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Abstract 22 

Although metacommunity ecology has been a major field of research in the last decades, with both 

conceptual and empirical outputs, the analysis of the temporal dynamics of metacommunities has 24 

only emerged recently and still consists mostly of repeated static analyses. Here we propose a novel 

conceptual analysis framework to assess metacommunity processes using path analyses of spatial 26 

and temporal diversity turnovers. We detail the principles and practical aspects of this framework 

and apply it to simulated  four datasets to illustrate its ability to decipher the respective 28 

contributions of entangled drivers of metacommunity dynamics. We then apply it to four real 

datasets. Empirical results support the view that metacommunity dynamics may be generally shaped 30 

by multiple ecological processes acting in concert, with environmental filtering being variable across 

both space and time. These results reinforce our call to go beyond static analyses of 32 

metacommunities that are blind to the temporal part of environmental variability. 
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Introduction 

One of the main goals of community ecology is to understand the determinants of species diversity 38 

at different spatial scales. Based on the inspiring work of Skellam (1952), Preston (1962), MacArthur 

& Wilson (1967) and Shmida & Wilson (1985), metacommunity theory has emerged as a strong 40 

framework to investigate the spatial distribution of species and the dynamics of spatially structured 

ecosystems (Leibold et al. 2004, Loreau & Holt 2004 ; Massol et al. 2011, Guichard 2017). 42 

Metacommunity theory has been originally proposed to revolve around four main paradigms 

explaining the coexistence of species on patchy habitat landscapes (Leibold et al. 2004, Shoemaker & 44 

Melbourne 2016, Fournier et al. 2017; but see also criticism of Brown et al. 2017), which can be 

better understood as “templates” or typical cases in which a few processes dominate 46 

metacommunity assembly and functioning. The patch-dynamic paradigm focuses on the processes of 

competition, colonization and extinction in networks of patches that can be released due to intrinsic 48 

oras a result of extrinsic, possibly dynamical perturbations in patches causes. In this paradigm, a 

particular emphasis is put on trade-offs to explain species coexistence at a large spatial scale, e.g. 50 

through the competition-colonization trade-off (Hastings 1980, Tilman 1994, Calcagno et al. 2006) or 

the tolerance-competition trade-off (Muller-Landau 2010, Haegeman et al. 2013). The species-52 

sorting paradigm focuses on the differential responses of species, in terms of vital rates and biotic 

interactions, to environmental heterogeneity across the landscape to explain large-scale and local 54 

coexistence as the result of environmental filters and local adaptation (Chase & Leibold 2003). The 

mass-effect paradigm focuses on source-sink dynamics among communities, with species potentially 56 

coexisting in patches where they are maladapted due to the important influx of dispersing individuals 

(Amarasekare & Nisbet 2001, Mouquet & Loreau 2003). Finally, the neutral paradigm focuses on the 58 

interplay of stochasticity and dispersal, in a simplified approach that does not consider 

environmental heterogeneity and differences of local adaptation between species, thus explaining 60 

local species coexistence as a purely stochastic process driven by species frequencies at a larger scale 

and immigration rates (Hubbell 2001). These four simplistic views of real metacommunities were 62 

defined to encompass the main models and assumptions on coexistence mechanisms, both in theory 

and in empirical studies (Cottenie 2005, Shoemaker & Melbourne 2016, Ulrich et al. 2017).  64 

Metacommunity paradigms and their associated models have mostly been used to analyse spatial 

patterns of metacommunity composition at a single date, therefore assuming that metacommunities 66 

are at a dynamical equilibrium (Logue et al. 2011, Heino et al. 2015), often in an indirect manner (i.e. 

with statistical models quite disconnected from the theoretically grounded dynamical models; but 68 

see Azaele et al. 2006 for an exception). Specifically, when spatial environmental variation is 

hypothesized to play a role, the most common approach has been to perform variance partitioning 70 

(Borcard et al. 1992, Cottenie 2005, but see e.g., Leibold and Mikkelson 2002, Ulrich et al. 2017). It 

consists in partitioning the observed spatial variation of community composition into spatial and 72 

environmental components, measured as multivariate matrices of relevant spatial and 

environmental explanatory variables respectively (Borcard et al. 1992, Cottenie 2005, Peres-Neto et 74 

al. 2006). The effect of the spatial component is then expected to reflect the combined effect of 



dispersal and ecological drift (neutral and/or patch dynamics and/or mass effect), while the effect of 76 

the environmental component should summarize differential species responses to environmental 

variation (species-sorting, see Cottenie 2005 for a classification). Such analyses of static spatial 78 

patterns of metacommunities have produced numerous ecological insights on the processes 

structuring metacommunities and their variation across biomes, taxa and along environmental 80 

gradients (Cottenie 2005, Henriques-Silva et al. 2013, Heino et al. 2015). However, results on 

simulated datasets challenge these findings and suggest that partitioning alone does not allow 82 

unambiguously grasping metacommunity dynamics (Gilbert & Bennett 2010, Peres-Neto & Legendre 

2010). Here we address whether and how analysing temporal patterns of diversity in 84 

metacommunities allows better inferring their underlying processes. 

Ecosystems and their constituent communities are highly dynamic (e.g., Brokaw 1985, Tscharntke et 86 

al. 2005, Malard et al. 2006, Acuña et al. 2014, Bertrand et al. 2016), and this temporal variation in 

community processes is likely to impair the analysis of metacommunity diversity at a single date. 88 

Temporal data, however, should provide key information on community processes and assembly 

dynamics (Anderson and Cribble 1998, Magurran and Henderson 2010, Wolkowich et al. 2014, 90 

Buckley et al. 2018), provided a method is able to process signal from noise in metacommunity time 

series. As a starting point, Figure Box 1 summarizes how dispersal, ecological drift and ecological 92 

filtering should influence species turnover and lead to distinctive signatures (Massol and Petit 2013). 

