3

Spatial heterogeneity of interaction strength has contrasting effects on synchrony and stability in trophic metacommunities

Pierre Quévreux¹, Bart Haegeman¹, and Michel Loreau¹

¹Theoretical and Experimental Ecology Station, UAR 2029, CNRS, 09200 Moulis, France

5

Abstract

Spatial heterogeneity is a fundamental feature of ecosystems, and ecologists have identified it as a factor promoting the stability of population dynamics. In particular, differences in interaction strengths and resource supply between patches generates an asymmetry of biomass turnover with a fast and a slow patch. The coupling of these two energy channels by mobile predators has been identified to increase stability at different scales by promoting the asynchrony of population dynamics 10 between each patch. Here, we demonstrate that asymmetry has a contrasting effect on the stability 11 of metacommunities receiving localised perturbations. We built a model of an asymmetric metacom-12 munity with two patches linked by the dispersal of predators and in which prey receive stochastic 13 perturbations only in one patch. Perturbing prey in the fast patch synchronises the dynamics of prey 14 biomass between the two patches and destabilises predator dynamics by increasing their temporal 15 variability. Conversely, perturbing prey in the slow patch decreases the synchrony of their dynamics 16 and stabilises predator dynamics. This discrepancy between the responses is due to the asymmetric 17 transmission of perturbations caused by the different distributions of biomass between the fast and 18 the slow patch. Consequently, the fast patch drives the dynamics of the metacommunity and imposes 19 synchrony while the slow patch does not. Therefore, local perturbations can have opposite conse-20 quences at the regional scale depending on the characteristics of the perturbed patch. Our results 21 have strong implications for conservation ecology and suggest reinforcing protection policies in fast 22 patches to dampen the effects of perturbations and promote the stability of population dynamics at 23 the regional scale. 24

25 Key words

²⁶ source-sink, stochastic perturbations, food chain, dispersal, asymmetry, conservation

28 Introduction

27

Since May (1972) demonstrated that stability was not an inherent property of ecological interac-29 tion networks, ecologists have been relentlessly looking for the mechanisms ensuring ecosystem stability. 30 Spatial heterogeneity has long been identified as one of the main factors promoting the mechanisms un-31 derlying the maintenance of biodiversity and the stability of ecosystems. For instance, in competitive 32 metacommunity models, spatial heterogeneity provides local favourable conditions to each species of the 33 regional pool (Holt, 1984; Chesson, 2000; Amarasekare and Nisbet, 2001), which in turn ensures species 34 persistence in less favourable patches by source-sink dynamics (Mouquet and Loreau, 2002, 2003; Loreau 35 et al., 2003). The stability of the temporal dynamics of species biomass is ensured by the asynchrony of 36 the dynamics between patches, which leads to compensatory dynamics (Loreau et al., 2003; Loreau and 37 de Mazancourt, 2008). In trophic metacommunities, spatial heterogeneity has also been identified as a 38 stabilising factor (Steele, 1974; Hastings, 1977, 1978), but the underlying mechanisms are more complex 39 due to the interplay between trophic and spatial dynamics. 40

Inspired by the description of fast and slow energy channels by soil ecologists (*i.e.*, in terms of biomass 41 turnover), Rooney et al. (2006) noted the stabilising effect of the asymmetry of energy flows in ecosystems 42 with a food web model consisting of one mobile predator feeding on two energy channels. In their model, 43 the asymmetry of energy flow is generated by different interaction strengths between predators and prey 44 (*i.e.* increased attack rate in one energy channel compared to the other one, see Figure 1) and different 45 consumption rates of a common resource by the two basal species, which in turn promotes the asynchrony 46 of prey biomass dynamics in response to perturbations. Although synchrony patterns are tightly linked 47 to stability patterns, because the asynchrony of local population dynamics leads to more stable dynamics 48 (low biomass CV) at higher scales due to compensatory dynamics (Loreau et al., 2003; Gonzalez and 49 Loreau, 2008; Loreau and de Mazancourt, 2013; Wilcox et al., 2017), subsequent studies suggested 50 that increased asymmetry does not necessarily leads to increased stability. For example Ruokolainen 51 et al. (2011) presented a model in which biomass fluctuations can become more variable with increasing 52 asynchrony. Hence, the relationship between asymmetry and stability is not trivial and the mechanisms 53 governing asynchrony through the difference in energy flow between the fast and slow channels are not well 54

 $corresponding\ author:\ pierre.quevreux@cri-paris.org$

⁵⁵ understood. To fill this gap, we propose to consider the effects of asymmetry from the metacommunity
 ⁵⁶ perspective since recent theoretical studies were able to accurately explain the synchrony and stability
 ⁵⁷ patterns in metacommunities (Quévreux et al., 2021a,b).

Metacommunities embody the spatial dimension of interaction networks: they consist of distant patches 58 connected by the dispersal of the organisms living in each patch (Leibold et al., 2004; Leibold and Chase, 59 2017). The metacommunity framework is particularly suitable to represent the spatial heterogeneity ob-60 served in ecosystems because each community has its own characteristics such as biomass turnover. Fol-61 lowing Rooney et al.'s (2006) model, many studies implemented spatial heterogeneity through the asym-62 metry of interaction strength and/or resource supply to manipulate the difference in biomass turnover 63 between the energy channels hosted by each patch (Goldwyn and Hastings, 2009; Ruokolainen et al., 64 2011; Anderson and Fahimipour, 2021). In particular, interaction strength is key in community dynam-65 ics because it governs food web structure, stability (Neutel et al., 2002) and biomass distribution (Barbier 66 and Loreau, 2019) by simultaneously determining predator growth and prey mortality. Therefore, its sig-67 nificant variations observed in nature, often reported as predation risk by prey in field studies (Table 1), should lead to dramatic variations in community functioning across space. 69

In addition to the asymmetry of interaction strength, Rooney et al. (2006) highlighted the importance 70 of mobile predators coupling two different energy channels, a keystone role in ecosystem functioning 71 largely reported by empirical studies (Schindler and Scheuerell, 2002; Vadeboncoeur et al., 2005; Schmitz, 72 2004; Olff et al., 2009; Dolson et al., 2009; Schmitz et al., 2010). In Rooney et al.'s (2006) model, the 73 perturbation of the mobile predator leads to an asynchronous response of prey, which stabilises the food 74 web. However, Quévreux et al. (2021a) showed that the perturbation and dispersal of particular trophic 75 levels govern synchrony and stability in symmetric metacommunities. In asymmetric metacommunities, 76 the perturbation of particular patches should lead to different synchrony and stability patterns at the 77 metacommunity scale because of the different dynamics in each patch in response to perturbations. In 78 parallel to the keystone role of mobile predators, keystone communities (sensus Mouquet et al. (2013), 79 which are equivalent to keystone patches), should have a major influence on synchrony and stability 80 patterns. Therefore, we expect that asymmetry is not a generic stabilising factor, as claimed by Rooney 81 et al. (2006), but strongly depends on which patch is perturbed according to its characteristics. To explore 82 this statement, we consider a simple metacommunity model of two patches hosting a predator-prey couple 83 and with asymmetric interaction strength and resource supply. The stability of the metacommunity is 84 assessed by the response at different scales (e.g. CV of the biomass of a species at the local and regional 85

Table 1: Approximative relative increase in predation risk between low-risk and high-risk environments (equivalent to the asymmetry of interaction strength γ in Figure 1). See Gorini et al. (2012) for an extended review and more references.

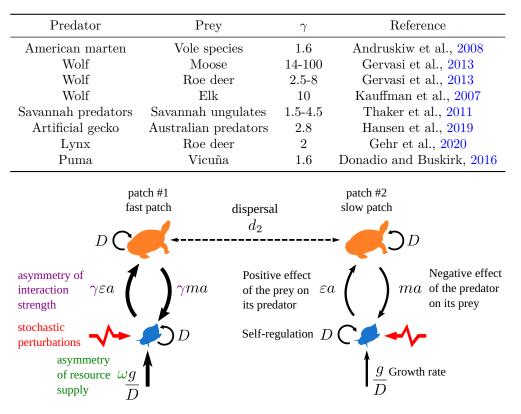


Figure 1: The metacommunity model consists of two patches, each sustaining a predator-prey couple linked by predators, which disperse at a very high scaled rate d_2 . Prey grow at a rate g/D and have a positive effect εa on predators, while predators have a negative effect ma on prey. Each species population is also limited by self-regulation D (negative intraspecific interactions). Spatial heterogeneity is embodied by the asymmetry of resource supply (green) and the interaction strength (purple), which are higher in patch #1 by factors ω and γ , respectively. Consistent with Rooney et al. (2006), patch #1 is called the fast patch, and patch #2 is called the slow patch. Prey receive stochastic perturbations either in patch #1 or in patch #2 (red arrows).

- scales) when prey receive stochastic perturbations in one of the two patches. We show contrasting effects
- of asymmetry: perturbing prey in the fast patch (equivalent to the fast channel defined by Rooney and
- ⁸⁸ McCann, 2012) promotes prey synchrony and decreases predator stability at the metapopulation scale
- ⁸⁹ while perturbing the slow patch has the opposite effects.

90 Methods

⁹¹ Metacommunity model

We use the model proposed by Quévreux et al. (2021a) based on the food chain model developed by Barbier and Loreau (2019). The model consists of two patches that each sustain a food chain with Lotka-Volterra predator-prey interactions (equations (1a) and (1b)).

$$\frac{1}{D}\frac{dB_1^{(1)}}{dt} = B_1^{(1)} \left(\omega \frac{g}{D} - B_1^{(1)} - \gamma maB_2^{(1)}\right)$$
(1a)

$$\frac{1}{mD}\frac{dB_2^{(1)}}{dt} = \underbrace{B_2^{(1)}\left(-B_2^{(1)} + \gamma\epsilon a B_1^{(1)}\right)}_{\text{intra-patch dynamics}} + \underbrace{d_2\left(B_2^{(2)} - B_2^{(1)}\right)}_{\text{dispersal}} \tag{1b}$$

 $B_1^{(k)}$ and $B_2^{(k)}$ are the biomasses of prey and predators, respectively, in patch k. Prey have a positive 92 effect εa on predators (ε is the conversion efficiency and a is the interspecific interaction rate relative to 93 intraspecific interactions), and predators have a negative effect ma on prey (m is the predator to prey 94 metabolic rate ratio)(Figure 1). The time scale of the system is rescaled by the metabolic rate of prey, 95 and biologic rates of each species i are rescaled by its intraspecific interaction rate D_i . Therefore, we 96 obtain the relative growth rate g/D and the scaled dispersal rate d_i . Considering scaled parameters 97 and aggregated parameters (εa and ma) enables us to explore a wide range of ecological situations. We 98 refer to Appendix S1-1 for a detailed description of the food chain model and analysis methods. All 99 the necessary information to fully understand our results are in the main text and the supplementary 100 information only serves to give additional technical elements to fully reproduce our work and proofs of 101 the robustness of our results. Parameters and their values are summarised in Table 2. 102

We reproduce the two main features of Rooney et al.'s (2006) model. First, predators disperse at a very 103 high scaled rate $d_2 = 10^6$, while prey are immobile ($d_1 = 0$), and strongly couple the two patches. Slightly 104 mobile prey $(0 < d_1 \ll d_2)$ should not change the results because Quévreux et al. (2021a) showed that 105 the species for which dispersal has the strongest influence drives the coupling between the two patches. 106 Second, resource supply and interaction strength are asymmetric between patches since they are higher 107 in patch #1 by factors γ and ω respectively (Figure 1). Patch #1 corresponds to the fast energy channel, 108 in which biomass has a high turnover, while patch #2 corresponds to the slow channel. Therefore, we 109 call patch #1 the fast patch and patch #2 the slow patch. We set $\gamma = \omega$ to ensure species persistence 110 over the entire range of parameters (see Figure S2-6 in the supporting information) but varying them 111 independently does not qualitatively change the results (see Figure S2-14 in the supporting information). 112 In the following, we only refer to γ for the sake of simplicity and only consider $\gamma \geq 1$ because $\gamma \leq 1$ just 113 swaps the roles of patches #1 and #2. 114

¹¹⁵ Response to stochastic perturbations

We use the same methods as Quévreux et al. (2021a) to study the response of metacommunities to stochastic perturbations. Indeed, recent studies advocate for the use of the temporal variability of biomass (Haegeman et al., 2016; Arnoldi et al., 2018), which is measured by the coefficient of variation (CV), and can be easily measured experimentally. In addition, Wang and Loreau (2014, 2016), Wang et al. (2019), and Jarillo et al. (2022) showed that CVs scale up from local populations to community, regional and metacommunity levels, therefore providing a comparison of stability at different scales. Here, we provide only a brief description of the main concepts, but a thorough description is available in Appendix S1.

Prey in the fast or slow channel receive stochastic perturbations that are represented by equation (2).

$$dB_i = \underbrace{f_i(B_1, \dots, B_S)dt}_{\text{Deterministic}} + \underbrace{\sigma_i \sqrt{B_i^*} dW_i}_{\text{Perturbation}}$$
(2)

 $f_i(B_1, ..., B_S)$ represents the deterministic part of the dynamics of species i, as described by equations (1a) 123 and (1b)). Stochastic perturbations are defined by their standard deviation σ_i and dW_i , a white noise 124 term with a mean of 0 and variance of 1. Perturbations also scale with the square root of the biomass at 125 equilibrium B_i^* of the perturbed population. Such scaling makes the perturbations similar to demographic 126 stochasticity (from birth-death processes) that evenly affect each species regardless of abundance (Arnoldi 127 et al., 2019). In other words, the ratio of mean species biomass variance to perturbation variance is roughly 128 independent of biomass, which disentangles the effect of asymmetry on perturbation transmission from 129 its effect on species abundance. Therefore, for different perturbations affecting different species with 130 the same value of standard deviation σ_i , we generate a similar variance at the metacommunity scale 131 regardless the abundance of the perturbed species and excite the entire metacommunity with the same 132 intensity (see Figure S2-3 in the supporting information). 133

In the following, we assess the temporal variability of the biomass of each population induced by stochastic perturbations affecting the metacommunity. Therefore, we linearise the system in the vicinity of equilibrium to obtain equation (3) where $X_i = B_i - B_i^*$ is the deviation from equilibrium.

$$\frac{d\vec{X}}{dt} = J\vec{X} + T\vec{E}$$
(3)

 J_{i37} J is the Jacobian matrix, which represents the linearised direct effects between populations in the vicinity of equilibrium, and T defines how the perturbations $E_i = \sigma_i dW_i$ apply to the system (*i.e.*, which species they affect and how they scale with biomass, where T is a diagonal matrix whose terms are $T_{ii} = \sqrt{B_i^*}$).

