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Abstract

Demographic processes that occur at the local level, such as positive density dependence in growth or
dispersal, are known to shape population range expansion, notably by linking carrying capacity to invasion
speed. As a result of these processes, the advance of an invasion front depends both on populations in
the core of the invaded area and on small populations at the edge. While the impact on velocity is easily
tractable in homogeneous environment, information is lacking on how speed varies in heterogeneous
environment due to density dependence. In this study, we tested the existence of a ‘colonisation debt’,
which corresponds to the impact of conditions previously encountered by an invasion front on its future
advances. Due to positive density dependence, invasions are expected to spread respectively slower and
faster, along the gradients of increasing and decreasing carrying capacity, with stronger differences as
the gradient slope increases. Using simulated invasions in a one-dimensional landscape with periodically
varying carrying capacity, we confirmed the existence of the colonisation debt when density-dependent
growth or dispersal was included. Additional experimental invasions using a biological model known to
exhibit positive density-dependent dispersal confirmed the impact of the carrying capacity of the patch

behind the invasion front on its progression, the mechanism behind the colonisation debt.
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Introduction

The demographic processes occurring among invasive populations are essential for understanding and
modeling range expansion at large scales (Gurevitch et al., 2011, Caplat et al., 2012, Blackburn et al.,
2015). Indeed, range expansion is the result of successive colonisation events beyond the edge of the
invaded area (Blackburn et al., 2011), whose failure causes the invasion to slow down or even come
to a halt. (Keitt et al., 2001, Morel-Journel et al., 2022). The dynamics of these new, initially small
colonies may be influenced by various ecological mechanisms, including a positive density dependence
of growth and dispersal. Positive density-dependent growth, commonly referred to as the Allee effect
(Allee et al., 1949, Courchamp et al., 2008), corresponds to lower per capita growth rates at low densities
because of biological mechanisms generally affecting survival or reproduction (Courchamp et al., 1999).
Positive density-dependent dispersal describes the greater propensity of individuals to disperse from large
populations than from small ones, often to avoid intraspecific competition at high densities (Altwegg et al.,
2013). Previous studies have shown that both types of density-dependence create a causal relationship
between expansion speed and the size of the populations in the core of the invaded area, behind the
invasion front (Stokes, 1976, Lewis and Kareiva, 1993, Roques et al., 2012, Haond et al., 2021). The
larger these populations, the greater the number of individuals reaching the front, thus mitigating adverse
effects of positive density-dependence in small populations.

The influence of positive density dependence may also depend on the amount of habitat available,
which influences the carrying capacity, i.e. the maximum attainable individual density. Previous mod-
elling and experimental evidence from Haond et al. (2021) and Morel-Journel et al. (2022) have shown
that, in presence of positive density dependence, the carrying capacity of the invaded environment im-
pacts invasion speed, potentially up to a stop of the invasion front for low carrying capacities. Conversely,
invasion speed remains unaffected by carrying capacity in the absence of any density-dependence. These
studies only considered constant carrying capacities over space. Yet the amount of habitat is rarely
spatially homogeneous, especially at the scale of an invasion. Other works have studied the impact of
spatial heterogeneity on invasive spread (e.g Shigesada et al., 1986, Kinezaki et al., 2006, Schreiber and
Lloyd-Smith, 2009, Vergni et al., 2012), some of them including positive density dependence (e.g Dewhirst
and Lutscher, 2009, Pachepsky and Levine, 2011, Maciel and Lutscher, 2015). However, heterogeneity
was considered in these studies through its impact on the growth rate of populations rather than on their
carrying capacity. Although carrying capacity could still change as a result, it was not explicitly consid-
ered as a controlled parameter. Moreover, many of them considered binary cases, separating habitat from
non-habitat (Shigesada et al., 1986, Dewhirst and Lutscher, 2009, Pachepsky and Levine, 2011, Maciel
and Lutscher, 2015). Yet, the amount of habitat, which plays an important role in defining the carrying

