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Abstract 34 

For plant-pollinator interactions to occur, the flowering of plants and the flying period of pollinators 35 

(i.e. their phenologies) have to overlap. Yet, few models make use of this principle to predict 36 

interactions and fewer still are able to compare interaction networks of different sizes. Here, we 37 

tackled both challenges using Bayesian Structural Equation Models (SEM), incorporating the effect of 38 

phenology overlap in six plant-hoverfly networks. Insect and plant abundances were strong 39 

determinants of the number of visits, while phenology overlap alone was not sufficient, but 40 

significantly improved model fit. Phenology overlap was a stronger determinant of plant-pollinator 41 

interactions in sites where the average overlap was longer and network compartmentalization was 42 

weaker, i.e. at higher latitudes. Our approach highlights the advantages of using Bayesian SEMs to 43 

compare interaction networks of different sizes along environmental gradients and articulates the 44 

various steps needed to do so. 45 

  46 
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INTRODUCTION 48 

Understanding how phenology determines species interactions is a central question in the case of 49 

mutualistic networks. In plant-pollinator networks, phenology shapes their temporal and spatial limits, 50 

thus defining the area and the period along the season in which interactions preferably occur (Olesen 51 

et al. 2011; Ogilvie & Forrest 2017). Since plant and pollinator phenologies are not equally affected by 52 

changes in environmental cues, partial or total phenological mismatches can occur as a result of 53 

environmental changes such as climate change (Parmesan 2007; Rafferty 2017). Phenological 54 

advances indeed increase at higher latitudes, as a response to the acceleration of warming 55 

temperature along the same gradient (Post et al. 2018), increase phenological mismatch, and have the 56 

potential to threaten the synchrony needed for effective pollination (Hutchings et al. 2018). Such 57 

environmental changes can thus drastically alter pollinator interactions through modified temporal 58 

overlap between pollinators and their floral resources leading, in extreme cases, to local extinctions 59 

(Memmott et al. 2007) and the ensuing absence of the partner species at the location and/or time at 60 

which the interaction should have taken place (Willmer 2012; Miller-Struttmann et al. 2015; Rafferty 61 

et al. 2015; Hutchings et al. 2018). 62 

Because phenological match is crucial to plant-pollinator interactions, and thus ultimately to 63 

pollinators’ fitness, pollinators have to adapt to phenological shifts either through interaction with 64 

other plant species (Rafferty et al. 2015) or through changes of their own phenology (Bartomeus et al. 65 

2011). Phenology can then influence dynamical network properties, such as the stability and the 66 

coexistence of species, through changes in network topology (Encinas-Viso et al. 2012). Moreover, 67 

phenology predictably affects network compartmentalization as different phenophases likely 68 

correspond to different compartments when networks are considered on an annual scale (Martín 69 

González et al. 2012). 70 

Despite considerable theoretical advances, there are few models available to predict the probability 71 

of interaction in plant-pollinator networks (Staniczenko et al. 2017; Cirtwill et al. 2019) and fewer still 72 
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able to make comparisons between networks. Due to their complexity and variation among years 73 

(Chacoff et al. 2017), most studies of mutualistic networks have focused on predicting and comparing 74 

classic network metrics (nestedness, connectance, modularity, etc.) which are all influenced by 75 

network size, i.e. the number of plant and insect species (Fortuna et al. 2010; Staniczenko et al. 2013; 76 

Poisot & Gravel 2014; Astegiano et al. 2015). Moreover, few studies have compared interaction 77 

networks along environmental gradients (Devoto et al. 2005; Schleuning et al. 2012; Sebastián-78 

González et al. 2015; Pellissier et al. 2017). In order to compare networks of different sizes, a better 79 

alternative is to switch from network-derived metrics to the comparison of the probability of 80 

interaction given by regression models, which can consider multiple factors and latent variables and 81 

assume that the sampled data are just part of a larger unobserved dataset (Grace et al. 2010).  82 

Calcareous grasslands are characterized by highly diverse plant communities with a high proportion of 83 

entomophilous species (Baude et al. 2016), thus they are a convenient model for such studies. Most 84 

plant-insect pollinator networks involve bee species (Anthophila), but recent studies have also pointed 85 

out the importance of hoverflies (Diptera: Syrphidae), which pollinate a large spectrum of wild 86 

flowering species (Klecka et al. 2018a) and crops (Jauker & Wolters 2008; Rader et al. 2011). They 87 

usually behave opportunistically, i.e. from being pollen generalists to specialists, only limited by 88 

morphological constraints (Iler et al. 2013; Klecka et al. 2018a; Lucas et al. 2018). Indeed, their 89 

generalist behaviour, at the species level, could be the result of individually specialized diets, since 90 

most pollen retrieved on hoverfly individuals usually comes from a single plant taxon (Lucas et al. 2018) 91 

and depends on flower availability and phenology (Cowgill et al. 1993; Colley & Luna 2000; Lucas et al. 92 

2018). Moreover, some hoverflies have preferences regarding plant colour, morphology and 93 

inflorescence height (Branquart & Hemptinne 2000; Colley & Luna 2000; Lunau 2014; Klecka et al. 94 

2018b, a). 95 

Here we study the consequences of environmental gradients on plant-pollinator interactions, focusing 96 

on how phenology overlap affects interactions between plants and insects in six calcareous grassland 97 
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sites distributed along a latitudinal gradient. We obtained plant and insect phenologies, abundances, 106 

and interactions in all sites from April to October 2016. We modelled plant-pollinator interaction 107 

networks following a Bayesian Structural Equation Modelling approach (SEM) using latent variables, 108 

i.e. unobserved variables (Grace et al. 2010). SEM is a multivariate technique used to test several 109 

hypotheses in ecological studies. SEM analysis involves cause-effect equations to evaluate multiple 110 

causal relationship (Grace 2006; Eisenhauer et al. 2015) using observed and latent variables to explain 111 

some other observed variables (Grace 2006). SEM can be used to choose among competing models 112 

(Grace & Bollen 2008). Thus, SEM are well suited for studying the complexity of ecological networks. 113 

To test whether phenology affects network compartmentalization, we looked for species subgroups 114 

using a latent block model (LBM) which is among the best clustering methods for weighted networks 115 

(Leger et al. 2015). 116 

The comparison of 16 SEMs and the analysis of LBMs of sampled networks evinced that phenology 117 

overlap is an important determinant of plant-pollinator interactions, but is less informative than 118 

species abundances and performs heterogeneously among sites. Our results suggest that the use of 119 

SEMs to compare networks of different sizes along an environmental gradient is an innovative 120 

approach which can help understand the structure of plant-pollinator networks. 121 

MATERIALS AND METHODS 122 

Study sites 123 

We sampled plant and hoverfly species in six areas (Fig. S1) of 1 hectare each in different French 124 

regions: two sites in Hauts-de-France (Les Larris de Grouches-Luchuel, thereafter noted LAR, 125 

50°11'22.5"N 2°22'02.9"E and Regional natural reserve Riez de Noeux les Auxi, noted R, 50°14’51.85”N 126 

2°12’05.56”E, in départements Pas-de-Calais and Somme), two sites in Normandie (Château Gaillard – 127 

le Bois Dumont, noted CG, 49°14'7.782"N 1°24'16.445"E and les Falaises d’Orival, noted FAL, 128 

49°04'40.08"N 1°33'07.254"E, départements: Eure and Seine Maritime) and two sites in Occitanie 129 

(Fourches, noted F, 43°56'07.00"N 3°30'46.1"E and Bois de Fontaret, noted BF, 43°55'17.71"N 130 

Supprimé: pollinator 131 
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3°30'06.06"E, départment: Gard). The six sites are included in the European NATURA 2000 network, a 132 

network of preserved areas designated to protect a number of habitats and species representative of 133 

European biodiversity. The four sites in Hauts-de-France and Normandie are managed by the 134 

Conservatoire d’espaces naturels of Normandie, Picardie and Nord – Pas-de-Calais and the sites in 135 

Occitanie by the CPIE Causses méridionaux. We sampled each site once a month from April to October 136 

2016, except for the site of Riez that was sampled from May to October. 137 

Plant-hoverfly observations and sampling 138 

To collect information at the community level, in each site and at each session we realized: (i) a botanic 139 

inventory of the flowering species, recorded their abundances and the total flower covering in the area 140 

and (ii) a pollinator sampling using a hand net along a variable transect walk. 141 

Flowering plants were identified at the species level. We recorded the abundances of all flowering 142 

species. At first, we estimated the total percentage of surface covered by all flowering species in the 143 

selected area. We then estimated the relative abundance of each flowering species. We used Braun-144 

Blanquet coefficients of abundance-dominance, ranked from i to 5 (most abundant coefficient class) 145 

(Van Der Maarel 1975, 1979; Mucina et al. 2000), to rank flowering species. We converted the 146 

coefficients to percentage intervals and then in mean values of percentage cover classes (Table S1): 147 

coefficient 5 = 75-100%, coeff 4 = 50-75%, coeff 3=25-50%, coeff 2 = 10-25%, coeff 1 = 1-10%, coeff + 148 

= few individuals less than < 1%, coeff i = 1 individual. All inventories were realized by the same 149 

surveyors to avoid biases. 150 

Pollinator observations were performed by the same team of 3-5 persons each day. The surveyors 151 

walked slowly around any potential attractive resource patch included in the selected 1-hectare area 152 

for 4h each day. We split the sampling period into 2 hours in the morning (about 10-12h) and 2 hours 153 

in the afternoon (about 14-16h) to cover the daily variability of both pollinator (bees and hoverflies, 154 

which are more active in the morning than in the afternoon; D’Amen et al. 2013) and flower 155 

communities. Sampling took place when we had suitable weather conditions for pollinators (following 156 
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Westphal et al. 2008). We sampled all flower-visiting insects and we recorded observed interactions. 157 

All sampled insects were immediately put individually in a killing vial with ethyl acetate and were later 158 

prepared and pinned in the laboratory and identified at the species level by expert taxonomists. Even 159 

if we collected both bees and hoverflies, in this study we focus on hoverflies only (since at the moment 160 

of the study bees were not identified at the species level yet). Overall, we sampled for 41 days, 161 

equivalent to about 164 hours in the field (all the surveyors collected at the same time). For all analyses 162 

described here, we only used the list of visited herbaceous plant species and hoverflies which were 163 

found visiting a plant. Despite their rarity and even if hoverflies are known to prefer open flowers 164 

(Branquart & Hemptinne 2000), we also considered the interactions between hoverflies and plant 165 

species of the Fabaceae family because we observed in the field that they visited Fabaceae species 166 

that were already opened by other insects, e.g. by large bee species, such as Eucera sp. (de Manincor, 167 

personal observation). 168 

Plant – hoverfly networks 169 

For each site, we constructed an interaction network consisting of all pairs of interacting plant and 170 

insect species, pooling data from all months. A pair of species (i,j) was connected with intensity vij when 171 

we recorded vij visits of insect species i on plant species j in the site. We calculated the network 172 

specialization index, H2' (Blüthgen et al. 2006) using the H2fun function implemented in the 173 

bipartite package (Dormann et al. 2009; R Core Team 2018). We obtained the d-value (Kullback-174 

Leibler divergence between the interactions of the focal species and the interactions predicted by the 175 

weight of potential partner species in the overall network) and the dmax-value (maximum d-value 176 

theoretically possible given the observed number of interactions in the network) using the dfun 177 

function in the bipartite package (Dormann et al. 2009). We did not use the d' values provided by 178 

this package as they sometimes yielded spurious results based on the computation of the minimal d 179 

value (e.g. reporting low d’ for species with only one partner in the network).We then manually 180 
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However, 184 
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calculated the standardized specialization index d' (Blüthgen et al. 2006) for each plant and insect 190 

species as the ratio of the d-value to its corresponding dmax-value.  191 

We calculated the modularity of the network and the associated partition of species into modules 192 

using the cluster_leading_eigen method for modularity optimization implemented in the 193 

igraph package (Csardi & Nepusz 2006; Newman 2006). Modularity optimization can help identify 194 

strong, simple divisions of a network into relatively independent sub-networks by looking for highly 195 

interconnected sub-networks. However, modules are not meant to inform about more subtle 196 

groupings among the species, e.g. particular avoidance of interactions between insects of group A and 197 

plants of group 1. In order to detect such groups, we implemented latent block models (LBM) using 198 

the BM_poisson method for Poisson probability distribution implemented in the blockmodels 199 

package (Leger et al. 2015). Blocks are calculated separately for the two groups (insect and plant) based 200 

on the number of visits (i.e. a weighted network). The algorithm finds the best divisions of insects and 201 

plants through fitting one Poisson parameter in each block of the visit matrix, thus essentially 202 

maximizing the ICL (Integrated Completed Likelihood; Biernacki et al. 2000; Daudin et al. 2008). The 203 

