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Abstract
Environments can change suddenly and unpredictably, so animals might benefit from being able to flexibly adapt their behavior through learning new associations. Reversal learning experiments, where individuals initially learn that a reward is associated with a specific cue before the reward is switched to a different cue, thus forcing individuals to reverse their learned associations, have long been used to investigate differences in behavioral flexibility among individuals and species. Behavioral flexibility, adapting behavior to changing situations, is hypothesized to be related to adapting to new environments and geographic range expansions. However, flexibility is rarely directly tested in a way that allows insight into how flexibility works. Here, we apply and expand newly developed Bayesian reinforcement learning models to gain additional insights into how individuals might dynamically adapt their behavioral flexibility if they experience repeated reversals in which cue is associated with a reward. Using data from simulations and great tailed grackles (Quiscalus mexicanus), we find that two parameters, the association updating rate, which reflects how much individuals weigh the most recent information relative to previously learned associations, and the sensitivity to learned associations, which reflects whether individuals no longer explore alternative options after having formed associations, are sufficient to explain the different strategies individuals display during the experiment. Individuals gain rewards more consistently if they have a higher association updating rate, because they learned that cues are reliable and they therefore can gain the reward consistently during one phase. The sensitivities to learned associations plays a role for the grackles who experienced a series of reversals, where individuals with lower sensitivities are better able to explore the alternative option after a switch. The grackles who experienced the serial reversal adapted their behavioral flexibility through two different strategies. Some individuals showed more exploration such that they can quickly change to the alternative option after a switch even if they continue to occasionally choose the unrewarded option. Others stick to the previously learned associations such that they take longer to change after a switch, but, once they have reversed their associations consistently, choose the correct option. These strategies the grackles exhibited at the end of the reversal learning experiment also relate to their performance on multi-option puzzle boxes where there are different behaviors required to access rewards. Grackles with intermediate strategies solved fewer options to access the rewards than grackles with either of the extreme strategies, and they took longer to attempt a new option. Our approach offers new insights into how individuals react to uncertainty and changes in their environment, in particular showing that they can adapt their behavioral flexibility in response to their experiences. Research on great-tailed grackles, a bird species that has rapidly expanded their range into North America over the past 140 years, showeds that grackle flexibility is manipulatable  using colored tube reversal learning and that flexibility is generalizable across contexts multi-access box). Here, we use these grackle results to conduct a set of posthoc analyses using a model that breaks down performance on the reversal learning task into different components. We show thatincrease the rate of learning to be attracted to an option (phi) is a stronger predictor of reversal performance than the rate of deviating from learned attractions that were rewarded (lambda).  This result was supported in simulations and in the data from the grackles: learning rates in the manipulated grackles doubled by the end of the manipulation compared to control grackles, while the rate of deviation slightly decreased. Grackles with intermediate rates of deviation in their last reversal, independently of whether they had gone through the serial reversal manipulation, solved fewer loci on the plastic and wooden multi-access boxes, and those with intermediate learning rates in their last reversal were faster to attempt a new locus on both multi-access boxes.  These findings provide additional insights into how grackles changed their behavior when conditions changed. Their ability to rapidly change their learned associations validates that the manipulation had an effect on the cognitive ability we think of as flexibility. 
 
## INTRODUCTION
The field of comparative cognition is strongly suspected to be in a replicability crisis, which calls into question the validity of the conclusions produced by this research [@farrar2020replications; @farrar2020trialling; @farrar2021hidden; @brecht2021status; @tecwyn2021doing; @lambert2022manybirds]. The lack of replicability in experimental design, analyses, and results is, in part, because of the lack of clear theoretical frameworks [@frankenhuis2022strategic], the resulting heavy reliance on measuring operationalized variables that are assumed to represent broad concepts, as well as small sample sizes [@farrar2020replications]. One solution is to start from *mechanistic models* informed by a theoretical framework that can represent and make predictions about how individuals behave in a given task, rather than just relying on *statistical models* that simply describe the observed data [@rethinking2020]. Statistical models cannot infer what leads to the differences in behavior, whereas mechanistic models offer the opportunity to infer the underlying processes [@rethinking2020]. 
Serial reversal learning experiments have long been used to understand how individuals keep track of biologically important associations in changing environments [@dufort1954one, @mackintosh1968factors, @bitterman1975comparative]. Most animals live in environments that undergo changes that can affect key components of their lives, such as where to find food or which areas are safe. Accordingly, individuals are expected to be able to react to these changes. One of the ways in which animals react to changes is through behavioral flexibility, the ability to change behavior when circumstances change by updating information and making it available to other cognitive processes [@mikhalevich_is_2017]. Serial reversal learning experiments aim to measure differences in behavioral flexibility across individuals and species [@lea2020behavioral] by first presenting individuals with multiple options associated with cues, such as different colors or locations, that differ in their reward. After individuals learn the associations between rewards and cues, the rewards are reversed across cues, and individuals are observed to see how quickly they learn the changed associations. However, despite their long history, we still know little about how individuals approach these serial reversal learning tasks [@bond2007serial) and what cognitive processes might lead to the observed differences in behavioral flexibility [@izquierdo2017neural, @danwitz2022parameter].

A number of theoretical models have been developed to reflect the potential cognitive processes animals might rely on to make informed choices in changing environments (for a recent review see for example @fromer2023belief). These models deconstruct the behavior of individuals making choices into two processes [@camerer1999experience, @chow2015serial, @izquierdo2017neural, @bartolo2020prefrontal]. The first process reflects the learning about the environment, through updating associations between external cues and potential rewards (or dangers). Individuals are expected to show different rates of updating associations (which we refer to as $\phi$, the greek letter phi, in the following) in different environments (Figure 1). Lower rates are expected when changes are rare and associations are not perfect such that a single absence of a reward might be an error rather than indicating a new association. Higher rates are expected when changes are frequent and associations are reliable such that individuals should update their associations when they encounter new information [@dunlap2009components, @Breen_2023]. The second process reflects how individuals, when presented with a set of cues, might decide between these alternative options based on their learned associations of the cues. Individuals with larger sensitivity to their learned associations (which we refer to as $\lambda$, the greek letter lambda, in the following) will quickly prefer the option that previously gave them the highest reward (or the lowest danger), while individuals with low sensitivity will continue to explore alternative options. Sensitivities are expected to show the opposite pattern to the association-updating rate (Figure 1), with larger sensitivities when cues are unreliable but environments are static such that individuals start to exploit the rare information they are learning and lower sensitivities when cues are reliable and changes are frequent such that individuals explore alternative options when conditions change [@daw2006cortical, @Breen_2023].
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**Figure 1** Individuals are expected to update their associations and make decisions differently depending on the environment they experience. In serial reversal learning experiments, associations are reliable, such that if an option is associated with a reward, it is rewarded during every trial (white background). However, the associations between options and the rewards change across trials (solid line). In such environments, individuals are expected to gain the most rewards if they update their associations quickly (large $\phi$) to switch away from an option if it is no longer being rewarded, but to have small sensitivities to their learned associations to continue to explore all options to check if associations have changed again (small $\lambda$). In contrast, in unchanging but unreliable environments, the probability that an option is rewarded stays constant across trials (dotted lines), but is closer to 50% (gray background). In such environments, individuals are expected to gain the most rewards if they build their associations as average across many trials (small $\phi$), and high sensitivities to learned associations to exploit the option with the highest association (large $\lambda$). 

A recent development to infer the cognitive processes from the choices individuals make during reversal learning experiments are Bayesian reinforcement learning models [@deffner2020dynamic, @bari2022reinforcement, @chen2021sex, @danwitz2022parameter]. These Bayesian models estimate the association-updating rate and the sensitivity to learned associations by modeling the likelihood of the subsequent choices individuals were observed to make based on how the underlying reward associations would predict each choice. The learning of information is reflected by the Rescorla-Wagner rule [@rescorlawagner1972reinforcement], which includes the association-updating rate (the rate’s label differs across authors) which weights the most recent information proportionally to the previously accumulated information for that cue (as a proportion, the rate can range between 0 and 1, see below for equation). The decision between different options is reflected by relative probabilities [@daw2006cortical, @agrawal2012analysis, @danwitz2022parameter], where the sensitivity to learned associations (again, the label can differ by author) modifies the relative difference in learned rewards to generate the probabilities to choose each option. A value of zero means individuals do not pay attention to their learned associations, but choose randomly, whereas increasingly larger values mean that individuals show strong biases in choice as soon as there are small differences in their learned associations. These static models have, for example, recently been used to indicate sex differences in exploration, with individuals of one sex on average showing lower sensitivities to learned associations [@chen2021sex, @Breen_2023]. More generally, they support the prediction that individuals with higher association-updating rates are more successful in reversal learning experiments [@bari2022reinforcement, @danwitz2022parameter]. However, the application of these models has thus far however been static, rather than inferring whether and how individuals might adapt their strategies over time [@tello2019spatial]. We need an understanding of the dynamic changes individuals might undergo in their processes to describe the improvement in performance that occurs through the serial reversal learning experiments to gain a full better of behavioral flexibility.

In serial reversal learning experiments, there are potentially three types of information individuals might pay attention to when adjusting their cognitive processes. First, in most reversal learning designs, there are two options differentiated by a cue, of which only one has the reward. Accordingly, exploring one option still provides information about the presence or absence of a reward in the other option. Second, linked to this, the association between a cue and a reward can be perfect such that one option is always rewarded during a reversal, but it could also be probabilistic, where both options contain a reward that differs in amount or frequency. In most animal experiments, the former is used where only one option contains a reward, so the association is perfect. In contrast, experiments in humans often introduce uncertainty in the associations by providing rewards only in a certain percentage of trials or by assigning rewards as draws from distributions (multi-armed bandit experiments). Third, reversals in the association between a cue and the reward can occur more or less frequently depending on the experimental design. At the extreme, when an individuals’ previous experience suggests that rewards are only at one of the options during any given trial, associations are highly reliable, and changes are frequent, they might switch to an abstract rule, where the choice in the next trial is completely determined by the most recent experience (win-stay/lose-shift one-shot strategy, @mackintosh1968factors, @jang2015role). In experiments, such switches in strategy seem to appear in individuals living in the highly stable conditions of captivity [@rayburn2013reversal, @metha2020separating], especially if these individuals have been over-trained [@bartolo2020prefrontal], and for highly reliable cues such as the location of a tree [@liu2016learning]. However, most associations that animals have to learn however often have a probabilistic association between the cue and the outcome, the relationship between options is not necessarily straightforward, and the initial learning phase introduces a period of stability. Accordingly, most animals tested on serial reversal learning experiments do not show switches to abstract strategies, but rather improvements in their flexibility [@bitterman1975comparative, @bond2007serial]. In the classic two-choice serial reversal learning experiments given to animals, these improvements likely reflect how individuals adjust their association-updating rate and their sensitivity to learned associations depending on their experience of the frequency of the change and of the reliability of the association between the cue and the reward [@neftci2019reinforcement, @leimar2024flexible]. Based on the static theoretical models, we would predict that individuals increase their association-updating rate because cues are highly reliable, and reduce their sensitivity to the learned associations because the option that is rewarded switches frequently. 