Because the system is at steady state, the stationary variance-covariance matrix C^* of species biomasses (variance-covariance matrix of \vec{X} , see the demonstration in Appendix S1-5) can be calculated from the variance-covariance matrix of perturbations V_E (variance-covariance matrix of \vec{E}) by solving the Lyapunov equation (4) (Arnold, 1974; Wang et al., 2015; Arnoldi et al., 2016; Quévreux et al., 2021a).

$$JC^* + C^*J^\top + TV_ET^\top = 0 \tag{4}$$

The expressions for V_E and T and the method to solve the Lyapunov equation are detailed in Ap-145 pendix S1-6. From the variance-covariance matrix C^* , we compute the coefficient of correlation of the 146 biomass dynamics between the two populations of each species (see equation (22) in the supporting infor-147 mation) and we measure the stability with the coefficient of variation (CV) of the biomass. In addition, 148 biomass CVs can be measured at different scales: population scale (e.g., biomass CV of prey in patch #1), 149 metapopulation scale (e.g., CV of the total biomass of prey) and metacommunity scale (e.g., CV of the 150 total biomass of predator and prey put together) to assess the effects of asymmetry at local and regional 151 scales (Figure 3A and see Appendix S1-7). Finally, we quantify the synchrony of the dynamics of the dif-152 ferent populations with the coefficient of correlation, which is also computed from the variance-covariance 153 matrix C^* (Appendix S1-7). 154

155 **Results**

156 Effects on stability

¹⁵⁷ We describe how the asymmetry of interaction strength γ shapes metacommunity stability at different ¹⁵⁸ scales. Since predators have a very high scaled dispersal rate ($d_2 = 10^6$), their populations are perfectly ¹⁵⁹ correlated and display the same dynamics. Our main result is that prey become more correlated when ¹⁶⁰ they are perturbed in patch #1 (fast channel in which $\gamma > 1$), while they become more anticorrelated when ¹⁶¹ they are perturbed in patch #2 (Figure 2). Increasing γ amplifies the difference in correlation between

Table 2: Table of parameters. σ_i is set very small to keep the system in the vicinity of equilibrium. More combinations of εa and ma are tested in the supporting information. d_2 is set very high to emphasise the high mobility of predators and their ability to couple prey populations. ω is set equal to γ . r = 0 removes the energetic limitations of the food chain and makes interactions the dominant factors determining biomass distribution and stability patterns, as in Barbier and Loreau (2019).

parameter	interpretation	value	
σ_i	standard deviation of stochastic noise	10^{-3}	
g	net growth rate of prey	1	
r	death rate of predators	0	
D	self-regulation	1	
ϵ	conversion efficiency	0.65	
m	predator/prey metabolic rate ratio	0.65	
a	attack rate	1.54,	
εa	positive effect of prey on predators	1	
ma	negative effect of predators on prey	1	
d_2	scaled dispersal rate of predators	10^{6}	
ω	asymmetry of resource supply	[1,10]	
γ	asymmetry of interaction strength	[1,10]	
Correlation between the two patches	of perturn fast pate stabilisi	destabilising effect of perturbing the fast patch stabilising effect	
-1.0	slow pat 4 7 10 mmetry of interaction strenght γ	rbing the ch	
	trophic perturbation of level - prey in patch #1 - 2 - 1 - 1		

Figure 2: Spatial correlation between the populations of each species depending on asymmetry of interaction strength γ when predators disperse and prey are perturbed in patch #1 or #2. The dashed line emphasises the value of the correlation of prey populations without asymmetry ($\gamma = 1$). Note that the curves for predators overlap because their high dispersal that perfectly correlates their dynamics regardless of the perturbed patch.

these two scenarios, and this pattern qualitatively holds for various combinations of the physiological and

- ecological parameters εa and ma (see Figure S2-9 in the supporting information).
- Increasing the asymmetry of interaction strength γ has contrasting effects on biomass CV at different
- scales as well (Figure 3A). At the population scale, it increases the biomass CV of each population when
- ¹⁶⁶ prey are perturbed in the fast patch (Figure 3B). When prey are perturbed in the slow patch, increasing
- γ slightly alters the biomass CV of prey in patch #1, increases the biomass CV of prey in patch #2
- ¹⁶⁸ and decreases the biomass CV of predators. This discrepancy can be attributed to the strong effect of

 γ on prey biomass in patch #2 (Figure 4): prey biomass strongly decreases with γ in patch #2, which increases their biomass CV.

At the metapopulation scale, the asymmetry of interaction strength γ increases the biomass CV of prey in both scenarios of perturbation (Figure 3C). However, this result is not true for all values of εa and ma (Figure S2-10A in the supporting information) because of the various responses of prey biomass to γ among patches (Figure S2-8A in the supporting information). The biomass CV of predators is higher when prey are perturbed in the fast patch (patch #1) compared to the case in which prey are perturbed in the slow patch (#2) (Figure 3C), which is consistent for all values of εa and ma (see Figure S2-10A in the supporting information).

Finally, stability at the metacommunity scale depends on the distribution of biomass and CV among 178 species. In our particular case ($\varepsilon a = 1$ and ma = 1), predators have the largest total biomass (Figure 4) 179 and drive the biomass CV at the metacommunity scale for low values of asymmetry of interaction strength 180 γ (Figure 3D). For high values of γ , when prey are perturbed in patch #2, the CV of total biomass 181 increases with γ because it is driven by prey in patch #2, whose biomass CV is much higher than the 182 biomass CV of predators, which compensates for their lower biomass. Other values of εa and ma lead to 183 other distributions of biomass and CV among species, which can make prey to drive the stability at the 184 metacommunity scale (see Figures S2-8 and S2-10 in the supporting information). 185

¹⁸⁶ Underlying mechanisms

To unveil the mechanisms governing the stability of heterogeneous metacommunities, we look deeper 187 into the dynamics after a pulse perturbation (Figure 5A) and explain them with the direct effects between 188 species quantified by the Jacobian matrix (see equation (3)). When the perturbation of prey occurs in 189 patch #1, the strong direct effect of prev on predators (and vice versa) in patch #1 due to γ (Figure 5B) 190 leads to a strong response of predators (1), which in turn drives the response of the two prey popu-191 lations (2). In detail, predator biomass in patch #1 first increases because of the abundance of prey. 192 Then, predators deplete prey biomass in both patches and correlate their dynamics, which explains why 193 asymmetry of interaction strength γ increases prev correlation when prev are perturbed in patch #1. 194

¹⁹⁵ When the perturbation of prey occurs in patch #2, the weak direct effect of prey on predators (Fig-¹⁹⁶ ure 5B) leads to a small response of predators ③. In turn, the very low direct effect of predators on ¹⁹⁷ prey in patch #2 does not allow perturbations to ripple back to patch #2 where prey slowly respond ¹⁹⁸ from the initial perturbation ④ (Figure 5B). This slow response is emphasised by the source-sink dy-

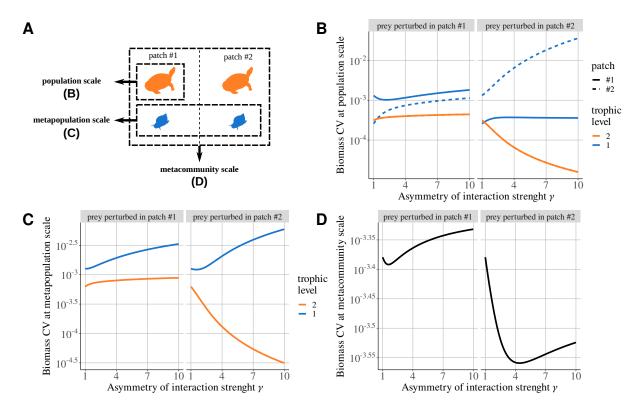


Figure 3: Stability at different scales depending on asymmetry of interaction strength γ when predators disperse and prey are perturbed in patch #1 or #2. **A)** The temporal variability in the metacommunity is assessed by the coefficient of variation (CV) of biomass at different scales: population scale (biomass CV of one species in one patch), metapopulation scale (CV of the total biomass of one species across patches) and metacommunity scale (CV of the total biomass of the entire metacommunity). **B)** Biomass CV at the population scale. Note that the curves for predators overlap because their high dispersal perfectly balances their biomass distribution between the two patches. **C)** Biomass CV at the metapopulation scale. **D**) Biomass CV at the metacommunity scale.

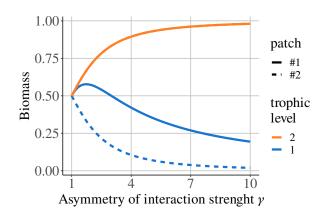


Figure 4: Distribution of the biomass of each species among patches depending on the asymmetry of interaction strength γ . Note that the curves for predators overlap because their high dispersal that perfectly balances their biomass between the two patches.

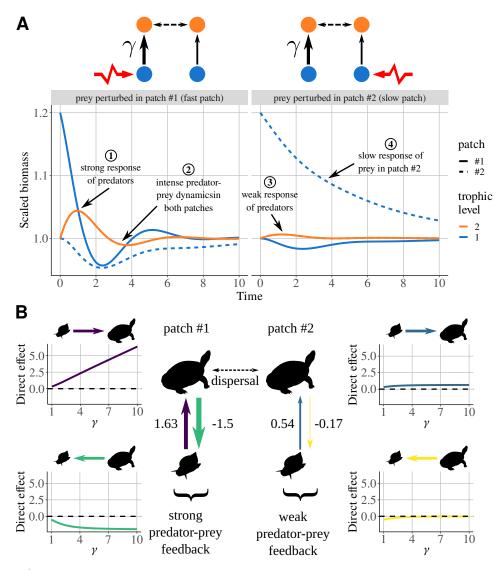


Figure 5: A) Time series of biomasses rescaled by their value at equilibrium after an increase of 20% in prey biomass in patch #1 (left panel) or patch #2 (right panel) for a value of interaction strength asymmetry $\gamma = 3$. B) Direct effect of prey on predator (and vice versa) depending on interaction strength asymmetry γ . Direct effects correspond to the terms of the Jacobian matrix and the dashed line emphasises the null direct effects. On the central schema, the numbers are the numeric values of the terms of the Jacobian matrix corresponding to each arrow for $\gamma = 3$.

¹⁹⁹ namics in the metacommunity (Figure 4 and Figure S2-5 in the supporting information), which leads to a ²⁰⁰ lower biomass of prey in patch #2 compared to a metacommunity without dispersal, therefore decreasing ²⁰¹ biomass flows in patch #2 and its response speed. This difference in response speed between patches #1 ²⁰² and #2 leads to the anti-correlation of prey populations because it increases the time interval in which ²⁰³ they have opposite variations: an increase in the biomass of prey in patch #1, which follows the initial ²⁰⁴ decrease due to predation, and a slow decrease in prey biomass in patch #2.

205 Discussion

We have shown that the asymmetry of interaction strength has contrasting effects on stability de-206 pending on which patch is perturbed. Perturbing prey in the fast patch (in which interaction strength 207 is the highest) tends to synchronise the dynamics of prey biomass and increases the temporal variability 208 of predator dynamics at the metapopulation scale, while perturbing prev in the slow patch decreases the 209 synchrony of prey dynamics and the temporal variability predator dynamics. This discrepancy between 210 the responses is due to asymmetric transmission of perturbations within each patch, itself caused by differ-211 ent biomass distributions and interaction strengths between the two patches. Perturbations are strongly 212 transmitted from the fast patch to the slow patch, while the reverse transmission is weak. Consequently, 213 the fast patch drives the dynamics of the metacommunity and synchronises prey dynamics, while the 214 slow patch does not, and the almost independent respond from perturbation in each patch decreases the 215 synchrony of prey dynamics. 216

217 Stability in a heterogeneous world

Our results show that spatial heterogeneity, which is represented by the asymmetry of interaction 218 strength and resource supply as in Rooney et al. (2006), generates mechanisms that alter local and re-219 gional dynamics, which deeply changes the synchrony of population dynamics and the stability of the 220 metacommunity at different scales. Quévreux et al. (2021a) showed that, in a homogenous metacom-221 munity, the spatial correlations between patches can be obtained from the within-patch correlations, the 222 dispersing species making the link between the two (see Figure S2-28 for a summary of the results of 223 Quévreux et al., 2021a). In other words, knowledge of the dynamics at the local scale is enough to under-224 stand the stability pattern at the metacommunity scale. In a heterogeneous metacommunity, a similar 225 approach does not work because patches do not contribute equally to the dynamics. In a heterogeneous 226

metacommunity, a similar approach does not work because patches do not contribute equally to the dynamics. In particular, a patch with fast energy flow can have an overwhelming impact (see Figure S2-7 in the supporting information). Clearly, the dynamics at the metacommunity scale cannot be assessed by the dynamics at the local scale, as in Quévreux et al. (2021a), and they are an emergent property resulting from the tight interplay between the strength of perturbation transmission in each patch.