For instance, greater dispersal should entail higher temporal turnover and lower spatial turnover, 94 

while the relative effect of ecological filtering compared to ecological drift could be measured 

through the indirect effects of community size and habitat variability on spatial and temporal 96 

turnovers (Fig. 1). Box 1 presents simple hypotheses that may apply to many ecological systems (but 

see some counter-examples in Box 1). While Fig.Box 1 is very general and does not provide a 98 

statistical framework per se, it points out predictable patterns that could be used to assess 

metacommunity processes from metacommunity time series.  To date, few studies have examined 100 

the temporal dynamics of metacommunities (Datry et al. 2016). We here argue that this limited 

emphasis on the temporal dynamics of metacommunities reflects (i) a lack of general conceptual and 102 

quantitative framework to analyse temporal changes (but see e.g., Nuvoloni et al. 2016) and (ii) the 

scarcity of proper empirical datasets involving time series.  104 

 



 106 

Figure Box 1 Relationships between processes driving metacommunity dynamics and spatiotemporal 

diversity patterns.  108 

The plain boxes represent different components of spatiotemporal diversity patterns, at both local 

scale (α diversity) and as turnover in diversity among sites (βspa diversity) and within a site in time (βtemp 110 

diversity). The turnover among sites βspa is decomposed into two components representing turnover 

between sites in same or different environment, respectively. The dashed boxes represent two 112 

components of environmental variation affecting metacommunity dynamics, namely, habitat variation 

and varying community size. The solid arrows represent expected influences of the processes driving 114 

metacommunity dynamics on diversity patterns. The processes at play are labelled on each arrow, and 

the end of arrow represents expected increase while the origin represent expected decrease (the 116 

origin of the arrow) in patterns of corresponding boxes. For instance, dispersal is expected to decrease 

spatial turnover and to increase local diversity and temporal turnover. Dashed lines indicate how 118 

environmental variation mediates these effects: community size negatively affects ecological drift 

while habitat heterogeneity increases the effect of ecological filtering. Figure improved from an earlier 120 

version presented in Massol & Petit (2013). 

Greater dispersal should entail higher local diversity (Shmida and Wilson 1985), higher temporal 122 

turnover (Nuvoloni et al. 2016) and generally lower spatial turnover (Shmida and Wilson 1985). 

Ecological drift should lower local diversity (Hubbell 2001), increase spatial turnover (Chave and Leigh 124 

2002) and increase temporal turnover (Leigh et al. 1993). The strength of ecological drift should further 

be negatively related to the number of individuals in the local community (Hubbell 2001). Positive 126 

frequency-dependent selection should lower local diversity and increase temporal turn-over (May 

1973), the reverse being true for negative frequency-dependent selection (Janzen 1970). Ecological 128 

filtering should lower local diversity (Hutchinson 1957) and temporal turnover (Magurran and 

Henderson 2003), and increase spatial turnover between communities located in different 130 

environmental conditions (Whittaker 1967). Finally, habitat variability in space and time should 

increase these effects of ecological filtering (Chesson 2000). 132 
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Counter-examples to these general relationships may appear in specific systems. For instance, 

Vannette and Fukami (2017) studied nectar-inhibiting microbial communities and demonstrated that 134 

dispersal may enhance priority effects and spatial beta-diversity in this transient system that 

establishes in a previously empty habitat; Shmida and Wilson (1985) explained how dispersal (coupled 136 

to ecological filtering) may actually increase spatial turnover between communities experiencing 

similar environmental conditions if they are in peculiar landscape settings (see their Fig. 5); Molofsky 138 

et al. (2001) demonstrated how positive frequency-dependence may actually stabilize communities of 

sessile organisms with short interaction ranges. 140 

 

Nuvoloni et al. (2016) proposed to analyse the temporal turnover of community composition and to 142 

relate local turnover to environmental variables. We here propose to generalize this approach with 

two novel ingredients. First, we suggest jointly analysing spatial and temporal turnovers of 144 

community composition: spatiotemporal turnover encompasses (i) temporal turnover of the 

different local communities, (ii) spatial turnover between different communities sampled at a given 146 

date, and (iii) turnover between different communities sampled at different dates. A key argument is 

that these three components taken together can help teaseing apart ecological processes acting on 148 

communities through richer signatures than separate analyses of spatial and temporal turnovers (Box 

1). Second, we propose to perform path analyses to study the influence of environmental, dispersal 150 

and community context on the three components simultaneously, so as to fully grasp the complex 

direct and indirect relationships among the drivers. 152 

The comprehensive scheme of the expected influences of processes on spatiotemporal patterns 

(Box 1) provides the basis for a heuristic path model (Fig. 2). We predict that dispersal limitation and 154 

environmental filtering should cause a positive correlation between community dissimilarity and, 

respectively, geographical distance and environmental distance (Borcard et al. 1992). Second, 156 

demographic stochasticity should cause a negative correlation between mean community size and 

community dissimilarity, and a positive correlation between temporal distance and community 158 

dissimilarity (Lande et al. 2003). Third, differences in community size should be positively linked to 

differences in species richness (the more-individuals hypothesis, Srivastava & Lawton 1998), which in 160 

turn should cause an increase in community dissimilarity (due to theirits effects on nestedness, see 

Baselga 2010). Finally, we consider that environmental distance may be correlated with temporal 162 

and geographical distance. Our heuristic understanding of spatio-temporal community dissimilarity 

patterns makes use of both direct and indirect relationships between explanatory variables. Path 164 

analyses therefore constitute a natural way to perform an exploratory analysis of these putative 

drivers of metacommunity dynamics (Kingsolver & Schemske 1991). In particular systems that may 166 

deviatinge from the general relationships predicted by Box 1 (e.g., Shmida & Wilson 1985, Molofsky 

et al. (2001), Vannette & Fukami 2017), alternative heuristic path models maycan be used for such an 168 

analysis. 



 170 

Figure 2 Heuristic path model to test the signature of ecological processes on spatiotemporal diversity 

patterns.  A dashed (resp. plain) arrow represents a negative (resp. positive) correlation. <J> stands for 172 

the average community size in the metacommunity, t for time, x for space, E for the local environment 

and S for species richness. Δ values represent difference of statistics in space and time. For instance, 174 

because it controls the intensity of ecological drift, the average community size is expected to 

negatively affect spatial and temporal diversity turnovers (negative arrow between <J> and β 176 

diversity). 