 
Here, we apply a mechanistic model to a commonly studied trait in animal cognition: behavioral flexibility. Recent work provides clearer conceptualizations of behavioral flexibility that allow us to apply such a mechanistic model. The theoretical framework argues that the critical element of behavioral flexibility is that individuals change their behavior when circumstances change [@mikhalevich_is_2017], with freedom from instinctual constraints [@lea2020behavioral]. These theoretical models point out that behavioral flexibility appears to contain two internal learning processes: the suppression of a previous behavioral choice and the simultaneous adoption of a new behavioral choice. Based on this framework, @blaisdell2021 showed how reversal learning experiments, where individuals have to choose between two options until they learn to prefer the rewarded option and then the reward is moved to the other option and they reverse their preference, reflect these learning processes. @blaisdell2021 built a mechanistic model by adapting Bayesian reinforcement learning models to infer the potential cognitive processes underlying behavioral flexibility. 
As their name implies, Bayesian reinforcement learning models [@doya2007reinforcement] assume that individuals will gain from learning which of the options leads to the reward. This learning is assumed to occur through reinforcement because individuals repeatedly experience that an option is either rewarded or not. The approach is represented as Bayesian because individuals continuously update their knowledge about the reward with each choice [@deffner2020dynamic]. At their core, these models contain two individual-specific parameters that we aim to estimate from reversal performance: how quickly individuals update their attraction to an option based on the reward they received during their most recent choice relative to the rewards they received when choosing this option previously (their learning rate, termed “phi”), and whether individuals already act on small differences in their attraction or whether they continue to explore the less attractive option (the deviation rate, termed “lambda”). Applied to the serial reversal learning setup, where an individual’s preferences are reversed multiple times, the model assumes that, at the beginning of the experiment, individuals have equally low attractions to both options. Depending on which option they choose first, they either experience the reward or not. Experiencing the reward will potentially increase their attraction to this option: if phi is zero, their attraction remains unchanged; if phi is one, their attraction is completely dominated by the reward they just gained. In environments that are predictable for short periods of time, similar to the rewarded option during a single reversal in our experiment, individuals are likely to gain more rewards if they update their information based on their latest experience. In situations where rewards change frequently or novel options become available often, individuals are expected to deviate from their learned attractions to continue to explore, while in more stable environments individuals benefit from large lambda values to exploit the associations they formed [@cohen2007should]. While performance in the reversal learning task has sometimes been decomposed between the initial association learning and the reversal learning phase [e.g. @federspiel2017adjusting], the reinforcement learning model does not make such a distinction. However, it does predict a difference between phases because individuals’ internal states, in particular their attraction toward the different options, are expected to continuously change throughout the experiment. We also expect individuals to “learn to learn” over subsequent reversals [@neftci2019reinforcement], changing their learning and deviation rate over repeated reversals. The parameters of the serial reversal model can also capture broader concepts that have previously been used to describe variation in reversal learning performance, such as “proactive interference” [@morand2022cognitive] as the tendency to continue to choose the previously rewarded option which would occur if individuals do not update their attractions quickly.
Here, wWe applied and modified the Bayesian reinforcement learningthis models to data from our great-tailed grackle (*Quiscalus mexicanus*, hereafter grackle) research on behavioral flexibility to assess how the two parameters of the model interact and dynamically change to shape the behavior of individuals. We previously found that the model can predict the performance of grackles in a static, which we measured as  rreversal learning task with a single switch of a color preference using two differently colored tubes [one light gray and one dark gray @blaisdell2021causal]. Here, we build on this work with additional data from another  @logan2022flexmanip]. In one population [@logan2023flexmanippcj], where we conducted a flexibility manipulation using serial reversal learning. The serial reversal manipulation consisted of switching the rewarded color whenever individuals chose the rewarded option more than expected by chance (passing criterion of choosing correctly in 17 out of the last 20 trials),- reversing individuals  until their reversal speeds were consistently fast (reaching criterion at or in less than 50 trials or less in two consecutive reversals). We randomly assigned individuals to a manipulated group who received serial reversals, or to a control group who received one reversal and then a similar amount of experience in making choices between two yellow tubes that both contained the same rewards [@logan20232flexmanippcj]. After the reversal learning experimentmanipulation, both the manipulated and the control grackles were given a different flexibility and innovativeness test using one or two different multi-optionaccess puzzle boxes. Grackles who to determine whether experienced the serial reversal learning experiment subsequently also appeared to show improved improving behavioral flexibility in this different context because they required less time to switch to a new option to access a food reward when the previously learned option was blocked. They also solved a larger number of the four options presented in the multi-option puzzle boxes [@logan2023flexmanippcj]. in reversal learning also improved flexibility (the latency to attempt to solve a new locus) and innovativeness (the number of loci solved) in a different context (the multi-access boxes). We found that we were able to manipulate reversal learning performance (flexibility) and this improved flexibility and problem solving in a new context (multi-access boxes) [@loganflexmanip2022]. 



However, we were left with some lingering questions: what specifically did we manipulate about flexibility? And how might the cognitive changes induced by the manipulation transfer to influence performance in a new context? These questions are the focus of the current article.
## RESEARCH QUESTIONS
1) Are the Bayesian reinforcement learning models sufficiently sensitive to detect changes that occur across the limited number of serial reversals that individuals participate in?
The models infer two parameters, the association updating rate $\phi$ and the sensitivity to learned associations $\lambda$, from the behavior of the grackles rather than the traditional single outcome, the number of trials needed to reach the criterion. In theory, multiple combinations of the two parameters could lead to the same number of trials during a given reversal. Whether information from a single or few reversals is sufficient to infer these values for individuals at different time points throughout a serial reversal experiment has not been systematically addressed before, so we first use simulations to assess whether these models work on the samples that people usually work with.

Prediction 1: We predicted that the Bayesian reinforcement learning model can reliably infer these two parameters based on the choices individuals make throughout the series of reversals that individuals usually experience (4-6), which we tested by assigning agents $\phi$ and $\lambda$ values, simulating their choices based on these, and back-estimating $\phi$ and $\lambda$ from the simulated choice data. 
1) Are the Bayesian reinforcement learning models sufficiently sensitive to detect changes that occur across the limited number of serial reversals that individuals participated in?
The models infer two parameters, the association updating rate $\phi$ and the sensitivity to learned associations $\lambda$, from the behavior of individuals, from across the traditional single outcome of the number of trials needed to reach the criterion. In theory, multiple combinations of the two parameters could lead to the same number of trials during a given reversal. Whether information from a single or few reversals is sufficient to infer these values for individuals at different time points throughout a serial reversal experiment has not been systematically addressed before. Therefore we used simulations to assess whether these models work on the samples that people usually work with. Determining the minimum number of choices per individual necessary to correctly infer their underlying parameters is necessary to reveal the dynamic changes in these parameters as individuals adjust their expectation of change throughout the serial reversal learning experiments and react accordingly.

· Prediction 1: We predicted that the Bayesian reinforcement learning model can reliably infer the two parameters based on the choices individuals make during reversal learning, and that it can detect changes in these parameters that might occur during the series of reversals that individuals usually experience (4-6 reversals). 

2)  Is a strategy of high association-updating ($\phi$) and low sensitivity to learned associations ($\lambda$) best to reduce errors in the serial reversal learning experiment?
Previous modeling work predicts that in situations in which changes are abrupt, but information is reliable, individuals learning in accordance with a Bayesian reinforcement model should show a high association-updating rate and a low sensitivity to learned associations [@dunlap2009components, @Breen_2023]. However, the modeled situations were abstract and the inferred optimal association updating rates and sensitivities were higher than what is usually observed in reversal learning experiments. Therefore, we perform simulations of the specific behavior exhibited in serial reversal learning experiments to assess how changes in the choices individuals make link to their $\phi$ and $\lambda$ values. In addition, previous studies were only focused on the optimal values for the two parameters in the different situations rather than looking at how $\phi$ and $\lambda$ interact to explain variation among individuals. We Ttherefore, we also use the simulations to determine whether one of the two parameters, $\phi$ orand $\lambda$, might explain more of the variation in the number of trials individuals need to reach the criterion of choosing the correct option 17 out of 20 times during a reversal.reach criterion.

· Prediction 2: We predicted that both $\phi$ and $\lambda$ influence the performance of individuals in a reversal learning task, with higher $\phi$ values (faster learning with a higherfaster association-updatinglearning rate) and lower $\lambda$ values (moreless exploration with less sensitivity to learned associations) values leading to individuals more quickly reaching the passing criterion after a reversal in the color of the rewarded option.


32) Which of the two parameters $\phi$ or $\lambda$ explains more of the variation in the reversal learning experiment performance of the tested grackles?, and which changed more across the serial reversals? 
Across both the manipulated and control grackles, we assessed whether variation in the number of trials an individual needs to reach the criterion in a given reversal is better explained by their inferred association updating rate or by their sensitivity to learned associations. 
· Prediction 3: We predicted that both $\phi$ and explains more of the variation in t $\lambda$, explains more of the variation in the first reversal performance of the grackles is also the parameter that shows more change after the manipulation.

4) Which of the two parameters $\phi$ or $\lambda$ changes more for the grackles that improved their performance through the serial reversal experiment?
If individuals learn the contingencies of the serial reversal experiment, they should be reducing their sensitivity to learned associations $\lambda$ to explore the alternative option when rewards change, and increase their association-updating rate $\phi$ to quickly exploit the new reliably rewarded option. of the variation in the reversal performance of the tested grackles, and which changed more across the serial reversals?  
In addition, for birds that experienced serial reversals, we assess how these two parameters $\phi$ or $\lambda$ changed from their first to their last reversal.
· Prediction 4: We predicted that individuals have higher $\phi$ and lower $\lambda$ values during their last reversal of the serial reversal experiment than during their first reversal. $\phi$ explains more of the variation in t $\lambda$, explains more of the variation in the first reversal performance is also the parameter that shows more change after the manipulation.


5) Are some individuals better than others at adapting to the serial reversals?
In previous work, we found that there are individual differences that persist throughout the experiment, with individuals who required fewer trials to solve the initial reversal also requiring fewer trials in the final reversal after their manipulation [mccune2023flexmanippeerj]. We could expect that these individual differences are guided by consistency in how individuals solve the reversal learning paradigm, meaning they are reflected in individual consistency in $\phi$ and $\lambda$ that persist through the serial reversal manipulation. In addition, it is not clear whether some grackles change their behavior more than others: for example, it could be that individuals who have a higher association-updating rate $\phi$ at the beginning of the experiment might also be better able to quickly change their behavior to match the particular conditions of the serial reversal learning experiment. Therefore, we also analyze whether the $\phi$ and $\lambda$ values of individuals at the beginning predict how much they changed throughout the serial reversal learning experiment. Alternatively, given that the prediction for which sensitivity to learned association is best during a reversal (high sensitivity to stick to the learned associations) is different from the prediction for what is best right after a reversal (low sensitivity to explore the alternative option), the individuals who improved the most might end up with different strategies.
· Prediction 5: We predicted that differences in $\phi$ and $\lambda$ among individuals persist through the serial reversal learning experiment, or that they might even increase as some individuals change their learning more than others.
 
63) Can the $\phi$ or $\lambda$ from the performance of the grackles during their final reversal learning predict variation in the performance on the multi-option puzzleaccess boxes?
We previously found that grackles who needed fewer trials to reach the criterion in their last reversal on the color tube test were also better at performing on the two (plastic and wooden) multi-access boxes. This association could potentially be explained by either of the parameters underlying flexibility, or by an interaction between the parameters. With the multi-option puzzle boxes, grackles would be expected to gain more rewards if they quickly update their previously learned associations with the options (high $\phi$) and/or if they are less sensitive to previously learned associations and instead continue to explore alternative options (low $\lambda$). 
· Prediction 64: We predicted that gracklesbirds that are more flexible, presumably those who have a high $\phi$ (faster learning rate)and/or a low $\lambda$, have shorter latencies to attempt a new optionlocus and solve more optionsloci on the two multi-optionaccess puzzle boxes. Given that gracklesbirds are expected to change both their $\phi$ and their $\lambda$ through the serial reversalmight use different strategies to be flexible (see prediction 23), we also explore whether the relationship between $\phi$ or $\lambda$ and the performance on the multi-access boxes is non-linear.