Rooney et al. (2006) verbally explained that each patch has dynamics with different speeds: the fast 232 channel (with higher interaction rates and resource supplies) enables a quick response after a perturbation 233 while the slow channel dampens the dynamics in the long term and prevents the system from overshooting. 234 By considering the stability at different scales, our results contrast with this explanation. On the one 235 hand, the asynchrony of prey dynamics, when they are perturbed in patch #2 (Figure 2), stabilises the 236 dynamics of predators because their resource supplies are asynchronous. On the other hand, the dynamics 237 of prey at the metapopulation scale are not stabilised by their asynchrony (Figure 3C) because of the 238 low local stability in patch #2 (Figure 3B), which decreases the overall stability of prey. The potential 239 stabilising effect of asymmetry depends both on the perturbed patch and the considered trophic level. 240 Therefore, the overall stability at the metacommunity scale is governed by the relative contributions 241 of the various populations in response to local perturbations, and asymmetry per se does not have a 242 stabilising effect. 243

Our description of the mechanisms underlying the apparent stabilising effects of spatial heterogeneity should enlighten the results of previous theoretical studies. Goldwyn and Hastings (2009) and Ruoko-245 lainen et al. (2011) found that the asymmetry of interaction rate leads to asynchrony by generating 246 out-of-phase dynamics in a system with endogenous oscillations. In particular, Ruokolainen et al. (2011) 247 found a U-shaped relationship: for moderate asymmetry, the spatial asynchrony of predator and prey 248 populations is maximal, which leads to optimum stability at the metacommunity scale. Our results sug-249 gest that moderate asymmetry would alter the phase of the oscillations in each patch while keeping the 250 amplitude of oscillations equivalent, therefore promoting asynchrony. Conversely, a strong asymmetry 251 would increase the imbalance between oscillation amplitude and enable the fast patch to take over the 252 slow patch, which would bring back synchrony. However, their results rely on phase-locking (Jansen, 253 1999; Lloyd and May, 1999; Goldwyn and Hastings, 2008; Vasseur and Fox, 2009), which is the coupling 254 of the phase of oscillators embodied by predator-prey pairs in each patch. Although our results provide 255 interesting insight into metacommunity dynamics, they cannot grasp the fine mechanisms underlying 256 nonlinear phenomena such as phase-locking and further studies are needed to identify these mechanisms. 257

²⁵⁸ Generality of the effects of asymmetry on stability

Our main results is that asymmetry is stabilising when the slow patch is perturbed, while it is desta-259 bilising when the fast patch is perturbed. This result is strikingly robust to several deviations from the 260 original model we have described. First, we show that the described mechanisms are valid for a wide range 261 of ecological and physiological parameters leading to various distributions of biomass among predators 262 and prey (see Figures S2-8 and S2-9 in the supporting information). In addition, we observe the same 263 results for longer food chains as long as prey populations are directly coupled by the dispersing predator 264 (see Figures S2-18 and S2-19 in the supporting information). Currently, we do not identify a clear pat-265 tern for species lower in the food chain over a wide range of ecological and physiological parameters but 266 further studies are needed to investigate the potential indirect effects propagating across the food chain. 267 Second, the mechanisms are not restricted to prey populations coupled by a mobile predator but also 268 apply to predator populations coupled by a mobile prey (see Figure S2-22 in the supporting information). 269 Therefore, we anticipate that mobile predators are not the only major drivers of synchrony and stability 270 in ecosystems (Schindler and Scheuerell, 2002; Vadeboncoeur et al., 2005; Dolson et al., 2009; Olff et al., 271 2009; Rooney and McCann, 2012), and resource species may also have an equivalent impact. Taken 272 together, these two points strongly suggest that the mechanisms underlying stability and synchrony in 273 response to perturbations should be general to metacommunities regardless of the ecological parameters, 274 biomass distribution and dispersal among species. 275

Spatial heterogeneity has often been presented as a generic condition generating mechanisms ensuring 276 stability, but our results contradict this statement. The models focusing on the asymmetric feeding of 277 consumers on different energy channels or different patches showed that it promotes the existence of 278 stable equilibria (McCann et al., 1998), greater asymptotic resilience (Rooney et al., 2006), asynchrony 279 of prey in response to predator perturbation (Rooney et al., 2006) and out-of-phase limit cycles (Gold-280 wyn and Hastings, 2009; Ruokolainen et al., 2011). All these studies considered measures of stability 281 aiming to capture the general stability properties of metacommunities and miss the targeted effects of 282 perturbations as we explained earlier. Although asymmetry does not necessarily promote stability, our 283 results show that general mechanisms drive the response of metacommunities to localised perturbations, therefore providing a valuable framework to assess the response of ecosystems to localised perturbations 285 due to human activity. Additionally, these mechanisms enable us to understand the effect of environmental perturbations affecting all patches. As demonstrated by Arnoldi et al. (2019), environmental 287

perturbations affect abundant populations the most, which is the prey population in the fast patch in our case (see Figure S2-25 in the supporting information). Therefore, we anticipate that the fast patch will govern the dynamics of metacommunities in which all populations are perturbed (see Figure S2-27 in the supporting information).

²⁹² Implications for conservation

The metacommunity framework has long been used in conservation ecology (Johnson et al., 2013; 293 Schiesari et al., 2019; Patrick et al., 2021). Conservation efforts are usually concentrated on particular locations and useful management must consider the ecological processes acting at the landscape scale (Van 295 Teeffelen et al., 2012; Chase et al., 2020). For instance, spatial heterogeneity is key to ensuring species 296 coexistence and diversity at the regional scale, which ultimately provides important ecosystem services 297 in agricultural landscapes (Bennett et al., 2006). A large corpus of theoretical studies explored the local 298 response of communities in a landscape receiving perturbations (Mouquet et al., 2011; Economo, 2011; 200 Holyoak et al., 2020; Jacquet et al., 2022). However, these studies focus on extinction events recovered 300 by dispersal events in a patch dynamics framework, and little is known about the effect of moderate or 301 small perturbations. In this context, the present study provides valuable insight into fine-scale dynamics 302 in response to perturbations. 303

Our results show that species interactions are a major driver of synchrony in heterogeneous metacom-304 munities. Even if the species of interest does not disperse significantly, the synchrony of the dynamics 305 of its different populations can strongly depend on the interactions with another species with a higher 306 dispersal across the landscape. For instance, Howeth and Leibold (2013) showed that predatory fish 307 promote the asynchrony of oscillating populations of zooplankton in a mesocosm experiment. Therefore, 308 species endorsing this role are called "mobile link organisms" (Lundberg and Moberg, 2003) and are par-300 ticularly targeted by conservation policy because they have major impacts on community dynamics and 310 ecosystem functioning (Soulé et al., 2005; Brodie et al., 2018). Such a species can be considered keystone 311 species (Mills and Doak, 1993) and must be clearly identified to properly manage the conservation of the 312 other interaction species. However, our results show that mobile link organisms are not the only driver 313 of metacommunity stability, and the patch being perturbed also has a major impact. The concept of a 314 keystone community, defined by Mouquet et al. (2013) for communities whose destruction causes species 315 extinction or a decrease in biomass production, can be applied to better assess the stability of metacom-316 munities. Keystone communities are usually identified as those patches that are strongly connected to 317

other patches in the spatial network (Resetarits et al., 2018), but our results suggest that the dynamical properties of each patch can be important as well. For instance, the fast patch can be identified as a keystone patch because of its ability to synchronise the dynamics of the other patches. Therefore, identifying the communities living in fast and slow patches should be key for conservation management aiming to mitigate the effects of perturbations.

According to our results, mitigating the effects of perturbations affecting the patch in which interaction 323 strength is the highest is critical to avoid the synchrony of prey dynamics (Figure 2) and ensure predator 324 stability (Figure 3C). Then, the patch in which the interaction strength between the species of interest 325 and the mobile link organism is the highest must be identified. Conservation policies usually target 326 preserved areas because they are characterised by high species richness but identifying them as fast or 327 slow patches is not trivial. Urban ecology is a relevant example because many species dwell in cities and 328 less anthropised ecosystems (e.q., agricultural and natural landscapes). Urban areas can be considered 329 fast patches because of the abundance of resources (parameters ω in our model) for opportunistic species, 330 but they can also be considered slow patches because of the reduced predation pressure (parameter γ in 331 our model), cities acting as safe spaces (see Shochat et al. (2006) and Shochat et al. (2010) for review). 332 Typically, birds and rodents can find plenty of food due to human wastes, public parks and feeding while 333 experiencing less predation (Rebolo-Ifrán et al., 2017). Therefore, focusing conservation efforts on urban 334 areas to mitigate the perturbations affecting their ecosystem may be as important as protecting wild 335 areas to protect species at the metapopulation scale. 336

337 Conclusion

Asymmetry of interaction strength, and spatial heterogeneity in general, is not stabilising factor per 338 se because perturbing prey in the fast patch leads to the synchrony of the dynamics of prey populations 330 and increases the temporal variability of the mobile predator linking the two patches. Therefore, the 340 response of metacommunities to perturbations is strongly context dependent, *i.e.*, a good knowledge of 341 the characteristics of each patch relative to each other is required to assess stability at the metacommunity 342 scale. Based on our findings, we advocate for conservation efforts to target key patches not only according 343 to species richness or biomass density but also according to the distribution of interaction strength across 344 the metacommunity. 345

346 Acknowledgements

This work was supported by the TULIP Laboratory of Excellence (ANR-10-LABX-41) and by the BIOSTASES Advanced Grant, funded by the European Research Council under the European Union's Horizon 2020 research and innovation programme (666971).

350 Data accessibility

The R codes to reproduce the results and the figures are available on GitHub (https://github.com/ PierreQuevreux/model_metacommunity_spatial_heterogeneity).

353 References

- Amarasekare, P., & Nisbet, R. M. (2001). Spatial heterogeneity, source-sink dynamics, and the local coexistence of competing
 species. The American Naturalist, 158(6), 572–584. https://doi.org/10.1086/323586
- Anderson, K. E., & Fahimipour, A. K. (2021). Body size dependent dispersal influences stability in heterogeneous metacommunities. *Scientific Reports*, 11(1), 17410. https://doi.org/10.1038/s41598-021-96629-5
- Andruskiw, M., Fryxell, J. M., Thompson, I. D., & Baker, J. A. (2008). Habitat-mediated variation in predation risk by the american marten. *Ecology*, 89(8), 2273–2280. https://doi.org/10.1890/07-1428.1
- Arnold, L. (1974). Stochastic differential equations: Theory and applications. Wiley.
- Arnoldi, J.-F., Bideault, A., Loreau, M., & Haegeman, B. (2018). How ecosystems recover from pulse perturbations: A
 theory of short- to long-term responses. *Journal of Theoretical Biology*, 436, 79–92. https://doi.org/10.1016/j.
 jtbi.2017.10.003
- Arnoldi, J.-F., Loreau, M., & Haegeman, B. (2016). Resilience, reactivity and variability: A mathematical comparison of
 ecological stability measures. *Journal of Theoretical Biology*, 389, 47–59. https://doi.org/10.1016/j.jtbi.2015.10.
 012
- Arnoldi, J.-F., Loreau, M., & Haegeman, B. (2019). The inherent multidimensionality of temporal variability: How common
 and rare species shape stability patterns (J. Chase, Ed.). *Ecology Letters*, 22(10), 1557–1567. https://doi.org/10.
 1111/ele.13345
- Barbier, M., & Loreau, M. (2019). Pyramids and cascades: A synthesis of food chain functioning and stability. *Ecology Letters*, 22(2), 405–419. https://doi.org/10.1111/ele.13196
- Bennett, A. F., Radford, J. Q., & Haslem, A. (2006). Properties of land mosaics: Implications for nature conservation in
 agricultural environments. *Biological Conservation*, 133(2), 250–264. https://doi.org/10.1016/j.biocon.2006.06.
 008
- Brodie, J. F., Redford, K. H., & Doak, D. F. (2018). Ecological function analysis: Incorporating species roles into conservation. Trends in Ecology & Evolution, 33(11), 840–850. https://doi.org/10.1016/j.tree.2018.08.013

- Chase, J. M., Jeliazkov, A., Ladouceur, E., & Viana, D. S. (2020). Biodiversity conservation through the lens of metacommunity ecology. Annals of the New York Academy of Sciences, 1469(1), 86–104. https://doi.org/10.1111/nyas.14378
- Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31(1),
 343-366. https://doi.org/10.1146/annurev.ecolsys.31.1.343
- Dolson, R., McCann, K., Rooney, N., & Ridgway, M. (2009). Lake morphometry predicts the degree of habitat coupling by
 a mobile predator. *Oikos*, 118(8), 1230–1238. https://doi.org/10.1111/j.1600-0706.2009.17351.x
- Donadio, E., & Buskirk, S. W. (2016). Linking predation risk, ungulate antipredator responses, and patterns of vegetation in the high Andes. *Journal of Mammalogy*, 97(3), 966–977. https://doi.org/10.1093/jmammal/gyw020
- Economo, E. P. (2011). Biodiversity conservation in metacommunity networks: Linking pattern and persistence. *The American Naturalist*, 177(6), E167–E180. https://doi.org/10.1086/659946
- Gehr, B., Bonnot, N. C., Heurich, M., Cagnacci, F., Ciuti, S., Hewison, A. J. M., Gaillard, J.-M., Ranc, N., Premier, J.,
 Vogt, K., Hofer, E., Ryser, A., Vimercati, E., & Keller, L. (2020). Stay home, stay safe—Site familiarity reduces
 predation risk in a large herbivore in two contrasting study sites (L. Prugh, Ed.). Journal of Animal Ecology,
 89(6), 1329–1339. https://doi.org/10.1111/1365-2656.13202
- Gervasi, V., Sand, H., Zimmermann, B., Mattisson, J., Wabakken, P., & Linnell, J. D. C. (2013). Decomposing risk:
 Landscape structure and wolf behavior generate different predation patterns in two sympatric ungulates. *Ecological Applications*, 23(7), 1722–1734. https://doi.org/10.1890/12-1615.1
- Goldwyn, E. E., & Hastings, A. (2008). When can dispersal synchronize populations? *Theoretical Population Biology*, 73(3),
- 395 395–402. https://doi.org/10.1016/j.tpb.2007.11.012
- Goldwyn, E. E., & Hastings, A. (2009). Small heterogeneity has large effects on synchronization of ecological oscillators.
 Bulletin of Mathematical Biology, 71(1), 130–144. https://doi.org/10.1007/s11538-008-9355-9
- Gonzalez, A., & Loreau, M. (2008). The causes and consequences of compensatory dynamics in ecological communities.
 Annual Review of Ecology, Evolution, and Systematics, 40(1), 393–414. https://doi.org/10.1146/annurev.ecolsys.
 39.110707.173349
- Gorini, L., Linnell, J. D. C., May, R., Panzacchi, M., Boitani, L., Odden, M., & Nilsen, E. B. (2012). Habitat heterogeneity
 and mammalian predator-prey interactions: Predator-prey interactions in a spatial world. *Mammal Review*, 42(1),
 55–77. https://doi.org/10.1111/j.1365-2907.2011.00189.x
- Haegeman, B., Arnoldi, J.-F., Wang, S., de Mazancourt, C., Montoya, J. M., & Loreau, M. (2016). Resilience, invariability,
 and ecological stability across levels of organization. *bioRxiv*. https://doi.org/10.1101/085852
- Hansen, N. A., Sato, C. F., Michael, D. R., Lindenmayer, D. B., & Driscoll, D. A. (2019). Predation risk for reptiles is
 highest at remnant edges in agricultural landscapes (T. M. Lee, Ed.). Journal of Applied Ecology, 56(1), 31–43.
 https://doi.org/10.1111/1365-2664.13269
- Hastings, A. (1977). Spatial heterogeneity and the stability of predator-prey systems. *Theoretical Population Biology*, 12(1),
 37-48. https://doi.org/10.1016/0040-5809(77)90034-X
- Hastings, A. (1978). Spatial heterogeneity and the stability of predator-prey systems: Predator-mediated coexistence. *The- oretical Population Biology*, 14(3), 380–395. https://doi.org/10.1016/0040-5809(78)90015-1
- Holt, R. D. (1984). Spatial heterogeneity, indirect interactions, and the coexistence of prey species. *The American Naturalist*, 124(3), 377–406. https://doi.org/10.1086/284280