LBM script is given in Supplementary Information (Appendix S3). All analyses were performed in R 204 

version 3.3.3 (R Core Team 2018). 205 

Plant and hoverfly abundances and phenology overlap 206 

We calculated plant abundance using information about the abundance-dominance recorded in the 207 

field following the methodology of Braun-Blanquet presented above. We transformed the coefficients 208 

of abundance in percentages (Table S1): we used the mean of the percentage corresponding to each 209 

class. We then calculated the relative abundance (AP) of each flowering plant species as the ratio of 210 

the focal species cumulated abundance to total flower abundance during its flowering season. For 211 

hoverflies, we used the recorded number of visiting individuals (total abundance) and their presence 212 

(recorded months) along the season to calculate their average abundance during months when they 213 

were present (AH). 214 

Supprimé:  (Kullback-Leibler divergence between the 215 
interactions of the focal species and the interactions 216 
predicted by the weight of potential partner species in the 217 
overall network)218 

Supprimé:  (maximum d-value theoretically possible given 219 
the observed number of interactions in the network)220 

Déplacé vers le haut [3]: We obtained these values using 221 
the dfun function in the bipartite package (Dormann et 222 
al. 2009), but we did not use the d' values provided by this 223 
package as they sometimes yielded spurious results based 224 
on the computation of the minimal d value (e.g. reporting 225 
low d’ for species with only one partner in the network).226 

Supprimé: W227 

Supprimé: hoverflies228 



10 
 

We refer to plant phenology as their flowering period and insect phenology as the flying period. We 229 

considered only flowering plants which had been visited by pollinators. For the pollinators, we 230 

considered only hoverflies which were found in interaction. To build the species phenology tables for 231 

both plants and hoverflies, we merged the information provided by two sources of data (field data and 232 

the literature): we used the observed phenology of both plants and insects during the field session as 233 

the only source of information for plants (plants visited by insects and plants found in the botanic 234 

inventory in the site at that date), and we complemented the hoverfly phenology with information 235 

provided by the Syrph the Net Database (Speight et al. 2016). We then built the phenology overlap 236 

(PO) matrix based on the species phenology tables by calculating the number of phenologically active 237 

months that are shared by each pair of insect and plant species along the season. 238 

Bayesian Structural Equation Modelling (SEM) 239 

SEM is a confirmatory technique that involves cause-effect equations to evaluate multivariate 240 

hypotheses in ecological networks (Grace 2006). The primary interest of SEM analyses lies in its ability 241 

to compare different causal models between the same sets of explanatory and explained variables. 242 

Another important feature of SEM is that they can relate data through latent variables, i.e. variables 243 

which are not measured in the model  and which represent underlying causes or effects, coupled with 244 

observed variables (Grace 2006; Grace et al. 2010). SEM can now be assessed using Bayesian 245 

approaches and parameters estimated using MCMC (Markov Chain Monte Carlo)(Grace et al. 2010; 246 

Fan et al. 2016).  247 

In our study, we modelled hoverfly-plant interaction networks using a SEM approach (Fig. 1) with latent 248 

variables linking the number of visits per plant-pollinator species pair to abundance and phenology 249 

overlap (PO) data through a first latent table representing probabilities of interactions, another latent 250 

table representing the possible interactions between plant and pollinators (as a realization of the 251 

aforementioned interaction probability matrix), and a third latent table yielding the expected number 252 

of visits per plant-pollinator species pair (i.e. the intensity of interactions). We used the term latent 253 
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tables to describe latent variables organized as insect x plant tables, such as the expected number of 256 

visit matrix. 257 

In this model, we considered that PO had an effect on possible interactions (Iij) and the number of visits 258 

(λij) – a longer overlap is intuitively expected to drive a higher probability of interaction and a larger 259 

number of visits. Interaction probabilities were also assumed to depend on two random effects (plant 260 

and insect species identities, E
i and E

j
), to represent heterogeneity of species degrees (i.e. the number 261 

of links) in the network. We modelled the possibility of interaction Iij between insect species i and plant 262 

species j (i.e. Iij = 1 when species i and j can interact) as a Bernoulli random variable of probability µij 263 

given by: 264 

logit(𝜇𝑖𝑗) =  𝜇0 + 𝜇𝑃𝑂𝑃𝑂𝑖𝑗 + 𝐸𝑖 + 𝐸𝑗 265 

where logit is the usual logistic transformation (log(x/(1-x)), µ0 is the intercept of this relation, µPO is 266 

the coefficient measuring the effect of PO, and E
i and E

j
 are the random effects associated with insect 267 

species i and plant species j respectively.  268 

The number of visits Vij was assumed to depend on plant and hoverfly abundances, as more abundant 269 

species are expected to be more often sampled (and thus more often recorded “in interaction”). Please 270 

note that we only linked abundances to the number of visits, Vij, and not to the possibility of interaction 271 

Iij, because the aim of the latter latent table is to capture “forbidden links”, while detectability and 272 

sampling effects are supposed to be captured by the statistical model of the number of interactions. 273 

We integrated species abundances as predictor variables in order to assess the effect of PO on the 274 

number of visits on top of a “null model” that already includes sensible drivers of the numbers of visits, 275 

such as species abundances. Vij was modelled as a Poisson random variable to allow for sampling 276 

variability, with a conditional mean λij (the intensity of visits that can occur) given by:  277 

log (𝜆𝑖𝑗) =  𝜆0 + 𝜆𝐻𝐴𝐻,𝑖 + 𝜆𝑃𝐴𝑃,𝑗 + 𝜆𝑃𝑂log(1 + 𝑃𝑂𝑖𝑗) 278 

Supprimé: interactions 279 
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where λ0 is the intercept of this relation, λH is the coefficient measuring the effect of hoverfly 281 

abundance AH, λP is that of plant abundance AP, and λPO is the coefficient of the effect of PO. 282 

Possible interactions (Iij) and the intensity of visits (λij) are multiplied to obtain the unconditional mean 283 

number of recorded visits, i.e. Vij is then obtained as a Poisson draw of mean Iij λij. 284 

Overall we estimated four main parameters: the effect of phenology overlap on the probability of 285 

interaction (PO  Iij, µPO), the effect of phenology overlap on the intensity of interactions (PO  λij, 286 

λPO), the effect of plant abundance on the intensity of interactions (AP  λij, coefficient λP) and the 287 

effect of insect (hoverflies) abundance on the intensity of interactions (AH  λij, λH). 288 

We used the jags function (R2jags package), which provides an interface from R to the JAGS library 289 

for Bayesian data analysis, to estimate model parameters. JAGS (Plummer 2003) uses a Markov Chain 290 

Monte Carlo algorithm to generate samples from the posterior distribution of the parameters. We ran 291 

two Markov chains with 106 iterations per chain to check for model convergence. The code of the 292 

model is given in Supplementary Material (Appendix S1 and S2). 293 

Model and parameter comparison  294 

We estimated the 16 models that included all combinations of 0 and 4 of the above-mentioned effects 295 

to understand which effects were more likely to play a role in the structuring of the network. The 296 

goodness-of-fit of these models were compared using the leave-one-out cross-validation criterion 297 

(LOO) calculated using the R package loo using Pareto smoothed importance sampling for regularizing 298 

importance weights (Vehtari et al. 2017). The LOO criterion is a fully Bayesian method to compare 299 

models of different complexities and to estimate prediction accuracy using the log-likelihood 300 

evaluated at the posterior simulations of the parameter values (Vehtari et al. 2017). Models can thus 301 

be ranked according to their LOO scores, with the best model being the one with the lowest LOO value. 302 

The LOO criterion is analogous to the classic Akaike and Bayesian Information Criteria, which are used 303 

to compare frequentist models, but can instead be applied to Bayesian models, without suffering the 304 
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instability issues of the Deviance Information Criterion which used to be the main information criterion 309 

for Bayesian models(Vehtari et al. 2017). To rank the models, we then calculated the ΔLOO (noted Δᵢ) 310 

as Δᵢ = LOOᵢ− LOOmin (following Burnham & Anderson 2004), where LOOmin is the minimum of the LOOᵢ 311 

values among the 16 models. We used Δᵢ to obtain model weights ωᵢ, following the Akaike weight 312 

methodology (Burnham & Anderson 2002): 313 

ωᵢ =
e−Δᵢ/2

∑ e−Δᵢ/2
 314 

We then summed weights (wH) over all models that incorporated a given focal parameter to ascertain 315 

the plausibility of the effect associated to this parameter. We used this sum to evaluate the null 316 

hypothesis (H0) that a given factor has no effect on the plant-pollinator interactions by comparing the 317 

sum of weights to null expectations, based on the fact that each tested effect is incorporated in exactly 318 

half of the tested models. The effect is considered plausible when wH > 0.5, implausible otherwise, 319 

likely when wH > 0.73, and unlikely when it corresponds to a value of 0.27 or lower, following Massol 320 

et al. (2007). 321 

Predictive power analysis 322 

We tested the predictive power of the models we built by making predictions for the Iij table and 323 

checking their validity using a binarized version of the visit table Vij. Predictions were obtained by 324 

defining a threshold on interaction probability µij: values found above the threshold were predicted as 325 

occurring interactions, values below the threshold as no interaction. The threshold probability value 326 

was found by maximizing the sum of model specificity and sensitivity. We computed accuracy statistics 327 

(sensitivity, specificity, omission rate, area under the ROC curve [AUC]) in two situations: (i) when 328 

predicting data for the site that was used to build the model (self-validation; e.g. predicting interaction 329 

data in the site of Riez based on the model developed for this site) and (ii) when predicting data for 330 

the other site from the same region (cross-validation; e.g. predicting data for the LAR site based on the 331 

model for the R site). We performed theses analyses using the SDMTools package in R. We only used 332 
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the set of best models (LOO < 4) found for each site to predict the interactions in the other site through 334 

a multimodel averaging approach. We obtained the threshold probability using optim.tresh 335 

function with option max.sensitivity+specificity. 336 

RESULTS 337 

Plant-hoverfly networks and phenology overlap 338 

At the end of the field campaign we had collected 1584 hoverflies and recorded 1668 interactions 339 

between 76 hoverfly species and 117 plant species overall (Table 1). The number of sampled hoverfly 340 

and plant species varied between sites and among regions. In Normandie we generally sampled a 341 

higher number of hoverflies than in the other two regions (Table 1) and the maximum number of visits 342 

recorded in the site of FAL was 47 (between Helophilus pendulus and Scabiosa columbaria, Fig. S3) and 343 

in the site of CG was 22 (between Eristalis tenax and S. columbaria and between Sphaerophoria scripta 344 

and Leontodon hispidus, Fig. 3). We observed the highest diversity of both plants and hoverflies in 345 

Occitanie and the lowest diversity of hoverflies in Hauts-de-France. Despite the high species diversity 346 

in Occitanie, the total number of interactions recorded in these sites (BF and F) is not the highest 347 

recorded in the field (Table 1): the maximum number of visits in the site of BF was 10 (between 348 

Spherophoria scripta and Helichrysum stoechas, Fig. S2) and 12 in the site of F (between Syrphus ribesii 349 

and Bellis perennis, Fig. 2). In the two southern sites we also recorded the lowest connectance values 350 

(BF: 0.07 and F: 0.08) of all six sites, with the highest connectance observed in the site of R (R 0.16; LAR 351 

0.13; CG 0.13; FAL 0.12). The maximum number of visits recorded in the site of LAR was 12 (between 352 

Syrphus ribesii and L. hispidus, Fig. S4) and in the site of R was 17 (between Syritta pipiens and Asperula 353 

cynanchica, Fig. S5). 354 

In spite of differences in diversity and the number of interactions, the overall level of specialization (H2 355 

index) did not show a high variation among the 6 networks (range: 0.32 – 0.37). However, we found 356 

that the sites in Occitanie (BF and F) had a higher average degree of specialization (d') for both insect 357 

(BF 0.63 and F 0.57) and plant species (BF 0.58 and F 0.48). The sites in Occitanie also had a higher 358 
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modularity (BF 0.51 and F 0.48) than the ones in Normandie (CG 0.34 and FAL 0.23) and Hauts-de-359 

France (LAR 0.37 and R 0.34; Table 1). Given that these statistics only compare 6 sites, none of these 360 

assessments can be properly statistically tested, but the importance of the differences among sites is 361 

highly suggestive of a difference in average specialization and modularity. We found that plant 362 

phenology is generally shorter in all sites than that of hoverflies (Table 1). The phenology overlap was 363 

shorter in Occitanie (BF and F) than in the other sites (Table 1). 364 

Illustrations of the block clustering provided by the LBM analysis (Latent Block Model) are shown in 365 

Fig. 2 and 3 in the main text and in Fig. S2 to S5 in Supplementary Information. We found different 366 

numbers of blocks in plants and hoverflies among sites: the BF site had 2 insect blocks and 2 plant 367 

blocks (Fig. S2); the F site had 4 of both (Fig. 2); the CG and R sites had 3 blocks for the plants and 4 368 

blocks for the insects in (Fig. 3 and S5); the FAL site had 4 plant blocks and 3 insect blocks (Fig. S3); the 369 