## METHODS
 
##### The Bayesian reinforcement learning model
 
We used the version of the Bayesian model that was developed inby @blaisdell2021causal and modified inby @logan20230xpoppcj (see their Analysis Plan > "Flexibility analysis" for model specifications and validation). This model uses data from every trial of reversal learning (rather than only using the total number of trials to pass criterion) and represents behavioral flexibility using two parameters: the association-updating ratelearning rate of attraction to either option ($\phi$) and the sensitivity torate of deviating from learned associationsattractions ($\lambda$). The model transformsrepeatedly estimates  the series of choices each gracklebird made, based on two equations to estimate the most likely $\phi$ and $\lambda$ that generated the observed behavior. 
 
Equation 1 (learning andattraction and ϕ): Ai,j,t+1 = (1−ϕj) * Ai,j,t + ϕj * πi,j,t
 
Equation 1 estimatestells us  how the associationsattractions *A* of  that individual *j* forms between to the two different options (*i* ∈  {=1, 2}) and their expected rewards change from one trial to the next (time *t*+1) as a function of their previously formed associationsattractions Ai,j,t (how preferable option *i* is to the gracklebird *j* at time *t*) and recently experienced payoffs *π* (i.e.in our case, ,π = 1 when they chose the correct option and received a reward in a given trial, and 0 when they chose the unrewarded optionnot). The (bird-specific) parameter ϕj modifies how much individual *j* updates its associations based on its most describes the weight of recent experience. The higher the value of ϕj, the faster the individualbird updates itstheir associationsattraction, paying more attention to recent experiences, whereas when ϕj is lower, a grackle’s associations reflect averages across many trials. AssociationAttraction scores thus reflect the accumulated learning history up to this point. The association with the option that is not explored in a given trial remains unchanged. At the beginning of the experiment, we assume that individuals have the same low associationattraction to  between both options and rewards (Aj1 = Aj2 = 0.1)..
 
Equation 2 (choice and λ): P(i)t+1 = exp(λj * Ai,j,t) / ∑i ∈ {1, 2} exp(λj * Ai,j,t)
 
Equation 2 expresses the probability that an individual *j* chooses option *i* in the next trial, *t*+1, based on their learned associations of the two options with rewardsattractions. The parameter λj represents the sensitivity of a given grackle *j*rate to how different its associations to the two options are.of deviating from learned attractions of an individual. It controls how sensitive choices are to differences in attraction scores. As λj gets larger, choices become more deterministic and individuals consistently choose the option with the higher associationattraction even if associationsattractions are very similar., A as λj gets smaller, choices become more exploratory, with individuals choosing (randomly between the two options independently of their learned associations  choice independent of the attractions if λj= is 0). 
 
We implemented the Bayesian reinforcement learning model in the statistical language Stan [@stan2019stan], calling the model and analyzing its output in *R* [current (version `r getRversion()`); [@rcoreteam]. The model takes the full series of choices individuals make (which of the two options did they choosepick, which option was rewarded, did they make the correct choice) across all their trials to find the $\phi$ and $\lambda$ values that best fit these choices given the two equations: whether or not individuals chose the rewarded option was reflected as a categorical likelihood (yes or no) with probability *P* as estimated from equation 2, before updating the associations using equation 1.. The model was fit across all choices, with individual $\phi$ and $\lambda$ values estimated as varying effects. In the model, $\phi$ is estimated on the logit-scale to force the values to be positive before being converted back for equation 1 to update the associations, and $\lambda$ is estimated on the log-scale to account for the exponentiation that occurs in equation 2. We set the priors for $\phi$ and $\lambda$ to come from a normal distribution with a mean of zero and a standard deviation of one. We set the initial associations with both options for all individuals at the beginning of the experiment to 0.1 to indicate that they do not have an initial preference for either option but are likely to be somewhat curious about exploring the tubes because they underwent habituation with a differently colored tube (see below). For estimations at the end of the serial reversal learning experiment, we set the association with the option that was rewarded before the switch to 0.7 and to the option that was previously not rewarded to 0.1. Note that when applying equation 1 in the context of the reversal learning experiment as most commonly used, where there are only rewards (positive association) or no rewards (zero association) but no punishment (negative association), associations can never reach zero because they change proportionally.

We used functions in the package “posterior” [@vehtari2021rank] to draw 4000 samples from the posterior (the default in the functions). We report the estimates for $\phi$ and $\lambda$ for each individual (simulated or grackle) as the mean from these samples from the posterior. For the subsequent analyses where the estimated $\phi$ and $\lambda$ values were response or predictor variables, we ran the analyses both with the single mean per individual as well as looping over the full 4000 samples from the posterior to reflect the uncertainty in the estimates. The analyses with the samples from the posterior provided the same estimates as the analyses with the single mean values, though with larger confidence estimates because of the increased uncertainty. In the results, we report the estimates from the analyses with the mean values. The estimates with the samples from the posterior can be found in the code in the rmd file at the repository. In analyses where $\phi$ and $\lambda$ are predictor variables, we standardized the values that went into each analysis (either the means, or the respective samples from the posterior) by subtracting the average from each value and then dividing by the standard deviation. We did this to define the priors for the relationship on a more standard scale and to be able to more directly compare their respective influence on the outcome variable.

We also used the two equations analytically to more directly make predictions about how a specific $\phi$ and $\lambda$ would influence the choices individuals make during the reversal learning. To derive the learning curves for individuals with different $\phi$ and $\lambda$, we incorporated the dynamic aspect of change over time by inserting the probabilities of choosing either the rewarded or the non-rewarded option from time t-1 as the likelihood for the changes in associations at time t: 
Equation 3 (dynamic association) 
Association rewarded [time t+1] = ((1-$\phi$) * Association rewarded [time t] + $\phi$ * Reward) * Probability rewarded [time t] + (1-Probability rewarded [time t]) * Association rewarded[time t]

Association nonrewarded [time t+1] = (1-Probability rewarded [time t]) * (1-$\phi$) * Association nonrewarded [time t] + Association nonrewarded [time t] * Probability rewarded [time t]]



 ##### 1) Using simulations to determine whether the Bayesian serial reinforcement learning models have sufficient power to detect changes through the serial reversal learning experiment
 check models estimating the role of the potential parameters underlying performance in the reversal experiment
 
We ran the Bayesian model on simulated data to first understand whether we could recover the phi and lambda values assigned to each individual from the choices individuals made based on their phis and lambdas in the initial and first reversal learning phases; and second to see whether inter-individual variation in phi or in lambda contributed more to variation in their performance. The settings for the simulations were based on the previous analysis of data from grackles in a different population (Santa Barbara, @blaisdell2021causal). We re-analyzed data we had previously simulated for power analyses to estimate sample sizes for population comparisons [@logan20230xpoppcj]. In brief, we simulated 20 individuals each from 32 different populations (640 individuals). The $\phi$ and $\lambda$ values for each individual were drawn from a distribution representing that population, with different mean $\phi$  phi (8 different means) and mean $\lambda$  lambda (4 different values) for each population (32 populations as the combination of each $\phi$  phi and $\lambda$ lambda). The range for $\phi$ and \$lambda$ values assigned to the artificial individuals in the simulations were based on the previous analysis of the single reversal data from grackles in a different population (Santa Barbara, California, USA, @blaisdell2021causal) to reflect the likely expected behavior. Based on their assigned $\phi$  phi and $\lambda$  lambda values, each individual was simulated to pass first through the initial association learning phase and, after they reached criterion (chose the correct option 17 out of the last 20 times), the rewarded option switched and simulated individuals went through thea reversal learning phase until they again reached criterion. Each choice that each individual made was simulated consecutively, updating their internal associationsattraction withto the two options based on their $\phi$  phi values and setting the probability of theirtheir next choice based on howtheir $\lambda$ value lambda  weighteding of  their associations to the two optionsattractions. We excluded simulated individuals from the further analyses if they did not reach criterion either during the initial association or the reversal within 300 trials, the maximum that was also set for the experiments with the grackles. 


We ran the Bayesian reinforcement learning model on these simulated data to understand the minimum number of choices per individual that would be necessary to recover the association-updating rate $\phi$ and the sensitivity to learned association $\lambda$ values assigned to each individual.

To determine whether the Bayesian reinforcement learning model can accurately recover the simulated $\phi$ and $\lambda$ values from limited data, we applied the model first to only the choices from the initial association learning phase, next to only the choices from the first reversal learning phase, and finally from both phases combined. To estimate whether the Bayesian reinforcement learning model can recover the simulated $\phi$ and $\lambda$ values without bias from either of the single or from the combined datasets, we correlated the estimated values with the values individuals were initially assigned:

Assigned value of $\phi$ or $\lambda$ ~ Normal(mu, sigma)
mu = a + b*Estimated value of $\phi$ or $\lambda$
a ~ Normal(0,0.1)
b ~ Normal(1,1)

A slope b between the assigned and estimated values close to 1 would indicate that the estimated values matched the assigned values. 

This, and all following statistical models, were implemented using functions of the package ‘rethinking’ [@rethinking2020] in R to estimate the association with stan. Following the social convention set in [@rethinking2020], we report the mean estimate and the 89% confidence interval from the posterior estimate from these models. For each model, we ran four chains with 10,000 iterations each (half of which were burn-in, and half samples for the posterior). We checked that the number of effective samples was sufficiently high and evenly distributed across parameters such that auto-correlation did not influence the estimates. We also confirmed that in all cases the Gelman-Rubin convergence diagnostic, Ȓ, was 1.01 or smaller indicating that the chains had converged on the final estimates [@gelman1995avoiding]. In all cases, we also linked the model inferences back to the distribution of the raw data to confirm that the estimated predictions matched the observed patterns.


##### 2) Using simulations to determine whether variation in $\phi$ or in $\lambda$ has a stronger influence on the number of trials individuals might need to reach criterion in reversal learning experiments 

We determined how the $\phi$ and $\lambda$ values that were assigned to the simulated individuals influenced their performance in the reversal learning trials, building a regression model to determine which of the two parameters had a more direct influence on the number of trials individuals needed to reach criterion. We assumed that the number of trials followed a Poisson distribution because the number of trials to reach criterion is a count that is bounded at smaller numbers (individuals need at least 20 trials to reach the criterion), with a log-linear link, because we expect there are diminishing influences of further increases in $\phi$ or $\lambda$.

Number of trials to reverse ~ Poisson(mu)
log mu = a + b*phi + c*lambda
a ~ Normal(4.5,1)
b ~ Normal(0,1)
c ~ Normal(0,1)

The prior for the intercept a was based on the average number of trials (90) grackles in Santa Barbara were observed to need to reach the criterion during the reversal (mean of 4.5 is equal to logarithm of 90, standard deviation set to 1 to constrain the estimate to the range observed across individuals). The priors for the relationships with $\phi$ and $\lambda$ were centered on zero, indicating that, a-priori, we do not bias it toward a relationship.




 We first attempted to recover phi and lambda for different subsets of the data (initial association learning and reversal learning separately or combined). 






Next, we determined how the phi and lambda values that were assigned to the individuals influenced their performance in the reversal learning trial, building a regression model to determine which of the two parameters had a more direct influence on the number of trials individuals needed to reach criterion:
number of trials to reverse ~ normal(mu, sigma)
mu <- a + b*phi + c*lambda
The model was also estimated in stan, using functions from the package ‘rethinking’ [@rethinking2020] to build the model.
 