- Holyoak, M., Caspi, T., & Redosh, L. W. (2020). Integrating disturbance, seasonality, multi-year temporal dynamics, and 415
- dormancy into the dynamics and conservation of metacommunities. Frontiers in Ecology and Evolution, 8, 571130. 416 https://doi.org/10.3389/fevo.2020.571130 417
- Howeth, J. G., & Leibold, M. A. (2013). Predation inhibits the positive effect of dispersal on intraspecific and interspecific 418
- synchrony in pond metacommunities. Ecology, 94(10), 2220-2228. https://doi.org/10.1890/12-2066.1 419
- Jacquet, C., Munoz, F., Bonada, N., Datry, T., Heino, J., & Jabot, F. (2022). Temporal variation of patch connectivity 420 determines biodiversity recovery from recurrent disturbances. bioRxiv. https://doi.org/10.1101/2022.01.02.474736 421
- Jansen, V. A. A. (1999). Phase locking: Another cause of synchronicity in predator-prey systems. Trends in Ecology & 422 Evolution, 14(7), 278-279. https://doi.org/10.1016/S0169-5347(99)01654-7 423
- Jarillo, J., Cao-García, F. J., & De Laender, F. (2022). Spatial and ecological scaling of stability in spatial community 424 networks. Frontiers in Ecology and Evolution, 10, 861537. https://doi.org/10.3389/fevo.2022.861537 425
- Johnson, P. T. J., Hoverman, J. T., McKenzie, V. J., Blaustein, A. R., & Richgels, K. L. D. (2013). Urbanization and wetland 426 427 communities: Applying metacommunity theory to understand the local and landscape effects (M. Cadotte, Ed.). Journal of Applied Ecology, 50(1), 34-42. https://doi.org/10.1111/1365-2664.12022 428
- Kauffman, M. J., Varley, N., Smith, D. W., Stahler, D. R., MacNulty, D. R., & Boyce, M. S. (2007). Landscape heterogeneity 429 shapes predation in a newly restored predator-prey system. Ecology Letters, 10(8), 690-700. https://doi.org/10. 430 1111/j.1461-0248.2007.01059.x 431
- Leibold, M. A., & Chase, J. M. (2017). Metacommunity Ecology (Vol. 59). Princeton University Press. https://doi.org/10. 432 2307/j.ctt1wf4d24 433
- Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., Holt, R. D., Shurin, J. B., Law, 434 R., Tilman, D., Loreau, M., & Gonzalez, A. (2004). The metacommunity concept: A framework for multi-scale 435 community ecology. Ecology Letters, 7(7), 601–613. https://doi.org/10.1111/j.1461-0248.2004.00608.x 436
- Lloyd, A. L., & May, R. M. (1999). Synchronicity, chaos and population cycles: Spatial coherence in an uncertain world. 437 Trends in Ecology & Evolution, 14(11), 417-418. https://doi.org/10.1016/S0169-5347(99)01717-6 438
- Loreau, M., Mouquet, N., & Gonzalez, A. (2003). Biodiversity as spatial insurance in heterogeneous landscapes. Proceedings 439 of the National Academy of Sciences, 100(22), 12765-12770. https://doi.org/10.1073/pnas.2235465100 440
- Loreau, M., & de Mazancourt, C. (2008). Species synchrony and its drivers: Neutral and nonneutral community dynamics 441 in fluctuating environments. The American Naturalist, 172(2), E48-E66. https://doi.org/10.1086/589746 442
- Loreau, M., & de Mazancourt, C. (2013). Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. 443 Ecology Letters, 16, 106–115. https://doi.org/10.1111/ele.12073 444
- Lundberg, J., & Moberg, F. (2003). Mobile link organisms and ecosystem functioning: Implications for ecosystem resilience 445 and management. Ecosystems, 6(1), 0087-0098. https://doi.org/10.1007/s10021-002-0150-4 446
- 447 May, R. M. (1972). Will a large complex system be stable? Nature, 238(5364), 413-414. https://doi.org/10.1038/238413a0
- McCann, K. S., Hastings, A., & Huxel, G. R. (1998). Weak trophic interactions and the balance of nature. Nature, 395(6704), 448 794-798. https://doi.org/10.1038/27427
- Mills, L. S., & Doak, D. F. (1993). The keystone-species con- cept in ecology and conservation. BioScience, 43(4), 219-224. 450
- https://doi.org/10.2307/1312122 451

449

- Mouquet, N., Gravel, D., Massol, F., & Calcagno, V. (2013). Extending the concept of keystone species to communities and
 ecosystems (B. Blasius, Ed.). *Ecology Letters*, 16(1), 1–8. https://doi.org/10.1111/ele.12014
- Mouquet, N., & Loreau, M. (2002). Coexistence in metacommunities: The regional similarity hypothesis. *The American Naturalist*, 159(4), 420–426. https://doi.org/10.1086/338996
- Mouquet, N., & Loreau, M. (2003). Community patterns in source-sink metacommunities. *The American Naturalist*, 162(5),
 544–557. https://doi.org/10.1086/378857
- Mouquet, N., Matthiessen, B., Miller, T., & Gonzalez, A. (2011). Extinction debt in source-sink metacommunities (T.
 Romanuk, Ed.). *PLoS ONE*, 6(3), e17567. https://doi.org/10.1371/journal.pone.0017567
- ⁴⁶⁰ Neutel, A.-M., Heesterbeek, J. A. P., & De Ruiter, P. C. (2002). Stability in real food webs: Weak links in long loops.
 ⁴⁶¹ Science, 296(5570), 1120–1123. https://doi.org/10.1126/science.1068326
- ⁴⁶² Olff, H., Alonso, D., Berg, M. P., Eriksson, B. K., Loreau, M., Piersma, T., & Rooney, N. (2009). Parallel ecological
 ⁴⁶³ networks in ecosystems. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 364 (1524), 1755–
 ⁴⁶⁴ 1779. https://doi.org/10.1098/rstb.2008.0222
- Patrick, C. J., Anderson, K. E., Brown, B. L., Hawkins, C. P., Metcalfe, A., Saffarinia, P., Siqueira, T., Swan, C. M.,
 Tonkin, J. D., & Yuan, L. L. (2021). The application of metacommunity theory to the management of riverine
 ecosystems. WIREs Water, 8(6). https://doi.org/10.1002/wat2.1557
- Quévreux, P., Barbier, M., & Loreau, M. (2021a). Synchrony and perturbation transmission in trophic metacommunities.
 The American Naturalist, 714131. https://doi.org/10.1086/714131
- Quévreux, P., Pigeault, R., & Loreau, M. (2021b). Predator avoidance and foraging for food shape synchrony and response
 to perturbations in trophic metacommunities. *Journal of Theoretical Biology*, 528, 110836. https://doi.org/10.
- 472 1016/j.jtbi.2021.110836
- Rebolo-Ifrán, N., Tella, J. L., & Carrete, M. (2017). Urban conservation hotspots: Predation release allows the grasslandspecialist burrowing owl to perform better in the city. *Scientific Reports*, 7(1), 3527. https://doi.org/10.1038/
 s41598-017-03853-z
- Resetarits, E. J., Cathey, S. E., & Leibold, M. A. (2018). Testing the keystone community concept: Effects of landscape, patch
 removal, and environment on metacommunity structure. *Ecology*, 99(1), 57–67. https://doi.org/10.1002/ecy.2041
- Rooney, N., & McCann, K. S. (2012). Integrating food web diversity, structure and stability. Trends in Ecology & Evolution,
 27(1), 40–46. https://doi.org/10.1016/j.tree.2011.09.001
- Rooney, N., McCann, K. S., Gellner, G., & Moore, J. C. (2006). Structural asymmetry and the stability of diverse food
 webs. *Nature*, 442(7100), 265–269. https://doi.org/10.1038/nature04887
- Ruokolainen, L., Abrams, P. A., McCann, K. S., & Shuter, B. J. (2011). The roles of spatial heterogeneity and adaptive
 movement in stabilizing (or destabilizing) simple metacommunities. *Journal of Theoretical Biology*, 291, 76–87.
 https://doi.org/10.1016/j.jtbi.2011.09.004
- Schiesari, L., Matias, M. G., Prado, P. I., Leibold, M. A., Albert, C. H., Howeth, J. G., Leroux, S. J., Pardini, R., Siqueira,
- 486 T., Brancalion, P. H., Cabeza, M., Coutinho, R. M., Diniz-Filho, J. A. F., Fournier, B., Lahr, D. J., Lewinsohn,
- 487 T. M., Martins, A., Morsello, C., Peres-Neto, P. R., ... Vázquez, D. P. (2019). Towards an applied metaecology.
- 488 Perspectives in Ecology and Conservation, 17(4), 172–181. https://doi.org/10.1016/j.pecon.2019.11.001

- Schindler, D. E., & Scheuerell, M. D. (2002). Habitat coupling in lake ecosystems. *Oikos*, 98(2), 177–189. https://doi.org/
 10.1034/j.1600-0706.2002.980201.x
- Schmitz, O. J. (2004). Perturbation and abrupt shift in trophic control of biodiversity and productivity: Perturbation and
 regime shift. *Ecology Letters*, 7(5), 403–409. https://doi.org/10.1111/j.1461-0248.2004.00592.x
- Schmitz, O. J., Hawlena, D., & Trussell, G. C. (2010). Predator control of ecosystem nutrient dynamics. *Ecology Letters*,
 13(10), 1199–1209. https://doi.org/10.1111/j.1461-0248.2010.01511.x
- Shochat, E., Warren, P., Faeth, S., Mcintyre, N., & Hope, D. (2006). From patterns to emerging processes in mechanistic
 urban ecology. Trends in Ecology & Evolution, 21(4), 186–191. https://doi.org/10.1016/j.tree.2005.11.019
- Shochat, E., Lerman, S. B., Anderies, J. M., Warren, P. S., Faeth, S. H., & Nilon, C. H. (2010). Invasion, competition, and
 biodiversity loss in urban ecosystems. *BioScience*, 60(3), 199–208. https://doi.org/10.1525/bio.2010.60.3.6
- Soulé, M. E., Estes, J. A., Miller, B., & Honnold, D. L. (2005). Strongly interacting species: Conservation policy, manage ment, and ethics. *BioScience*, 55(2), 168. https://doi.org/10.1641/0006-3568(2005)055[0168:SISCPM]2.0.CO;2
- 501 Steele, J. H. (1974). Spatial heterogeneity and population stability. *Nature*, 248(5443), 83–83. https://doi.org/10.1038/ 502 248083a0
- Thaker, M., Vanak, A. T., Owen, C. R., Ogden, M. B., Niemann, S. M., & Slotow, R. (2011). Minimizing predation risk in a
 landscape of multiple predators: Effects on the spatial distribution of African ungulates. *Ecology*, 92(2), 398–407.
 https://doi.org/10.1890/10-0126.1
- Vadeboncoeur, Y., McCann, K. S., Zanden, M. J. V., & Rasmussen, J. B. (2005). Effects of multi-chain omnivory on the
 strength of trophic control in lakes. *Ecosystems*, 8(6), 682–693. https://doi.org/10.1007/s10021-003-0149-5
- Van Teeffelen, A. J., Vos, C. C., & Opdam, P. (2012). Species in a dynamic world: Consequences of habitat network dynamics
 on conservation planning. *Biological Conservation*, 153, 239–253. https://doi.org/10.1016/j.biocon.2012.05.001
- Vasseur, D. A., & Fox, J. W. (2009). Phase-locking and environmental fluctuations generate synchrony in a predator-prey
 community. *Nature*, 460(7258), 1007–1010. https://doi.org/10.1038/nature08208
- Wang, S., Haegeman, B., & Loreau, M. (2015). Dispersal and metapopulation stability. *PeerJ*, 3, e1295. https://doi.org/
 10.7717/peerj.1295
- Wang, S., Lamy, T., Hallett, L. M., & Loreau, M. (2019). Stability and synchrony across ecological hierarchies in heterogeneous metacommunities: Linking theory to data. *Ecography*, 0(0). https://doi.org/10.1111/ecog.04290
- Wang, S., & Loreau, M. (2014). Ecosystem stability in space: \textalpha, \textbeta and \textgamma variability. Ecology
 Letters, 17(8), 891–901. https://doi.org/10.1111/ele.12292
- Wang, S., & Loreau, M. (2016). Biodiversity and ecosystem stability across scales in metacommunities (F. Jordan, Ed.).
 Ecology Letters, 19(5), 510–518. https://doi.org/10.1111/ele.12582
- 520 Wilcox, K. R., Tredennick, A. T., Koerner, S. E., Grman, E., Hallett, L. M., Avolio, M. L., Pierre, K. J. L., Houseman, G. R.,
- Isbell, F., Johnson, D. S., Alatalo, J. M., Baldwin, A. H., Bork, E. W., Boughton, E. H., Bowman, W. D., Britton,
- A. J., Cahill, J. F., Collins, S. L., Du, G., ... Zhang, Y. (2017). Asynchrony among local communities stabilises
- ⁵²³ ecosystem function of metacommunities. Ecology Letters, 20(12), 1534–1545. https://doi.org/10.1111/ele.12861

⁵²⁴ S1 Complementary material and methods

⁵²⁵ S1-1 Model description

The model has been originally developed by Barbier and Loreau (2019), who considered a food chain model with a simple metabolic parametrisation. Their model corresponds to the "intra-patch dynamics" part of equations (5a) and (5b) to which we graft a dispersal term to consider a metacommunity with two patches.

$$\frac{dB_1^{(1)}}{dt} = B_1^{(1)}(\omega_1 g_1 - D_1 B_1^{(1)} - \gamma_1 \alpha_{2,1} B_2^{(1)}) + \delta_1 (B_1^{(2)} - B_1^{(1)})$$

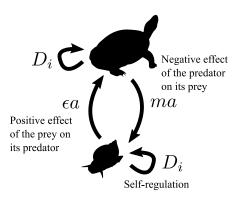
$$dB_1^{(1)} \qquad (1) \qquad$$

$$\frac{dB_i^{(1)}}{dt} = \underbrace{B_i^{(1)}(-r_i - D_i B_i^{(1)} + \gamma_1 \epsilon \alpha_{i,i-1} B_{i-1}^{(1)} - \gamma_1 \alpha_{i+1,i} B_{i+1}^{(1)})}_{\text{intra-patch dynamics}} + \underbrace{\delta_i (B_i^{(2)} - B_i^{(1)})}_{\text{dispersal}}$$
(5b)

⁵²⁶ $B_i^{(1)}$ is the biomass of trophic level *i* in the patch #1, ϵ is the biomass conversion efficiency and $\alpha_{i,j}$ is the ⁵²⁷ interaction strength between consumer *i* and prey *j*. Species *i* disperses between the two patches at rate ⁵²⁸ δ_i . The density independent net growth rate of primary producers g_i in equations (5a), the mortality ⁵²⁹ rate of consumers r_i in equations (5b) and the density dependent mortality rate D_i scale with species ⁵³⁰ metabolic rates m_i as biological rates are linked to energy expenditure.