 178 

Here, we aim at developing testing athis new conceptual and analytical framework allowing a 

combined analysis of the spatial and temporal dynamics of metacommunities. We first review 180 

existing empirical studies on the temporal dynamics of metacommunities and the statistical methods 

that have been used to analyse these data. We then devise a general conceptual and methodological 182 

framework to model and interpret the temporal dynamics of spatially structured communities. We 

use this framework to analyse simulated data, and demonstrate that our framework is likely to 184 

outperform approaches that do not consider temporal variation, especially when studying 

communities experiencing strong and varying environmental filtersit enables us to detect the 186 

signature of simulated processes. We then apply this framework to four real case studies. We find 

that multiple ecological processes are simultaneously influencing community dynamics and that the 188 

environmental conditions that influence community dynamics are generally both spatially and 

temporally structured. 190 

 

Materials and methods 192 

Literature search 



We performed a literature search using ISI Web of Science with the timespan 1975 to 2018 and the 194 

keywords “metacommunit*” AND “temporal” on the 26th of September 2018. We obtained 265 

references. Out of these articles, 147 actually reported temporal data on metacommunity dynamics 196 

(Table S1). We manually extracted information on the types of organisms and habitats studied in 

these papers, and on the statistical methods employed to study metacommunities. 198 

 

Analysing metacommunity dynamics with statistics of spatiotemporal turnover and path analyses 200 

Nuvoloni et al. (2016) proposed to analyse the temporal turnover of community composition and to 

relate local turnover to environmental variables. We here propose to generalize this approach with 202 

two novel ingredients. First, we suggest jointly analysing spatial and temporal turnovers of 

community composition: spatiotemporal turnover encompasses (i) temporal turnover of the 204 

different local communities, (ii) spatial turnover between different communities sampled at a given 

date, and (iii) turnover between different communities sampled at different dates. A key argument is 206 

that these three components taken together can help teasing apart ecological processes acting on 

communities through richer signatures than separate analyses of spatial and temporal turnovers. 208 

Second, we propose to perform path analyses to study the influence of environmental, dispersal and 

community context on the three components simultaneously, so as to fully grasp the complex direct 210 

and indirect relationships among the drivers. 

The comprehensive scheme of the expected influences of processes on spatiotemporal patterns 212 

(Fig. 1) provides the basis for a heuristic path model (Fig. 2). We predict that dispersal limitation and 

environmental filtering should cause a positive correlation between turnover and, respectively, 214 

geographical distance and environmental distance (Borcard et al. 1992). Second, demographic 

stochasticity should cause a negative correlation between mean community size and turnover, and a 216 

positive correlation between temporal distance and turnover (Lande et al. 2003). Third, differences in 

community size should be positively linked to differences in species richness (the more-individuals 218 

hypothesis, Srivastava & Lawton 1998), which in turn should cause an increase in turnover (due to 

their effects on nestedness, see Baselga 2010). Finally, we consider that environmental distance may 220 

be correlated with temporal and geographical distance. 
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Figure 2 Heuristic path model to test the signature of ecological processes on spatiotemporal diversity 

patterns.  A dashed (resp. plain) arrow represents a negative (resp. positive) correlation. <J> stands for 224 

the average community size in the metacommunity, t for time, x for space, E for the local environment 

and S for species richness. Δ values represent difference of statistics in space and time. For instance, 226 

because it controls the intensity of ecological drift, the average community size is expected to 

negatively affect spatial and temporal diversity turnovers (negative arrow between <J> and β 228 

diversity). 
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Assessing the path analysis framework with simulated data 

We first devised an individual-based simulation algorithm of metacommunity dynamics in a discrete 232 

virtual landscape where communities are distributed across a two-dimensional grid. We simulated 

varying kinds of metacommunity dynamics in discrete time and analysed the simulated patterns to 234 

assess the performance of the proposed framework. We here first describe the simulation algorithm 

and then explain the simulated scenarios. 236 

 

The metacommunity simulator 238 

 Regional species pool 

We consider a fixed regional species pool of S species (S=100), each species i having a fixed regional 240 

frequency i and a fixed trait value i. In the following, all species have the same regional frequency 

(i =0.01) and trait values are regularly spaced between 0 and 1 (i =i/100). 242 

 



 Landscape 244 

We consider a gridded landscape of 400 cells (20 x 20) with fixed null boundary conditions. Abiotic 

environmental conditions within each cell k are assumed homogeneous within the cell and are 246 

measured with a single environmental variable Ek(t) that can vary in time (t). This environmental 

variable will influence the processes of adult mortality and propagule establishment in each cell. 248 

There are Jk(t) individuals per cell, this number varying across space and time, depending on the 

balance between recruitment/immigration and mortality in each cell. 250 

 

 Environmental dynamics 252 

The environmental variable Ek(t) in cell k at time t is decomposed into three components: 

 Ek(t) = gk + at + ak(t)         (Eq. 1) 254 

where gk represents an average environmental context in cell k, at represents a temporal trend 

common to all cells, and ak(t) represents a cell-specific temporal anomaly.  256 

More specifically, we consider in the following a linear environmental gradient from the left to the 

right of the two-dimensional grid, so that gk regularly varies from 0.5 – e1/2 to 0.5 + e1/2 according to 258 

the column of the cell, gk being constant on each column; at is uniformly drawn between - e2/2 and 

e2/2 at each time step t; ak(t) is uniformly drawn between - e3/2 and e3/2 at each time step t and for 260 

each cell k.  

Environmental dynamics are parameterized with the three parameters e1, e2 and e3 controlling the 262 

magnitude of the spatial environmental gradient, of the spatially synchronous temporal 

environmental variability and of the spatially asynchronous temporal environmental variability, 264 

respectively. Note that with these modelling choices, we are able to simulate a spatial environmental 

gradient, but we do not consider a directional temporal trend in environmental conditions. Besides, 266 

we control the magnitude of temporal variations, but we do not control their autocorrelation (equal 

to zero in all simulations). Valuable information on the temporal autocorrelation of both at and ak(t) 268 

could also be extracted from temporal diversity patterns and in turn inform about ecological 

processes (Jabot & Lohier 2016), but here we will instead focus on the magnitude of these variables. 270 

 

 Community dynamics 272 

In each cell and during each time step, the dynamics of the community is governed by four processes 

taking place sequentially: 1) reproduction, 2) propagule dispersal, 3) adult mortality and 4) propagule 274 

establishment. All cells are simultaneously updated. 

1) Reproduction 276 

Each individual of the community produces propagules at a constant rate r so that the number of 

propagules produced by each individual during one time step is a random draw from a Poisson 278 

distribution with parameter r (with r ≤1). 