#### 32) Estimating $\phi$  phi and $\lambda$  lambda from the observed serial reversal learning performances of great-tailed grackles to determine which has more influence on variation in how many trials individuals needed to reach the passing criterion
 
The collection of the great-tailed grackle data, ias described in detail in the article [@loganflexmanip2023pcj2]., The data collection was based on our preregistration that received in principle acceptance at PCI Ecology [@coulon2023experiment].   ([PDF](https://github.com/corinalogan/grackles/blob/master/Files/Preregistrations/g_flexmanipPassedPreStudyPeerReview26Mar2019.pdf) version). All of the analyses of @loganflexmanip2022 data reported here were not part of the original preregistration.

The research on the great-tailed grackles followed established ethical guidelines for the involvement and treatment of animals in experiments and received institutional approval prior to conducting the study (US Fish and Wildlife Service scientific collecting permit number MB76700A-0,1,2; US Geological Survey Bird Banding Laboratory federal bird banding permit number 23872; Arizona Game and Fish Department scientific collecting license number SP594338 [2017], SP606267 [2018], and SP639866 [2019]; California Department of Fish and Wildlife scientific collecting permit number S‐192100001‐19210‐001; Institutional Animal Care and Use Committee at Arizona State University protocol number 17-1594R; Institutional Animal Care and Use Committee at the University of California Santa Barbara protocol number 958; University of Cambridge ethical review process non-regulated use of animals in scientific procedures: zoo4/17 [2017]).

The data we use here were published as part of an earlier article [@logan2023flexamnipdata] and are available at the Knowledge Network for Biocomplexity's data repository: [https://knb.ecoinformatics.org/view/corina_logan.84.42](https://knb.ecoinformatics.org/view/corina_logan.84.42).
            
Great-tailed grackles were caught in the wild in Tempe, Arizona, USA for individual identification (colored leg bands in unique combinations),. andSome individuals were brought temporarily into aviaries for testing, before beingand then released back to the wild. After training individuals to gain food from a yellow-colored tube, iIndividuals thenfirst participated in the reversal learning tasks. A subset of individuals was part of the control group, where they learned the association of the reward with one color before experiencing one reversal to learn that the other color is rewarded (initial reward option was randomly assigned to either a dark-gray or a light-gray tube). The rewarded option was switched when grackles passed the criterion of choosing the rewarded option during 17 of the most recent 20 trials. This criterion was set based on earlier serial reversal learning studies, and is based on the chi-square test which indicates that 17 out of 20 represents a significant association. With this criterion, individuals can be assumed to have learned the association between the cue and the reward [@logan2022manyindividuals]. After their single reversal, the 11 control grackles participated in a number of trials with two identically colored tubes (yellow) which both contained a reward. This matched their general experiment participation to that of the manipulated group. The other subset of 8 individuals inwas part of the manipulated group . These individuals went through a series of reversals until they reached the criterion of having formed an association (17 out of 20 choices correct) in less than 50 trials in two consecutive reversals. The individuals in the manipulated group needed between 6-8 reversals to consistently reach this threshold, with the number of reversals not being linked to their performance at the beginning or at the end of the experiment. 
 
We fit the Bayesian reinforcement learning model to the data of both the control and the manipulated gracklesbirds. Based on the simulation results indicating that the minimum sample required for accurate estimation are two learning phases across one switch (see below), we fit the model first to only the choices from the initial association learning phase and the first reversal learning phase for both control and manipulated individuals. For the control grackles, these estimated $\phi$ and $\lambda$ values also reflect their behavioral flexibility at the end of the reversal learning experiment.  For the manipulated gracklesbirds, we additionally calculated $\phi$  phi and $\lambda$  lambda separately for their performance in the beginning (initial association and first reversal) and final two reversals at the end of the manipulation to infer the potential changes in the parameters  (final two reversals). WNext, as with the simulated data, we fit a series of  the same regression models as with the simulated data to determine how $\phi$  phi and $\lambda$  lambda link to the number of trials gracklesbirds needed during their reversals. 

#### 4) Comparing $\phi$ and $\lambda$ from the beginning and the end of the observed serial reversal learning performances to assess which changes more as grackles improve their performance

For the subset of grackles that were part of the manipulated group, we calculated how much their $\phi$ and $\lambda$ changed from their first to their last reversal. 


$\phi$ or $\lambda$ ~ Normal( mu , sigma )
mu = abird + bbird * reversal
[​​abird ,bbird] ~ MVNormal([a,b],S)
S = (sigmabird ,0) Rho (sigmabird ,0)
R ~ LKJcorr(2)
a ~ Normal(5,2)
b ~ Normal(-1,0.5)
sigmabird ~ Exponential(1)
sigma ~ Exponential(1)
Rho ~ lkj_corr(2)
where each grackle has two $\phi$ or $\lambda$ values, one from the beginning (‘reversal’ equals 1) and one from the end of the serial reversal experiment (‘reversal’ equals 2). We assume that there are individual differences that persist through the experiment (intercept abird) and that how much individuals change might also depend on their values at the beginning (multi-normal matrix correlation between the bird specific intercepts a and the bird specific changes between the reversals b).

We also fit a model to assess whether how much individuals improved in the number of trials from their first to their last reversal was linked more to their change in $\phi$ or to their change in $\lambda$.

Improvement in number of trials ~ Normal(mu, sigma) 
mu = a + b * change in $\phi$ + c * change in $\lambda$ 
a ~ Normal(40, 10) 
b ~ Normal(0, 10)
c ~ Normal(0, 10)
sigma ~ Exponential(1)
where ‘Improvement in the number of trials’ is the difference in the number of trials between the first and the last reversal and ‘change in phi’ and ‘change in lambda’’ are the respective differences in these parameters between the beginning and the end of the serial reversal experiment.

#### 5) Calculating whether individual differences in $\phi$ and $\lambda$ persist throughout the serial reversal learning experiment and whether individuals differ in how much they change throughout the experiment

We checked whether the $\phi$ or $\lambda$ values of individuals at the beginning was associated with how much they changed (difference in values between beginning or end) or with the values they had at the end.

phichange or lambdachange ~ Normal(mu , sigma)
        mu = a+b*phifirst or lambdafirst
        a ~ Normal(0,1)
        b ~ Normal(0,1)
        sigma ~ Exponential(1)

philast/lambdalast ~ Normal(mu , sigma)
        mu = a+b*phifirst/lambdafirst
        a ~ Normal(0,1)
        b ~ Normal(0,1)
        sigma ~ Exponential(1)

In addition, we assessed whether grackles at the end show the potential trade-off between $\phi$ and $\lambda$ that could be expected in the serial reversal experiment. 


philast ~ Normal(mu , sigma)
        mu = a+b*lambdalast
        a ~ Normal(0,1)
        b ~ Normal(0,1)
        sigma ~ Exponential(1)





#### 63) Linking $\phi$  phi and $\lambda$  lambda from the observed serial reversal learning performances to the performance on the multi-access boxes
 
After the individuals had completed the reversal learning experimenttasks, they were provided access to two multi-access puzzle boxes, one made of wood and one made of plastic. The two boxes were designed with slight differences to explore how general the performance of the grackles was. The wooden box was made from a natural log, so was more representative of something the grackles might encounter in the wild. In addition, while bBoth boxes had 4 possible ways (optionsloci) to access food, the four options on the wooden box were distinct compartments, each containing rewards, while the four options on the plastic box all led to the same reward. Grackles were tested sequentially on both boxes, where Initially, individuals could initially explore all optionsloci. After proficiency at an option was achieved a preference for a locus was formed(gaining food from this locus three times in a row), this optionpreferred choice became non-functional by closing access to the optionlocus, and then the latency of the grackle to switch to attempting a different option a new locus was measured. If they again successfully solved another optionformed a preference, thise second optionslocus was also made non-functional, and so on. The outcome measures for each individual with each box were the average latency it took to switch to a new optionlocus and the total number of optionsloci they successfully solvedaccessed. For details see [@logan20232flexmanippcj].
 
We modifiedrepeated the models in the original article [@logan20232flexmanippch] that linked performance on the serial reversal learning tasks to performance on the multi-access boxes, replacing the previously used independent variable of number of trials needed to reach criterion in the last reversal with the estimated $\phi$  phi and $\lambda$  lambda values from the last two reversals (manipulated gracklesbirds) or the initial discrimination and the first reversal (control gracklesbirds) (see below for explanation of these choices). The outcome variables were latency to attempt a locus on either the plastic or the wooden multi-access box, and the number of loci solved on the plastic and wooden multi-access boxes. With our expectationobservation that $\phi$  phi and $\lambda$  lambda could be negatively correlated (see results), we realized that gracklesbirds might be using different strategies when facing a situation in which cues change: some gracklesbirds might quickly discard previous information and rely on what they recentlyjust experienced (high $\phi$  phi and low $\lambda$), or they might rely on earlier information and continue to explore other options (low $\phi$  phi and high $\lambda$). Accordingly, we assumed that there also might be non-linear, U-shaped relationships between $\phi$  phi and/or $\lambda$  lambda and the performance on the multi-access box. The regression models were again estimated in stan, using functions from the package ‘rethinking’ to build the model. We assumed that phi and/or lambda were associated with the performance on the multi-access boxes if the 89% compatibility intervals of the posterior estimate did not cross zero.






Model: number of loci solved on the multi-access box ~ phi and lambda
For the number of options solved, we fit a binomialThe model with a logit link:takes the form of:
optionsslocisolved ~ Binomial(4, p) [likelihood]
logit(p) ~ aα[batch] + b * $\phi$ + c * $\phi$^2 + d * $\lambda$ + e * $\lambda$^2β phi + gamma lambda [model]
       a ~ dnorm(1, 1) 
        b ~ dnorm(0, 1)
        c ~ dnorm(0, 1)
        d ~ dnorm(0, 1)
        e ~ dnorm(0, 1)

optionslocisolved is the number of optionsloci solved on the multi-access box, 4 is the total number of optionsloci on the multi-access box, p is the probability of solving any one optionlocus across the whole experiment, α  is the intercept and each batch gets its own, bβ  is the expected linear amount of change in optionslocisolved for every one unit change in the learning rate$\phi$  phi in the reversal learning experiments, cgamma is the expected non-linear amount of change in optionslocisolved for every one unit change in $\phi$ squared, d the expected linear amount of change for changes in $\lambda$, and e the expected non-linear amount of change for changes in $\lambda$ squared.in the deviation rate lambda in the reversal learning experiments.
 
Model: latency to attempt a new locus on the multi-access box ~ phi and lambda
For the average latency to attempt a new optionlocus on the multi-access box as it relates to trials to reverse (both are measures of flexibility), we simulated data and setfit a Gamma-poisson the model with a log-linkas follows:
latency ~ gamma-Poisson($\mu$λi, $\sigma$ϕ) [likelihood]
log($\mu$λi) ~ aα[batch] + bβ * $\phi$  phi + cgamma * $\phi$^2 + d * $\lambda$ + e * $\lambda$^2 lambda [the model]
       a ~ dnorm(1, 1) 
        b ~ dnorm(0, 1)
        c ~ dnorm(0, 1)
        d ~ dnorm(0, 1)
        e ~ dnorm(0, 1)
        $\sigma$ ~ dexp(1)

latency is the average latency to attempt a new optionlocus on the multi-access box, λi  is the rate (probability of attempting an option locus in each second) per gracklesbird (and we take the log of it to make sure it is always positive; gracklesbirds with a higher rate have a smaller latency), ϕ is the dispersion of the rates across gracklesbirds, a is the intercept, b is the expected linear amount of change in latency for every one unit change in $\phi$ , c is the expected non-linear amount of change in latency for every one unit change in $\phi$ squared, d the expected linear amount of change for changes in $\lambda$, and e the expected non-linear amount of change for changes in $\lambda$ squared.α  is the intercept for the rate per batch, β is the expected amount of change in the rate of attempting to solve in any given second for every one unit change in the learning rate phi in the reversal learning experiments, gamma is the expected amount of change in the rate of attempting to solve in any given second for every one unit change in the deviation rate lambda in the reversal learning experiments.
To represent the potential U-shaped relationship, which assumes that birds with intermediate phi and lambda values perform differently, we first transformed phi and lambda to calculate for each individual how far their value is from the median. Second, we ran the models squaring phi and lambda. Both approaches gave the same results, and we only reported the estimates from the models with the transformed values. 
 