capacity, often varies gradually rather than starkly over space.
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For this study, we consider gradients of carrying capacity, i.e. monotonic variations of carrying capacity
over space. In this context, gradients are different from the environmental gradients defining for instance
defining range limits, which rather correspond to a set of changes in habitat quality, often susceptible of
affecting individual fitness and population growth rates. In this study, we focus on variations of carrying
capacity, which does not limit by itself the ability of individuals to survive or reproduce, but rather
their maximal numbers. These gradients are considered ‘upward’ if the invasion fronts move towards
increasing carrying capacities, and ‘downward’ if it moves towards decreasing carrying capacities, with
the slope of the gradient characterizing the average change in carrying capacity over space, in absolute
value. According to previous studies considering constant carrying capacities over space, colonisation with
positive density dependence is expected to be more difficult and slower at smaller carrying capacities, and
thus smaller population sizes (Haond et al., 2021). Therefore, colonisation along a downward gradient is
expected to slow down as carrying capacity decreases. However, information on the rate of decrease and
its relationship to the gradient slope is lacking. While the carrying capacity of the patch on the front is
still expected to impact invasion speed, so are those of the patches behind the front in that case. Indeed,
density dependence links colonisation success to the dynamics of populations behind the invasion front.
Thus, the front should advance faster in downward gradients because of the large influx of dispersed
individuals from larger populations behind. Conversely, the front should be impeded by the smaller size
of the populations behind the front in upward gradients. This impact is expected to be stronger as
gradient slope, and thus the difference in carrying capacities, increases.

In this study, we hypothesize that this impact of the environmental conditions previously encountered
by an invasion front on its future advance may create a ‘colonisation debt’. This term echoes extinction
debt, defined by Tilman et al. (1994) as the impact of previous demographic events on the probability of
a population going extinct. We hypothesize that only invaders affected by positive density dependence
exhibit such a ‘memory’ of past carrying capacities, while the others should remain memoryless. When
encountering a succession of downward and upward environmental gradients, the colonisation debt should
create a lag in the relationship between invasion speed and environmental quality. In a downward gradient,
a patch of a given carrying capacity should be crossed faster than if it were in an upward gradient, due
to the influence of the previous, larger patches. For a strong enough impact of the carrying capacities
encountered earlier, the slowest and fastest rates should be reached after colonisation of the smallest and
largest habitat, respectively.

Using mechanistic models and experiments, we tested the existence of the colonisation debt during
invasions in environments with heterogeneous carrying capacity. On the one hand, we simulated invasions
across a one-dimensional landscape with positive density dependence on growth, dispersal, or neither.
As the impact of carrying capacity on invasion speed with positive density-dependence has already been

shown (Haond et al., 2021), we aimed at comparing here landscapes with the same average carrying
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capacity but exhibiting different gradients. To do so, we considered periodic successions of gradients
of increasing and decreasing carrying capacity, with identical mean but different slopes. On the other
hand, we performed artificial invasions in microcosm landscapes using Trichogramma chilonis, a biological
model known to exhibit positive density-dependent dispersal in particular experimental conditions (Morel-
Journel et al., 2016, Haond et al., 2021). Two types of landscapes, with different slopes, were used for

this experiment.

Material and Methods

Simulations

A stochastic model was used to generate invasions in a one-dimensional landscape (see Supplementary
material 1 for details). The model was discrete in space, i.e. the landscape was represented as a linear
chain of patches. It was also discrete in time, with each time step divided into a growth phase and a
dispersal phase. Growth potentially included positive density-dependence, through an Allee threshold
p, i.e. a population size under which the mean population growth rate was negative. Hence, there was
positive density-dependent growth if p > 0. Dispersal was local and stochastic, i.e. individuals travelled
to the neighboring patch with a probability d. This probability could either be constant if dispersal was
density-independent, or increase with individual density according to a Hill function of parameters o and
7, to include density-dependent dispersal.