$$g_1 = m_1 g \qquad r_i = m_i r \qquad D_i = m_i D \tag{6}$$

In order to get a broad range of possible responses, we assume the predator-prey metabolic rate ratio m and the interaction ⁵³¹ strength to self-regulation ratio a to be constant. These ratios capture the relations between parameters and trophic levels. This enables us to consider contrasting situations while keeping the model as simple as possible.



$$m = \frac{m_{i+1}}{m_i} \qquad a = \frac{\alpha_{i,i-1}}{D_i} \qquad d_i = \frac{\delta_i}{D_i} \tag{7}$$

Varying m leads to food chains where predators have faster or slower biomass dynamics than their prey and varying a leads to food chains where interspecific interactions prevail or not compared with intraspecific interactions. As all biological rates are rescaled by D_i , we also define d_i , the dispersal rate relative to self-regulation (referred as scaled dispersal rate in the rest of the study), in order to keep the values of the dispersal rate relative to the other biological rates consistent across trophic levels. Finally, the time scale of the system is defined by setting the metabolic rate of the primary producer m_1 to unity. Thus, we can transform equations (5a) and (5b) into:

$$\frac{1}{D}\frac{dB_1^{(1)}}{dt} = B_1^{(1)}(\omega\frac{g}{D} - B_1^{(1)} - \gamma maB_2^{(1)}) + d_1(B_1^{(2)} - B_1^{(1)})$$
(8a)

$$\frac{1}{m^{i-1}D}\frac{dB_i^{(1)}}{dt} = \underbrace{B_i^{(1)}(-\frac{r}{D} - B_i^{(1)} + \gamma\epsilon a B_{i-1}^{(1)} - \gamma m a B_{i+1}^{(1)})}_{\text{intra-patch dynamics}} + \underbrace{d_i(B_i^{(2)} - B_i^{(1)})}_{\text{dispersal}}$$
(8b)

Thus, ϵa and ma defines the positive effect of the prey on its predator and the negative effect of the predator on its prey, respectively. These two synthetic parameters define the overall behaviour of the food chain and will be varied over the interval [0.1, 10] to consider a broad range of possible responses. Finally, the mortality rate is set to zero (r = 0) to remove the energetic limitations of the food chain and make interactions the dominant factors determining biomass distribution and stability patterns, as in Barbier and Loreau (2019).

⁵³⁸ S1-2 Biomass at equilibrium when top predators populations are perfectly ⁵³⁹ coupled

The system can be easily solved if we consider the total population of top predator instead of two populations connected by dispersal. Since the two populations are perfectly coupled by dispersal, top predator i biomass is constant across patches and we have $B_i^{(1)*} = B_i^{(2)*} = 0.5B_i^{tot*}$. Thus we have the following system at equilibrium for the two top species (the equations for the other species are the same as the symmetric case):

$$0 = -\frac{r}{D} - B_i^{*tot} + \varepsilon a \left(\gamma B_{i-1}^{*(1)} + B_{i-1}^{*(2)} \right)$$
(9a)

$$0 = -\frac{r}{D} - B_{i-1}^{*(1)} + \gamma \varepsilon a B_{i-2}^{*(1)} - \gamma m a \frac{B_i^{*tot}}{2}$$
(9b)

$$0 = -\frac{r}{D} - B_{i-1}^{*(2)} + \varepsilon a B_{i-2}^{*(2)} - ma \frac{B_i^{*tot}}{2}$$
(9c)

Which translates into the following matrix equation:

S1-3 Biomass at equilibrium when basal species populations are perfectly coupled

In the same way, we have:

$$0 = \frac{g}{D} - B_1^{*tot} - ma \left(\gamma B_2^{*(1)} + B_2^{*(2)} \right)$$
(11a)

$$0 = -\frac{r}{D} - B_2^{*(1)} + \gamma \varepsilon a \frac{B_1^{*tot}}{2} - \gamma m a B_3^{*(1)}$$
(11b)
$$r = R^{*tot} \qquad (2)$$

$$0 = -\frac{r}{D} - B_2^{*(2)} + \varepsilon a \frac{B_1^{*(2)}}{2} - maB_3^{*(2)}$$
(11c)

Which translates into the following matrix equation:

542 S1-4 Linearisation of the system

The system of equations (1a) and (1b) can be linearised in the vicinity of equilibrium:

$$\frac{dB_i}{dt} = \underbrace{f_i(B_1^*, \dots, B_S^*)}_{= 0} + \sum_{j=1}^S \left(\left. \frac{\partial f_i}{\partial B_j} \right|_{B^*} (B_j - B_j^*) \right)$$
(13)

Thus, by setting $X_i = B_i - B_i^*$ the deviation from equilibrium, we have:

$$\frac{dX_i}{dt} = \sum_{j=1}^{S} J_{ij} X_j \tag{14}$$

Then, we can consider small perturbations defined by \overrightarrow{E} whose effects on \overrightarrow{X} are defined by the matrix T (Arnoldi et al., 2016). We get the linearised version of equation (2):

$$\frac{d\vec{X}}{dt} = J\vec{X} + T\vec{E}$$
(15)

The elements of \vec{E} are defined by stochastic perturbations $E_i = \sigma_i dW_i$ with σ_i their standard deviation and dW_i a white noise term with mean 0 and variance 1. In our model, each species i in each patch k can receive demographic perturbations scaling with the square root of their biomass at equilibrium. Thus, \vec{E} contains the white noise term $\sigma_i^{(k)} dW_i^{(k)}$ for each population of each species, T is a diagonal matrix whose terms are $\sqrt{B_i^{*(k)}}$ and the matrix product $T\vec{E}$ results in the product of the white noise and the biomass scaling as in equation (2) in the main text.

⁵⁴⁹ S1-5 Demonstration of the Lyapunov equation

The following demonstration of the Lypunov equation has been taken from Oku and Aihara (2018). The continuous-time dynamics from equation (15) can be converted to a discrete-time dynamics by using Euler-Maruyama method:

$$\vec{X}_{t+\Delta t} = \vec{X}_t + \Delta t J \vec{X}_t + \sqrt{\Delta t} T \vec{E}_t$$
(16)

 $C^* = \mathbb{E}[\vec{X}_t \vec{X}_t^{\top}]$ (the expected value of the product \vec{X}_t and its transpose \vec{X}_t^{\top}) is the stationary variancecovariance matrix of the system, therefore $dC^*/dt = 0$. We also have the following relation:

$$\frac{dC^{*}}{dt} = \lim_{\Delta t \to 0} \frac{\mathbb{E}[\vec{X}_{t+\Delta t}\vec{X}_{t+\Delta t}^{\top}] - \mathbb{E}[\vec{X}_{t}\vec{X}_{t}^{\top}]}{\Delta t} \\
= \lim_{\Delta t \to 0} \frac{\mathbb{E}[(\vec{X}_{t} + \Delta tJ\vec{X}_{t} + \sqrt{\Delta tT\vec{E}_{t}})(\vec{X}_{t} + \Delta tJ\vec{X}_{t} + \sqrt{\Delta tT\vec{E}_{t}})^{\top}] - \mathbb{E}[\vec{X}_{t}\vec{X}_{t}^{\top}]}{\Delta t} \\
= \lim_{\Delta t \to 0} \frac{\Delta t\mathbb{E}[\vec{X}_{t}\vec{X}_{t}^{\top}J^{\top}] + \Delta t\mathbb{E}[J\vec{X}_{t}\vec{X}_{t}^{\top}] + \Delta t^{2}\mathbb{E}[J\vec{X}_{t}\vec{X}_{t}^{\top}J^{\top}] + \Delta t\mathbb{E}(T\vec{E}_{t}\vec{E}_{t}^{\top}T^{\top})}{\Delta t} \\
= \mathbb{E}[\vec{X}_{t}\vec{X}_{t}^{\top}J^{\top}] + \mathbb{E}[J\vec{X}_{t}\vec{X}_{t}^{\top}] + \mathbb{E}[T\vec{E}_{t}\vec{E}_{t}^{\top}T^{\top}] \\
= C^{*}J^{\top} + JC^{*} + TV_{E}T^{\top} = 0$$
(17)

Because $\mathbb{E}[\vec{X}_t] = 0$, $\mathbb{E}[\vec{E}_t] = 0$, $\mathbb{E}[\vec{X}_t \vec{E}_t^\top] = 0$, $\mathbb{E}[\vec{E}_t \vec{X}_t^\top] = 0$ and $V_E = \mathbb{E}[\vec{E}_t \vec{E}_t^\top]$ the variance-covariance matrix of stochastic perturbations.

⁵⁵² S1-6 Resolution of the Lyapunov equation

In the vicinity of equilibrium, the Lyapunov equation links the variance-covariance matrix V_E of the perturbation vector \overrightarrow{E} to the variance-covariance matrix C^* of species biomasses (see the appendix of Wang et al. (2015) for more details on the Lyaponov equation).

$$JC^* + C^*J^\top + TV_ET^\top = 0 \tag{18}$$

The diagonal elements of V_E are equal to σ_i^2 (variance of the white noises) and the non-diagonal elements are equal to zero because perturbations are independent. \top is the transpose operator. C^* can be calculated using a Kronecker product (Nip et al., 2013). The Kronecker product of an $m \times n$ matrix Aand a $p \times q$ matrix B denoted $A \otimes B$ is the $mp \times nq$ block matrix given by:

$$A \otimes B = \begin{pmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{pmatrix}$$

We define C_s^* and $(TV_ET^{\top})_s$ the vectors stacking the columns of C^* and TV_ET^{\top} respectively. Thus, equation (18) can be rewrite as:

$$(J \otimes I + I \otimes J)C_s^* = -(TV_ET^{\top})_s$$

$$C_s^* = -(J \otimes I + I \otimes J)^{-1}(TV_ET^{\top})_s$$
(19)

553 S1-7 Coefficient of variation and correlation

Our different metrics of stability can be easily computed from the elements of the variance-covariance matrix C^* defined by elements $w_{i^{(k)}j^{(\ell)}}$ that are the covariance between species *i* in patch *k* and species *j* in patch ℓ .

$$C^{*} = \begin{pmatrix} w_{1(1)_{1}(1)} & \cdots & w_{1(1)_{S}(1)} & \cdots & w_{1(n)_{1}(n)} & \cdots & w_{1(n)_{S}(n)} \\ \vdots & \ddots & \vdots & \cdots & \vdots & \ddots & \vdots \\ w_{S(1)_{1}(1)} & \cdots & w_{S(1)_{S}(1)} & \cdots & w_{S(n)_{1}(n)} & \cdots & w_{S(n)_{S}(n)} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ w_{1(n)_{1}(1)} & \cdots & w_{1(n)_{S}(1)} & \cdots & w_{1(n)_{1}(n)} & \cdots & w_{1(n)_{S}(n)} \\ \vdots & \ddots & \vdots & \cdots & \vdots & \ddots & \vdots \\ w_{S(n)_{1}(1)} & \cdots & w_{S(n)_{S}(1)} & \cdots & w_{S(n)_{1}(n)} & \cdots & w_{S(n)_{S}(n)} \end{pmatrix}$$

$$(20)$$

The temporal variability of the metacommunity is assessed with the coefficient of variation (CV) of biomass at different scales: **population scale** $CV_i^{(k)}$, which is the biomass CV of species *i* in patch *k*, **metapopulation scale** CV_i , which is the biomass CV of the total biomass of species *i* across patches and **metacommunity scale** CV_{MC} , which is the total biomass of the entire metacommunity (Wang and Loreau, 2014; Wang et al., 2019; Jarillo et al., 2022).

$$CV_{i}^{(k)} = \frac{\sqrt{w_{i^{(k)}i^{(k)}}}}{\mu_{i}^{(k)}} \qquad CV_{i} = \frac{\sqrt{\sum_{k\ell} w_{i^{(k)}j^{(\ell)}}}}{\sum_{k} B_{i}^{*(k)}} \qquad CV_{MC} = \frac{\sqrt{\sum_{ijk\ell} w_{i^{(k)}j^{(\ell)}}}}{\sum_{ik} B_{i}^{*(k)}}$$
(21)

$$C^{*} = \begin{bmatrix} w_{1^{(1)}1^{(1)}} \cdots w_{1^{(1)}S^{(1)}} \cdots w_{1^{(n)}1^{(n)}} \cdots w_{1^{(n)}S^{(n)}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ w_{S^{(1)}1^{(1)}} \cdots w_{S^{(1)}S^{(1)}} \cdots w_{S^{(n)}1^{(n)}} \cdots w_{S^{(n)}S^{(n)}} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ w_{1^{(n)}1^{(1)}} \cdots w_{1^{(n)}S^{(1)}} \cdots w_{1^{(n)}1^{(n)}} \cdots w_{1^{(n)}S^{(n)}} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ w_{S^{(n)}1^{(1)}} \cdots w_{S^{(n)}S^{(1)}} \cdots w_{S^{(n)}1^{(n)}} \cdots w_{S^{(n)}S^{(n)}} \end{pmatrix} \end{bmatrix} \quad CV_{i}^{(k)}$$

Figure S1-1: Elements of the variance-covariance matrix C^* used to compute the biomass CV at different scales defined in equation (21).

The correlation matrix R^* of the system, whose elements $\rho_{i^{(k)}j^{(\ell)}}$ are defined by:

$$\rho_{i^{(k)}j^{(\ell)}} = \frac{w_{i^{(k)}j^{(\ell)}}}{\sqrt{w_{i^{(k)}i^{(k)}}}\sqrt{w_{j^{(\ell)}j^{(\ell)}}}}$$
(22)

⁵⁵⁴ S1-8 Asymptotic resilience

In addition to the response to stochastic perturbations, we consider asymptotic resilience to measure the long term return time of the metacommunity. Asymptotic resilience is measured by the opposite of the real part of the dominant eigenvalue λ_{dom} of Jacobian matrix J ($-\Re(\lambda_{dom})$). Since the dominant eigenvalue is the eigenvalue with the largest real part and we only consider ecosystems at equilibrium (*i.e.* all eigenvalues have negative real parts), the lower the real part of the dominant eigenvalue, the faster the long term return time.

Moreover, we can assess the influence of each species on asymptotic resilience by comparing the absolute value of the real part of each element e_i of the dominant eigenvector (E_{dom}) . Because e_i is the contribution of species *i* to E_{dom} , $|e_i| / \sum_{j=1}^{n} |e_j|$ is the relative weight of species *i* in the dynamics of long term return to equilibrium (with *n* the number of populations in the metacommunity).