## RESULTS
#### 1) Power of the Bayesian reinforcement learning model to detect short-term changes in the association-updating rate $\phi$ and the sensitivity to learned associations $\lambda$Using simulations to check the validity of the Bayesian reinforcement learning models to estimate performance in the reversal learning task
 
We first ranApplying the Bayesian reinforcement learning model toon simulated data from only a single phase (initial association or first reversal) revealed that, to better understand how the two parameters, $/phi$ and $/lambda$, might lead to differences in performance, and whether we could detect meaningful differences between control and manipulated birds. When we used only the choices simulated individuals made during their first reversal, while the model recovered the differences among individuals, the estimated $\phi$ and $\lambda$ values did not match those the individuals had been assigned (Figure 2 shows the relationship between the assigned and estimated $\phi$ values when estimated from only the first reversal as an illustration). We realized that $\phi$ and $\lambda$ values were consistently shifted in a correlated way,. When estimating these values from only a single reversal, there was equifinality: multiple combinations of the two parameters $\phi$ and $\lambda$ could potentially explain the performance of birds during this reversal, and with the Bayesian estimation adjustinged both parameters towards the mean and away from extreme values. Simulated individuals who were assigned large $\lambda$ values were estimated to have a smaller $\lambda$ values but in turn estimated to have $\phi$ values such that they would reach criterion in a similar number of trials because while the model assumed that they were more exploratory the model also assumed that they updated their associations more quickly. Similarly, individuals with large assigned $\phi$ values were estimated to have smaller $\phi$ values, but in turn were estimated to have larger $\lambda$ values than those $\lambda$ they were assigned. Because the estimation from a single reversal did not accurately recover large values for either parameter, both the estimated $\phi$ values (slope of the correlation between the estimated and the assigned $\phi$ +0.15, confidence interval +0.06 to +0.23, n=626 simulated individuals) and the estimated $\lambda$ values (slope of the correlation between the estimated and the assigned $\lambdas$ +0.58, confidence interval +0.48 to +0.68, n=626 simulated individuals) were underestimates of the assigned values. In addition, this shift means that, even though simulated individuals were assigned $\phi$ and $\lambda$ values randomly from across all possible combinations, the estimated values showed a strong positive correlation as the model had to make up the shifts in estimates of one parameter through shifting the estimate of the other parameter (slope of the correlation between the estimated $\lambda$ and estimated $\phi$ values +505, confidence interval +435 to +570, n=626 simulated individuals).

In contrastHowever, when we combined data from across two reversal or from the initial discrimination learning and the first reversal, the model accurately recovered the $\phi$ and $\lambda$ values that the simulated individuals had been assigned (slope of the correlation between the estimated and the assigned $\phis$ +0.96, confidence interval +0.70 to +1.21, n=626 simulated individuals; slope of the correlation between the estimated and the assigned $\lambdas$ +0.98, confidence interval +0.92 to +1.05, n=626 simulated individuals) (Figure 21). While different combinations of $\phi$ and $\lambda$ could potentially explain the series of choices during a single phase (initial discrimination and single reversal), these different combinations lead to different assumptions about how an individual would behave right after a reversal when the reward is switched to the alternative option, making it possible to infer the assigned value when combining behavioral choices from two phases (initial learning plus first reversal, or two subsequent reversals).
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Figure 21: The $\phi$  phi values estimated by the model based on the choices made by 30 of the simulated individuals (yx-axis) versus the $\phi$  phi values assigned to them (xy-axis). Individuals were assigned the a range ofsimulated $\phi$ values, their choices were simulated and these values were used to back-estimate the $\phi$. When $\phi$  phi was estimated based on the choices made only during the firstone reversal, the estimates were consistently lower than the assigned values, particularly for large $\phi$  phi values (lightblueblue squares). However, when $\phi$  phi was estimated based on the choices made during the initial association and the first reversal, the estimates were close to the assigned values (darkgreenyellow circles). Patterns are similar for the relationship between the estimated and assigned $\lambda$ values, and when $\phi$ and $\lambda$ are estimated only from the trials during the initial association learning. Lines around the points indicate the confidence intervals of the estimated values.
 

#### 2) Predicted role of $\phi$ and $\lambda$ on performance in the serial reversal learning task based on simulations

In terms of the influence of the two parameters $\phi$ and $\lambda$ on the number of trials gracklesbirds needed to reverse a color preference, the $\phi$ values assigned to simulated individuals had a stronger influence than the $\lambda$ values (estimated association of number of trials with standardized values of $\phi$: -0.231, 89% confidencecompatibility interval (CI): -0.2422 to -0.2319; with standardized values of $\lambda$: -0.174, 89% confidence intervalCI: -0.186 to -0.163, n = 626 simulated individuals). In particular, low numbers of trials to reverse could be observed across the full range of $\lambda$ values, though when $\lambda$ was smaller than 8, simulated birds might need 150 or more trials to reverse a preference (Figure 2). In line with the predictioncontrast, there was a more linear negative relationship between $\phi$ and the number of trials to reverse, with simulated individualsbirds needing fewer trials the more they updated their association based on their most recent experiencelarger their $\phi$. There also was, as predicted, an overall negative relationship between $\lambda$ and the number of trials to reverse. Individuals generally needed few trials to reach the criterion if they were assigned a high $\lambda$ value because they acted even on small differences in their learned associations. However, while individuals with small $\lambda$ values can show large numbers of 150 or more trials to reach criterion because they are not sensitive to the differences in their learned associations, individuals with small $\lambda$ values can also reach the criterion in small numbers of trials if they simultaneously quickly update their association because of their high $\phi$ values (Figure 3). 
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**Figure 32.** In the simulations, the $\phi$ values assigned to individuals (green) had a largerclearer influence on the number of trials these individuals needed to reverse than their $\lambda$ values (red). $\phi$ and $\lambda$ values were standardized for direct comparison. In general, individuals needed fewer trials to reverse if they had larger $\phi$ and $\lambda$ values. However, relatively small $\lambda$ values could be found across the range of reversal performances, whereas there was a more clear distinction with $\phi$ values (shaded lines represent confidence intervals of the estimated relationship for these data). $\phi$ and The to reach criterion are grouped into discrete blocks for easier illustration, but the analyses were performed on the raw values for each individual.


We performed an analytical assessment of this likely trade-off between the association updating rate $\phi$ and the sensitivity to the learned associations $\lambda$ to identify the range of values we could expect in the serial reversal learning experiment. We assigned an hypothetical individual one of nine potential $\phi$ values in the range of 0.02 to 0.10 (steps differ by 0.01), assumed that this individual initially had the same association of the reward with both of the options (associations of 0.10 for light gray and 0.10 for dark gray), and assumed that this individual would choose each options 10 times during its first 20 trials. We calculated the associations to both options after the first 20 trials given the respective $\phi$ (e.g. with a $\phi$ of 0.10, the association with the rewarded option increases to 0.69 while the association with the unrewarded option declines to 0.03). Based on the differences in the two associations, we estimated the $\lambda$ value necessary for individuals to choose the rewarded option 85% in the next 20 trials (to reach the criterion of choosing the rewarded option in 17 out of 20 trials). We detected a clear negative, and exponential, trade-off between the necessary $\phi$ and $\lambda$ values to reach the criterion (Figure 4): individuals with the highest $\phi$ value of 0.10 only need a $\lambda$ of 2.7 to reach the criterion, whereas individuals with a $\phi$ value of 0.02 need a $\lambda$ of 9.5. This trade-off, where individuals can reach criterion during a reversal in few trials by either quickly updating their associations or by being highly sensitive to even small differences in their learned associations, means that in the serial reversal learning experiment individuals are expected to choose a strategy from across this range, and that doing so means they can also react to the sudden reversals in the reward location. In the serial reversal learning experiments, individuals will be able to reach the criterion more quickly during subsequent trials if they have, as predicted, a high $\phi$ and a low $\lambda$ value. First, even if individuals were to choose randomly during the first trials after a reversal, individuals with a low $\phi$ need exponentially more trials to reverse their bias in associations between the two options. If an individual after one reversal has an association to the no longer rewarded option of 0.70 and to the now rewarded option of 0.10, with a $\phi$ of 0.02 it will take 48 random trials until their association to the now rewarded options is higher than their association to the no longer rewarded option. In contrast, with a $\phi$ of 0.08 it will only take them 10 trials. Second, individuals with a high $\lambda$ value will keep on choosing the previously rewarded option in almost all of their trials until this switch in associations occurs, further delaying the learning of the new associations. Individuals that have an association of 0.70 with the no longer rewarded option and 0.10 with the now rewarded option will choose the now rewarded option in 14% of cases if their $\lambda$ is only 3, but only in 0.8% of cases if their $\lambda$ is 8. 
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**Figure 4.** Individuals are more likely to reach the criterion of choosing the correct option 17 out of 20 times during the reversal trials if they update their associations quickly (high $\phi$) and/or are sensitive to even small differences in their learned associations (high $\lambda$), because, during a reversal, recent information accurately predicts where the reward can be found. The figure shows this trade-off of individuals needing either high $\phi$ or high $\lambda$ values to reach the criterion in a hypothetical situation where all individuals reach the criterion in 40 trials. This also means that if an individual has, for example, a high $\phi$, their $\lambda$ value becomes less important for reaching the criterion quickly. In this example, individuals with a $\phi$ of 0.10 will reach the criterion in 40 trials if their $\lambda$ is at least 3.3. The figure also shows the median $\phi$ and $\lambda$ values estimated for the grackles during their first reversal (yellow) when they needed about 70 trials to reach criterion and for the manipulated individuals during their last reversal (blue) when they did needed about 40 trials to reach criterion. During the manipulation, grackles increased their $\phi$ to become efficient at gaining the reward and reaching the criterion, despite the concordant decline in $\lambda$.


#### 3) Observed role of $\phi$ and $\lambda$ on performance of grackles in the reversal learning task
For the grackles, we estimated $\phi$ and $\lambda$ after the first reversal for all individuals, and additionally after the final reversal for the individuals who experienced the serial reversal learning experiment. The findings from the simulated data indicated that $\lambda$ and $\phi$ can only be estimated accurately when calculated across at least one switch. In the simulation, we could combine the performance of individuals during the initial learning with the first reversal to estimate the parameters because the behavior during those two phases in the simulations was determined in the same way by the $\phi$ and $\lambda$ values that individuals were assigned. We determined that we can also combine the first two phases for the grackles, because we found that the performance of the great-tailed grackles during the initial learning and the first reversal learning is correlated, with grackles needing about 28 trials more to reach criterion during the first reversal than they needed during the initial association learning (estimate of the association between number of trials in initial learning and first reversal +1.61, confidence interval +1.53 to +1.69, n=19 grackles). Therefore, we estimated $\phi$ and $\lambda$ for the great-tailed grackles based on their performance in the initial discrimination plus first reversal, and for the manipulated grackles additionally based on their performance in the final two reversals. The inferred $\phi$ values for the grackles in Arizona range between 0.01 and 0.10, and the $\lambda$ values between 2.1 and 6.5 (Figure 5). 
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**Figure 5.** Comparisons of the different measures of ability in the reversal task for each of the 19 great-tailed grackles. The figure shows a) the number of trials to pass criterion for the first reversal (orange; all grackles) and the last reversal (blue; only manipulated grackles); b) the $\phi$ values reflecting the rate of updating associations with the two options inferred from the initial discrimination and first reversal (orange; all grackles) and from the last two reversals (blue; manipulated grackles); and c) the $\lambda$ values reflecting the sensitivity to the learned associations inferred from the initial discrimination and first reversal (orange; all grackles) and from the last two reversals (blue; manipulated grackles). Individual grackles have the same position along the x-axis in all three panels. Grackles that needed fewer trials to reverse their preference generally had higher $\phi$ values, whereas $\lambda$ appeared unrelated to the number of trials grackles needed during the first reversal. For the manipulated grackles, their $\phi$ values changed more consistently than their $\lambda$ values, and the $\phi$ values of the manipulated individuals were generally higher than those observed in the control individuals, while their $\lambda$ values remained within the range observed in the control group.