2) Dispersal 280 

A proportion (1-m) of the propagules stays in their home cell, while a proportion m disperses in the 

eight neighbouring cells (uniform random draws). On top of this local dispersal, additional propagules 282 

arrive from the regional species pool (described above) at a constant rate I in each cell, so that the 

number of such long-distance dispersal propagules is computed as a Poisson draw with parameter I. 284 

3) Mortality 

Each individual of species i has a local fitness fi(k,t) in cell k at time t that depends on the match 286 

between its trait value i and the environmental variable Ek(t) in cell k at time t. More precisely, fi(k,t) 

is given by the equation: 288 

 fi(k,t) = 1 + A × exp [ - (i - Ek(t))²/(2²)]      (Eq. 2) 

where parameter A controls the strength of environmental filtering (complete maladaptation leads 290 

to a local fitness of 1 while perfect adaptation to a local fitness of 1 + A) and parameter  controls its 

specificity (a relatively good local adaptation is obtained when |i - Ek(t)| is less than ). 292 

The survival of adult individuals of species i is modelled at each time step t in cell k as a Bernoulli 

draw with probability (1-r) × fi(k,t) / (1+A). This implies that each individual has a probability of dying 294 

that is at least equal to r, this death probability increasing as individual fitness decreases. 

4) Establishment 296 

We consider that each cell has a carrying capacity of J individuals. We therefore model the number of 

recruited individuals Nr(k,t) in a cell k at time t as a random variable having a Poisson distribution 298 

with mean equal to J-Nk(t), where Nk(t) is the number of surviving adults in the cell after the mortality 

step. If Nk(t) is already larger than J, then no individual is recruited. This modelling choice enables the 300 

number of individuals per cell to vary temporally. The Nr(k,t) recruited individuals are chosen through 

a multinomial draw with species probabilities of being drawn proportional to their number of 302 

propagules that have reached the focal cell. This modelling does not therefore consider cases in 

which propagules would be in insufficient numbers to fill available recruitment opportunities. 304 

 

 Initialization of the metacommunity, burn-in period and sampling 306 

The metacommunity is initialized with a multinomial random draw of J individuals from the regional 

species pool in each cell. A burn-in period of 10,000 time steps is used, which was empirically found 308 

to be sufficient to reach a dynamical equilibrium of species richness (Fig. S5). Afterwards, 

metacommunity dynamics continues for 20 time steps and the local community composition of 50 310 

randomly selected cells (out of the 400) is recorded at each time step for subsequent analyses. The 

C++ code of this metacommunity simulator is provided in Supplementary material S1. 312 

 

Simulated scenarios 314 



We devised 6 different scenarios representing archetypical assembly situations: two neutral 

scenarios, two scenarios with environmental filtering and no dispersal between neighbouring cells, 316 

and two scenarios with both environmental filtering and dispersal. Our aim was 1) to qualitatively 

assess whether our heuristic predictions were confirmed in archetypical situations and 2) to examine 318 

situations in which temporal data on metacommunity dynamics bring additional insights on assembly 

processes compared to analyses solely based on snapshot data. 320 

 

Table 1. Ecological processes and environmental spatiotemporal variations included in the six 322 

simulated scenarios. 

 Ecological processes Environmental variables 

Scenario I m A  e1 e2 e3 

1 + - - - - - + 

2 + + - - - - + 

3 + - + + + - - 

4 + - + + - + - 

5 + + + + + + - 

6 + + + + - + + 

 324 

More precisely, the first scenario represents a case of neutral assembly without dispersal between 

neighbouring cells (A=0; m=0) very similar to Hubbell’s metacommunity model (Hubbell 2001). The 326 

second scenario represents a case of neutral assembly with dispersal between neighbouring cells 

(A=0, m≠0) similar to models such as Gascuel et al.’s (2016). The third scenario represents a case of 328 

strong environmental filtering in a temporally constant environmental gradient and without dispersal 

between neighbouring cells (A≠0; m=0; e2= e3=0). The fourth scenario represents a case of strong 330 

environmental filtering in spatially homogeneous but temporally varying environmental conditions 

and without dispersal between neighbouring cells (A≠0; m=0; e1= e3=0). The fifth scenario represents 332 

a case of strong environmental filtering with both a constant environmental gradient and spatially 

homogeneous temporal environmental variations, and with dispersal between neighbouring cells 334 

(A≠0; m≠0; e3=0). The sixth scenario represents a case of strong environmental filtering with no 

spatial environmental gradient but with environmental conditions that are temporally varying in a 336 

spatially inhomogeneous way, and with dispersal between neighbouring cells (A≠0; m≠0; e1=0). 

Detailed parameter settings and some descriptive statistics of the different scenarios are given in 338 

Appendix S23. These parameter settings were manually determined by trials and errors so that 

average local community size was about 500 and average local richness in the cells was about 20 in 340 

all scenarios. 

 342 

Path analyses 

We computed Sorensen community dissimilarity indices for all pairs of sampled communities. In this 344 

way, pairs of communities sampled at the same date report purely spatial dissimilarity, pairs of 

communities sampled at the same site but at different dates report purely temporal dissimilarity and 346 

the remaining pairs of communities report spatio-temporal dissimilarity. Similarly, we computed 



spatial distances (x), temporal distances (t) and environmental distances (E) for each pair of 348 

communities, as well as their mean community size (<J>), their absolute difference in community size 

(J) and in species richness (S). For each scenario, wWe ran a path analysis on such datasets based 350 

on the heuristic causal model (Fig. 2) with the function “sem” of the R package “lavaan” (Rosseel 

2012) and reporting standardized path coefficients. Since path analyses were based on distance 352 

matrices, we used the permutation-based approach developed by Fourtune et al. (2018) that takes 

into account the non-independence of the data points and that allows to confidently test for the 354 

significance of each path. We followed a Benjamini-Hochberg procedure to adjust the significance 

criterion (of 1%) for multiple testing. We assessed model fit with the Standardized Root Mean Square 356 

Residual (SRMR) that is a standard measure of model fit for path analyses.  

 358 

Empirical datasets 

A-Freshwater fishes 360 

We tested the applicability of our conceptual framework on four case studies. The first case study is 

based on the AFB (“Agence Française pour la Biodiversité”, i.e. the French Agency for Biodiversity) 362 

database synthesizing freshwater fish communities from yearly samples in more than 1500 sites in 

France (Poulet et al. 2011). Here, we restrain our analysis to a subset synthesizing temporal data 364 

from the Garonne-Dordogne river drainage in South-Western France (see Fourtune et al. 2016 for 

details). This sub-dataset included 32 sites that were thoroughly monitored each year between 1995 366 

and 2011 and for which precise environmental variables were available. This dataset included 51 fish 

species, for a total of 257,393 sampled fishes. Six environmental variables were recorded for each 368 

site: elevation, slope, average temperature in January 2011, average temperature in July 2011, width 

of the minor bed, and width of the water slide. The first five variables were temporally constant, 370 

while the last variable varied from year to year. Geographical distance between sites was computed 

along the river using the Carthage dataset of the IGN (French National Geographical Institute). We 372 

used log-transformed distances in the analyses reported here, but results were qualitatively similar 

when using raw distances. 374 

B-Aquatic invertebrates 

The second dataset compiles aquatic invertebrate communities across the Rhône river drainage in 376 