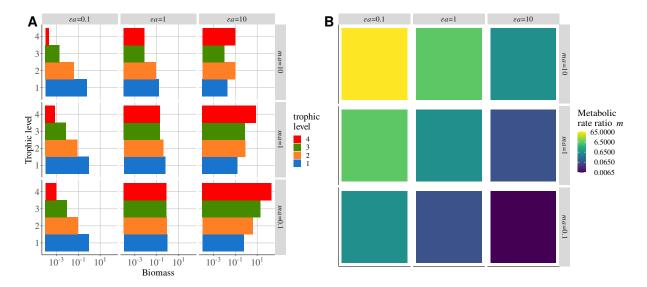
565 References

Arnoldi, J.-F., Loreau, M., & Haegeman, B. (2016). Resilience, reactivity and variability: A mathematical comparison of
 ecological stability measures. *Journal of Theoretical Biology*, 389, 47–59. https://doi.org/10.1016/j.jtbi.2015.10.
 012

Barbier, M., & Loreau, M. (2019). Pyramids and cascades: A synthesis of food chain functioning and stability. *Ecology Letters*, 22(2), 405–419. https://doi.org/10.1111/ele.13196

- Jarillo, J., Cao-García, F. J., & De Laender, F. (2022). Spatial and ecological scaling of stability in spatial community
 networks. Frontiers in Ecology and Evolution, 10, 861537. https://doi.org/10.3389/fevo.2022.861537
- 573 Nip, M., Hespanha, J. P., & Khammash, M. (2013). Direct numerical solution of algebraic Lyapunov equations for large-
- scale systems using Quantized Tensor Trains. 52nd IEEE Conference on Decision and Control, 1950–1957. https:
 //doi.org/10.1109/CDC.2013.6760167
- Oku, M., & Aihara, K. (2018). On the covariance matrix of the stationary distribution of a noisy dynamical system.
 Nonlinear Theory and Its Applications, IEICE, 9(2), 166–184. https://doi.org/10.1587/nolta.9.166
- Wang, S., Haegeman, B., & Loreau, M. (2015). Dispersal and metapopulation stability. *PeerJ*, 3, e1295. https://doi.org/
 10.7717/peerj.1295
- Wang, S., Lamy, T., Hallett, L. M., & Loreau, M. (2019). Stability and synchrony across ecological hierarchies in heterogeneous metacommunities: Linking theory to data. *Ecography*, 0(0). https://doi.org/10.1111/ecog.04290
- Wang, S., & Loreau, M. (2014). Ecosystem stability in space: \textalpha, \textbeta and \textgamma variability. Ecology
- 583 Letters, 17(8), 891–901. https://doi.org/10.1111/ele.12292

584 S2 Complementary results



⁵⁸⁵ S2-1 General description of parameters

Figure S2-1: Distribution of parameters and their effects on an isolated food chain. A) Biomass distribution depending on the positive effect of prey on predator ϵa and the negative effect of predator on prey ma. B) Value of the ratio of predator to prey metabolic rate $m = m_{i+1}/m_i$ for each combination of ϵa and ma.

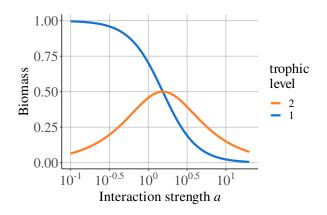


Figure S2-2: Distribution of biomass in an isolated predator-prey system (without dispersal) depending on interaction strength a relative to self-regulation. Increasing the asymmetry of the interaction strength γ is equivalent to increasing a (m = 0.65).

Increasing the interaction strength *a* relative to self-regulation decreases the biomass of prey because of the increased mortality due to predation (Figure S2-2). However, the biomass of predators follows a hump-shaped relationship: it first increases due to the increased resource consumption and then decreases because of prey overexploitation.

The effect of perturbations of populations within a community of S species can be assessed by the

ratio of the mean variance of species biomass B_j to the variance of perturbations σ_k :

$$\frac{\frac{1}{S}\sum_{j}^{S} \operatorname{Var}(B_{j})}{\frac{1}{S}\sum_{k}^{S} \sigma_{k}^{2}} = \frac{\frac{1}{S}\sum_{j}^{S} \operatorname{Var}(B_{j})}{\sigma_{i}^{2}} \quad \text{because we only consider one perturbation effecting species } i \qquad (23)$$

As demonstrated by Arnoldi et al. (2019), exogenous perturbations affect more rare species, demographic perturbations evenly affect species regardless on the biomass distribution and environmental perturbations affect more abundant populations. Therefore, we consider demographic perturbations to perturb the entire community with the same intensity regardless on the biomass variations caused by varying γ (Figure S2-3).

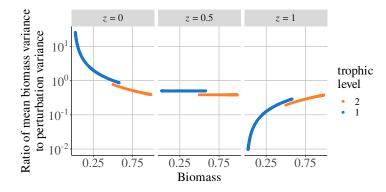


Figure S2-3: Ratio of the mean variance of species biomass to the mean variance of environmental perturbations (see equation (23)) depending on the biomass of the perturbed species. Three types of perturbations with different scaling with the equilibrium biomass of the perturbed species $i (B_i^{*z})$ are tested: exogenous perturbations (z = 0), demographic perturbations (z = 0.5) and environmental perturbations (z = 1).

⁵⁹⁵ S2-2 Dispersal of predators and perturbation of prey

⁵⁹⁶ S2-2-1 Source-sink effect

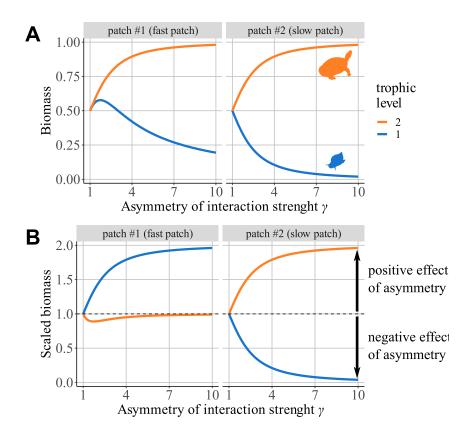


Figure S2-4: A) Distribution of the biomass of each species among patches depending on the asymmetry of interaction strength γ . B) Distribution of biomasses scaled by their value in a metacommunity without dispersal $(B_{scaled} = B_{d_2>0}/B_{d_2=0})$.

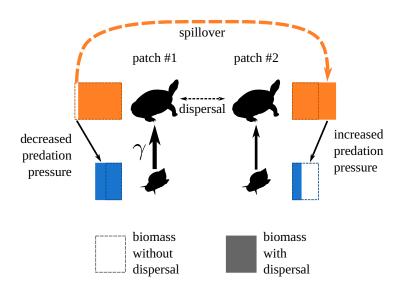


Figure S2-5: The asymmetry of interaction strength alters the biomass distribution between the two patches. Increased the interaction strength in patches #1 enhances the biomass production of predators that spill over patches from patch #1 to patch #2, therefore increasing prey biomass in patch #1 and decreasing it in patch #2 ($\gamma = 3$). Plain rectangles represent the biomass of each population, while dashed rectangles represent the same population in a metacommunity without dispersal (no spillover effect)

Varying the asymmetry of interaction strength γ is equivalent to varying the interaction strength a 597 in patch #1 and has the same effects on species biomass: first increasing γ increases predator biomass 598 by increasing prey consumption, then it decreases predator biomass because of resource overexploitation 599 (Figure S2-2). This leads to different biomass distributions in patches #1 and #2 (Figure S2-4A). 600 Predator biomass increases with γ and is the same in both patches because their high dispersal rate 601 balances any difference. Prey biomass is higher in patch #1 than in patch #2, and both decrease with γ , 602 except in patch #1, where we first observe a small increase for $\gamma < 2$. This response is due to source-sink 603 effects: the increase in prey consumption in patch #1 increases predator biomass (source) that spills over 604 patch #2 (sink) due to dispersal (Figure S2-4B and Figure S2-5). Therefore, predator biomass is lower in 605 patch #1 and higher in patch #2 compared to what we expect in the same food chains in isolation (*i.e.*, 606 without dispersal). This also prevents predators from overexploiting prev in patch #1 by spreading the 607 increased predator biomass across the metacommunity, which explains why we do not observe a decrease 608 in predator biomass for high values of γ , as shown in Figure S2-2. Conversely, the distribution of prey 609 biomass across the two patches is opposite (higher in patch #1 and lower in patch #2). 610

611 S2-2-2 Conditions of coexistence

Asymmetry and dispersal lead to competition, apparent competition and source-sink dynamics that can rescue or drive local populations to extinction. Therefore, we consider limit cases in which dispersal is infinite (well mixed populations across the metacommunity) to analytically calculate biomasses at equilibrium and determine the range of values of ω and γ enabling the coexistence of all populations of each species.

We consider the total biomass of predators $B_2^{tot} = B_2^{(1)} + B_2^{(2)}$ and because the very high dispersal of predators equally distributes its biomass among the two patches, we have $B_2^{*tot} = 2 \times B_2^{*(1)}$. Then, we can define the system:

$$\frac{dB_1^{(1)}}{dt} = DB_1^{(1)} \left(\frac{\omega g}{D} - B_1^{(1)} - \gamma m a \frac{B_2^{tot}}{2}\right)$$
(24a)

$$\frac{dB_1^{(2)}}{dt} = DB_1^{(2)} \left(\frac{g}{D} - B_1^{(2)} - ma\frac{B_2^{tot}}{2}\right)$$
(24b)

$$\frac{dB_2^{tot}}{dt} = mD\frac{B_2^{tot}}{2} \left(-\frac{r}{D} - B_2^{tot} + \varepsilon a(\gamma B_1^{(1)} + B_1^{(2)}) \right)$$
(24c)

Since r = 0, we remove it from the equations for the sake of simplicity. We define $\lambda = \varepsilon ma^2$, which is

the intensity of top-down control defined by Barbier and Loreau (2019). At equilibrium, we obtain:

$$B_1^{(1)*} = \frac{g}{D} \left(\frac{2\omega + \omega\lambda - \gamma\lambda}{2 + \lambda(\gamma^2 + 1)} \right)$$
(25a)

$$B_1^{(2)*} = \frac{g}{D} \left(\frac{\lambda \gamma^2 - \omega \lambda \gamma + 2}{2 + \lambda (\gamma^2 + 1)} \right)$$
(25b)

$$B_2^{tot*} = \frac{2\varepsilon ag(1+\omega\gamma)}{D(2+\varepsilon a^2 m(\gamma^2+1))}$$
(25c)

Prey biomass in patch #1 $B_1^{*(1)}$ is positive only if:

$$\gamma < \frac{\omega(2+\lambda)}{\lambda} \xrightarrow[\lambda \to \infty]{} \omega \tag{26}$$

Prey biomass in patch #2 $B_1^{*(2)}$ is positive if $f(\gamma) = \lambda \gamma^2 - \omega \lambda \gamma + 2 > 0$. f opens upwards: thus, if $\omega < \sqrt{8/\lambda}$, f has no roots and is always positive. Otherwise, $B_1^{(2)}$ is positive if:

$$\gamma > \frac{\lambda\omega + \sqrt{\lambda(\lambda\omega^2 - 8)}}{2\lambda} \xrightarrow[\lambda \to \infty]{} \omega \quad \text{if} \quad \omega > \sqrt{\frac{8}{\lambda}} \quad \text{or}$$
(27a)

$$\gamma < \frac{\lambda\omega - \sqrt{\lambda(\lambda\omega^2 - 8)}}{2\lambda} \xrightarrow[\lambda \to \infty]{} 0 \quad \text{if} \quad \omega > \sqrt{\frac{8}{\lambda}}$$
(27b)

Predators B_2 thrive in each patch for all values of ω and γ (Figure S2-6C). Hence, coexistence is ensured for all values of top-down control λ , asymmetry of resource supply ω and asymmetry of interaction strength γ only if $\gamma = \omega$. In the main text, we always consider $\gamma = \omega$ (Figure S2-6D), but their independent effects are detailed in the following.

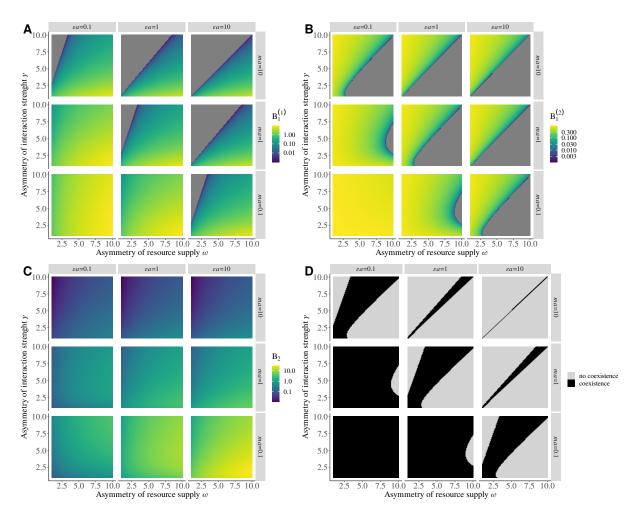


Figure S2-6: Distribution of parameters, asymmetry of resource supply ω and asymmetry of interaction strength γ , leading to the coexistence of predator and prey in each patch. Only predators are able to disperse at an infinite rate (well-mixed predator populations). This distribution is assessed for different values of the positive effect of prey on predator ϵa and negative effect of predator on prey ma. A) Biomass of prey in patch #1 $B_1^{*(1)}$ and B) in patch #2 $B_1^{*(2)}$. C) Biomass of predator in patches #1 and #2 ($B_2^{*(1)} = B_2^{*(2)}$ because predator populations are well mixed). D) Coexistence of predator and prey in each patch.

621 S2-2-3 Nontransitivity of correlation

To explain the correlation between prey populations, we can track the transmission of perturbations in 622 the metacommunity. Increasing the asymmetry of interaction strength γ tends to decorrelate predator and 623 prey dynamics within each patch (Figure S2-7A). When prey are perturbed in patch #1, the dynamics 624 of predator and prey biomass are correlated in patch #1 and anticorrelated in patch #2 due to the 625 bottom-up and top-down transmissions of perturbations, respectively. Although we would expect the 626 two populations of prey to be anti-correlated according to the mechanism described by Quévreux et al. 627 (2021) (see Figure S2-28 in the following), we actually observe a weak correlation of these two populations 628 (Figure S2-7B). In the same way, the intermediate correlation and anti-correlation of predator and prey 629 when prey are perturbed in patch #2 do not explain the strong anti-correlation of prey populations 630

⁶³¹ (Figure S2-7C). Therefore, other mechanisms are acting in our system.