This model was used to simulate invasions, using the R software (RCoreTeam, 2018). The landscapes
considered were infinite on the right but finite on the left. Only the leftmost patch was initially colonised,
with a population size of K,,.,. The landscape was divided into two parts. The first n;, leftmost
patches made up the ‘burn-in part’. These patches all had a carrying capacity of K4z, S0 the invasion
started in a homogeneous space and the invasion front was created before the invasion entered the second
part of the landscape. The dynamics in this burn-in part were not analysed further, as this type of
invasion in homogeneous landscapes has already been documented in previous studies (e.g Haond et al.,
2021). The remaining patches made up the ‘periodic part’ of the landscape. Their carrying capacity
varied periodically between K4, and K, with a period length 2¢ (Fig. 1). Each period included
one downward gradient followed by one upward gradient, each with ¢ patches. The two gradients were

symmetrical, and the carrying capacity K; of patch i was defined as follows:

Kmaw - %(Z - ])(Kmaw - szn) le S ]7.7 + (Z]
K; = )

(2(] -1 +j)(Kmax - Kmin) ifi e ]7 +4q,j+ 2(]}

Kmaw -

Q=

with j the closest patch to the left of ¢ so that K; = K4, The gradients were symmetrical, and
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Figure 1: Schematic representation of the variations in the carrying capacity in the landscape considered
for the simulations. The burn-in part is of finite length (corresponding to np patches), but the periodic
part continues infinitely to the right.

their slope — the differences in carrying capacity between two neighbouring patches — increased when ¢
decreased. Since the value of K., and K,,;, were constant, the length of a gradient ¢ was inseparable
from the slope, computed as (K40 + Kmin) /q. Therefore, low values of g correspond to steeper gradients
whereas high values of ¢ correspond to shallower ones.

As a convention, patches were numbered in ascending order, starting from —n; for the leftmost patch.
Therefore, the first patch of the periodic part was the patch 0. Previous results showed the link between
the average carrying capacity of the landscape and invasion speed because of positive-density dependence
(Haond et al., 2021). Considering such periodic landscapes allowed us to consider landscapes that all had
the same average carrying capacity in their periodic part for any value of ¢, of value (Kaz + Kinin) /2

Simulations were performed for landscapes with K., = 450, K = 45, np = 10, and ¢ an integer
between 1 and 10. They all lasted for ¢,,,, = 1000 generations — including the burn-in part — and
assumed an intrinsic growth rate r = 0.2 and a dispersal rate without density dependence d;,q = 0.1 (see
Supplementary material 1). Three scenarios were tested for each landscape: (i) a null scenario, without
any positive density-dependence, (ii) with positive density-dependent growth with p = 15, and (iii) with
positive density-dependent dispersal with « = 4 and 7 = K,4,/2 = 225 (see Supplementary material 1).
Each of the 3 scenarios x10 landscape combinations was simulated 1000 times.

The position of the invasion front P(t) at time ¢ was recorded throughout the simulation, as the
number of the rightmost patch with more than five individuals after the dispersal phase. This threshold
was chosen to mitigate the effects of demographic and dispersal stochasticity on the front. The starting
time of the invasion proper ts was defined as the first generation at which the invasion front reached the
periodic part of the landscape, i.e. P(ts) > 0.

Invasion speed was computed at three scales: the whole landscape, the gradient and the patch. The
average speed of the front was defined at the landscape level, as the ratio between the last position of the
front and the duration of the invasion proper P(¢maz)/(tmaz — ts). The gradient speed was defined at
the scale of one (upward or downward) gradient, as the ratio between ¢ and the number of generations

the invasion front spent between the two extremities of the gradient. For a downward gradient, the
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extremities were patch a and patch a + ¢, such that K, = K,,,.. For upward gradients, they were patch
b and patch b+ ¢, such that K;, = K,,;,. For a given simulation, the difference between the average
upward and downward gradient speeds was also computed. A gradient was not considered if the invasion
never reached its extremity. The instantaneous speed of the front was defined at the patch level, as the
inverse of the number of generations during which the invasion front remained stationary in the patch.
To compare instantaneous speeds for different ¢, the average instantaneous speed in the middle patch
was computed for each simulation with an even value of q. Then, the carrying capacity of this middle
patch was always K = (Ka0 + Kmin) /2 = 247.5. As there was no middle patch when ¢ was odd, these
cases were not considered.