France. Benthic invertebrates were sampled on 6 sites of 11 different watersheds for a total of 66 

sites. They were sampled for six months consecutively from the end of autumn to the beginning of 378 

summer for two years, 2014 and 2015, for a total of 12 sampling dates. The rivers considered are 

intermittent and as such, subject to temporary cessation of flow and/or absence of surface water; 380 

when some sites were dry, they were not sampled at this date. Invertebrates were identified to the 

genus level but information was kept at the family level when no taxa were identified at the genus 382 

level for this family, resulting in a total of 231 taxa. Five environmental variables were measured for 

each site at each sampling date: temperature, pH, conductivity, concentration in dioxygen and 384 

number of days since the last rewetting event of the watershed. Log-transformed Euclidean 

distances between sites were used as a proxy of spatial effect. 386 

C-Freshwater snails 



The third dataset concerns the malacological fauna – 27 species - of a freshwater ponds network in 388 

the Guadeloupe Island (Lesser Antilles). 250 sites are yearly sampled since 2001 (17 years), where 

species densities are recorded. Species densities were multiplied by pond area to obtain estimated 390 

species abundances in each pond that were subsequently log-transformed. Each site is characterized 

by six temporally constant environmental variables (size, depth, vegetation cover, water quality, 392 

litter and a synthetic index of hydrological and vegetation stability, see Lamy et al. 2013 for 

additional details), and one temporally varying but spatially constant variable (annual rainfall). 394 

Geographical distances among sites were computed as Euclidean distances and were log-

transformed. Missing data and empty sites were removed prior to analyses leading to a total of ca. 396 

2800 samples. 

D-Aquatic plants 398 

The fourth dataset compiles aquatic plant communities in shallow lakes used for fish farming. These 

lakes are in general dried out during one year every 3 years. Twenty-four shallow lakes were sampled 400 

from 2 to 7 years between 2008 and 2015, for a total of 81 sampling events and 84 sampled plant 

species (Arthaud et al. 2013). Average species cover was multiplied by lake areas to obtain estimated 402 

species abundances in each lake. Two environmental variables were used:  chlorophyll a 

concentration that corresponds to water turbidity and light transmission, and the number of years 404 

since the last drying event.  

 406 

Results 

Empirical studies of the temporal dynamics of metacommunities 408 

The number of studies addressing temporal dynamics of metacommunities (147 studies in total) is 

rather small compared to the large number of references on metacommunities (1679 references for 410 

the single keyword “metacommunit*” for the same timespan) but they are increasing, especially 

since 2010 (Fig. 3A). The studies primarily concerned freshwater and terrestrial ecosystems, with 412 

marine ecosystems being less studied (Fig. 3B). Terrestrial studies were performed essentially in 

grasslands and forests (Table S1). Freshwater studies were for one half located in lakes and ponds 414 

and for one half in river systems (Table S1). A wide range of taxa were represented (Fig. 3D, Table 

S1). Among the statistical approaches used, the most common consisted in repeating static analyses 416 

across sampling periods (Fig. 3C). Temporal turnover analyses were also used in almost half of the 

studies, while other statistical approaches were less frequently used (Fig. 3C).  418 



Figure 3 Results of the literature search. Panel A: Yearly numbers (dashed line) and cumulative 420 

numbers (plain line) of scientific articles with temporal data on metacommunities. Panel B: repartition 

across main types of ecosystems. Panel C: repartition across methodologies used. Panel D: repartition 422 

across main taxa. More details are provided in Table S1. 

 424 

Analysis of simulated data 

The path analysis on simulated data confirmed our heuristic predictions regarding the paths 426 

produced by each ecological process. In the two neutral scenarios, a positive correlation between 

geographical distance and spatiotemporal community dissimilarity was found (Fig. 34a,b). For the 428 

first scenario without local dispersal (Fig. 34a), this correlation was modest and was solely due to 

smaller values of dissimilarity across time within a patch, compared to values of dissimilarity among 430 

distinct communities, but without any effect of distance past this distinction (Fig. S56). The 

correlation was larger in the second scenario with local dispersal since distance is expected to affect 432 

the degree of overlap of local communities (Fig. 34b). Under the species-sorting scenarios without 



local dispersal among patches, environmental filtering was found to produce a positive correlation 434 

between environmental distance and community dissimilarity (Fig. 34c,d), as well as a positive 

correlation between geographical distance and environmental distance in the spatially structured 436 

environmental scenario (Fig. 34c). When all processes were simultaneously at play, the path analysis 

successfully detected all the predicted paths (Fig. 34e). Finally, in the last temporally varying 438 

environmental scenario without spatial structure, the path analysis successfully detected the effect 

of environmental distance and temporal distance on community dissimilarity (Fig. 34f). Some 440 

scenarios also led to positive correlations between the difference in community size and the 

difference in local species richness and between the difference in local species richness and 442 

community dissimilarity, as initially predicted (Fig. 34a-e). Note that no simulated scenario enabled 

us to evidence a direct link between mean community size and community dissimilarity, since 444 

communities did not much vary in size in the simulations (by construction). In summary, Oour 

application of a causal modelling framework to simulated data enabled us to validate our heuristic 446 

predictions and to show that the modelling framework allows reliable inference of the ecological 

processes driving spatiotemporal variation in community composition, for contrasted simulation 448 

scenarios. 