For the 19 grackles that finished the initial learning and the first reversal, only their $\phi$, but not their $\lambda$, predicted the number of trials they needed to reach criterion during their first reversal (mean estimate of correlation between number of trials and: standardized $\phi$: -20.69, confidence interval -26.17 to -15.13; standardized $\lambda$: -0.22, confidence interval -5.66 to 5.26, n=19 grackles)(Figure 6). A grackle with a 0.01 higher $\phi$ than another individual needed about 10 fewer trials to reach the criterion. The slope between $\phi$ and the number of trials for the grackles was essentially identical to that observed in the simulations (-21.21 vs -20.48, Figure 6). The number of trials grackles needed to reach the criterion given their $\phi$ values fell right into the range observed in the relationship between the $\phi$ and the number of trials observed among the simulated individuals (Figure 6) Even though the 8 manipulated grackles also appeared to need slightly fewer trials to reach criterion in their final two reversals if they had a higher $\phi$, the limited variation in the number of trials and in $\phi$ and $\lambda$ values among individuals means that there is no clear association (mean estimate of correlation between number of trials and: standardized $\phi$: -7.38, confidence interval -15.97 to 1.28; standardized $\lambda$: -4.00, 89% confidence interval 12.53 to 4.61, n=8 grackles).
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**Figure 6.** Relationship between $\phi$ and the number of trials grackles (yellow points) and simulated individuals (green circles) needed to reach criterion in their first trial. The observed grackle data falls within the range of the number of trials individuals with a given $\phi$ value are expected to need, and shows the same negative correlation between their $\phi$ and the number of trials as the simulated individuals (lines display the confidence interval of the estimated relationships).

 

#### 42) Changes in Observed effects of the manipulation on reversal performance, $\phi$, and $\lambda$ through the serial reversal learning task
\Data are publicly [available](https://doi.org/10.5063/F1862DWC) at the Knowledge Network for Biocomplexity [@logan2021flexmanipdata]. 
 
The findings from the simulated data indicated that $\lambda$ and $\phi$ can only be estimated accurately when calculated across at least one switch, and we therefore estimated these values for the observed birds based on their performance in the initial discrimination plus first reversal, and for the manipulated birds additionally on their performance in the final two reversals.  Great-tailed grackles who experienced the serial reversal learning manipulation reduced the number of trials they needed to reach the criterion from an average of 75 to an average of 40 (estimate of change in number of trials -30.02, confidence interval -36.05 to -24.16, n=8 grackles). For the manipulated gracklesbirds, the estimated $\phi$ values more than doubled from 0.03 (for reference, control grackles=0.03) in their initial discrimination and first reversal (which is identical to the average observed among the control grackles who did not experience the manipulation) to 0.07 in their last two reversals (model estimate of expected average change 89% compatibility interval: +0.03, confidence interval +0.02 to +0.05, n=8; Table 1: Model 17)., Thewhile their $\lambda$ values of the manipulated grackles went slightly down from 4.2 (again, identical to control gracklesfor reference, control grackles=4.3) to 3.2 (model estimate of average change 89% compatibility interval: -1.07, confidence interval -1.63 to -0.56, n=8 grackles; Table 1: Model 18) (Figure 5). The values we observed after the manipulation in the last reversal for the number of trials to reverse, as well as the $\phi$ and $\lambda$ values estimated from the last reversal, all fall within the range of variation we observed among the control gracklesbirds in their first and only reversal (Figure 53). This means that the manipulation did not push gracklesbirds to new levels, but changed them within the boundaries of their natural abilities observed in the populationenvironment. Some birds in the control group already had similar flexibility measures to the manipulated birds after going through serial reversal learning, presumably because some birds have had experiences in their natural environments that made them more flexible. Accordingly, birds in the manipulated group were not initially all better performers than all of the birds in the control group. 
 
As predicted, the increase inFor $\phi$, the increase during the manipulation fits with the outcome fromobservations in the simulations: larger $\phi$ values were associated with fewer trials to reverse. The improvement the grackles showed in the number of trials they needed to reach the criterion from the first to the last reversal matched the changes in their $\phi$ values (confidence interval +1.54 to +14.22, n=8 grackles). The improvement did not match the change in their $\lambda$ values (confidence interval -4.66 to 9.46, n=8 grackles), because, However, while in the simulations individuals needed fewer trials to reverse when we increased $\lambda$ (less deviation from the learned association),as predicted, the gracklesbirds in the manipulation showed a decreased $\lambda$ in their last reversal. This decrease in $\lambda$ meant that grackles quickly found the rewarded option after a switch in which option was rewarded. In their first reversal grackles chose the newly rewarded option in 25% of the first 20 trials, in their final reversal the manipulated grackles chose correctly in 35% of the first 20 trials. Despite their low $\lambda$ values, manipulated grackles still chose the rewarded option consistently because the increase in $\phi$ compensated for this reduced sensitivity (Figure 4; also see below). when they needed fewer trials to reverse. This suggests that $\lambda$ is a constraint, rather than having a direct linear influence on the number of trials to reverse: birds with low $\lambda$ still can reach the criterion in a small number of trials as long as they have a sufficiently high value of $\phi$ (see Figure 2). In line with this, across both manipulated and control birds, $\phi$ was more consistently associated with the number of trials individuals needed to reverse, and $\phi$ changed more than $\lambda$ across reversals for the manipulated birds (Figure 3). The birds might have changed their learning rate $\phi$ because they repeatedly experienced an associative learning task, while the change in $/lambda$ might reflect that birds adapt to the serial reversal where the rewarded option changes every time they reach criterion so that their learned attractions are not completely reliable and it is beneficial to deviate from time to time.
 


#### 5) Individual consistency in the serial reversal learning task
While we had previously found that differences among grackles in whether they needed many or few trials persisted through the manipulation, we did not find similar consistency in either $\phi$ or $\lambda$. We found a negativeFor the $\phi$ values, we also observed a correlation between the $\phi$ estimated from an individual's performance in the first reversal and how much their $\phi$ changed toward the value for their performance in the last reversal (-0.84, confidence interval -1.14 to -0.52, n=8 grackles;Table 1: Model 17) such that individuals ended up with similar $\phi$ values to each other at the end of the manipulation and their beginning and end $\phi$ values were not correlated (-0.21, confidence interval -1.55 to 1.35, n=8 grackles). 

, while t Similarly, individuals who started with a high $\lambda$ changed more than individuals who already had lower a $\lambda$ during the first reversal (-0.44, confidence interval -0.76 to -0.10, n=8 grackles) and these changes were not consistent such that individual differences in $\lambda$ did not remain through the serial reversal learning task (+0.17confidence interval -0.67 to +0.97, n=8 grackles). here is no such obvious relationship for $\lambda$ (-0.15; Table 1: Model 18). For both $\phi$ and $\lambda$, unlike for the number of trials to reverse, we did not see that the individuals who had the largest values during the first reversal also always had the largest values during the last reversal. 
Individuals appeared to use different adjustments to their strategies to improve their performance through the manipulation.The manipulation changed both $\phi$ and $\lambda$, such that, across all birds, Tthere was a negative correlation between an individual’s $\phi$ and $\lambda$ after their last reversal (mean estimate -0.39, 89% confidencecompatibility interval: -0.72 to -0.06, n=8 grackles), indicating that they ended up with different strategies from along the range of potential solutions. Some individuals quickly learn the new reward structure after a switch, but continue to explore the alternative option even after they have learned the new associations (high association-updating rate and low sensitivity to learned associations). Other individuals take longer to learn that the reward has switched but once they have reversed their associations they rarely choose the unrewarded option (Figure 7). Together, this suggests that all individuals improved by the same extent through the manipulation such that the differences in their performances persisted, but they ended up with different strategies for how to quickly reach the criterion after a reversal by either having a high association updating rate or a low sensitivity to their learned associations.
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**Figure 7.** Predicted performance curves of individuals with different $\phi$ and $\lambda$ values at the end of the serial reversal learning experiment based on the analytical formulas. We observed that, among the grackles who completed the serial reversal learning experiment, there was a negative correlation between their $\phi$ and $\lambda$, indicating that individuals used slightly different strategies to reach the criterion (choosing the rewarded option in 85% or more of trials) at equally few number of trials after the reward switched (when they had chosen the now rewarded option in 15% or less of trials). Individuals with a higher $\phi$ and lower $\lambda$ (light blue line) quickly learn the new associations, but continue to explore the unrewarded option even after they have learned the association, leading to a curve with a more gradual increase throughout the trials. Individuals with a lower $\phi$ and higher $\lambda$ (dark blue line) take longer to switch their associations, but once they do, they only rarely choose the non-rewarded option, leading to a more S-shaped curve where the initial increase in probability is lower and a more rapid rise later.
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**Figure 3.** Comparisons of the different measures of performance in the reversal task for each of the 19 birds. The figure shows a) the number of trials to pass criterion for the first reversal (orange; all birds) and the last reversal (blue; only manipulated birds); b) the $\phi$ values reflecting the learning rate of attraction to the two options from the initial discrimination and first reversal (orange; all birds) and from the last two reversals (blue; manipulated birds); and c) the $\lambda$ values reflecting the rate of deviating from the learned attractions to the two options from the initial discrimination and first reversal (orange; all birds) and from the last two reversals (blue; manipulated birds). Individual birds have the same position along the x-axis in all three panels. Birds that needed fewer trials to reverse their preference generally had higher $\phi$ values, whereas $\lambda$ appeared to reflect whether any choices of the unrewarded color occurred throughout the trials or only at the beginning of a reversal. For the manipulated birds, their $\phi$ values changed more consistently than their $\lambda$ values, and the $\phi$ values of the manipulated individuals were generally higher than those observed in the control individuals, while their $\lambda$ values remained within the range observed in the control group.
 