LAR site had 3 blocks for the plants and 2 for the insects (Fig. S4). 370 

Model ranking and comparison of parameters in each site 371 

For each site we compared the 16 models using the LOO criterion (Table 2, ΔLOO values). We found 372 

that models 1, 2 and 4 had consistently better goodness-of-fit than the others. The model 373 

incorporating all effects except the effect of phenological overlap on the probability of interaction 374 

(Model 4: λ
ij
 ~ AH + AP + PO, Table 2) was the best model in the sites of CG, FAL and LAR. In the two 375 

southern sites (BF and F), we found that the model incorporating all effects except that of phenological 376 

overlap on the intensity of visits (Model 1: λ
ij
 ~ AH + AP / Iij ~ PO, Table 2), was the best one. The model 377 

incorporating all effects (Model 0: λ
ij
 ~ AH + AP + PO / Iij ~ PO, Table 2) was found as the best one only in 378 

the site of R, but was a suitable model (ΔLOO <4) in all the other sites (Table 2). We also compared the 379 

sum of model weights of the four parameters among sites (Table 2, Effects weight). We found that the 380 

effect of insect abundance on the intensity of interaction (AH  λ
ij
) is always likely (i.e. the sum of their 381 

weights is always higher than 0.73, Table 2) and of large effect size in all sites (standardised coefficient 382 

higher than 1, Fig. 4). Likewise, we found that the effect of plant abundance on the intensity of 383 
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interaction (AP  λ
ij
) was always likely and had large effect size in most part of sites, except in the site 385 

of F (wH = 0.59, Table 2; standardised coefficient = 0.67, Fig. 4). The effects of phenological overlap on 386 

the probability of interaction (PO  Iij) and the intensity of visits (PO  λ
ij
), however, had variable 387 

plausibility among sites. The effect of phenological overlap on the probability of interaction was likely 388 

only in half of the sites (Table 2 and Fig. 4). The effect of phenological overlap on the intensity of visits 389 

was not plausible only in the two southern sites (BF and F) and plausible in the other four sites (LAR, R 390 

CG and FAL, Table 2 and Fig. 4). In all sites, the standardised coefficients of PO effects were always less 391 

than 1, thus showing a low effect size of phenology on interaction probability and intensity (Fig. 4). 392 

When assessing the predictive power of the best models, we observed that the sensitivity and 393 

specificity values, both for the self-validation and the cross-validation, were higher than 0.5 (Table S2), 394 

which means that the interactions predicted by the models are better than predicted by chance. While 395 

area under the curve (AUC) values were all higher than 0.75 for self-validation, cross-validation tests 396 

yielded intermediate values (AUC between 0.62 and 0.73), reflecting the fact that abundances and 397 

phenology are certainly not sufficient to make accurate predictions on the occurrence of plant-398 

pollinator interactions. 399 

DISCUSSION 400 

Latitude affects the seasonality, with advancing species phenologies at higher latitudes, and thus, can 401 

be a limiting factor for the phenological coupling of interacting species (Post et al. 2018). In this study 402 

we explored the effect of phenology overlap on a large network of species interactions in calcareous 403 

grasslands and how this effect could vary along a latitudinal gradient in France using empirical data on 404 

six plant-hoverfly networks. We identified plants and insects at the species level to build detailed 405 

interaction networks and hence avoid spurious generalisation levels. In order to better understand the 406 

determinants of variation in species interactions in space and time, we used the latitudinal gradient to 407 

consider variations linked to environmental cues and the entire flowering period to allow for seasonal 408 

variation (Valverde et al. 2016; Pellissier et al. 2017). One of the main problems of comparing networks 409 
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along gradients is the dependence of network metrics on network size (Staniczenko et al. 2013; 412 

Astegiano et al. 2015; Tylianakis & Morris 2017). In this study, to avoid the problem of comparing 413 

networks with different dimensions, we decided to focus on the determinants of the probability of 414 

interaction and the number of visits, rather than the overall structure. We employed Bayesian 415 

Structural Equation Models (SEM) which is an emergent approach increasingly used to investigate 416 

complex networks of relationship in ecological studies (Grace et al. 2010; Eisenhauer et al. 2015; Fan 417 

et al. 2016; Theodorou et al. 2017). In our study we used SEM to link the numbers of visits to phenology 418 

overlap (PO) and species abundance through latent probabilities of species interaction and expected 419 

numbers of visits per plant-pollinator species pair. We tested different models with variable numbers 420 

of effects and compared them in each site. In our models, we used species abundances to construct a 421 

sensible null model to test whether phenology overlap could help explain the probability and intensity 422 

of interactions when the effects of species abundances are already taken into account. In all sites, we 423 

found that models that included both PO and abundances had always better goodness-of-fit than 424 

models that included only abundances. Abundances indeed provided a sensible null model since the 425 

goodness-of-fit of models that did not include abundances were always quite worse than the ones 426 

which did. 427 

 428 

We also found that in all sites the most important factor affecting pollinator visits was insect 429 

abundance (Table 2). Likewise, we found that plant abundance was also a very important effect in most 430 

sites, except in the site of F (Table 2). Since insect abundances are given by visitation data, it is not 431 

surprising that the intensity of interactions positively depends on these abundances. Species 432 

abundance often explain the linkage level in pollination network studies (Olesen et al. 2008; Bartomeus 433 

et al. 2016; Chacoff et al. 2017; Pellissier et al. 2017) but it is often associated with the length of the 434 

phenology to better assess the general properties of the interaction network (Vázquez et al. 2009; 435 

Olito & Fox 2015). In accordance with this verbal prediction, we indeed found that the best models 436 

Déplacé (insertion) [1]
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incorporated the effect of PO on either the probability or the intensity of interactions (Table 2), and 447 

the model that only considered species abundance (model 5 in Table 2) was not the best one in any 448 

site. Phenology overlap generally cannot predict the probability of interaction on its own (Encinas-Viso 449 

et al. 2012; CaraDonna et al. 2017). Our findings do agree with this general predicament since no site 450 

favoured a model that only incorporated PO effects and because these effects always display lower 451 

effect sizes than the other variables.  However, our objective was not to compare the effect of 452 

phenology overlap to that of species abundance – for such an endeavour, one would need estimates 453 

of species abundances independent of visitation data. Because models which consider the effect of PO 454 

on the intensity and/or probability of interactions are the best models for all sites evinces a clear effect 455 

of PO. In our model, the effect of PO on the probability of interaction and the expected number of 456 

visits also vary along the latitudinal gradient (Fig. 4).In general, we observed that southern sites (BF 457 

and F) showed shorter plant phenology and phenology overlap (PO) than the other four sites (Table 458 

1). In these sites, plant species richness is higher and fewer visits were sampled, probably because the 459 

presence of specialist species with short phenophases may increase the number of forbidden or 460 

undetected links (Olesen et al. 2011; Martín González et al. 2012). Conversely, in sites where plant 461 

phenology is longer, PO is longer too, as observed in Normandie and Hauts-de-France (CG, FAL, LAR 462 

and R, Table 1). Moreover, when plant richness and specialization are lower, a higher number of visits 463 

can be observed (Table 1) because generalist species could interact without constraints. Indeed, in 464 

Normandie and Hauts-de-France we found that the effect of phenology overlap on the intensity of 465 

visits was always likely (PO  λij, Table 2) and we observed higher numbers of interactions in the first 466 

two/three blocks of insects and plants which also corresponded to blocks with longer PO (Fig. 3, S3, S4 467 

and S5). A higher phenological overlap is expected to drive a higher probability of interactions and a 468 

larger number of visits (Olesen et al. 2011). In Occitanie, we did not find any effect of PO on the number 469 

of visits because the more densely visited blocks do not correspond to those with longer phenology 470 

overlap. Plant phenology can therefore drive the probability and the intensity of interactions in 471 

networks in which plant phenology is shorter, thus suggesting that hoverflies may undergo selection 472 

Déplacé vers le bas [2]: In our model, the effect of PO on 473 
the probability of interaction and the expected number of 474 
visits also vary along the latitudinal gradient (Fig. 4).475 
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for behavioural flexibility in order to maintain synchrony with their foraging resources (Iler et al. 2013; 477 

Ogilvie & Forrest 2017). 478 

We also found that modularity decreased along the latitudinal gradient, with richer sites (BF and F) 479 

displaying higher modularity (as in Sebastián-González et al. 2015) but also the lower connectance. In 480 

the two southern sites, higher modularity could be related to shorter phenologies and higher 481 

proportions of non-overlapping sets of species, which induce some form of temporal short-term 482 

specialisation (Lucas et al. 2018). However, modularity also seems to be influenced by species 483 

abundances and degrees (Schleuning et al. 2014), and is expected to increase with link specificity 484 

(Morente-López et al. 2018). Indeed, in these sites, species blocks match species degrees (Fig. 2 and 485 

S2), with generalist and specialist species forming separate blocks among both plants and insects 486 

(Martín González et al. 2012). With lower modularity and more generalist species, we expect a stronger 487 

relationship between phenology and the intensity of interactions because interactions are less 488 

influenced by insect preferences and more by seasonal rhythm and flower availability (Dormann et al. 489 

2017). Thus, different phenophases might correspond to different compartments (Martín González et 490 

al. 2012; Morente-López et al. 2018), as observed in CG, FAL, LAR and R where higher overlap 491 

corresponded to higher numbers of observed visits. Although phenology improved model fit (Table 2), 492 

its effect size was modest (Fig. 4), which suggests that other types of data such as traits and phylogenies 493 

might help predict specific interactions. In our study, we did not consider competition among studied 494 

insect species or with other group of insects, such as bees which were present in all sites. Different 495 

types of pollinators with different abundances could have context-dependent effects on network 496 

topology (Valverde et al. 2016). Moreover, in our study we only considered as “true absence” of the 497 

interaction the lack of phenological coupling between species (i.e. plant and hoverfly species which are 498 

not present at the same moment along the season cannot interact). We did not consider “false 499 

absences”, i.e. missing links, since not all the potential links among species are recorded in the field 500 

(Olesen et al. 2011) which may introduce bias in the estimation of the probability of interactions 501 

(Bartomeus et al. 2016; Cirtwill et al. 2019). 502 
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To conclude, plant phenology here drives the duration of the phenology overlap between plant and 503 

hoverflies, which in turn influences either the probability of interaction or the expected number of 504 

visits, as well as network compartmentalization. Longer phenologies correspond to less constrained 505 

interactions (lower modularity), shorter phenologies to more constrained interactions (higher 506 

modularity), which in turn restrict the number of visits. Phenology overlap alone was not sufficient to 507 

explain interactions, as suggested elsewhere (CaraDonna et al. 2017). Plant and insect abundances 508 

played a substantial role to explain the number of visits (as in Chacoff et al. 2017) since abundances 509 

may affect partner choice (Trøjelsgaard et al. 2015). Our results, and the ability of the method used 510 

here to compare different effects on interaction patterns, suggest that the use of Bayesian SEM to 511 

compare networks of different sizes is a valuable tool which can help understand plant-pollinator 512 

networks (Eisenhauer et al. 2015). The use of latent variables can help predict the probability of 513 

interaction and the expected number of visits while avoiding circularity – the introduction of plant and 514 

insect specific random effects played the role of an implicit “degree” effect. Our results demonstrate 515 

the importance of considering differences in plant and insect phenologies to better predict their 516 

interactions in pollination networks at different latitudes. The use of morphological traits (e.g. tongue 517 

length, inter-tegular distance, …) together with species richness and phylogenies, on top of variables 518 

already used, might improve the modelling of interactions and could help better understand some 519 

forbidden or missing links in richer communities or considering other pollinators (e.g. wild bees). 520 
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 531 

Figure 1. Summary diagram of the SEM model. We estimated 4 effects: the effect of plant abundance 532 
(AP  λij, coefficient λP), the effect of insect (hoverflies) abundance on the intensity of visits (AH  533 
λij, λH), the effect of phenology overlap on the intensity of visits (PO  λij, λPO) and the effect of 534 
phenology overlap on the probability of interaction (PO  Iij, µPO). The phenology overlap (PO) is the 535 
number of phenologically active months that are shared by each pair of insect and plant species along 536 
the season. The intensity of visits (λij) and the probability of interaction are latent variables in the 537 
model. Effect-i and effect-p are random effects calculated by the model which represent the insect 538 
and plant species identities. The Iij (Possible interactions) is a binary variable and the Vij (visits 539 
observed) follow a Poisson distribution with an expected value given when the probability of 540 
interaction is predicted as “true”. Rectangles represent observed variables while ovals represent 541 
unobserved influences. 542 

 543 
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Figure 2. Block clustering provided by LBM in the site of Fourches (F, Occitanie), overlaid on a heatmap of species phenology overlap. The LBM algorithm finds 545 
the best division for the group of insects and plants independently through fitting Poisson parameters in each block maximizing the likelihood (ICL). Insect 546 
species are displayed in rows and plant species in columns, following their degree (number of partners). The blocks of insects and the blocks of plants are 547 
separated by solid black lines. Colours correspond to the number of months that are shared by each pair of plant and insect species (PO, phenology overlap), 548 
with higher PO corresponding to darker colours. Numbers are the number of visits observed in the field for a given plant-insect pair. 549 

