward parameterizing437

such models from empirical species co-distributions are being taken in very recent studies (Camacho-Mateu et al.,438

2023) and we expect that continued progress along these lines will prove timely and useful.439

Code availability440

All simulation code is written in Python and available from the following repository: https://github.com/mrcbarbier/441

morefromless442
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Supplementary Materials513

A Inferring carrying capacities514

We compare in Fig. S1 and Fig. S2 the fundamental abiotic niche Ki(E) for each species to the observed distribution515

of species abundances, to see whether the former can easily be deduced from the latter or appears distorted due to516

biotic interactions.517

The principle we use here is very simple: since interactions are almost all competitive in most of our simulations518

(some of the randomly-drawn values may be positive, representing mutualism, commensalism, etc. but they are519

infrequent), we expect the abundance to be at most equal to Ki(E) most of the time. Therefore we devise a very520

simple estimate of the fundamental niche by (1) binning observed species abundances into 20 bins based on the value521

of the environmental factor, (2) computing a higher bound within each bin (using the 95% percentile to be more522

robust to outliers), then (3) performing a Gaussian fit over
:::::
fitting

::::::::
equation

:
(2)

::::
with

:::::::
µi = 0,

:::
i.e.

:::
a

::::::::
Gaussian

::::::
curve,523

::
to these local maxima

::
by

::::::
linear

::::
least

:::::::
squares

::::::::::
regression,

:::::::
species

:::
by

::::::
species.524

(We note that in our simulation model, Ki can be negative, see (2), while the inference approach we use here can525

never correctly ascertain how bad an environment is when the species does not grow in it, so we do not attempt to526

fit the ‘mortality’ µi defined in (2))527

In Fig. S1, we see that the Dispersal Limitation scenario may help to correctly deduce the fundamental niche528

since there are many different species compositions in the same abiotic conditions, and some of these compositions529

may be closer to the species being alone, thus we generally recover the overall shape of the niche, though its precise530

parameters are slightly biased.531

In Fig. S2, we observe that in an Environment Tracking scenario, the shape of the realized niche may be quite532

different from the fundamental niche, as the (mainly competitive) interactions may restrict species to only a small533

part of their potential range. The inference of niche parameters is not as good; still, the environmental gradient is534

strong enough here that we can get a rough estimate of abiotic properties through our simple inference method. Given535

that the ET scenario is in any case unfavorable to inferring species interactions, we do not discuss the additional536

complexity of having wrong estimates of the carrying capacities Ki, and treat them as exactly known when trying537

to estimate interactions, but this additional difficulty could be discussed in future work.538

We show in Fig. S3 how errors made on the inference of each aspect of the niche vary continuously with the539

dispersal coefficient, interpolating between the two extreme scenarios shown in the previous two figures.540

B Inferring symmetry541

Beyond interaction mean and variance, interaction symmetry has often been proposed theoretically as an important542

parameter, see e.g. (Bunin, 2017; Barbier et al., 2018). That was another statistical parameter that we varied and543

attempted to infer, see Fig. S4. We find that interaction symmetry is only correctly inferred for direct effects, and544

only when the full matrix inference is successful, i.e. in the Dispersal Limited scenario.545

C Estimating interactions from residual species co-variation546

Consider patterns of covariation across space:547

• Covariance of carrying capacities “covK”:548

cov(Ki,Kj) =
∑
x

(Ki(x)− 〈Ki〉)(Kj(x)− 〈Kj〉) (Eq. S1)

• Covariance of abundances “covN”:549

cov(Ni, Nj) =
∑
x

(Ni(x)− 〈Ni〉)(Nj(x)− 〈Nj〉) (Eq. S2)

To see whether a trace of biotic interactions can be found in residual covariation, we first decompose the covariance550

of abundances into two components:551

covN = covabio + covresidual (Eq. S3)
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The abiotic component is simply derived from the covariance of carrying capacities552

covabio = cicjcov(Ki,Kj) (Eq. S4)

with unknown scaling coefficients ci that are inferred by least squares regression.553