The pairwise analyses above indicated that the number of trials in the last reversal was correlated with the number of trials in the first reversal, with $\phi$, and with $\lambda$. The number of trials in the first reversal, $\phi$, and $\lambda$ were also correlated with each other (Figure 4). With the Bayesian approach, we used one model to estimate all potential links simultaneously to identify the pathways through which the variables interacted with each other (e.g., some variables might be correlated because both are influenced by a third variable). We therefore simultaneously estimated support for the following pathways: 
 
 - trials last reversal ~ trials first reversal + $\phi$ last reversal + $\lambda$ last reversal
 - trials first reversal ~ $\phi$ first reversal + $\lambda$ first reversal
 - $\phi$ last reversal ~ $\phi$ first reversal
 - $\lambda$ last reversal ~ $\lambda$ first reversal
 
Results from this simultaneous estimation of the potential pathways show that our data best support that the $\phi$ from the initial learning and first reversal link to the number of trials to pass the first reversal, which, in turn, appear associated with how many trials they needed to pass their last reversal. The $\phi$ for the last reversal did not appear to provide any additional information about the number of trials in the last reversal, and $\lambda$ was not directly associated with the number of trials birds needed to reverse (Table 1: Model 20) (Figure 4).
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**Figure 4.** Graph showing the pathways between the number of trials to pass a reversal, $\phi$, $\lambda$, and the flexibility manipulation (serial reversals). In the pairwise assessments (dotted lines), most of the variables were indicated as being associated with each other. The combined model identified which of these associations were likely to be direct (solid lines with arrows). The results from the combined model indicate that a) the manipulation worked, b) $\phi$ had a more direct influence on performance in the reversals than $\lambda$ did, and c) individuals had some consistency both in their abilities and in their performance.
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**Table 1.** Model outputs for the pairwise comparisons (models 15-19) and for the combined model (model 20) explaining the changes during the manipulation. SD=standard deviation, the 89% compatibility intervals are shown, n_eff=effective sample size, Rhat4=an indicator of model convergence (1.00 is ideal).
#### 63) Association between $\phi$ and $\lambda$ with performance on the multi-access boxes
 
We first modified the analyses from the preregistered analyses in the original article that assessed potential linear links between reversal learning and performance on the multi-access boxes by replacing the number of trials it took individuals to reverse with $\phi$ (learning rate of attraction to either option) and $\lambda$ (rate of deviating from learned attractions) estimated from the reversal performances. 
We previously found that three measures of performance in the two multi-access puzzle boxes (number of options solved for both the wooden and the plastic multi-access puzzle box, latency to solve a new option on the plastic multi-access puzzle box) were correlated with the number of trials grackles needed to reach the criterion in the color tube reversal. We find that these measures also correlate with the underlying flexibility parameters $\phi$ and $\lambda$. These modified analyses did not find matches with any of the three previously detected correlations between reversal learning and performance on the two multi-access boxes (latency to attempt a locus on the plastic multi-access box, number of loci solved on the plastic and wooden multi-access boxes) (Table 2,3). We detected a different correlation: the latency to attempt a new locus on the wooden multi-access box was positively correlated with $\phi$ in the last reversal (Table 2: Model 28). This correlation appears to arise not because of a linear increase of the latency with increasing $\phi$ values, but because there were several individuals who had both a long latency and a large $\phi$. However, there were also some individuals who had a long latency with a low $\phi$ (see below for additional analyses). This indicates that individuals who were faster to update their associations in reversal learning (higher $\phi$, therefore needed fewer trials in their last reversal) took more time to attempt a new locus. Even though $\phi$ was closely associated with the number of trials a bird needed to reach the reversal criterion, we presumably could not recover the previous correlations because of our small sample sizes. In addition, we estimated $\phi$ and $\lambda$ across at least one reversal (initial discrimination plus first reversal, or last two reversals for manipulated birds), whereas the previous analyses using the number of trials to reverse were based on a single reversal (first or last reversal).
 
Next, we additionally assessed whether phi and lambda were associated with performance on the multi-access boxes in a non-linear way. For the manipulated birds, we found that during their last reversal there was a negative correlation between $\phi$ and $\lambda$, with individuals with higher $\phi$ values showing lower $\lambda$ values. This negative correlation could lead to worse performance on the multi-access boxes for birds with intermediate values.  Exploration of our data shows that, for  In particular, the number of optionsloci solved on both the plastic and the wooden multi-access puzzle boxes, hadthere was  a U-shaped association, particularly  with the $\lambda$ values individuals had at the end inin their last reversal (estimate of association between number of options solved on plastic box and: $\phi$ = +0.03, confidence interval -0.38 to +0.43; squared $\phi$ = -0.16, confidence interval -0.59 to +0.28; $lambda = +0.17, confidence interval -0.27 to +0.61; squared $\lambda$ = +0.59, confidence interval +0.18 to +1.02; n=15 grackles; estimate of association between number of options solved on wooden box and: $\phi$ = -0.08, confidence interval -0.62 to +0.47; $\phi$ squared = +0.43, confidence interval -0.08 to +0.97; $\lambda$ = +0.03, confidence interval -0.50 to +0.59; squared $\lambda$ = +0.63, confidence interval +0.12 to +1.19; n=12 grackles). (Table 3: models 39 & 46) (Figure 5), with birds  Grackles who had either particularly low or particularly high sensitivities to their previously learned associations were more likely to solve all four options than grackles with intermediate values of $\lambda$ (Figure 8). solving fewer loci on both multi-access boxes. For the latency to attempt a new optionlocus on the plastic box, there was also a U-shaped association, but, particularly with $\phi$ (estimate of association between latency to attempt new option on plastic box and: $\phi$ = -0.66, confidence interval -1.30 to +0.0.06; squared $\phi$ = +0.58, confidence interval -0.06 to +1.30; $lambda = +0.14, confidence interval -0.45 to +0.70; squared $\lambda$ = +1.09, confidence interval +0.28 to +1.87; n=11 grackles; estimate of association between latency to attempt new option on wooden box and: $\phi$ = -0.62, confidence interval -1.46 to +0.14; $\phi$ squared = +0.39, confidence interval -0.47 to +1.26; $\lambda$ = +0.13, confidence interval -0.66 to +0.86; squared $\lambda$ = +0.32, confidence interval -0.62 to +1.35; n=11 grackles). , with birds Grackles with either particularly high or particularly low rates of updating their associations took longer to attempt a new option than grackles with intermediate values of $\phi$ (Figure 8). showing shorter latencies to attempt a new locus (Table 2: models 25 & 32). Given that there was also a positive correlation between number of loci solved and the latency to attempt a new locus, there might be a trade off, where birds with extreme $\phi$ and $\lambda$ values solve more loci, but need more time, whereas birds with intermediate values have shorter latencies, but solve fewer loci.
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**Figure 85.** Relationships between $\phi$  phi and $\lambda$  lambda from the last reversal and performance on the wooden (black dots) and plastic (red dots) multi-access boxes. GracklesBirds with intermediate $\lambda$ values in their last reversal (a) were less likely to solve all four optionsloci on boththe multi-access boxes than gracklesbirds with either high or low $\lambda$ values. Birds who solved two or fewer loci on either box all fall within the central third of the $\lambda$ values observed for the last reversal, while 12 of the 14 birds who solved all four loci fall outside this central range. Grackles with intermediate $\phi$ values have a shorter latency to attempt a new option on the plastic box (d). There are no clear relationships between $\phi$ and the number of options solved on either box (b), $\lambda$ and the latency to attempt an option on either box (c), or (d) $\phi$ and the latency to attempt a new option on the wooden box. An individual's $\phi$ and $\lambda$ values change slightly between the top and bottom rows because values were standardized for each plot and not all individuals were tested on both boxes, therefore values changed relative to the mean of the points included in each plot. There are no clear relationships between (b) $\phi$ and the number of loci solved, (c) $\lambda$ and the latency to attempt a locus, or (d) $\phi$ and the latency to attempt a new locus.
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**Table 2.** Model outputs for the **latency** to switch loci after passing criterion on a different locus on the plastic (models 21-27) and wooden (models 28-34) multi-access boxes in relation to $\phi$ and $\lambda$. SD=standard deviation, the 89% compatibility intervals are shown, n_eff=effective sample size, Rhat4=an indicator of model convergence (1.00 is ideal), b=the slope of the relationship between loci solved or average switch latency and $\phi$ or $\lambda$.
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**Table 39.** Model outputs for the **number of loci solved** on the plastic (models 35-41) and wooden (models 42-48) multi-access boxes in relation to $\phi$ and $\lambda$. SD=standard deviation, the 89% compatibility intervals are shown, n_eff=effective sample size, Rhat4=an indicator of model convergence (1.00 is ideal), b=the slope of the relationship between loci solved or average switch latency and $\phi$ or $\lambda$.





## DISCUSSION
Our post-hoc analyses indicate that applying a more mechanistic model to understand the behavior of great-tailed grackles in a serial reversal learning experiment can provide additional insights into the potential components of behavioral flexibility and their dynamic changes. First, tThe simulations showed that the Bayesian reinforcement learning model accurately captures variation in the behavior of individuals in the serial reversal learning experiment and that the two key parameterscomponents $\phi$, the association-updating ratelearning rate, and $\lambda$, the sensitivity to learned associationsdeviation rate, can be reliably inferred if we combine at least two association learning periods across a switch in the rewarded options. This provides the opportunity to also infer whether and how individuals who experience the serial reversal learning experiment dynamically change their behavioral flexibility.can be reliably estimated from the choices individuals make. Second, in line with our prediction, the simulations indicate that higher $\phi$ and lower $\lambda$ mean that individuals should reach the reversal learning criterion in fewer trials. However, we observe that for a single reversal $\phi$ is more important and that $\lambda$ simply sets a threshold on the number of trials individuals need to consistently choose the rewarded option. Third, The post-hoc Bayesian analyses of the grackle serial reversal learning data revealed that, contrary to our prediction but in line with the simulation results, $\phi$ but not $\lambda$ explained more of the interindividual variation in how many trials individuals needed to reach criterion during a reversal. Fourth, matching these observations, we found that the primary component of flexibility that was manipulated during the serial reversal experiments was the learning rate ($\phi$), which more than doubled between the first and last reversals, whereas $\lambda$ slightly declined, as expected based on the simulations. Fifth, while individual differences in performance persist across the manipulation, the underlying changes in $\phi$ and $\lambda$ are not predictable based on their initial values. Grackles appear to use different strategies to improve their performance during the serial reversal experiment, with some individuals showing more changes in their association-updating rate but less in their sensitivity to learned associations, while others show the opposite, leading to a negative correlation between the inferred $\phi$ and $\lambda$ values among the individuals at the end of the serial reversal learning experiment.The learning rate also explained more of the interindividual variation in how many trials individuals needed to reach criterion during a reversal. Finally, these different strategies to improve their behavioral flexibility that individuals revealed in the serial reversal learning experiment subsequently also influenced their behavior in a different experimental test of behavioral flexibility. linking these two components of behavioral flexibility to the performance on the multi-access boxes suggests that birdsGrackles with intermediate values of $\lambda$ (and $phi$) solved fewer optionsloci on both multi-access puzzle boxes than grackles with either high or low $\lambda$ (and low or high $\phi$), and gracklesbirds with intermediate values of $\phi$ have shorter latencies to attempt a new optionlocus. Accordingly, the grackles appeared to react to the predictability of the associations and the frequent switches of the reward location that they experienced during the serial reversal learning experiment to adjust their behavioral flexibility. The two key components of the Bayesian reinforcement learning model, the learning rate phi and the deviation rate lambda, appear to reflect differences and changes in behavioral flexibility: individuals with a higher learning rate are more likely to update their previously learned associations and individuals with a higher deviation rate are more likely to explore new options. 
 