  550 
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Figure 3. Block clustering provided by LBM in the site of Chateau Gaillard (CG, Normandie) overlaid on a heatmap of species phenology overlap. Insect species 551 
are displayed in rows and plant species in columns, following their degree (number of partners). The blocks of insects and the blocks of plants are separated 552 
by solid black lines. Colours correspond to the number of months that are shared by each pair of plant and insect species (PO, phenology overlap), with higher 553 
PO corresponding to darker colours. Numbers are the number of visits observed in the field for a given plant-insect pair. 554 

  555 
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Figure 4. Summary diagram of the best models in all sites. The thickness of the arrows is scaled to Akaike weights (thin ER < 0.73; thick ER > 0.73, cf. Table 2). 556 
Standardised coefficients of the model average (computed based on the Akaike weighted model average) are reported next to the arrows. PO is the phenology 557 
overlap, Iij is the probability of interaction, λ

ij
 is the intensity of visits, AH and AP are the hoverflies and plant abundances respectively. 558 

559 

  560 
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Table 1. Summary table of results obtained in each site (Bois de Fontaret [BF] and Fourches [F] in Occitanie, Château Gaillard [CG] and Falaises [FAL] in 561 
Normandie, Larris [LAR] and Riez [R] in Hauts-de-France). H2' and d’ indices refer to specialization indices described by Blüthgen et al. (2006) and 562 
implemented in the R package bipartite (Dormann et al. 2009). The modularity score was obtained using the leading-eigenvector method 563 
described by Newman (2006) and implemented in the igraph package (Csardi & Nepusz 2006). LBM refers to latent block modelling as implemented in the 564 
R package blockmodels (Leger et al. 2015).  565 

 566 

Site Region 

Collected data Specialization index Species phenology 
Modularity 

analysis 
LBM 

Sampled 
insects 

Insect 
species 

Plant 
species 

Recorded 
Interactions 

H2' 
index 

d' Insects 
(average + sd) 

d' Plants 
(average + sd) 

Insect 
(average + sd) 

Plant   
(average + sd) 

Phenology 
overlap (PO) 

(average + sd) 

modularity 
score 

blocks 
I 

blocks 
P 

BF Occitanie 197 40 43 198 0.37 0.63 ± 0.17 0.58 ± 0.17 5.25 ± 1.51 2.14 ± 1.04 1.77 ± 1.03 0.53 2 2 

F Occitanie 223 36 49 286 0.33 0.57 ± 0.18 0.48 ± 0.19 5.61 ± 1.54 2.08 ± 1.13 1.78 ± 1.14 0.48 4 4 

CG Normandie 295 32 25 297 0.34 0.40 ± 0.21 0.47 ± 0.18 6.03 ± 1.00 3.28 ± 1.24 3.02 ± 1.17 0.34 4 3 

FAL Normandie 363 34 30 374 0.32 0.40 ± 0.18 0.41 ± 0.18 6.06 ± 1.13 3.57 ± 1.59 3.23 ± 1.51 0.23 3 4 

LAR Hauts-de-France 220 24 33 220 0.36 0.48 ± 0.19 0.45 ± 0.15 6.38 ± 0.82 3.18 ± 1.38 2.99 ± 1.36 0.37 2 3 

R Hauts-de-France 286 22 29 293 0.32 0.39 ± 0.16 0.40 ± 0.16 5.55 0.74 3.38 ± 1.47 3.11 ± 1.45 0.34 4 3 

 Total 1584 76 117 1668       
 

  

 567 
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Table 2. (i) Comparison of SEM models using the leave-one-out cross-validation criterion (LOO); (ii) 568 
evidence ratios (ER) of model effects in each site. (i) Models are ranked depending on the number of 569 
parameters used (from 0 to 4). The best models are the ones with ΔLOO=0 (underlined and bold 570 
values). The other suitable models are the ones with ΔLOO <4 (underlined and italic values). λij is the 571 
intensity of visits, Iij is the probability of interaction, AH is the insect abundance, AP is the plant 572 
abundance and PO is the phenology overlap. (ii) We compared 4 model effects: PO  Iij, effect of the 573 
phenology overlap on the probability of interaction; PO  λ

ij
 effect of the phenology overlap on the 574 

intensity of visits; AH → λij and AP → λij effects of the hoverflies and plant abundances on the intensity 575 
of interaction. The wH limits for unlikelihood is 0.27, plausibility 0.5 and likelihood 0.73. Underlined 576 
and bold values represent the likely hypothesis only. 577 

   Sites 

      BF F CG FAL LAR R 

Model 
Nb of 

parameters 
ΔLOO values 

0 λij ~ AH + AP + PO / Iij ~ PO 4 2.98 2.04 3.54 2.54 2.86 0.00 

1 λij ~ AH + AP / Iij ~ PO 3 0.00 0.00 36.75 64.04 10.37 2.90 

2 λij ~ AP + PO / Iij ~ PO 3 8.66 78.23 106.46 184.02 44.60 17.00 

3 λij ~ AH + PO / Iij ~ PO 3 6.63 1.71 8.09 73.62 11.24 11.42 

4 λij ~ AH + AP + PO 3 2.86 8.06 0.00 0.00 0.00 2.24 

5 λij ~ PO / Iij ~ PO 2 14.69 73.20 109.85 223.86 55.67 23.09 

6 λij ~ AH / Iij ~ PO 2 1.45 1.31 33.53 119.04 27.23 19.76 

7 λij ~ AP / Iij ~ PO 2 9.84 72.16 156.61 256.04 47.99 21.53 

8 λij ~ AH + PO 2 11.49 8.18 5.25 71.97 10.28 13.80 

9 λij ~ AP + PO 2 10.71 88.67 103.46 182.14 44.36 17.94 

10 λij ~ AH + AP 2 24.36 14.04 36.10 66.82 10.51 4.26 

11 Iij ~ PO 1 11.78 68.52 154.26 272.98 64.12 32.39 

12 λij ~ PO 1 19.99 86.20 108.46 219.66 54.64 25.73 

13 λij ~ AH 1 25.58 14.41 36.12 123.30 28.27 22.78 

14 λij ~ AP 1 32.99 87.70 157.74 256.39 48.82 22.87 

15 - 0 34.39 83.89 155.68 274.80 64.78 33.52 

  
Model effects 

 
Effects weight (wH) 

 PO → Iij  0.88 0.98 0.15 0.22 0.20 0.74 

 PO → λij  0.26 0.35 1.00 1.00 0.99 0.79 

 AH → λij  0.99 1.00 1.00 1.00 1.00 1.00 

 AP → λij  0.74 0.59 0.93 1.00 0.99 1.00 

 578 

  579 
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Supporting Information 582 

The following Supporting Information is available for this article: 583 

Appendix S1. Model code. 584 

Appendix S2. Model script for the 16 models. 585 

Appendix S3. Script modularity and latent block model analysis (LBM). 586 

Figure S1. Sites location in France. 587 

Figure S2. Block clustering provided by LBM in the site of Bois de Fontaret (BF, Occitanie), overlaid on 588 

a heatmap of species phenology overlap. 589 

Figure S3. Block clustering provided by LBM in the site of Falaises (FAL, Normandie), overlaid on a 590 

heatmap of species phenology overlap. 591 

Figure S4. Block clustering provided by LBM in the site of Larris (LAR, Hauts-de-France), overlaid on a 592 

heatmap of species phenology overlap. 593 

Figure S5. Block clustering provided by LBM in the site of Riez (R, Hauts-de-France), overlaid on a 594 

heatmap of species phenology overlap. 595 

Table S1. Table of transformed plant abundances. 596 
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Appendix S1: Model Code 783 

The model code (in JAGS language) given in this supplementary material refers to the “model Z0” which 784 

considers all four parameters (model effects, Table 2 in the main text). Overall, we estimated 16 785 

models that included between 0 and 4 of the above-mentioned effects. To create the code for these 786 

other models, parameters should be removed following the order in the Tab. 2. The four parameters 787 

tested in the model are: (i) alpha: effect of the phenology overlap (cooc) on the probability of 788 

interaction; (ii) epsilon: effect of the phenology overlap on the intensity of visits; (iii) gamma: effect of 789 

the insect abundances (ab_I) on the intensity of visits; and (iv) delta: effect of the plant abundances 790 

(ab_P) on the intensity of visits. 791 

 792 

model 793 

{ 794 

   for( i in 1 : dim1 ) { 795 

      for( p in 1 : dim2 ) { 796 

        inter[i , p] ~ dbern(mu[i , p]) 797 

 logit(mu[i , p]) <- beta + alpha*cooc[i , p] + effet_I[i] + effet_P[p] 798 

 lambda[i,p] <- exp(theta[i,p]) 799 

 theta[i,p] <- theta0 + gamma*ab_I[i] + delta*ab_P[p] + epsilon*log(1+cooc[i,p]) 800 

 visit[i,p] ~ dpois( inter[i,p]*lambda[i,p] ) 801 

 loglik[i,p] <- log(ifelse(visit[i,p]==0,1-mu[i,p]+mu[i , p]*dpois(visit[i,p],lambda[i,p]),mu[i , 802 

p]*dpois(visit[i,p],lambda[i,p]))) 803 

      } 804 

   } 805 

     806 

   for( i in 1 : dim1 ) { 807 

      effet_I[i] ~ dnorm( 0.0,tau_I) 808 
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   } 809 

 810 

   for( p in 1 : dim2 ) { 811 

      effet_P[p] ~ dnorm( 0.0,tau_P) 812 

   } 813 

 814 

 tau_I ~ dexp( 10) 815 

 tau_P ~ dexp( 10) 816 

 alpha ~ dnorm(0,0.01) 817 

 beta ~  dnorm(0,0.01) 818 

 theta0 ~ dnorm(0,0.01) 819 

 gamma ~ dnorm(0,0.01) 820 

 delta ~ dnorm(0,0.01) 821 

 epsilon ~ dnorm(0,0.01) 822 

} 823 

  824 
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Appendix 2: Model script for the 16 models – LOO values 825 

The following generic script was applied to all the study sites using all 16 models. The script is separated 826 

in three blocks which communicate among them: the script options, the model definitions and the 827 

execution (model inference). We defined three options to set (i) the name of the directory (-d), (ii) the 828 

site (-s) and (iii) the type of model (-m). 829 

We used, as an example, the information for the site of Bois de Fontaret (BF). 830 

Exemple: Rscript (name) “script-SEMLOO_generique.R” “-d o-BFs-2016” “-s BFs” 831 

In order to calculate the standardised coefficients for each parameters used, at the end of the third 832 

block, we added the functions to get the parameter values for each site and each model. 833 

############################## BLOCK 1 – SCRIPT OPTION ############################## 834 

library(optparse) 835 

option_list = list( 836 

        make_option(c("-d", "--dir"), type="character", default=NULL, help="directory", 837 

metavar="character"), 838 

        make_option(c("-s", "--site"), type="character", default=NULL, help="site name", 839 

metavar="character"), 840 

 make_option(c("-m", "--modele"), type="character", default="all", help="modele name", 841 

metavar="character")) 842 

opt_parser = OptionParser(option_list=option_list); 843 

opt = parse_args(opt_parser); 844 

site<-opt$site 845 

dossier<-opt$dir 846 

################################ Librairies ########################## 847 

library(bipartite) 848 

library(vegan) 849 

library(igraph) 850 
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library(magrittr) 851 

library(dummies) 852 

library(MuMIn) 853 

library(rjags) 854 

library(boot) 855 

library(R2jags) 856 

library(coda) 857 

library(lattice) 858 

library(ggplot2) 859 

library(loo) 860 

library(matrixStats) 861 

########################## Function to record the LOO values ######################## 862 

write_values<-function(x, f, app) 863 

{ 864 

 write.table(x, append=app, file=f, sep="\t", row.names=T, col.names=T, quote=F) 865 