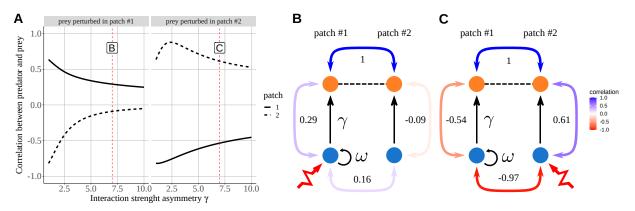


Figure S2-7: Correlation between predator and prey with each patch ($\varepsilon a = 1$, ma = 1, $d_2 = 10^6$, $\omega = \gamma$). **A)** Correlation in each patch depending on asymmetry of interaction strength γ when prey in patch #1 (left panel) or in patch #2 (right panel) are perturbed. Labels and vertical dashed lines represent the correlation values used in panels B and C. **B**) Schematic representation of correlations when $\gamma = 7$. Coloured double arrows and their associated number (see also the colour scale) represent the correlations between populations. Prey are perturbed in patch #1. **C**) Prey are perturbed in patch #2.

632 S2-2-4 Complete effects of εa and ma

The stability patterns observed in Figures 2, 3 and 5 in the main text are also observed for a wide range of ecological and physiological parameters aggregated into the positive effect of prey on predators εa and the negative effect on predators on prey ma. Therefore, our results are robust and the identified mechanisms are specific to a particular combination of parameters.

The response of the asymptotic resilience to the asymmetry of interaction strength (Figure S2-11A) 637 is not similar to the results of Rooney et al. (2006). Indeed, we do not observe minimum of resilience 638 for $\gamma = 1$ for all combinations of εa and ma. The variations in asymptotic resilience depend on the 639 relative contribution of each population of each species (Figure S2-11B), which is governed by the biomass 640 distribution of each species among patches (Figure S2-8A) and the ratio of predator to prey metabolic 641 rate ratio m (Figure S2-1B). As demonstrated by Haegeman et al. (2016) and Arnoldi et al. (2018), 642 rare species control the long term response to perturbations of the metacommunity (*i.e.*, the asymptotic 643 resilience), as well as species with a slow pace of life (*i.e.*, a slow metabolism). 644

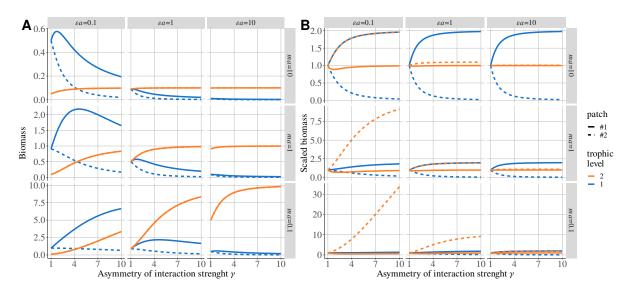


Figure S2-8: Biomass distribution of each species in each patch depending on asymmetry of interaction strength γ , positive effect of prey on predator εa and negative effect of predator on prey ma. A) Biomass distribution. B) Biomass scaled by the biomass in the metacommunity without dispersal ($d_2 = 0$).

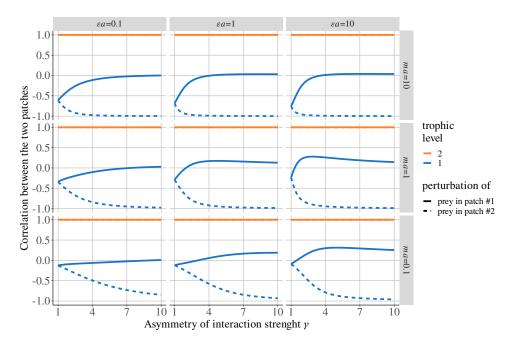


Figure S2-9: Correlation between populations depending on asymmetry in interaction strength γ when predators disperse and prey are perturbed in patch #1 or #2. Predators have a high scaled dispersal rate $(d_2 = 10^6)$, which strongly couples their two populations $(\gamma = \omega)$.

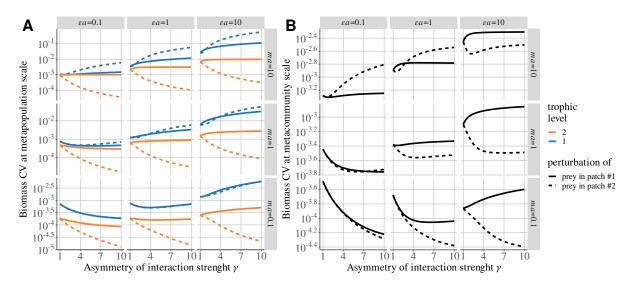


Figure S2-10: Biomass CV at different scales depending on asymmetry of interaction strength γ , positive effect of prey on predator εa and negative effect of predator on prey ma ($d_2 = 10^6$ and $\omega = \gamma$). A) Biomass CV of the population of each species in each patch. B) CV of the total biomass of each species.

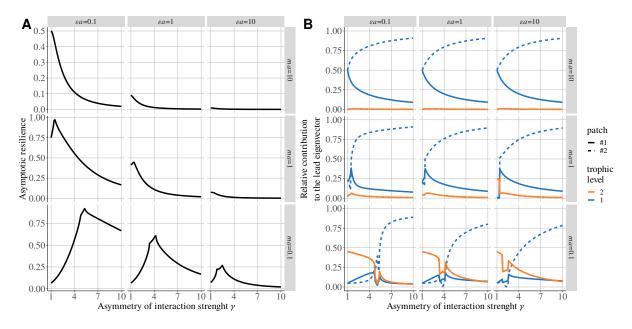


Figure S2-11: Linear stability depending on asymmetry of interaction strength γ , positive effect of prey on predator εa and negative effect of predator on prey ma. A) Asymptotic resilience (real part of the dominant eigenvalue of the Jacobian matrix) B) Contribution of the populations of each species to the dominant eigenvector.

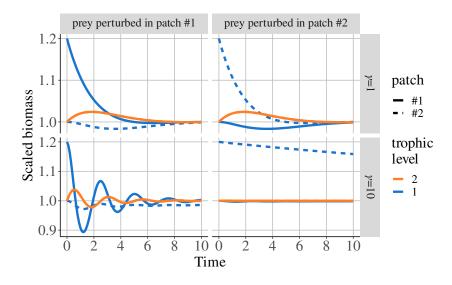


Figure S2-12: Time series of biomasses rescaled by their value at equilibrium after an increase in prey biomass by 20% in patch #1 (left panel) or patch #2 (right panel) for two values of interaction strength asymmetry ($\gamma = 1$ or $\gamma = 10$, $\varepsilon a = 1$, ma = 1, $d_2 = 10^6$ and $\omega = \gamma$).

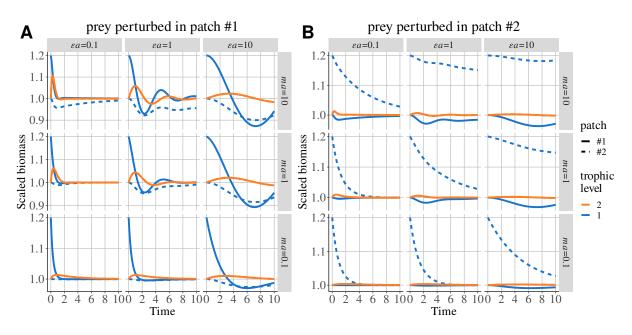


Figure S2-13: Time series of biomasses rescaled by their value at equilibrium after an increase in prey biomass by 20% in patch #1 (left panel) or patch #2 (right panel) depending on asymmetry of interaction strength γ , positive effect of prey on predator ϵa and negative effect of predator on prey ma ($\gamma = 3$, $d_2 = 10^6$ and $\omega = \gamma$).

645 S2-2-5 Effect of asymmetry of resource supply ω

According to Figure S2-6, we set $\omega = \gamma$ to ensure the coexistence of prey and predators in each patch for all combinations of εa and ma. Varying the asymmetry of resource supply ω does not qualitatively alter the response of biomass (Figure S2-14), correlation (Figure S2-15A) and biomass CV (Figure S2-15B) to the variations in the asymmetry of interaction strength γ .

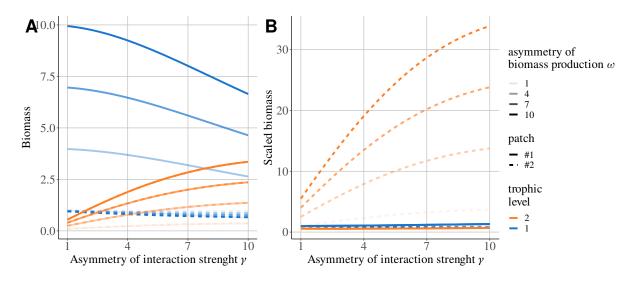


Figure S2-14: Biomass distribution of each species in each patch depending on asymmetry of interaction strength γ and biomass production ω ($\epsilon a = 0.1$, ma = 0.1 and $d_2 = 10^6$). A) Biomass distribution. B) Biomass scaled by the biomass in the metacommunity without dispersal ($d_2 = 0$).

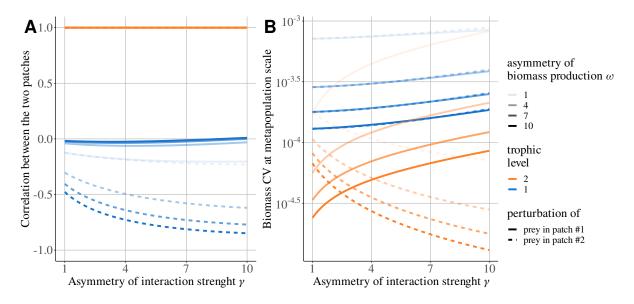


Figure S2-15: Stability depending on asymmetry of interaction strength γ and biomass production ω ($\epsilon a = 0.1, ma = 0.1$ and $d_2 = 10^6$). A) Correlation between populations. B) Biomass CV of the population of each species in each patch.

650 S2-2-6 Effect of perturbation of predators

The perturbation of predators leads to the same response regardless of the perturbed patch because the very high dispersal of predators perfectly synchronises their population dynamics. The asymmetry of interaction strength leads to different dynamics in each patch that decreases the correlation of prey dynamics (Figure S2-16) and stabilises predator dynamics by decreasing their biomass CV (Figure S2-17A).

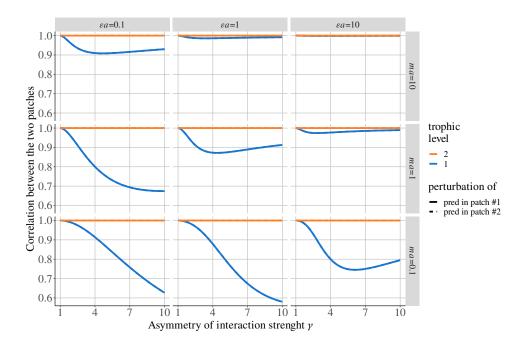


Figure S2-16: Correlation between populations depending on asymmetry of interaction strength γ , positive effect of prey on predator εa and negative effect of predator on prey ma. Predators disperse and are perturbed in patch #1 or patch #2 ($d_2 = 10^6$ and $\omega = \gamma$).

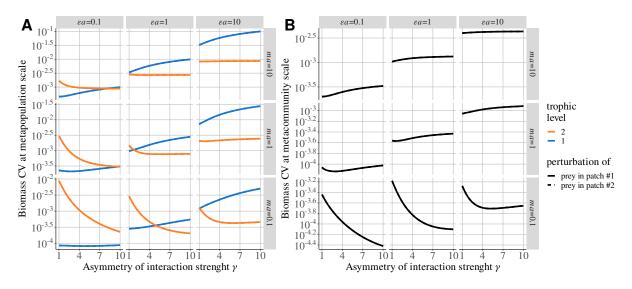


Figure S2-17: Biomass CV at different scales depending on asymmetry of interaction strength γ , positive effect of prey on predator εa and negative effect of predator on prey ma. Predators disperse and are perturbed in patch #1 or patch #2 ($d_2 = 10^6$ and $\omega = \gamma$). A) CV of the total biomass of each species. B) CV of the total biomass of the metacommunity.

656 S2-2-7 Effect of food chain length

⁶⁵⁷ Here, we consider three trophic levels to extend our results to metacommunities with longer food chain ⁶⁵⁸ lengths. In this setup, only top predators (species 3) are able to disperse, and basal species (species 1) ⁶⁵⁹ receive stochastic perturbations. γ also has the same value across trophic levels. We observe a similar ⁶⁶⁰ response to the case with two trophic levels for the correlations of the dynamics of the biomass of species ⁶⁶¹ 2 and 3 (Figure S2-18) as well as for biomass CV (Figure S2-19). However, the response of species 1 ⁶⁶² in completely different. Therefore, the mechanisms described in the main text are only acting for the

dispersing species and the species directly interacting with it.

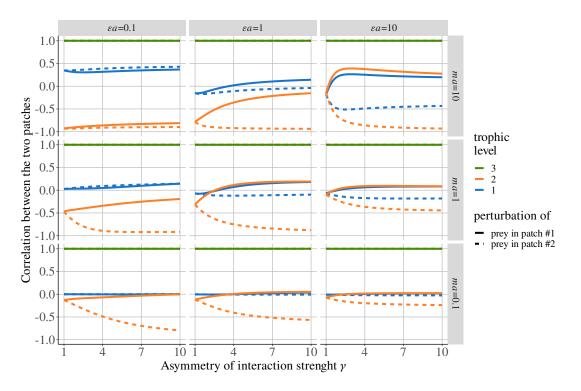


Figure S2-18: Correlation between populations in a three trophic level food chain depending on the asymmetry of interaction strength γ , positive effect of prey on predator εa and negative effect of predator on prey ma ($d_3 = 10^6$ and $\omega = 1$). Top predators disperse, and the basal species is perturbed in patch #1 or #2.

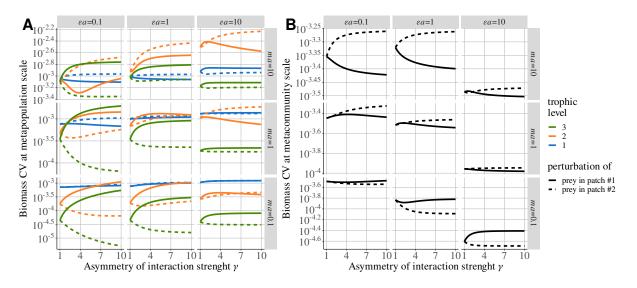


Figure S2-19: Biomass CV in a three trophic level food chain at different scales depending on asymmetry of interaction strength γ , positive effect of prey on predator εa and negative effect of predator on prey $ma~(d_3 = 10^6 \text{ and } \omega = 1)$. A) Biomass CV of the population of each species in each patch. B) CV of the total biomass of each species.

⁶⁶⁴ S2-3 Dispersal of prey and perturbation of predators

In this section, we consider a setup mirroring the metacommunity model described in the main text. Here, only prey are able to disperse at a very high rate $(d_1 = 10^6)$, and predators receive stochastic perturbations. We also set $\gamma = \omega$ to be consistent with the results in the main text. In the following, we find the same responses to the asymmetry of interaction strength γ , which demonstrates that the mechanisms described in the main text are not conditioned by the trophic position of the dispersing species.