This mimics the way that a simple SDM would predict species covariation (for each species i, a regression between554

abundance N and the environmental factor). Given (5), we can expect that in the case of weak net effects between555

species, this formula is approximately correct for our dynamical model with ci ≈ Vii.556

We can then study whether covresidual contains information about the full matrix or statistics of direct effects Aij557

or net effects Vij .558

All the inferences in the main text were performed assuming that we have full knowledge of abundance Ni(x)559

and carrying capacity Ki(x) for every species i at every point in space x. Here we assume that we have access to560

less information: only how abundances or carrying capacities covary between species across the landscape, shown in561

Fig. S5(a,b,c).562

Removing the covariation between species due to the environment, we can observe how statistics of the coefficients563

ci in the regression of abundances to the abiotic niche Ni ∼ ciKi(E(x)), and residual covariation covresidual depend564

on the mean and variance of interactions. We see in Fig. S5 that there is no clear relationship with ground truth565

parameters. It thus seems impossible, under the studied model setting and approach, to infer even only interaction566

statistics without having more detailed information on abundances and carrying capacities.567
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(a)

(b)

Figure S1: Inferring carrying capacities in one simulation example under conditions of dispersal limitation, see details
in Appendix A. (a) Fundamental and inferred niches for each species, as a function of values of the environmental
factor E ∈ [−50, 150]. Solid green curve: fundamental niche (carrying capacity as a function of environment). Blue
symbols: abundances observed throughout the landscape. Solid black curve: niche inferred through our method. (b)
Comparing the center, width and maximum of the fundamental (x-axis) and inferred (y-axis) niches.
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(a)

(b)

Figure S2: Inferring carrying capacities in one simulation example under conditions of environment tracking, see
details in Appendix A and Fig. S1. Some species have gone extinct and are not represented in (a).
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Figure S3: Impact of dispersal coefficient D on error on (a) estimates of carrying capacity at each point of the
environmental gradient, (b) estimates of maximum carrying capacity, (c) niche centers, (d) niche width. In each
case, errors are computed as the square root of the average across species – and average across space in case (a) – of
(groundtruth value - inferred value)2, with the inference approach discussed in Appendix.
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Figure S4: Extension of Fig. 4 including interaction symmetry (g,h) which is only correctly inferred for direct effects,
and only when the full matrix inference is successful, i.e. in the DL scenario.
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Figure S5: Trying to infer interaction statistics using only the knowledge of covariance or correlation of (a) K and
(b-c) N in the two scenarios. From these observations, we compute the residual covariation of species once we control
for environment-driven covariation (see Appendix C), and compute its statistics: (d) mean and (e) std. We see no
relationship between the statistics of interactions and residual covariation, suggesting that this limited knowledge is
insufficient to correctly detect interaction strength

Figure S6: Number of compositions versus dispersal coefficient, showing no abrupt transition contrary to the success
of interaction inference in Fig. S6.
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:

Figure S7:
::
R2

:::
of

:::::::::
inference

::
of

::::::
direct

::::
and

::::
net

:::::::::::
interactions

:::
(A

::::
and

:::
V

::::::::::::
respectively)

:::::::::
depending

:::
on

::::
the

::::::::
number

::
of

:::::::::::
independent

:::::::::::::
environmental

::::::
factors

:::::::
varying

::::::::
through

:::
the

::::::::::
landscape

:::
(1,

:
2
:::
or

:::
10,

::::::
shown

:::
on

:::
the

::::::::
x-axis),

::::
and

:::::::::
depending

::
on

:::::::::
dispersal

::::::
(small

::::::::
symbols:

:::::::
D = 0,

:::::
large

::::::::
symbols:

::::::::::
D = 0.3).

::::::
When

:::::
there

::::
are

::::::::
multiple

:::::::::::::
environmental

:::::::
factors

:::
Ej ,

::::::::
equation (2)

::
is

::::::::
amended

:::
to

:::::::
become

:::::::::::::::::::::::::::::::
Ki(x) = e−

∑
j(Ej(x)−cij)2/2w2

ij − µi.:
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