} 866 

######################### BLOCK 2 – MODEL FUNCTIONS ########################### 867 

#Model function and model initialization: one function for each model from model Z15, with 0 868 

parameters, to Z00 with all the parameters# 869 

### MODEL Z015 870 

mZ015<-function(){ 871 

 init.funZ015 <-function(){ 872 

   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "beta" = rnorm(1,0,1), "theta0" = 873 

rnorm(1,0,1), "effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0) 874 

 } 875 
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 mod.Z015<<-jags(inits=init.funZ015,model.file = "modelZ015_code.txt",data = 876 

list("visit","dim1","dim2"),parameters.to.save = 877 

c("mu","effet_I","effet_P","tau_I","tau_P","beta","theta0", "loglik"),n.chains = 1, n.iter=1000000, 878 

n.burnin = 250000, n.thin = 250) 879 

 mod.Z015.mcmc<-as.mcmc(mod.Z015) 880 

 mZ015<-mod.Z015$BUGSoutput$sims.list 881 

 mZ015.deviance<-mZ015$deviance 882 

 mZ015.loglik<-mZ015$loglik 883 

 dimSEM<-dim(mZ015.loglik)[1] 884 

 list.mZ015<-sapply(1:dimSEM,function(x) matrix(mZ015.loglik[x,,],nrow=dim1*dim2)) 885 

 list.tmZ015<-(t(list.mZ015)) 886 

 mZ015.loo<-loo(list.tmZ015) 887 

 loo_file<-paste(dossier, "/", site, "_Z015_loo.txt", sep="") 888 

 write_values("mZ015", app=F, loo_file) 889 

 mZ015_loo_pointwise<-mZ015.loo$pointwise 890 

 mZ015_loo_pareto_k<-mZ015.loo$pareto_k 891 

 mZ015.loo$pareto_k<-NULL 892 

 mZ015.loo$pointwise<-NULL 893 

 write_values(as.matrix(mZ015.loo), app=T, loo_file) 894 

 save.image(paste(dossier, "/", site, "_Z015.RData", sep="")) 895 

} 896 

### MODEL Z014 897 

mZ014<-function(){ 898 

 init.funZ014 <-function(){ 899 

   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "beta" = rnorm(1,0,1), "delta" = rnorm(1,0,1), 900 

"theta0" = rnorm(1,0,1), "effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0) 901 
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 } 902 

 mod.Z014<<-jags(inits=init.funZ014,model.file = "modelZ014_code.txt",data = 903 

list("visit","ab_P","dim1","dim2"),parameters.to.save = 904 

c("mu","effet_I","effet_P","tau_I","tau_P","delta","beta","theta0","loglik"),n.chains = 1, 905 

n.iter=1000000, n.burnin = 250000, n.thin = 250) 906 

 mod.Z014.mcmc<-as.mcmc(mod.Z014) 907 

 mZ014<-mod.Z014$BUGSoutput$sims.list 908 

 mZ014.deviance<-mZ014$deviance 909 

 mZ014.loglik<-mZ014$loglik 910 

 dimSEM<-dim(mZ014.loglik)[1] 911 

 list.mZ014<-sapply(1:dimSEM,function(x) matrix(mZ014.loglik[x,,],nrow=dim1*dim2)) 912 

 list.tmZ014<-(t(list.mZ014)) 913 

 mZ014.loo<-loo(list.tmZ014) 914 

 mZ014.loo 915 

 loo_file<-paste(dossier, "/", site, "_Z014_loo.txt", sep="") 916 

 write_values("mZ014", app=T, loo_file) 917 

 mZ014_loo_pointwise<-mZ014.loo$pointwise 918 

 mZ014_loo_pareto_k<-mZ014.loo$pareto_k 919 

 mZ014.loo$pareto_k<-NULL 920 

 mZ014.loo$pointwise<-NULL 921 

 write_values(as.matrix(mZ014.loo), app=T, loo_file) 922 

 save.image(paste(dossier, "/", site, "_Z014.RData", sep="")) 923 

} 924 

### MODEL Z013 925 

mZ013<-function(){ 926 

 init.funZ013 <-function(){ 927 
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   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "beta" = rnorm(1,0,1), "gamma" = 928 

rnorm(1,0,1), "theta0" = rnorm(1,0,1), "effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), 929 

"inter"=inter0) 930 

 } 931 

 mod.Z013<<-jags(inits=init.funZ013,model.file = "modelZ013_code.txt",data = 932 

list("visit","ab_I","dim1","dim2"),parameters.to.save = 933 

c("mu","effet_I","effet_P","tau_I","tau_P","gamma","beta","theta0","loglik"),n.chains = 1, 934 

n.iter=1000000, n.burnin = 250000, n.thin = 250) 935 

 mod.Z013.mcmc<-as.mcmc(mod.Z013) 936 

 mZ013<-mod.Z013$BUGSoutput$sims.list 937 

 mZ013.deviance<-mZ013$deviance 938 

 mZ013.loglik<-mZ013$loglik 939 

 dimSEM<-dim(mZ013.loglik)[1] 940 

 list.mZ013<-sapply(1:dimSEM,function(x) matrix(mZ013.loglik[x,,],nrow=dim1*dim2)) 941 

 list.tmZ013<-(t(list.mZ013)) 942 

 mZ013.loo<-loo(list.tmZ013) 943 

 mZ013.loo 944 

 loo_file<-paste(dossier, "/", site, "_Z013_loo.txt", sep="") 945 

 write_values("mZ013", app=T, loo_file) 946 

 mZ013_loo_pointwise<-mZ013.loo$pointwise 947 

 mZ013_loo_pareto_k<-mZ013.loo$pareto_k 948 

 mZ013.loo$pareto_k<-NULL 949 

 mZ013.loo$pointwise<-NULL 950 

 write_values(as.matrix(mZ013.loo), app=T, loo_file) 951 

 save.image(paste(dossier, "/", site, "_Z013.RData", sep="")) 952 

} 953 
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### MODEL Z012 954 

mZ012<-function(){ 955 

 init.funZ012 <-function(){ 956 

   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "beta" = rnorm(1,0,1), "theta0" = 957 

rnorm(1,0,1), "epsilon" = rnorm(1,0,1), "effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), 958 

"inter"=inter0) 959 

 } 960 

 mod.Z012<<-jags(inits=init.funZ012,model.file = "modelZ012_code.txt",data = 961 

list("cooc","visit","dim1","dim2"),parameters.to.save = 962 

c("mu","effet_I","effet_P","tau_I","tau_P","beta","theta0","epsilon","loglik"),n.chains = 1, 963 

n.iter=1000000, n.burnin = 250000, n.thin = 250) 964 

 mod.Z012.mcmc<-as.mcmc(mod.Z012) 965 

 mZ012<-mod.Z012$BUGSoutput$sims.list 966 

 mZ012.deviance<-mZ012$deviance 967 

 mZ012.loglik<-mZ012$loglik 968 

 dimSEM<-dim(mZ012.loglik)[1] 969 

 list.mZ012<-sapply(1:dimSEM,function(x) matrix(mZ012.loglik[x,,],nrow=dim1*dim2)) 970 

 list.tmZ012<-(t(list.mZ012)) 971 

 mZ012.loo<-loo(list.tmZ012) 972 

 mZ012.loo 973 

 loo_file<-paste(dossier, "/", site, "_Z012_loo.txt", sep="") 974 

 write_values("mZ012", app=T, loo_file) 975 

 mZ012_loo_pointwise<-mZ012.loo$pointwise 976 

 mZ012_loo_pareto_k<-mZ012.loo$pareto_k 977 

 mZ012.loo$pareto_k<-NULL 978 

 mZ012.loo$pointwise<-NULL 979 
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 write_values(as.matrix(mZ012.loo), app=T, loo_file) 980 

 save.image(paste(dossier, "/", site, "_Z012.RData", sep="")) 981 

} 982 

### MODEL Z011 983 

mZ011<-function(){ 984 

 init.funZ011 <-function(){ 985 

   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "alpha" = 0.1,"beta" = rnorm(1,0,1), "theta0" 986 

= rnorm(1,0,1), "effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0) 987 

 } 988 

 mod.Z011<<-jags(inits=init.funZ011,model.file = "modelZ011_code.txt",data = 989 

list("cooc","visit","dim1","dim2"),parameters.to.save = 990 

c("mu","effet_I","effet_P","tau_I","tau_P","alpha","beta","theta0","loglik"),n.chains = 1, 991 

n.iter=1000000, n.burnin = 250000, n.thin = 250) 992 

 mod.Z011.mcmc<-as.mcmc(mod.Z011) 993 

 mZ011<-mod.Z011$BUGSoutput$sims.list 994 

 mZ011.deviance<-mZ011$deviance 995 

 mZ011.loglik<-mZ011$loglik 996 

 dimSEM<-dim(mZ011.loglik)[1] 997 

 list.mZ011<-sapply(1:dimSEM,function(x) matrix(mZ011.loglik[x,,],nrow=dim1*dim2)) 998 

 list.tmZ011<-(t(list.mZ011)) 999 

 mZ011.loo<-loo(list.tmZ011) 1000 

 mZ011.loo 1001 

 loo_file<-paste(dossier, "/", site, "_Z011_loo.txt", sep="") 1002 

 write_values("mZ011", app=T, loo_file) 1003 

 mZ011_loo_pointwise<-mZ011.loo$pointwise 1004 

 mZ011_loo_pareto_k<-mZ011.loo$pareto_k 1005 
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 mZ011.loo$pareto_k<-NULL 1006 

 mZ011.loo$pointwise<-NULL 1007 

 write_values(as.matrix(mZ011.loo), app=T, loo_file) 1008 

 save.image(paste(dossier, "/", site, "_Z011.RData", sep="")) 1009 

} 1010 

### MODEL Z010 1011 

mZ010<-function(){ 1012 

 init.funZ010 <-function(){ 1013 

   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "beta" = rnorm(1,0,1), "gamma" = 1014 

rnorm(1,0,1), "delta" = rnorm(1,0,1), "theta0" = rnorm(1,0,1), 1015 

"effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0) 1016 

 } 1017 

 mod.Z010<<-jags(inits=init.funZ010,model.file = "modelZ010_code.txt",data = 1018 

list("visit","ab_I","ab_P","dim1","dim2"),parameters.to.save = 1019 

c("mu","effet_I","effet_P","tau_I","tau_P","gamma","delta","beta","theta0","loglik"),n.chains = 1, 1020 

n.iter=1000000, n.burnin = 250000, n.thin = 250) 1021 

 mod.Z010.mcmc<-as.mcmc(mod.Z010) 1022 

 mZ010<-mod.Z010$BUGSoutput$sims.list 1023 

 mZ010.deviance<-mZ010$deviance 1024 

 mZ010.loglik<-mZ010$loglik 1025 

 dimSEM<-dim(mZ010.loglik)[1] 1026 

 list.mZ010<-sapply(1:dimSEM,function(x) matrix(mZ010.loglik[x,,],nrow=dim1*dim2)) 1027 

 list.tmZ010<-(t(list.mZ010)) 1028 

 mZ010.loo<-loo(list.tmZ010) 1029 

 mZ010.loo 1030 

 loo_file<-paste(dossier, "/", site, "_Z010_loo.txt", sep="") 1031 



 

45 
Supplementary Information: Phenology and plant-hoverfly interactions 

 

Code de champ modifié

Mis en forme : Anglais (Royaume-Uni)

 write_values("mZ010", app=T, loo_file) 1032 

 mZ010_loo_pointwise<-mZ010.loo$pointwise 1033 

 mZ010_loo_pareto_k<-mZ010.loo$pareto_k 1034 

 mZ010.loo$pareto_k<-NULL 1035 

 mZ010.loo$pointwise<-NULL 1036 

 write_values(as.matrix(mZ010.loo), app=T, loo_file) 1037 

 save.image(paste(dossier, "/", site, "_Z010.RData", sep="")) 1038 

} 1039 

### MODEL Z09 1040 

mZ09<-function(){ 1041 

 init.funZ09 <-function(){ 1042 

   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "beta" = rnorm(1,0,1), "delta" = rnorm(1,0,1), 1043 