 450 

Figure 34 Path analyses on the six simulated scenarios. Arrows depict significant effects. Arrow width 

represents the strength of the standardized estimates. Numerical values are reported in Table S43. 452 

The average community size (< J >) was omitted from these figures since it never had a significant 

effect in the simulations that harboured almost constant community sizes in the landscape. 454 

 



Our application of a causal modelling framework to simulated data enabled us to validate our 456 

heuristic predictions and to show that the modelling framework allows reliable inference of the 

ecological processes driving spatiotemporal variation in community composition, for contrasted 458 

simulation scenarios. Furthermore, we investigated whether this spatiotemporal framework could 

provide greater statistical power to detect the signature of environmental filtering in temporally 460 

varying environments, compared to standard spatial approaches. For this purpose, we studied the 

sixth scenario representing a case in which environmental filtering is strong and in which 462 

environment varies both spatially and temporally. In this last scenario, we did find a stronger 

correlation between environmental distance and community dissimilarity when considering the full 464 

spatiotemporal dataset ( = 0.73) or the temporal dataset alone comprising intra-site temporal 

community dissimilarities ( = 0.72), than when considering the spatial dataset alone comprising 466 

inter-site community dissimilarities ( = 0.48). In the fifth scenario in which environmental variation 

is spatially structured and temporally varying, the spatiotemporal approach is again the most 468 

efficient ( = 0.91), followed by the pure spatial approach ( = 0.88) and the pure temporal approach 

( = 0.73). 470 

 

Analysis of empirical datasets 472 

Applied to the four datasets, our statistical framework revealed very consistent patterns across case 

studies (Fig. 54). The influence of demographic stochasticity was evidenced in all case studies (see 474 

the dashed lines from <J> to sor). Geographic distances x were found to affect community 

dissimilarity (sor) in all case studies, both directly (putatively through dispersal limitation) and 476 

indirectly through environmental distances E. Environmental distances E were found to influence 

community dissimilarity (sor) in all case studies. Temporal distances t were found to impinge on 478 

environmental distances in three of the four case studies and directly affect community dissimilarity 

in half of the case studies. Finally, differences in local species richness S were found to affect 480 

community dissimilarity in all case studies, with differences in local community sizes J influencing 

S in three of the four case studies. This last result confirms the importance of taking this variableS 482 

into account when assessing the drivers of community dissimilarity. 

Although we found support for the three main types of ecological drivers (demographic stochasticity, 484 

environmental variation and dispersal limitation), environmental variation was generally the 

strongest driver of community dissimilarity. This environmental variation was both spatially and 486 

temporally structured in three of the four case studies (see the arrows from x and t towards E). 

This further supports our call for an integrated spatiotemporal appraisal of metacommunity patterns. 488 

 



490 

 

Figure 45 Path analyses for the four empirical datasets. a: freshwater fishes. b: aquatic invertebrates. 492 

c: molluscs. d: aquatic plants. Arrow width represents the strength of the standardized estimates. 

Dashed lines represent negative relationships. Paths from and towards E were pooled in single arrows 494 

by summing the absolute values of the significant paths associated to each environmental variable. 

Only significant paths are shown. Numerical values of the standardized coefficients and of the 496 

associated p-values are reported in Tables S121-145. Values of the Standardized Root Mean Square 

Residual (SRMR) are mentioned for each dataset. Fish by Vladimir Belochkin, shrimp by Ana María Lora 498 

Macias, snail by Vega Asensio and cattail by Alex Muravev from the Noun Project. 

 500 

Discussion  



The benefits of analysing spatiotemporal community turnover 502 

Our analyses of simulated metacommunities demonstrate that the causal analysis of spatiotemporal 

turnover indices allows detecting the influences of dispersal, demographic stochasticity and 504 

environmental filtering on metacommunity dynamics (Fig. 34). We are confident that the proposed 

framework is robust and general since we examined strongly contrasted scenarios that all lead to 506 

path analysis results that were consistent with simulation choices. These analyses also point out that 

a spatiotemporal analysis is more powerful than purely spatial or purely temporal analyses for 508 

detecting the effect of environmental filtering, especially for spatially heterogeneous and temporally 

varying environmental conditions (Fig. 34e,f). In such conditions, knowing both the previous and 510 

current compositional states of the local community is indeed likely to be key to understand its 

driving forces, hence the power of analysing temporal turnover rather than solely spatial turnover. 512 

Still, even in such cases, the spatial structure in terms of mean environmental conditions is likely to 

contain valuable signal indicative of metacommunity processes (in particular dispersal limitation and 514 

environmental filtering), hence the larger power of a spatiotemporal analysis compared to a purely 

temporal one. 516 

 

Detecting the contributions of entangled ecological processes 518 

In the proposed causal modelling framework, the relative strengths of the paths can be interpreted 

as reflecting the respective impacts of the underlying ecological processes on community turnover: 520 

the path from geographical distance (x) to sor represents the effect of dispersal on community 

turnover, the one from environmental distance (E) encapsulates the effect of environmental 522 

filtering and the ones from mean community size (<J>) and temporal distance (t) encapsulate the 

effect of demographic stochasticity (ecological drift). Indirect paths from x and t through E 524 

encapsulate the spatiotemporal structure of environmental variability, that is, whether 

environmental variation is mainly spatial or temporal. Finally, differences in community size (J) can 526 

affect differences in species richness (S) through the so-called more-individuals hypothesis 

(Srivastava & Lawton 1998; Storch et al. 2018), and this may in turn affect community turnover 528 

(Fig. 2). Specific hypotheses on the drivers of these differences could be easily included in this 

framework, by adding other paths and driving variables to represent these hypotheses. 530 

Applied to the fish metacommunity data, this spatiotemporal framework revealed that the turnover 

in fish community composition at yearly and regional scales is mainly driven by environmental 532 

filtering, although demographic stochasticity and dispersal do contribute to community turnover (Fig. 

45a). Another main driver of community turnover is the heterogeneity in richness among local 534 

communities (S), which we interpret as a nuisance variable here, since we do not have specific 

hypotheses on what may drive this heterogeneity beyond differences in community size (J). 536 

Alternative – yet non-exclusive – explanations for the observed variability in local species richness 

include the presence of a natural upstream-downstream gradient in species richness with more 538 

species near the outlet of the river networks (Muneepeerakul et al. 2008, Blanchet et al. 2014) and 

the introduction of non-native species that may not be homogeneous across the river network. Our 540 

analysis reveals that such potential drivers may have a dominant impact on the overall fish 

metacommunity structure at the regional scale. 542 



Applied to the invertebrate metacommunity data, the main driver of community turnover was also 

the heterogeneity in richness among local communities (Fig. 54b). This may result from the fact that 544 

this dataset comprises perennial and intermittent sites, and the latter ones generally harbour 

species-poor, original communities with taxa especially adapted to recover from disturbances (Datry 546 

et al. 2014). The other main drivers were demographic stochasticity and dispersal which may be 

explained by the intensity of local disturbances and regional disconnections caused by drying events. 548 

Temporal and spatial distances also have a strong effect on environmental distances as expected for 

intermittent rivers, as the stochasticity of drying events leads to a high spatiotemporal variability of 550 

the environment. 

For the last two datasets, environmental variation was found to be the main driver of community 552 

dissimilarity. This environmental variation was found to be both spatially and temporally structured. 