To assess the impact of the periodic structure of the landscape, we also performed simulations with
the same parameter values as indicated above, but for a a single gradient, either upward or downward.
For these simulations, we computed the gradient speed, as well as the instantaneous speed in the middle

patch of the gradient (see Supplementary material 2).

Microcosm experiments

Artificial invasions of microcosm stepping-stone landscapes were performed in addition to the simulations
(see Supplementary material 3 for details). The biological model used was a strain of the parasitoid
wasp Trichogramma chilonis, which is known to exhibit positive density-dependent dispersal (Morel-
Journel et al., 2016). As carrying capacity was previously shown to not affect invasions speed without
positive density-dependence (Haond et al., 2021), we focused on this strain to test for the existence of the
colonisation debt. In our experiment, the carrying capacity was manipulated by changing the number
of host eggs available for T. chilonis, which were used as a resource. Two landscapes defined for the
simulations were recreated for the experiment (Fig. 2). The first one (called thereafter the ‘shallow’
landscape) was a downward gradient from 450 to 45 eggs, similarly to the simulated landscape with
g = 7. The second one (called thereafter the ‘steep’ landscape) alternated between patches with 450
eggs and patches with 90 eggs, similarly to the simulated landscapes for ¢ = 1. Patches with 90 eggs
were used rather than with 45 eggs to buffer the very strong demographic stochasticity displayed by T.
chilonis. Indeed, populations in patches with 45 eggs would have been too likely to go extinct because
of stochasticity or over-competition (see Supplementary material 3), without allowing for additional
colonisation over the 18 generations of the experiment. Likewise, we did not consider invasion in a single
upward slope because starting invasions in such small patches would likely have lead to establishment
failures during the experiment.

As for simulations, the position of the front was recorded at every generation as the rightmost patch
with more than 5 individuals. The stop duration, i.e. the number of generations during which the invasion

front remained stationary in a given patch, was used to assess instantaneous speed across the landscape.
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Figure 2: Number of eggs in the patches in the ‘steep’ (yellow) and ‘shallow’ (blue) landscapes. The
invasion are initiated by colonizing patch 1 for each replicate of the experiment.

The stop duration was computed for every colonized patch but the last one, and was a count of generations
following a Poisson distribution. It was therefore analysed using a generalized linear mixed model, with
a log link function and the experimental replicate as a random effect. Three explanatory variables were
considered: the type of landscape, the carrying capacity on the front, the carrying capacity of the patch
preceding the front. Models with every combination of these parameters were compared according to
AIC. Models within 2 AIC points of the smallest value were compared using likelihood ratio tests, to

define the most parsimonious among the best ones.

Results

Stmulation results for average speed

The average invasion speed was substantially reduced by positive density dependence. Indeed, 90% of
the simulated invasions without any positive density dependence had an average speed between 0.159
and 0.181 patches/gen, whereas they ranged from 0.009 to 0.024 patches/gen and from 0.014 to 0.026
patches/gen for simulations with density-dependent growth and dispersal, respectively. There was no
major impact of the half-period size ¢ on the average speed, likely because the average carrying capacity
in the landscape was identical in every landscape. The variations in speed across upward and downward
gradients averaged out in the long run, leading to similar landscape speeds for different ¢ even though
gradient speeds themselves could differ. However, the variance tended to increase with ¢ for simulated

invasions with density-dependent growth (standard deviation from 0.0019 for ¢ = 1 to 0.0083 for ¢ = 10)
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and dispersal (standard deviation from 0.0019 for ¢ = 1 to 0.0064 for ¢ = 10). The variance was
independent from ¢ and overall greater for simulated invasions without density-dependence (standard

deviation between 0.0076 and 0.0082).