"theta0" = rnorm(1,0,1), "epsilon" = rnorm(1,0,1), 1044 

"effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0) 1045 

 } 1046 

 mod.Z09<<-jags(inits=init.funZ09,model.file = "modelZ09_code.txt",data = 1047 

list("cooc","visit","ab_P","dim1","dim2"),parameters.to.save = 1048 

c("mu","effet_I","effet_P","tau_I","tau_P","delta","beta","theta0","epsilon","loglik"),n.chains = 1, 1049 

n.iter=1000000, n.burnin = 250000, n.thin = 250) 1050 

 mod.Z09.mcmc<-as.mcmc(mod.Z09) 1051 

 mZ09<-mod.Z09$BUGSoutput$sims.list 1052 

 mZ09.deviance<-mZ09$deviance 1053 

 mZ09.loglik<-mZ09$loglik 1054 

 dimSEM<-dim(mZ09.loglik)[1] 1055 

 list.mZ09<-sapply(1:dimSEM,function(x) matrix(mZ09.loglik[x,,],nrow=dim1*dim2)) 1056 

 list.tmZ09<-(t(list.mZ09)) 1057 
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 mZ09.loo<-loo(list.tmZ09) 1058 

 mZ09.loo 1059 

 loo_file<-paste(dossier, "/", site, "_Z09_loo.txt", sep="") 1060 

 write_values("mZ09", app=T, loo_file) 1061 

 mZ09_loo_pointwise<-mZ09.loo$pointwise 1062 

 mZ09_loo_pareto_k<-mZ09.loo$pareto_k 1063 

 mZ09.loo$pareto_k<-NULL 1064 

 mZ09.loo$pointwise<-NULL 1065 

 write_values(as.matrix(mZ09.loo), app=T, loo_file) 1066 

 save.image(paste(dossier, "/", site, "_Z09.RData", sep="")) 1067 

} 1068 

### MODEL Z08 1069 

mZ08<-function(){ 1070 

 init.funZ08 <-function(){ 1071 

   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "beta" = rnorm(1,0,1), "gamma" = 1072 

rnorm(1,0,1), "theta0" = rnorm(1,0,1), "epsilon" = rnorm(1,0,1), 1073 

"effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0) 1074 

 } 1075 

 mod.Z08<<-jags(inits=init.funZ08,model.file = "modelZ08_code.txt",data = 1076 

list("cooc","visit","ab_I","dim1","dim2"),parameters.to.save = 1077 

c("mu","effet_I","effet_P","tau_I","tau_P","gamma","beta","theta0","epsilon","loglik"),n.chains = 1, 1078 

n.iter=1000000, n.burnin = 250000, n.thin = 250) 1079 

 mod.Z08.mcmc<-as.mcmc(mod.Z08) 1080 

 mZ08<-mod.Z08$BUGSoutput$sims.list 1081 

 mZ08.deviance<-mZ08$deviance 1082 

 mZ08.loglik<-mZ08$loglik 1083 
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 dimSEM<-dim(mZ08.loglik)[1] 1084 

 list.mZ08<-sapply(1:dimSEM,function(x) matrix(mZ08.loglik[x,,],nrow=dim1*dim2)) 1085 

 list.tmZ08<-(t(list.mZ08)) 1086 

 mZ08.loo<-loo(list.tmZ08) 1087 

 mZ08.loo  1088 

 loo_file<-paste(dossier, "/", site, "_Z08_loo.txt", sep="") 1089 

 write_values("mZ08", app=T, loo_file) 1090 

 mZ08_loo_pointwise<-mZ08.loo$pointwise 1091 

 mZ08_loo_pareto_k<-mZ08.loo$pareto_k 1092 

 mZ08.loo$pareto_k<-NULL 1093 

 mZ08.loo$pointwise<-NULL 1094 

 write_values(as.matrix(mZ08.loo), app=T, loo_file) 1095 

 save.image(paste(dossier, "/", site, "_Z08.RData", sep="")) 1096 

} 1097 

### MODEL Z07 1098 

mZ07<-function(){ 1099 

 init.funZ07 <-function(){ 1100 

   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "alpha" = 0.1,"beta" = rnorm(1,0,1), "delta" = 1101 

rnorm(1,0,1), "theta0" = rnorm(1,0,1), "effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), 1102 

"inter"=inter0) 1103 

 } 1104 

 mod.Z07<<-jags(inits=init.funZ07,model.file = "modelZ07_code.txt",data = 1105 

list("cooc","visit","ab_P","dim1","dim2"),parameters.to.save = 1106 

c("mu","effet_I","effet_P","tau_I","tau_P","alpha","delta","beta","theta0","loglik"),n.chains = 1, 1107 

n.iter=1000000, n.burnin = 250000, n.thin = 250) 1108 

 mod.Z07.mcmc<-as.mcmc(mod.Z07) 1109 
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 mZ07<-mod.Z07$BUGSoutput$sims.list 1110 

 mZ07.deviance<-mZ07$deviance 1111 

 mZ07.loglik<-mZ07$loglik 1112 

 dimSEM<-dim(mZ07.loglik)[1] 1113 

 list.mZ07<-sapply(1:dimSEM,function(x) matrix(mZ07.loglik[x,,],nrow=dim1*dim2)) 1114 

 list.tmZ07<-(t(list.mZ07)) 1115 

 mZ07.loo<-loo(list.tmZ07) 1116 

 mZ07.loo 1117 

 loo_file<-paste(dossier, "/", site, "_Z07_loo.txt", sep="") 1118 

 write_values("mZ07", app=T, loo_file) 1119 

 mZ07_loo_pointwise<-mZ07.loo$pointwise 1120 

 mZ07_loo_pareto_k<-mZ07.loo$pareto_k 1121 

 mZ07.loo$pareto_k<-NULL 1122 

 mZ07.loo$pointwise<-NULL 1123 

 write_values(as.matrix(mZ07.loo), app=T, loo_file) 1124 

 save.image(paste(dossier, "/", site, "_Z07.RData", sep="")) 1125 

} 1126 

### MODEL Z06 1127 

mZ06<-function(){ 1128 

 init.funZ06 <-function(){ 1129 

   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "alpha" = 0.1,"beta" = rnorm(1,0,1), "gamma" 1130 

= rnorm(1,0,1), "theta0" = rnorm(1,0,1), "effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), 1131 

"inter"=inter0) 1132 

 } 1133 

 mod.Z06<<-jags(inits=init.funZ06,model.file = "modelZ06_code.txt",data = 1134 

list("cooc","visit","ab_I","dim1","dim2"),parameters.to.save = 1135 
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c("mu","effet_I","effet_P","tau_I","tau_P","alpha","gamma","beta","theta0","loglik"),n.chains = 1, 1136 

n.iter=1000000, n.burnin = 250000, n.thin = 250) 1137 

 mod.Z06.mcmc<-as.mcmc(mod.Z06) 1138 

 mZ06<-mod.Z06$BUGSoutput$sims.list 1139 

 mZ06.deviance<-mZ06$deviance 1140 

 mZ06.loglik<-mZ06$loglik 1141 

 dimSEM<-dim(mZ06.loglik)[1] 1142 

 list.mZ06<-sapply(1:dimSEM,function(x) matrix(mZ06.loglik[x,,],nrow=dim1*dim2)) 1143 

 list.tmZ06<-(t(list.mZ06)) 1144 

 mZ06.loo<-loo(list.tmZ06) 1145 

 mZ06.loo 1146 

 loo_file<-paste(dossier, "/", site, "_Z06_loo.txt", sep="") 1147 

 write_values("mZ06", app=T, loo_file) 1148 

 mZ06_loo_pointwise<-mZ06.loo$pointwise 1149 

 mZ06_loo_pareto_k<-mZ06.loo$pareto_k 1150 

 mZ06.loo$pareto_k<-NULL 1151 

 mZ06.loo$pointwise<-NULL 1152 

 write_values(as.matrix(mZ06.loo), app=T, loo_file) 1153 

 save.image(paste(dossier, "/", site, "_Z06.RData", sep="")) 1154 

} 1155 

### MODEL Z05 1156 

mZ05<-function(){ 1157 

 init.funZ05 <-function(){ 1158 

   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "alpha" = 0.1,"beta" = rnorm(1,0,1), "theta0" 1159 

= rnorm(1,0,1), "epsilon" = rnorm(1,0,1), "effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), 1160 

"inter"=inter0) 1161 
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 } 1162 

 mod.Z05<<-jags(inits=init.funZ05,model.file = "modelZ05_code.txt",data = 1163 

list("cooc","visit","dim1","dim2"),parameters.to.save = 1164 

c("mu","effet_I","effet_P","tau_I","tau_P","alpha","beta","theta0","epsilon","loglik"),n.chains = 1, 1165 

n.iter=1000000, n.burnin = 250000, n.thin = 250) 1166 

 mod.Z05.mcmc<-as.mcmc(mod.Z05) 1167 

 mZ05<-mod.Z05$BUGSoutput$sims.list 1168 

 mZ05.deviance<-mZ05$deviance 1169 

 mZ05.loglik<-mZ05$loglik 1170 

 dimSEM<-dim(mZ05.loglik)[1] 1171 

 list.mZ05<-sapply(1:dimSEM,function(x) matrix(mZ05.loglik[x,,],nrow=dim1*dim2)) 1172 

 list.tmZ05<-(t(list.mZ05)) 1173 

 mZ05.loo<-loo(list.tmZ05) 1174 

 mZ05.loo 1175 

 loo_file<-paste(dossier, "/", site, "_Z05_loo.txt", sep="") 1176 

 write_values("mZ05", app=T, loo_file) 1177 

 mZ05_loo_pointwise<-mZ05.loo$pointwise 1178 

 mZ05_loo_pareto_k<-mZ05.loo$pareto_k 1179 

 mZ05.loo$pareto_k<-NULL 1180 

 mZ05.loo$pointwise<-NULL 1181 

 write_values(as.matrix(mZ05.loo), app=T, loo_file) 1182 

 save.image(paste(dossier, "/", site, "_Z05.RData", sep="")) 1183 

} 1184 

### MODEL Z04 1185 

mZ04<-function(){ 1186 

 init.funZ04 <-function(){ 1187 
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   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "beta" = rnorm(1,0,1), "gamma" = 1188 

rnorm(1,0,1), "delta" = rnorm(1,0,1), "theta0" = rnorm(1,0,1), "epsilon" = rnorm(1,0,1), 1189 

"effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0) 1190 

 } 1191 

 mod.Z04<<-jags(inits=init.funZ04,model.file = "modelZ04_code.txt",data = 1192 

list("cooc","visit","ab_I","ab_P","dim1","dim2"),parameters.to.save = 1193 

c("mu","effet_I","effet_P","tau_I","tau_P","gamma","delta","beta","theta0","epsilon","loglik"),n.chai1194 

ns = 1, n.iter=1000000, n.burnin = 250000, n.thin = 250) 1195 

 mod.Z04.mcmc<-as.mcmc(mod.Z04) 1196 

 mZ04<-mod.Z04$BUGSoutput$sims.list 1197 

 mZ04.deviance<-mZ04$deviance 1198 

 mZ04.loglik<-mZ04$loglik 1199 

 dimSEM<-dim(mZ04.loglik)[1] 1200 

 list.mZ04<-sapply(1:dimSEM,function(x) matrix(mZ04.loglik[x,,],nrow=dim1*dim2)) 1201 

 list.tmZ04<-(t(list.mZ04)) 1202 

 mZ04.loo<-loo(list.tmZ04) 1203 

 mZ04.loo 1204 

 loo_file<-paste(dossier, "/", site, "_Z04_loo.txt", sep="") 1205 

 write_values("mZ04", app=T, loo_file) 1206 

 mZ04_loo_pointwise<-mZ04.loo$pointwise 1207 

 mZ04_loo_pareto_k<-mZ04.loo$pareto_k 1208 

 mZ04.loo$pareto_k<-NULL 1209 

 mZ04.loo$pointwise<-NULL 1210 

 write_values(as.matrix(mZ04.loo), app=T, loo_file) 1211 

 save.image(paste(dossier, "/", site, "_Z04.RData", sep="")) 1212 

} 1213 



 

52 
Supplementary Information: Phenology and plant-hoverfly interactions 

 

Code de champ modifié

Mis en forme : Anglais (Royaume-Uni)

### MODEL Z03 1214 

mZ03<-function(){ 1215 

 init.funZ03 <-function(){ 1216 

   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "alpha" = 0.1,"beta" = rnorm(1,0,1), "gamma" 1217 

= rnorm(1,0,1), "theta0" = rnorm(1,0,1), "epsilon" = rnorm(1,0,1), 1218 

"effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0) 1219 

 } 1220 

 mod.Z03<<-jags(inits=init.funZ03,model.file = "modelZ03_code.txt",data = 1221 

list("cooc","visit","ab_I","dim1","dim2"),parameters.to.save = 1222 

c("mu","effet_I","effet_P","tau_I","tau_P","alpha","gamma","beta","theta0","epsilon","loglik"),n.cha1223 

ins = 1, n.iter=1000000, n.burnin = 250000, n.thin = 250) 1224 

 mod.Z03.mcmc<-as.mcmc(mod.Z03) 1225 

 mZ03<-mod.Z03$BUGSoutput$sims.list 1226 

 mZ03.deviance<-mZ03$deviance 1227 

 mZ03.loglik<-mZ03$loglik 1228 

 dimSEM<-dim(mZ03.loglik)[1] 1229 

 list.mZ03<-sapply(1:dimSEM,function(x) matrix(mZ03.loglik[x,,],nrow=dim1*dim2)) 1230 

 list.tmZ03<-(t(list.mZ03)) 1231 

 mZ03.loo<-loo(list.tmZ03) 1232 

 mZ03.loo 1233 

 loo_file<-paste(dossier, "/", site, "_Z03_loo.txt", sep="") 1234 

 write_values("mZ03", app=T, loo_file) 1235 

 mZ03_loo_pointwise<-mZ03.loo$pointwise 1236 

 mZ03_loo_pareto_k<-mZ03.loo$pareto_k 1237 

 mZ03.loo$pareto_k<-NULL 1238 

 mZ03.loo$pointwise<-NULL 1239 
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 write_values(as.matrix(mZ03.loo), app=T, loo_file) 1240 

 save.image(paste(dossier, "/", site, "_Z03.RData", sep="")) 1241 

} 1242 

### MODEL Z02 1243 

mZ02<-function(){ 1244 

 init.funZ02 <-function(){ 1245 

   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "alpha" = 0.1, "beta" = rnorm(1,0,1), "delta" = 1246 