671 S2-3-1 Conditions of coexistence

⁶⁷² When only prey are able to disperse, all populations of each species have positive biomasses for all ⁶⁷³ values of ω , γ , εa and ma (Figure S2-20).

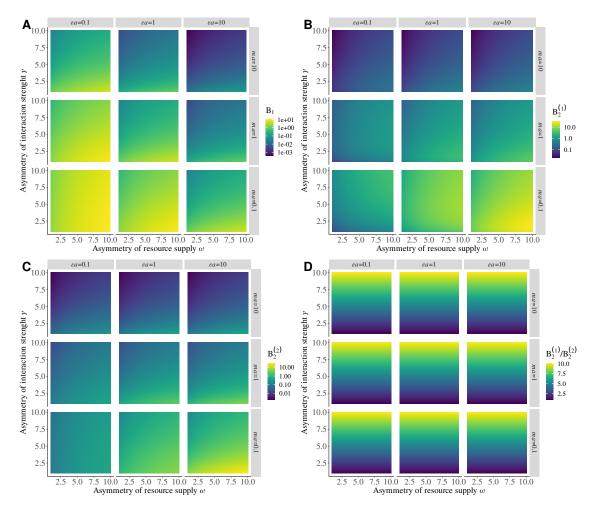


Figure S2-20: Distribution of parameters, asymmetry of resource supply ω and asymmetry of interaction strength γ , leading to the coexistence of predator and prey in each patch. Only prey are able to disperse at an infinite rate (well mixed prey populations). This distribution is assessed for different values of the positive effect of prey on predator εa and the negative effect of predator on prey ma. The product of εa and ma is the strength of top-down control λ ($\lambda = \varepsilon a^2 m$, see Barbier and Loreau (2019)). A) Biomass of prey in patches #1 and #2 ($B_1^{*(1)} = B_1^{*(2)}$ because prey populations are well mixed). B) Biomass of predator in patch #1 ($B_2^{*(1)}$ C) in patch #2 $B_2^{*(2)}$.

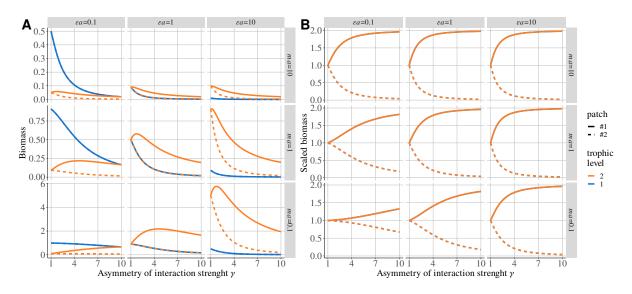


Figure S2-21: Biomass distribution of each species in each patch depending on asymmetry of interaction strength γ , positive effect of prey on predator εa and negative effect of predator on prey ma. A) Biomass distribution. B) Biomass scaled by the biomass in the metacommunity without dispersal ($d_1 = 0$). Prey and predator curves perfectly overlap

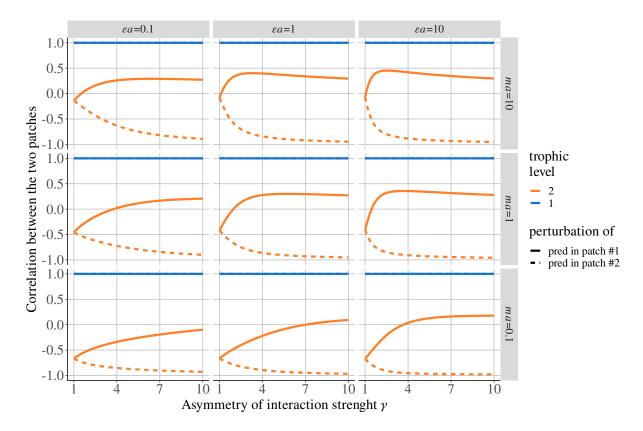


Figure S2-22: Correlation of population when prey disperse and predators are perturbed in patch #1 or in patch #2 depending on asymmetry of interaction strength γ , positive effect of prey on predator εa and negative effect of predator on prey ma.

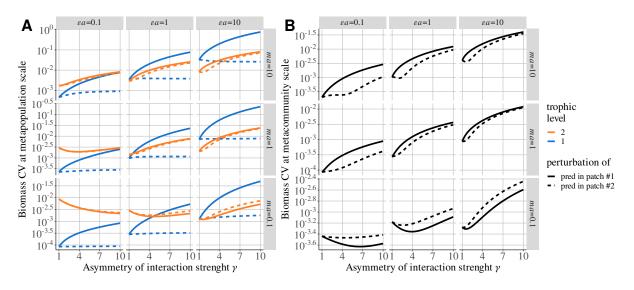


Figure S2-23: Biomass CV at different scales depending on asymmetry of interaction strength γ , positive effect of prey on predator εa and negative effect of predator on prey ma ($d_1 = 10^6$ and $\omega = \gamma$). A) Biomass CV of the population of each species in each patch. B) CV of the total biomass of each species.

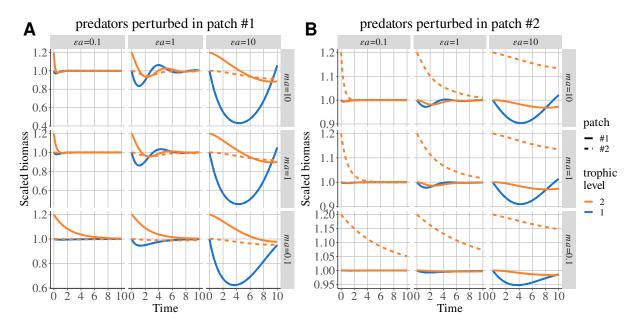


Figure S2-24: Time series after pulse perturbation of predators in patch #1 or in patch #2. Biomasses are scaled by their value at equilibrium, and dispersal is high ($\gamma = 3$ and $d = 10^6$).

675 S2-4 Correlated environmental perturbations

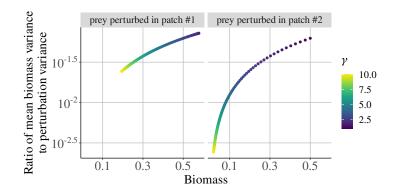


Figure S2-25: Ratio of the mean variance of species biomass to the mean variance of environmental perturbations (see equation (23)) in each patch depending on asymmetry of interaction strength γ . Each prey population receives spatially correlated environmental perturbation (colour gradient scale) scaling with equilibrium biomass B_i^* (z = 1).

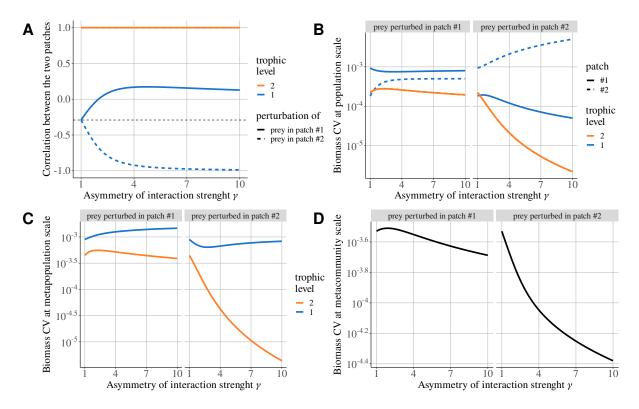


Figure S2-26: Stability at different scales depending on asymmetry of interaction strength γ when predators disperse and prey are perturbed in patch #1 or #2 with environmental perturbations ($\varepsilon a = 1$, ma = 1, $\omega = \gamma$). A) Spatial correlation between the populations of each species. B) Biomass CV at the population scale. C) Biomass CV at the metapopulation scale (CV of the total biomass of each species). D) Biomass CV at the metacommunity scale (CV of the total biomass of the metacommunity.

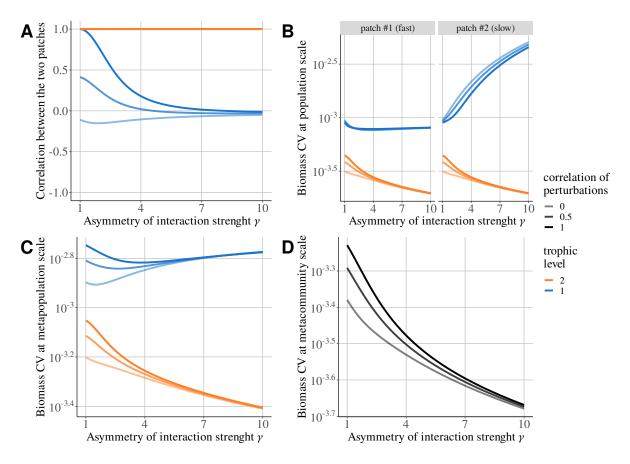
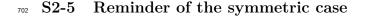


Figure S2-27: Stability at different scales depending on asymmetry of interaction strength γ when predators disperse and prey are perturbed by a spatially correlated environmental perturbations (colour gradient scale) ($\varepsilon a = 1, ma = 1, \omega = \gamma$). A) Spatial correlation between the populations of each species. B) Biomass CV at the population scale. C) Biomass CV at the metapopulation scale (CV of the total biomass of each species). D) Biomass CV at the metacommunity scale (CV of the total biomass of the metacommunity.

Here, we consider the same metacommunity as in the main text (see Figure 1 in the main text), but prey receive spatially correlated environmental perturbations. Environmental perturbations correspond to the synchronous response of all individuals of the same population to an environmental factor (*e.g.*, drought), and they scale with equilibrium biomass B_i^* (see the supporting information of Quévreux et al. (2021) for the demonstration). In our metacommunity, we also consider that environmental perturbations are spatially correlated since it is reasonable to assume that different populations of the same species will respond in a similar way to environmental perturbations.

The effect of a perturbation on a population within a community can be assessed by the ratio of the mean variance of species biomass j to the variance of the perturbation i by equation (23). As demonstrated by Arnoldi et al. (2019), environmental perturbations affect abundant populations the most, which is the prey population in the fast patch in our case (Figures S2-3 and S2-25). Therefore, we can approximate the effect of environmental perturbations by the effect of the perturbation of prey in the fast patch. Perturbing a single population with demographic or environmental perturbations leads to exactly the same qualitative results (Figure S2-26 and Figure 2 and Figure 3 in the main text), and only the CV values change because of the different biomass scaling.

Increasing the correlation of perturbations increases the correlation of the dynamics of prey populations 691 (Figure S2-27A) because of the Moran effect (Moran, 1953). The increase in synchrony explains the 692 increase in the biomass CV observed at each scale for all species (Figure S2-27B-D), except for prey in 693 the slow patch (Figure S2-27B). The Moran effect is particularly strong at low asymmetry ($\gamma < 4$), but 694 once asymmetry is high enough, two mechanisms disrupt the Moran effect. First, when asymmetry is high, 695 the dynamics in each patch become so different that correlated perturbations are not able to generate 696 similar responses. Second, because of the discrepancy in the distribution of prey biomass among the two 697 patches, environmental perturbations mostly affected prey in the fast patch (Figure S2-25). Therefore, 698 with increasing asymmetry of interaction strength γ , the response of the metacommunity to correlated 699 environmental perturbations converges towards the response of a metacommunity in which only prey in 700 the fast patch are perturbed. 701



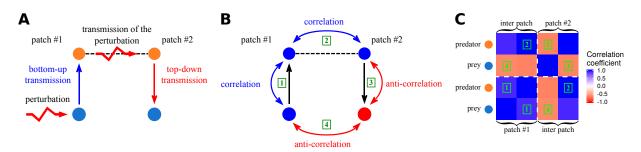


Figure S2-28: Summary of the main results from Quévreux et al. (2021), who considered a two patch predator-prey metacommunity with passive dispersal. In the setup presented in **A**), prey are perturbed in patch #1 and only predators are able to disperse. Thus, perturbations have a bottom-up transmission in patch #1 (*i.e.* transmission from lower to upper trophic levels). This leads to the temporal correlation of the biomass dynamics of predators and prey in patch #1 showed in **B**)(1) because if a perturbation increases the biomass of prey, it also increases the biomass of predators due to the vertical transfer of biomass. The passive dispersal of predators transmits the perturbations and spatially correlate their populations as shown in **B**)(2). Then, perturbations have a top-down transmission in patch #2 (*i.e.* transmission from upper to lower trophic levels). This leads to the temporal anticorrelation (negative coefficient of correlation) of the biomass dynamics of predators and prey in patch #2 showed in **B**)(3) because if a perturbation increases the biomass of predators, it decreases the biomass of prey due to the negative effect of predators on prey. Eventually, prey populations are spatially anticorrelated, as shown in **B**)(4). Hence, by knowing which species is perturbed, which species disperses and how perturbations propagate within a food chain, Quévreux et al. (2021) were able to explain the spatial synchrony of the various populations of a metacommunity, summariesed by the correlation matrix in **C**).

References 703

713

- Arnoldi, J.-F., Bideault, A., Loreau, M., & Haegeman, B. (2018). How ecosystems recover from pulse perturbations: A 704 theory of short- to long-term responses. Journal of Theoretical Biology, 436, 79–92. https://doi.org/10.1016/j. 705 jtbi.2017.10.003 706
- Arnoldi, J.-F., Loreau, M., & Haegeman, B. (2019). The inherent multidimensionality of temporal variability: How common 707 and rare species shape stability patterns (J. Chase, Ed.). Ecology Letters, 22(10), 1557–1567. https://doi.org/10. 708 1111/ele.13345 709
- Barbier, M., & Loreau, M. (2019). Pyramids and cascades: A synthesis of food chain functioning and stability. Ecology 710 Letters, 22(2), 405-419. https://doi.org/10.1111/ele.13196 711
- Haegeman, B., Arnoldi, J.-F., Wang, S., de Mazancourt, C., Montoya, J. M., & Loreau, M. (2016). Resilience, invariability, 712 and ecological stability across levels of organization. bioRxiv. https://doi.org/10.1101/085852
- Moran, P. (1953). The statistical analysis of the Canadian Lynx cycle. Australian Journal of Zoology, 1(3), 291. https://doi.org/10.1011/j.jcal. 714
- //doi.org/10.1071/ZO9530291715
- Quévreux, P., Barbier, M., & Loreau, M. (2021). Synchrony and perturbation transmission in trophic metacommunities. 716 The American Naturalist, 714131. https://doi.org/10.1086/714131 717
- Rooney, N., McCann, K. S., Gellner, G., & Moore, J. C. (2006). Structural asymmetry and the stability of diverse food 718 webs. Nature, 442(7100), 265-269. https://doi.org/10.1038/nature04887 719