This highlights the fact that environmental filtering is both varying across space and time. This further 554 

supports our call for an integrated spatiotemporal approach to analyse metacommunity patterns and 

to better decipher the ecological drivers that shape metacommunity dynamics.  556 

More generally, we found very consistent results among the four case studies despite the variety of 

sampled taxonomic groups (plants, aquatic invertebrates, molluscs and fishes) and habitats (lakes, 558 

ponds, perennial streams and intermittent rivers). This may indicate the generality of the significance 

of the spatiotemporal variation of environmental conditions for metacommunity dynamics. 560 

Ecologists should therefore urgently embrace a more dynamical view of metacommunity assembly 

and look beyond the predominant perspective which considers communities as assembled through 562 

temporally fixed environmental filters. This present contribution offers a pragmatic way forward in 

this direction. 564 

 

Applying the proposed framework to metacommunity data 566 

The proposed framework requires temporal data of metacommunity composition and temporal 

environmental variables that are thought to be influential for the system studied. Since the approach 568 

is exploratory, it does not require a minimal amount of sampled dates nor of sampled locations 

(beyond 2) to be operational. In the studied datasets studied, the number of sampled dates varied 570 

from 2 to 17, while the number of sampled locations varied from 24 to 250. Our approach relies on 

the analysis of community dissimilarity indices, so that it can be applied to species-rich communities 572 

that contain a substantial amount of rare species with low occurrence frequencies. The proposed 

approach is easy to conduct, since it does not require any advanced statistical training. It enables 574 

toallows performing a first exploratory analysis of empirical data to assess the respective influences 

of complementary drivers of metacommunity dynamics (see Kingsolver & Schemske 1991 and 576 

Shipley 2000 for related discussions).  

As explained in Box 1, some ecological systems may deviate from our general predictions for a 578 

variety of reasons. For such systems, users should consider to building alternative heuristic path 

models that may be biologically more pertinentrelevant biologically. Such alternative path models 580 

may assume a different set of paths between the variables depicted in Fig. 2, or they may assume 

opposite signs for the predicted relationships, or they may even make use of alternative variables in 582 

the analysis. For instance, environmental variables may have adisplay cyclic temporal dynamics. In 



such cases, it may be more pertinent to consider phase difference rather than absolute time 584 

difference (t). Another example is the one of disease or population outbreaks that travel through 

space and sometimes constitute a genuine environmental perturbation for entire communities (e.g., 586 

a polyphagous moth defoliator for tree communities, Tenow et al. 2013). In this case again, absolute 

time may not be a pertinent variable and may be fruitfully replaced by the state of outbreak (x-vt) 588 

where v is the speed of the travelling wave and x is the position of the site considered. Besides, we 

proposed asOur proposition is a simple and versatile approach to analyse standardized path 590 

coefficients, although this may not always be the choice to be favoured (Grace & Bollen 2005), so 

that researchers should evaluate the pros and cons of this choice for their particular case study.  592 

Although the proposed framework appears powerful and robust, it is important to keep in mind that 

only simple linear relationships are modelled in the path analysis. Our analysis of simulated datasets 594 

supports this simple assumption (Fig. S5-10) and variable transformation procedures maycan be used 

to correct obvious non-linearities, as done here for some empirical case studies using log-596 

transformation of geographical distances. Still, results should be solely interpreted as rough 

estimates of the respective influences of dispersal, demographic stochasticity and environmental 598 

filtering on community dynamics. Explored path models are therefore not meant to be predictive. 

For such an endeavour, process-based dynamical models of metacommunity dynamics may be a 600 

much more suited way forward. 

 602 

 

Linking the proposed framework to process-based dynamical models 604 

Although the proposed framework appears powerful and robust, it is important to keep in mind that 

only simple statistical relationships are modelled in the path analysis. Consequently, results should 606 

be solely interpreted as rough estimates of the respective influences of dispersal, demographic 

stochasticity and environmental filtering on community dynamics. To go beyond the exploratory 608 

analysis enabled by the present approach, Mmore detailed inferences need to be grounded on more 

mechanistic modelling tailored to the particular case study (Evans et al. 2013, Mouquet et al. 2015). 610 

Such process-based dynamical models, however, require much more data on the system studied to 

be pertinentrelevant.  612 

By enabling the identification of important drivers of metacommunity dynamics, the proposed 

framework can help design relevant process-based models that focus on the most influential 614 

processes.  

Several types of process-based models can be distinguished in this respect. Ovaskainen et al. (2017) 616 

recently proposed to devise community models as hierarchical models of individual species 

dynamics. Such an approach is best suited for communities with a modest number of species that 618 

have sufficiently large occurrence frequencies to inform the model parameters. This approach is still 

to be extended to deal with temporal abundance data (Ovaskainen et al. 2017). Other even more 620 

demanding approaches rely on detailed individual-based models of metacommunity dynamics 

thatSuch models can then be compared to field data thanks to computer-intensive statistical 622 

techniques such as approximate Bayesian computation (ABC, Beaumont 2010, Jabot et al. 2013). 



Although several metacommunity simulators have been developed and distributed (e.g., 624 

Münkemüller & Gallien 2015, Keyel et al. 2016, Sokol et al. 2017, Munoz et al. 2018), tailoring a 

spatially explicit metacommunity simulator to a specific case study to perform a genuine model-626 

based ABC inference from metacommunity time series is still a challenge ahead.  
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Table S1: csv file containing the list of studies compiled for the meta-analysis. 

File S12: C++ Code of the metacommunity model 804 

Appendix S23: Additional information on the simulated scenarios. 