rnorm(1,0,1), "theta0" = rnorm(1,0,1), "epsilon" = rnorm(1,0,1), 1247 

"effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0) 1248 

 } 1249 

 mod.Z02<<-jags(inits=init.funZ02,model.file = "modelZ02_code.txt",data = 1250 

list("cooc","visit","ab_P","dim1","dim2"),parameters.to.save = 1251 

c("mu","effet_I","effet_P","tau_I","tau_P","alpha","delta","beta","theta0","epsilon","loglik"),n.chain1252 

s = 1, n.iter=1000000, n.burnin = 250000, n.thin = 250) 1253 

 mod.Z02.mcmc<-as.mcmc(mod.Z02) 1254 

 mZ02<-mod.Z02$BUGSoutput$sims.list 1255 

 mZ02.deviance<-mZ02$deviance 1256 

 mZ02.loglik<-mZ02$loglik 1257 

 dimSEM<-dim(mZ02.loglik)[1] 1258 

 list.mZ02<-sapply(1:dimSEM,function(x) matrix(mZ02.loglik[x,,],nrow=dim1*dim2)) 1259 

 list.tmZ02<-(t(list.mZ02)) 1260 

 mZ02.loo<-loo(list.tmZ02) 1261 

 mZ02.loo 1262 

 loo_file<-paste(dossier, "/", site, "_Z02_loo.txt", sep="") 1263 

 write_values("mZ02", app=T, loo_file) 1264 

 mZ02_loo_pointwise<-mZ02.loo$pointwise 1265 
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 mZ02_loo_pareto_k<-mZ02.loo$pareto_k 1266 

 mZ02.loo$pareto_k<-NULL 1267 

 mZ02.loo$pointwise<-NULL 1268 

 write_values(as.matrix(mZ02.loo), app=T, loo_file) 1269 

 save.image(paste(dossier, "/", site, "_Z02.RData", sep="")) 1270 

} 1271 

### MODEL Z01 1272 

mZ01<-function(){ 1273 

 init.funZ01 <-function(){ 1274 

   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "alpha" = 0.1,"beta" = rnorm(1,0,1), "gamma" 1275 

= rnorm(1,0,1), "delta" = rnorm(1,0,1), "theta0" = rnorm(1,0,1), 1276 

"effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0) 1277 

 } 1278 

 mod.Z01<<-jags(inits=init.funZ01,model.file = "modelZ01_code.txt",data = 1279 

list("cooc","visit","ab_I","ab_P", "dim1", "dim2"),parameters.to.save = 1280 

c("mu","effet_I","effet_P","tau_I","tau_P","alpha","gamma","delta","beta","theta0","loglik"),n.chain1281 

s = 1, n.iter=1000000, n.burnin = 250000, n.thin = 250) 1282 

 mod.Z01.mcmc<-as.mcmc(mod.Z01) 1283 

 mZ01<-mod.Z01$BUGSoutput$sims.list 1284 

 mZ01.deviance<-mZ01$deviance 1285 

 mZ01.loglik<-mZ01$loglik 1286 

 dimSEM<-dim(mZ01.loglik)[1] 1287 

 list.mZ01<-sapply(1:dimSEM,function(x) matrix(mZ01.loglik[x,,],nrow=dim1*dim2)) 1288 

 list.tmZ01<-(t(list.mZ01)) 1289 

 mZ01.loo<-loo(list.tmZ01) 1290 

 mZ01.loo 1291 
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 loo_file<-paste(dossier, "/", site, "_Z01_loo.txt", sep="") 1292 

 write_values("mZ01", app=T, loo_file) 1293 

 mZ01_loo_pointwise<-mZ01.loo$pointwise 1294 

 mZ01_loo_pareto_k<-mZ01.loo$pareto_k 1295 

 mZ01.loo$pareto_k<-NULL 1296 

 mZ01.loo$pointwise<-NULL 1297 

 write_values(as.matrix(mZ01.loo), app=T, loo_file) 1298 

 save.image(paste(dossier, "/", site, "_Z01.RData", sep="")) 1299 

} 1300 

### MODEL Z00 1301 

mZ00<-function(){ 1302 

 init.funZ00 <-function(){ 1303 

   list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "alpha" = 0.1,"beta" = rnorm(1,0,1), "gamma" 1304 

= rnorm(1,0,1), "delta" = rnorm(1,0,1), "theta0" = rnorm(1,0,1), "epsilon" = rnorm(1,0,1), 1305 

"effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0) 1306 

 } 1307 

 mod.Z00<<-jags(inits=init.funZ00,model.file = "modelZ00_code.txt",data = 1308 

list("cooc","visit","ab_I","ab_P","dim1","dim2"),parameters.to.save = 1309 

c("mu","effet_I","effet_P","tau_I","tau_P","alpha","gamma","delta","beta","theta0","epsilon","loglik1310 

"),n.chains = 1, n.iter=1000000, n.burnin = 250000, n.thin = 250) 1311 

 mod.Z00.mcmc<-as.mcmc(mod.Z00) 1312 

 mZ00<-mod.Z00$BUGSoutput$sims.list 1313 

 mZ00.deviance<-mZ00$deviance 1314 

 mZ00.loglik<-mZ00$loglik 1315 

 dimSEM<-dim(mZ00.loglik)[1] 1316 

 list.mZ00<-sapply(1:dimSEM,function(x) matrix(mZ00.loglik[x,,],nrow=dim1*dim2)) 1317 
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 list.tmZ00<-(t(list.mZ00)) 1318 

 mZ00.loo<-loo(list.tmZ00) 1319 

 mZ00.loo 1320 

 loo_file<-paste(dossier, "/", site, "_Z00_loo.txt", sep="") 1321 

 write_values("mZ00", app=T, loo_file) 1322 

 mZ00_loo_pointwise<-mZ00.loo$pointwise 1323 

 mZ00_loo_pareto_k<-mZ00.loo$pareto_k 1324 

 mZ00.loo$pareto_k<-NULL 1325 

 mZ00.loo$pointwise<-NULL 1326 

 write_values(as.matrix(mZ00.loo), app=T, loo_file) 1327 

 save.image(paste(dossier, "/", site, "_Z00.RData", sep="")) 1328 

} 1329 

###### end model functions 1330 

print("JOB DONE") 1331 

################################################### 1332 

### Network information (do not change) ### 1333 

################################################### 1334 

##############################BLOCK 3 – MODEL EXECUTION ######################## 1335 

#launch_modele<-function(){ 1336 

 ntw<-read.table(paste(dossier, "/", site, "_ntw.txt", sep=""), 1337 

sep="\t",header=T,row.names=1) 1338 

 dim1<-dim(ntw)[1] 1339 

 dim2<-dim(ntw)[2] 1340 

 web<-as.matrix(ntw,dim1,dim2) 1341 

 inter0<-dget(paste(dossier, "/", site, "_web_i.txt", sep="")) 1342 

 cooc<-dget(paste(dossier, "/", site, "_co.txt", sep="")) 1343 
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 visit<-read.table(paste(dossier, "/", site, "_ntw.txt", sep=""),sep="\t",header=T) 1344 

 visit<-as.matrix(visit) 1345 

 abundanceI<-read.table(paste(dossier, "/", site, "_abI.txt", sep=""), sep="\t", header=T) 1346 

 ab_I <- log(abundanceI[,2]) 1347 

 abundanceP<-read.table(paste(dossier, "/", site, "_abP.txt", sep=""), sep="\t", header=T) 1348 

 ab_P <- log(abundanceP[,2]) 1349 

 if(opt$modele == "all") 1350 

 { 1351 

  print("modele: all") 1352 

  for(i in 0:15) 1353 

  { 1354 

   print(paste("COMPUTING MODELE ", i, "\n", sep="")) 1355 

   mod<-eval(parse(text=paste("mZ0", i, sep=""))) 1356 

   mod() 1357 

    1358 

  } 1359 

 }else{ 1360 

  print(paste("modele: ", opt$modele), sep="") 1361 

  mod<-eval(parse(text=paste("m", opt$modele, sep=""))) #recupération de la 1362 

fonction du modele 1363 

  mod() 1364 

 } 1365 

#### end model execution 1366 

#launch_modele() 1367 

 1368 

###############################PARAMETER VALUES############################## 1369 
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library(optparse) 1370 

option_list = list( 1371 

 make_option(c("-d", "--dir"), type="character", default=NULL, help="model directory", 1372 

metavar="character"), 1373 

 make_option(c("-s", "--site"), type="character", default=NULL, help="site name", 1374 

metavar="character")) 1375 

opt_parser = OptionParser(option_list=option_list); 1376 

opt = parse_args(opt_parser); 1377 

rdata<-list.files(opt$dir, pattern="*_Z015.RData") 1378 

load(paste(opt$dir, "/", rdata, sep="")) #chargement du RData qui contient tous les modèles pour un 1379 

site donné 1380 

print(paste("RData ", rdata, " loaded", sep="")) 1381 

for(mod in ls(pattern="mod.Z0*")) 1382 

{ 1383 

 print(paste("getting values from ", mod, sep="")) 1384 

 model<-eval(parse(text=mod)) 1385 

 if(is.null(model$BUGSoutput$mean$alpha)){model$BUGSoutput$mean$alpha<-NA} 1386 

 if(is.null(model$BUGSoutput$mean$beta)){model$BUGSoutput$mean$beta<-NA} 1387 

 if(is.null(model$BUGSoutput$mean$delta)){model$BUGSoutput$mean$delta<-NA} 1388 

 if(is.null(model$BUGSoutput$mean$epsilon)){model$BUGSoutput$mean$epsilon<-NA} 1389 

 if(is.null(model$BUGSoutput$mean$gamma)){model$BUGSoutput$mean$gamma<-NA} 1390 

 val<-matrix(c(model$BUGSoutput$mean$alpha, model$BUGSoutput$mean$beta, 1391 

model$BUGSoutput$mean$delta, model$BUGSoutput$mean$epsilon, 1392 

model$BUGSoutput$mean$gamma), 1, 5, dimnames=list("values", c("alpha", "beta", "delta", 1393 

"epsilon", "gamma"))) 1394 
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 write.table(val, file=paste(opt$dir, "/", opt$site, "_", mod, "_values.txt", sep=""), quote=F, 1395 

sep="\t", row.names=F, col.names=T) 1396 

} 1397 

  1398 
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Appendix S3: Modularity and latent block model analysis 1399 

We calculated the modularity of the network using the cluster_leading_eigen method for 1400 

modularity optimization implemented in the igraph package (Csardi and Nepusz 2006, Newman 1401 

2006). We then performed latent block models (LBM) using the BM_poisson method for 1402 

quantitative network data implemented in the blockmodels package (Leger et al. 2015). Blocks 1403 

are calculated separately for the two groups (insect and plant) based on the number of visits (i.e. a 1404 

weighted network). The algorithm finds the best divisions of insects and plants through fitting one 1405 

Poisson parameter in each block of the visit matrix, thus essentially maximizing the ICL (Integrated 1406 

Completed Likelihood; Biernacki et al. 2000, Daudin et al. 2007). 1407 

 1408 

library(bipartite) 1409 

library(vegan) 1410 

library(igraph) 1411 

library(dummies) 1412 

library(blockmodels) 1413 

library(ade4) 1414 

library(fields) 1415 

 1416 

#site data (ex: Bois de Fontaret, BFs)  1417 

BFs<-read.table("ntwBFs.txt",header=T,sep="\t") 1418 

webBFs <- as.matrix(BFs) 1419 

########################### Modularity analysis, binary data ######################### 1420 

BFs.graph.bin<-graph_from_incidence_matrix(webBFs,multiple=F) #binary 1421 

BFs.bin.cle<-cluster_leading_eigen(BFs.graph.bin) 1422 

BFs.bin.cle 1423 

#get phenology overlap matrix 1424 
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coBF<-dget("coBFs.txt") 1425 