The Bayesian reinforcement learning model we applied in these post-hoc analyses appears to be an accurate representation of the behavior of grackles in the serial reversal experiment. In the previous application of this model to reversal learning data from a different population, @blaisdell2021more found that the choices of grackles were consistent with what this model predicts. Here, we add to this by showing that the model can identify variation in performance, and in particular reveal how individuals change their behavior through the manipulation series of multiple reversals.  
Previous analyses of reversal learning performance in wild-caught animals have often focused on summaries of the choices individuals make [e.g. @bond2007serial], setting criteria to define success and how much individuals sample or explore the different options versus acquire or exploit the reward [e.g. @federspiel2017adjusting]. These approaches are more descriptive, making it difficult to link the differences to specific processes and to predict how variation in behavior might transfer to other tasks. While there have been attempts to identify potential rules that individuals might learn during serial reversal learning [@spence1936nature; @warren1965primate; @warren1965comparative, @le2023mixtures], these rules were often about abstract switches to extreme strategies (e.g. win-stay / lose-shift) and therefore could not account for the full variation in the behavior. In contrast, the Bayesian reinforcement learning model with its two parameters of the association-updating rate and the sensitivity to learned associations has a clear theoretical foundation and appears to be sufficient to accurately represent the behavior of grackles in the serial reversal experiment. The previously described rules, including dramatic shifts in strategies, can be recovered with the dynamic Bayesian reinforcement learning model, including the different ‘learning curves’ that we observe among individuals (e.g. @gallistel2004learning). Applying the Bayesian reinforcement model to (serial) reversal learning experiments can provide several benefits to our understanding of behavioral flexibility. First, it highlights the key pieces of information that individuals likely pay attention to when adjusting their behavior. This provides ways to also link their performances and inferred cognitive abilities to how they experience and react to their natural environments. In particular, literature on foraging behavior that focuses on the likely trade-offs between the exploration versus exploitation of different options has a similar focus on gaining information (exploration) versus decision making (exploitation) [@kramer1991exploration, @berger2014exploration, @addicott2017primer]. Having a mechanistic model for the behavioral choices can also help to design better and alternative experiments. Simulating the likely behavioral choices of individuals can help to decide how to track the progress of individuals and when to switch rewards [@logan2023flexmanippcj]. Deciding on which external conditions might matter most to a given group of individuals can help to determine which parameters to vary and can help to adapt the model further. For example, it has been extended to allow for unpredictability in the association between the cue and the reward [@gershman2018deconstructing, @danwitz2022parameter] or to assume that experiencing a reward will update the association more than not experiencing a reward [@metha2020separating]. Our advance here was to make the model dynamic to determine how individuals adjust their behavior during the serial reversal learning experiment.

Previous analyses of reversal learning performance of wild-caught animals have often focused on summaries of the choices individuals make [@bond2007serial], setting criteria to define success and how much individuals sample/explore versus acquire/exploit [@federspiel2017adjusting]. These approaches are more descriptive, making it difficult to predict how variation in behavior might transfer to other tasks. While there have been attempts to identify potential rules that individuals might learn during serial reversal learning [@spence1936nature; @warren1965primate; @warren1965comparative], it is unclear how to use these rule-based approaches for cases like the grackles, who, while apparently shifting toward a win-stay/lose-shift rule, did not fully land on this rule [@logan2022flexmanip]. More recent analyses of serial reversal learning experiments of laboratory animals have specifically focused on determining when individuals might switch to more specialized rules [@jang2015role]. In such analyses, some individuals were found to learn more specific rules about the serial reversal because such specialized reversal rule models seemed to fit the behavior better than the reinforcement learning models because individuals appeared to switch toward the win-stay/lose-shift strategy rather than continuously updating their attractions [@dhawan2019more, @metha2020separating]. However, these specialized strategies only seem to emerge in over-trained animals who have experienced a very large number of trials [@bartolo2020prefrontal], whereas individuals such as the grackles in our experiment are more likely to use the more general learning strategies that are reflected in the reinforcement learning models. Accordingly, the changes in behavior that can be observed in the serial reversal experiments we analyzed are likely better captured by the changes in the learning rate and the deviation rate than by switches in rules.
 

The dynamic model shows that behavioral flexibility in the grackles is not a fixed trait, but individuals can change their flexibility in response to their experiences. Grackles coming into the experiment already had different strategies, suggesting that they had different experiences of how predictable cues are and how frequently their environment changes. In general, the association-updating rate $\phi$ appears to explain more of the variation in how many trials individuals need to reach the criterion of consistently choosing the rewarded option during a single phase. The importance of the association-updating rate for the performance of the grackles in the reversal learning experiment matches what has been reported for squirrel monkeys [@bari2022reinforcement]. In contrast, the sensitivity to learned associations $\lambda$ appears to set a threshold on the performance during a single phase, but appears more important as the rewards switch more frequently. In the serial reversal learning experiments, we observed an initial decline in performance, with most grackles needing more trials in the second and third reversal compared to the first, before improving and reaching the criterion in 50 trials or less [@logan2023flexmanippcj]. This initial increase likely reflects that grackles need to distinguish between the absence of a reward at the previously rewarded location reflects stochastic variation in the association between the cue and the reward or an actual switch in reward structure. In a stochastic environment, individuals can gain more reward if they do not update their associations quickly, but stick with an option that previously gave them high rewards [@woo2023mechanisms]. In their natural environment, most cues are presumably not perfect such that their initial expectation might be that the particular tube just did not have a reward that time, but should still provide rewards frequently, thus explaining their initial decline in performance. Only after several switches is there sufficient information for the grackles to infer that the cues are highly reliable and the switches are relatively frequent. This is when they show the increase in their association-updating rate $\phi$, which on average doubled across individuals, changing more for individuals who started off with lower $\phi$ values. The increase in the learning rate during the manipulation might reflect that birds recognize that this is an environment where new information should be prioritized over previously learned associations. This change in the learning rate over the serial reversal experiment in the grackles matches what has been reported for squirrel monkeys [@bari2022reinforcement]. In contrast, the rate of deviating from learned preferences ($\lambda$) did not correlate with the number of trials to reverse. Grackles alsoThe changed in their sensitivity to the learned associationsrate of deviation during the manipulation, in line with the prediction that they benefit from being open to exploring the alternative option when the reward structure frequently switches. might indicate that individuals learned about the serial nature of the reversal experiment, that they should deviate from their previous attractions as soon as the reward changes. 

Most animals that have been tested in serial reversal learning experiments thus far show improvements throughout the consecutive reversals, suggesting that most species can adapt their behavioral flexibility in response to the predictability and stability of their environments (e.g. @warren1962reversal, @komischke2002successive, @bond2007serial, @strang2014serial, @chow2015serial, @cauchoix2017cognition, @erdsack2022serial, @degrande2022domestic]. For the grackles, the manipulation pushed individuals to levels that were already observed in some individuals at the beginning of the experiment, meaning that the change within the experiment is within the natural range of abilities also observed in the wild. While there were individual differences in how individuals performed learning and deviation rates [@mccune2023flexmanippeerj2repeatability], all individuals appeared to changed depending on their experiences. The manipulation pushed individuals to levels that were already observed in some individuals at the beginning of the experiment, suggesting that individuals might also change their behavioral flexibility in response to their experiences in their natural habitats.  Among the manipulated grackles, who all quickly switched to consistently gain the reward, we observed different strategies. On the one side, there are grackles who change gradually throughout an association phase, already choosing the newly rewarded option at the beginning but continuing to explore the alternative non-rewarded option throughout. These are the individuals with a high association-updating rate and low sensitivity to learned associations. On the other side are grackles who take longer to choose the newly rewarded option after a switch, but once they discover which option is rewarded, quickly reverse their preference. These are the individuals with low association-updating rates and high sensitivities to learned associations. With the variables we measured here, we could not predict which strategies ended up with after the manipulation. We observed additional strategies with different combinations of $\phi$ and $\lambda$ across the grackles during their first reversal, but these are not efficient in the serial reversal learning experiment and instead are more suited to unpredictable and less frequently changing environments. How frequently and how quickly individuals change their behavioral flexibility in their natural environments is unclear. Individual differences might persist if their different behavioral flexibility leads them to continue to experience their environment differently. For the grackles, we have some indication that after releasing them back to their original environments, differences in behavioral flexibility between the manipulated and control individuals persisted for at least several months, with individuals who had changed their $\phi$ and $\lambda$ appearing to switch more frequently between food types and foraging techniques [@logan2019flexforaging, results are in prep.]. 
 

The analyses linking $\phi$ and $\lambda$ to the performance on the multi-access boxes showsuggest that the different strategies grackles ended up with to improve their performance during the serial reversal learning experiment subsequently appeared to influence how they solved birds might use different strategies to solve a larger number of loci on the multi-access box. The negative correlation between $\phi$  phi and $\lambda$  lambda prompted us to explore whether the relationship between these two variables and the performance on the multi-access boxes could be non-linear. We did detected U-shaped relationships between $\phi$  phi and $\lambda$  lambda and how individuals performed on the multi-access puzzle boxes. First, gracklesbirds with intermediate $\phi$  phi values showed shorter latencies to attempt a new optionlocus. This could reflect that gracklesbirds with high $\phi$  phi values take longer because they formed very strong associationsattractions withto the previously rewarded optionlocus, while gracklesbirds with small $\phi$  phi values take longer because they do not update their associationsattraction even though the first optionlocus is no longer rewarded or because they do not explore as much because of their small $\lambda$. Second, we found that gracklesbirds with intermediate values of $\lambda$  lambda solved fewer optionsloci. This could indicate that gracklesbirds with a small $\lambda$  lambda are more likely to explore new optionsloci while gracklesbirds with a large $\lambda$, and low $\phi$  lambda are lessmore likely to stop returning to an option that is no longer rewarded. We also found further interactions in that birds who solved more loci had longer latencies to attempt a locus. An alternative interpretation could therefore be that birds with high phi and small lambda solve fewer loci because they do not switch attractions quickly but need less time because they explore more, while birds with small phi and high lambda solve fewer loci because they do not learn but need less time because they already act on small differences in attractions.Given that there was also a positive correlation between the number of options solved and the latency to attempt a new options, there might be a trade-off, where grackles with extreme $\phi$ and $\lambda$ values solve more options, but need more time, whereas grackles with intermediate values have shorter latencies, but solve fewer options. We are limited though in our interpretation by the small sample sizes. More detailed studies would be needed in order to fully understand how the association-updating rate and the sensitivity to learned associations might shape performance on the multi-access puzzle boxes. In addition, it is also possible that performance on the multi-access boxes relies on other cognitive abilities in which individuals may differ. For example, we previously found that grackles who are faster to complete go no-go, an inhibition task, where they had to learn to not react to a cue in order to wait for a trial in which a different cue could result in gaining a a reward,, were slower to switch optionsloci on the multi-access boxes [@logan2021inhibition]. As such, variation in self control may affect performance on flexibility and innovation tasks by decreasing exploratory behaviors. However, all these analyses are exploratory and based on a small sample, so these interpretations are speculative and further investigation is needed to understand how potential cognitive abilities shape performance on suchthese different tasks.
 
Overall, these findingspost-hoc analyses indicate the potential benefits of applying a more mechanistic models to psychological experimentsthe serial reversal learning paradigm. Inferring the potential underlying cognitive processes potentially underlying behavior can allow us to make clearer predictions about how the performance in one experiment might translate to other paradigms and to behavior in the wild. experiments link to behavioral flexibility.  For the serial reversal learning paradigmIn particular, we could expect that the previously observed differences in whether reversal learning performance links with performance in other experimentstraits like innovation or inhibition [e.g. positively in graey squirrels: @chow2016practice, negatively in Indian mynas: @griffin2013tracking, and positively, negatively, or not at all depending on the other trait in great-tailed grackles: @logan2016behavioral and this article] could be linked to differences in whether the association-updatinglearning rate or the sensitivity to learned associationsdeviation plays a larger role in the reversal performance in a given species and in particular for the other trait. The advanced capabilities of reflecting behavioral choices directly in a Bayesian framework offers an opportunity for the field of comparative cognition to implement more informed assessments of cognitive abilities and the factors shaping them.The mechanistic model can also help with setting criteria to better design the serial reversal experiments because the changes in attraction can be used to reflect whether individuals have formed a sufficient association to reverse the rewarded option [@logan2022manyindividuals]. We believe that considering such mechanistic models more generally can offer an opportunity for the field of comparative cognition to better fulfill its potential.
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