Appendix S34: Additional information on empirical analyses. 806 

  



Appendix S32: Additional information on the simulated scenarios. 808 

We here provide some details on the simulated scenarios: the parameter sets used (Table S23) and 

some descriptive patterns of the various scenarios (Fig. S56-S101). These supplementary figures 810 

depict for each of the six scenarios the response of community dissimilarity to the various simulated 

drivers: temporal distance, spatial distance and environmental distance. 812 

Scenario I m A  e1 e2 e3 

1 1.4 0 0 - 0 0 1 

2 0.1 0.03 0 - 0 0 1 

3 80 0 10 0.05 0.2 0 0 

4 5000 0 1000 0.01 0 0.1 0 

5 500 0.5 1000 0.04 0.1 0.1 0 

6 10 0.1 1000 0.06 0 0.3 0.1 

Table S23: model parameters used in the simulated scenarios. In addition, all simulations were 

performed with a value of r equal to 0.2. 814 

 

Scenario 1 2 3  5 6 

sor ← <J> -0.003 –  
0.35 

0.006 –  0.45 2.10-4 – 0.39 -0.02 –  0.27 -0.01 –  0.31 -0.01 –  0.19 

sor ← S 0.12 –  0 0.17 –  0 0.03 – 0 0.17 – 0 0.05 – 0 0.01 –  0.13 

sor ← t 0.002 –  0.37 4.10-4 –  0.42 -0.003 – 0.39 0.01 –  0.06 0.006 –  0.26 0.04 – 0 

sor ← E -0.002 –  
0.46 

0.002 –  0.44 0.85 – 0 0.65 – 0  0.87 – 0 0.73 – 0 

sor ← x 0.20 –  0 0.54 –  0 0.01 – 0.07 0.003 –  0.25 0.07 – 0 0.01 –  0.08 

S ← J 0.005 –  0.46 0.005 –  0.46 0.08 – 0 0.008 –  0.26 0.04 – 0 0.07 – 0.01 

E ← t 0.008 –  0.16 0.008 –  0.19 3.10-5 – 0.51 -0.01 –  0.04 -0.02 –  0.02 0.06 – 0 

E ← x -0.003 –  
0.32 

-0.001 –  
0.45 

0.71 – 0 -0.003 –  
0.33 

0.43 – 0 2.10-4 – 0.49 

SRMR 0.009 0.019 0.009 0.023 0.021 0.042 

Table S4: Standardized estimates and p-values for the path analyses on simulated scenarios (Fig.4). 816 

p-values equal to 0 actually mean <0.001. Significant effects at the 1% level with a Benjamini-

Hochberg correction are depicted in bold. The last line reports the Standardized Root Mean Square 818 

Residual (SRMR) that is a standard measure of model fit for path analyses. 

 820 



 

Fig. S45. Mean local species richness during the burn-in period in the six simulated scenarios. Note 822 

that there is no directional trend that would indicate that the transient dynamics from the initial 

conditions are not terminated. Note also that in the second scenario (b), the temporal dynamics is 824 

slower, but without trend. 



 826 

Fig. S56 – Descriptive plots for the first scenario 
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Fig. S67 – Descriptive plots for the second scenario 830 

 



 832 

Fig. S78 – Descriptive plots for the third scenario 
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Fig. S89 – Descriptive plots for the fourth scenario 836 

 



 838 

Fig. S910 – Descriptive plots for the fifth scenario 

 840 



 

Fig. S101 – Descriptive plots for the sixth scenario 842 

  



Appendix S34: Additional information on empirical analyses. 844 

We here provide the numerical results of the path analyses conducted for the four datasets (Tables 

S5-8). 846 

Environmental 
variables 

 Width 
of the 
water 
slide 

Width 
of the 
minor 
bed 

Elevation Slope Average 
temperature 

in January 
2011 

Average 
temperature 
in July 2011 

sor ← <J> -0.06 –  
0.001 

      

sor ← S 0.69 –  0       

sor ← t 0.02 –  
0.02 

      

sor ← E  0.04 –  
0.002 

0.08 – 0  0.19 – 0  0.13 – 0  0.04 – 0.004 0.03 – 0.03 

sor ← x 0.13 –  0       

S ← J 0.03 –  
0.09 

      

E ← t  0.007 – 
0.36 

     

E ← x  0.06 – 
0.01 

0.07 – 
0.007 

0.25 – 0  0.17 – 0  0.26 – 0  0.12 – 0  

Table S112: Standardized estimates and p-values for the path analysis of the AFB freshwater fish 

dataset. p-values equal to 0 actually mean <0.001. Significant effects at the 5% level with a 848 

Benjamini-Hochberg correction are depicted in bold. SRMR = 0.178. 
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Environmental 
variables 

 Temperature pH Conductivity Concentration 
in dioxygen  

Number 
of days 

since the 
last 

rewetting 
event of 

the 
watershed 

sor ← <J> -0.31 – 0      

sor ← S 0.47 – 0      

sor ← t 0.01 – 0.17       

sor ← E  0.07 – 0 0.11 – 0 0.10 – 0 -0.06 – 0 0.03 – 0.02 

sor ← x 0.25 – 0      

S ← J 0.28 – 0      

E ← t  0.08 – 0 0.11 – 0 0.04 – 0 0.02 – 0.08 0.18 – 0 

E ← x  0.02 – 0.01 0.27 – 0 0.31 – 0 0.04 – 0 0.02 – 0 

Table S123: Standardized estimates and p-values for the path analysis of the Irstea aquatic 

invertebrate dataset. p-values equal to 0 actually mean <0.001. Significant effects at the 5% level 852 

with a Benjamini-Hochberg correction are depicted in bold. 

 854 



 

Environmental 
variables 

 Pond 
size 

Pond 
depth 

Vegetation 
cover 

Water 
quality 

Litter 
amount 

Stability Annual 
rainfall 

sor ← <J> -0.10 
– 0 

       

sor ← S 0.12 
– 0  

       

sor ← t 0.08 
– 0  

       

sor ← E  0 – 
0.32 

0.10 – 
0 

0.15 – 0  0.06 – 0  -0.02 – 
0.005 

0.05 – 0  0.01 – 
0.06 

sor ← x 0.06 
– 0  

       

S ← J 0.06 
– 0  

       

E ← t        0.09 – 0 

E ← x  0.07 – 
0  

0.02 – 
0.004 

0.01 – 0.10  0.07 – 0  0.13 – 0 0.15 – 0  

Table S143: Standardized estimates and p-values for the path analysis of the mollusc dataset. p-856 

values equal to 0 actually mean <0.001. Significant effects at the 5% level with a Benjamini-Hochberg 

correction are depicted in bold. 858 

 

Environmental variables  Chlorophyll a 
concentration 

Number of years 
since the last 
drying event 

sor ← <J> -0.24 –  0   

sor ← S 0.47 –  0   

sor ← t 0.01 –  0.33   

sor ← E  0.16 –  0 -0.06 –  0.04 

sor ← x 0.09 –  0.01   

S ← J 0.29 –  0   

E ← t  0.09 –  0.02 -0.03 –  0.29 

E ← x  0.002 –  0.44 0.13 –  0.001 

Table S145: Standardized estimates and p-values for the path analysis of the aquatic plant dataset. p-860 

values equal to 0 actually mean <0.001. Significant effects at the 5% level with a Benjamini-Hochberg 

correction are depicted in bold. 862 
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