########################## LBM code: LBM analysis following Poisson ################### 1426 

bmi_BFs<-BM_poisson('LBM', webBFs) 1427 

bmi_BFs$estimate() 1428 

numi_BFs<-which.max(bmi_BFs$ICL) 1429 

densi_BFs<-sum(webBFs)/(nrow(webBFs)*ncol(webBFs)) 1430 

probi_BFs<-bmi_BFs$model_parameters[[numi_BFs]]$lambda 1431 

row.nb.gpi<-nrow(probi_BFs) 1432 

col.nb.gpi<-ncol(probi_BFs) 1433 

prob.rowi<-bmi_BFs$memberships[[numi_BFs]]$Z1 1434 

hh.namei<-rownames(webBFs) 1435 

mbrshp.hhi<-apply(prob.rowi,1,which.max) 1436 

ls.freq.rowi<-rowSums(webBFs) 1437 

res.hhi<-cbind.data.frame(hh.namei=hh.namei, mbrshp.hhi=mbrshp.hhi, freq.hhi=ls.freq.rowi) 1438 

res.hh.ordi<-res.hhi[order(res.hhi$freq.hhi),] 1439 

cpt=0 1440 

for(k in 1: (nrow(res.hh.ordi)-1)) 1441 

{ 1442 

  if (res.hh.ordi$mbrshp.hhi[k] !=res.hh.ordi$mbrshp.hhi[k+1]) cpt=cpt+1 1443 

} 1444 

nb.diff.hhi=cpt-(length(levels(as.factor(res.hh.ordi$mbrshp.hhi)))-1) 1445 

#write tables 1446 

write.table(res.hh.ordi,sep="\t",row.names=FALSE) 1447 

prob.coli<-bmi_BFs$memberships[[numi_BFs]]$Z2 1448 

sp.namei<-colnames(webBFs) 1449 

mbrshp.spi<-apply(prob.coli,1,which.max) 1450 
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ls.freq.coli<-colSums(webBFs) 1451 

res.spi<-cbind.data.frame(sp.namei=sp.namei, mbrshp.spi=mbrshp.spi, freq.spi=ls.freq.coli) 1452 

res.sp.ordi<-res.spi[order(res.spi$freq.spi),] 1453 

cpt=0 1454 

for (k in 1: (nrow(res.sp.ordi)-1)) 1455 

{ 1456 

  if(res.sp.ordi$mbrshp.spi[k] !=res.sp.ordi$mbrshp.spi[k+1]) cpt=cpt+1 1457 

} 1458 

nb.diff.spi=cpt-(length(levels(as.factor(res.sp.ordi$mbrshp.spi)))-1) 1459 

res.sp.ord2i=res.spi[order(res.spi$mbrshp.spi),] 1460 

write.table(res.sp.ordi,sep="\t",row.names=FALSE) 1461 

write.table(probi_BFs,file="_prob_BFs",sep="\t",row.names=FALSE) 1462 

 1463 

############################### Matrix organization ############### 1464 

par(mfrow=c(1,1)) 1465 

webBFs2<-webBFs 1466 

webBFs[which(webBFs>1)]=1 1467 

nb.row=nrow(webBFs) 1468 

nb.col=ncol(webBFs) 1469 

nds=webBFs 1470 

nps=coBF 1471 

res.prob=read.table("_prob_BFs",sep="\t",h=TRUE) 1472 

ls.ord.col.prob=order(colSums(res.prob),decreasing=TRUE) 1473 

ls.ord.row.prob=order(rowSums(res.prob),decreasing=TRUE) 1474 

ls.ord.hhi=sapply(res.hhi$mbrshp.hhi,function(x) which (x==ls.ord.row.prob)) 1475 

res.hh.ord2i=res.hhi[order(ls.ord.hhi),] 1476 
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row.nb.gpi=length(levels(as.factor(res.hhi$mbrshp.hhi))) 1477 

res.hh.ord3i=NULL 1478 

for (h in ls.ord.row.prob) 1479 

{ 1480 

  part=res.hh.ord2i[res.hh.ord2i$mbrshp.hhi==h,] 1481 

  part.ord=part[order(part$freq.hhi,decreasing=TRUE),] 1482 

  res.hh.ord3i=rbind.data.frame(res.hh.ord3i,part.ord) 1483 

} 1484 

ls.ord.sp=sapply(res.spi$mbrshp.spi,function(x) which (x==ls.ord.col.prob)) 1485 

res.sp.ord2i=res.spi[order(ls.ord.sp),] 1486 

col.nb.gb=length(levels(as.factor(res.spi$mbrshp.spi))) 1487 

res.sp.ord3i=NULL 1488 

for (h in ls.ord.col.prob) 1489 

{ 1490 

  part=res.sp.ord2i[res.sp.ord2i$mbrshp.spi==h,] 1491 

  part.ord=part[order(part$freq.spi,decreasing=TRUE),] 1492 

  res.sp.ord3i=rbind.data.frame(res.sp.ord3i,part.ord) 1493 

} 1494 

nds=nds[as.character(res.hh.ord3i$hh.namei),as.character(res.sp.ord3i$sp.namei)] 1495 

nps=nps[as.character(res.hh.ord3i$hh.namei),as.character(res.sp.ord3i$sp.namei)] 1496 

webBFs2=webBFs2[as.character(res.hh.ord3i$hh.namei),as.character(res.sp.ord3i$sp.namei)] 1497 

 1498 

######## Plot matrix with heatcolours and the number of visits ####### 1499 

visits<-matrix(webBFs2,nrow=dim(webBFs2)[1]*dim(webBFs2)[2],ncol=1) 1500 

visits<-visits[which(visits>0)] #without the zeros 1501 

coord.function<-function(x,nI,nP){ 1502 
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  c(((x-1)%%nI)+1,((x-1)%/%nI)+1) 1503 

} 1504 

func.plot.matrix<-function(x,y){ 1505 

  indices<-which(x==1) 1506 

  min<-min(y) 1507 

  max<-max(y) 1508 

  yLabels<-rownames(x) 1509 

  xLabels<-colnames(x) 1510 

  title<-c("Bois de Fontaret") 1511 

  if(is.null(xLabels)){ 1512 

    xLabels<-c(1:ncol(x)) 1513 

  } 1514 

  if(is.null(yLabels)){ 1515 

    yLabels<-c(1:nrow(x)) 1516 

  } 1517 

  reverse<-nrow(x):1 1518 

  yLabels<-yLabels[reverse] 1519 

  y<-y[reverse,] 1520 

  image.plot(1:length(xLabels),1:length(yLabels),t(y),col=c("white",heat.colors(12)[12:1]), xlab="", 1521 

ylab="",axes=FALSE,zlim=c(min,max)) 1522 

  if(!is.null(title)){ 1523 

    title(ylab="Insects", line=8, cex.lab=1) 1524 

    title(xlab="Plants", line=6, cex.lab=1.2) 1525 

    title("Bois de Fontaret") 1526 

  } 1527 

  axis(BELOW<-1,at=1:length(xLabels),labels=as.factor(as.character(xLabels)),las =2, cex.axis=0.6) 1528 
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  axis(LEFT<-2,at=1:length(yLabels), labels=as.factor(as.character(yLabels)),las= 2,cex.axis=0.6) 1529 

  axis(BELOW<-1,at=1:length(xLabels),labels=rep("",length(xLabels)),las =2,cex.axis=0.6) 1530 

  axis(LEFT<-2,at=1:length(yLabels),labels=rep("",length(yLabels)),las=2,cex.axis<-0.6) 1531 

  coo<-t(rbind(sapply(indices,function(xx) coord.function(xx,nrow(x),ncol(x))))) 1532 

  text(coo[,2],nrow(webBFs)+1-coo[,1],labels=visits, cex=0.6) 1533 

} 1534 

func.plot.matrix(nds,nps) 1535 

####### Black lines to delimit blocks in the plot ###### 1536 

if (row.nb.gpi>1) 1537 

{ 1538 

  ls.class=as.numeric(as.data.frame(table(res.hh.ord2i$mbrshp.hhi))[ls.ord.row.prob,2]) 1539 

  ls.cum=sum(ls.class)-cumsum(ls.class) 1540 

  abline(h=ls.cum+0.5,col="grey20", lwd=3) 1541 

} 1542 

if (col.nb.gpi>1) 1543 

{ 1544 

  ls.class=as.numeric(as.data.frame(table(res.sp.ord2i$mbrshp.spi))[ls.ord.col.prob,2]) 1545 

  ls.cum=cumsum(ls.class) 1546 

  abline(v=ls.cum+0.5,col="grey20", lwd=3) 1547 

}  1548 
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Figures and Tables 1549 

 1550 

Figure S1. Site location in France: in blue the French départements Pas-de-Calais and Somme (Hauts-1551 

de-France region), in green the départements Eure and Seine Maritime (Normandie region), in orange 1552 

the départment Gard (Occitanie region). The six sites correspond to the red dots. 1553 

 1554 
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 1555 

Figure S2. Block clustering provided by LBM in the site of Bois de Fontaret (BF, Occitanie), overlaid on a heatmap of species phenology overlap. Insect species 1556 

are displayed in rows and plant species in columns, following their degree (number of partners). The blocks of insects and the blocks of plants are separated 1557 

by solid black lines. Colours correspond to the number of months that are shared by each pair of plant and insect species (PO, phenology overlap), with higher 1558 

PO corresponding to darker colours. Numbers are the number of visits observed in the field for a given plant-insect pair. 1559 
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 1560 

Figure S3. Block clustering provided by LBM in the site of Falaises (FAL, Normandie), overlaid on a heatmap of species phenology overlap. Insect species are 1561 

displayed in rows and plant species in columns, following their degree (number of partners). The blocks of insects and the blocks of plants are separated by 1562 

solid black lines. Colours correspond to the number of months that are shared by each pair of plant and insect species (PO, phenology overlap), with higher 1563 

PO corresponding to darker colours. Numbers are the number of visits observed in the field for a given plant-insect pair. 1564 



 

69 
Supplementary Information: Phenology and plant-hoverfly interactions 

 

Code de champ modifié

Mis en forme : Anglais (Royaume-Uni)

 1565 

Figure S4. Block clustering provided by LBM in the site of Larris (LAR, Hauts-de-France), overlaid on a heatmap of species phenology overlap. Insect species 1566 

are displayed in rows and plant species in columns, following their degree (number of partners). The blocks of insects and the blocks of plants are separated 1567 

by solid black lines. Colours correspond to the number of months that are shared by each pair of plant and insect species (PO, phenology overlap), with higher 1568 

PO corresponding to darker colours. Numbers are the number of visits observed in the field for a given plant-insect pair. 1569 
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 1570 

Figure S5. Block clustering provided by LBM in the site of Riez (R, Hauts-de-France), overlaid on a heatmap of species phenology overlap. Insect species are 1571 

displayed in rows and plant species in columns, following their degree (number of partners). The blocks of insects and the blocks of plants are separated by 1572 

solid black lines. Colours correspond to the number of months that are shared by each pair of plant and insect species (PO, phenology overlap), with higher 1573 

PO corresponding to darker colours. Numbers are the number of visits observed in the field for a given plant-insect pair. 1574 
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Table S1. Table of transformed plant abundances. The first column shows the Braun-Blanquet 1575 

coefficients of, the second column, their percentages, and the third column, the transformed 1576 

abundances used as the plant abundances in the model. 1577 

Coefficient 
Braun-Blanquet 

Abundance 
percentage 

interval 

Abundance 
percentage 

i 1 individual 0.1% 

+ < 1 % 0.5% 

1 1-10 % 5% 

2 10-25 % 15% 

3 25-50 % 35% 

4 50-75 % 65% 

5 75-100 % 85% 

1578 
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Table S2. Table of model accuracy. The upper part of the table  shows the results of the self-validation: in the region Occitanie the self-validation was tested 1579 

for the site Bois de Fontaret (BF ~ BF) and the site of Fourches (F ~ F); in the region Normandie for the site of Château Gaillard (CG ~ CG) and the sites of 1580 

Falaises (FAL ~ FAL) ; and in the region Hauts-de-France for the site of Larris (LAR ~ LAR) and for the site of Riez (R ~ R). The lower part of the table shows the 1581 

results of the cross-validation only between each site of the same region: in the region Occitanie between Bois de Fontaret et Fourches (BF ~ F and vice versa 1582 

F ~ BF); in the region Normandie between the site of Château Gaillard and Falaises (CG ~ FAL and vice versa FAL ~ CG); and in the region Hauts-de-France 1583 

between the site of Larris and Riez (LAR ~ R and vice versa R ~ LAR). 1584 

Model type Region Sites Threshold AUC 
Omission 

rate 
Sensitivity Specificity 

Prop 
correct 

Kappa 

Self-validation Occitanie BF ~ BF 0.15 0.78 0.20 0.80 0.75 0.75 0.22 
 Occitanie F ~ F 0.16 0.78 0.19 0.81 0.74 0.75 0.25 
 Normandie CG ~ CG 0.44 0.75 0.29 0.71 0.79 0.78 0.34 
 Normandie FAL ~ FAL 0.37 0.76 0.16 0.84 0.67 0.69 0.27 
 Hauts-de-France LAR ~ LAR 0.29 0.75 0.16 0.84 0.66 0.69 0.27 

  Hauts-de-France R ~ R 0.27 0.81 0.23 0.77 0.86 0.84 0.53 

Cross-validation Occitanie BF ~ F 0.15 0.73 0.14 0.86 0.59 0.63 0.20 
 Occitanie F ~ BF 0.16 0.67 0.30 0.70 0.64 0.65 0.17 
 Normandie CG ~ FAL 0.44 0.62 0.45 0.55 0.70 0.67 0.21 
 Normandie FAL ~ CG 0.37 0.68 0.24 0.76 0.60 0.63 0.25 
 Hauts-de-France LAR ~ R 0.29 0.63 0.35 0.65 0.61 0.61 0.17 

 Hauts-de-France R ~ LAR 0.27 0.65 0.42 
0.58 0.72 

0.69 0.22 
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