Simulation results for instantaneous speed

Instantaneous speeds for each value of ¢ considered are presented in Supplementary material 4 (Fig.
S5), while Fig. 3 presents the results for the simulations with ¢ = 5, which is in the middle of the
range of values considered. Like the average speed, the instantaneous speed was systematically higher in
simulations with no positive density dependence. Furthermore, the invasion speed without any mechanism
was largely independent of carrying capacity, remaining around 0.215 gen~! for each patch (Fig. 3A).
In presence of density dependence, the instantaneous speed varied not only with the carrying capacity
of the patch, but also with the carrying capacity of previous patches (Fig 3B, 3C). Indeed, with positive
density dependence, separating instantaneous speeds according to whether the patch was in an upward or
downward gradient revealed substantial differences. Firstly, speeds were consistently higher in downward
gradients, for the same value of K. Secondly, the minimum instantaneous speed was not observed in the
patch with K = 45 (i.e. K,y,), but one (with density-dependent dispersal) or two patches (with density-
dependent growth) further in upward gradients. This created a lag in the variation of instantaneous

speed, compared to the variation in carrying capacity.
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Impact of gradient slope on simulated speed

The impact of gradient slope (inversely proportional to the value of q) was assessed by comparing invasion
speeds in upward and in downward gradients, based on gradient speeds (Fig 4A) and on instantaneous
speed in the middle patch of the gradient (Fig 4B). Consistently with the results presented above, there
was no significant difference in speed between downward and upward gradients in the absence of positive
density dependence. However, the difference in speed was generally positive with both types of density
dependence, with faster speeds in the downward gradients. The difference in gradient speed was maximal
around ¢ = 4 and decreased for larger values of ¢, i.e. for the shallower gradients (Fig 4A). For smaller
values of ¢, the gradients were so short that the invasion front was always close to, and therefore impacted
by, patches with a large carrying capacity, even in the upward gradient. The very short gradient size was
also likely the cause of the reversed patterns observed for ¢ = 1 and density-dependent dispersal and for
q = 2 and density-dependent growth. These corresponded to the lag described in the previous section:
as the slowest speeds were respectively reached 1 and 2 patches after the smallest patch, the downward
gradient speed suffered from the influence of the previous smallest patch. A similar pattern was observed
for the instantaneous speed in the middle patch, with differences decreasing as ¢ increased (Fig 4B). As
with the gradient speed, the lack of difference observed for ¢ = 2 and density-dependent growth was also
likely the result of the lag. The additional results for a single gradient (Supplementary material 3) show
faster downward gradient speeds for any value of ¢, thus supporting our hypothesis that this lag stems

from the downward gradient preceding the upward one.
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Fixed variables AIC AAIC

K, + K, 442.391 0.000
landscape + K; + K;—1 442.797 0.406
K; 4 444.427  2.036
Null 445.555  3.164
landscape + K;_1 445.824  3.433
landscape 447.205  4.815
K; 447.515  5.124
landscape + K; 449.189  6.798

Table 1: AIC and AAIC (difference with the smallest AIC) of GLMMSs defined for the experiment. Every
model includes the experimental block as a random variable. Fixed variables included are the landscape
type, the carrying capacity on the front (K;) and the carrying capacity of the patch behind the front
(Ki—1). AAIC values lower than 2 are noted in bold.

Ezxperimental results

Our statistical analysis on stop duration confirms that the speed also depends on the carrying capacity
of the patch behind the front. Firstly, it should be noted that including the carrying capacity of the
previous patch (noted K;_; in Table 1) reduced the AIC value of any of the models considered (Table
1), indicating that taking this factor into account always improved the model. Secondly, the two best
models according to AAIC < 2 were nested within each other, so they were compared using likelihood
ratio tests. The model including the carrying capacities on the front and behind the front (K; + K;_1
in Table 1) was not significantly worse than the one with all variables (X3f=1 = 1.5941,p = 0.2067),
while being more parsimonious. This model was therefore selected. According to it, the stop duration
decreased with the carrying capacity of the patch (z = —1.969, p = 0.0490) and of the previous patch
(z = —2.591, p = 0.0096). As instantaneous speed (as defined to analyse the simulation results) was the
inverse of the stop duration, these results confirm experimentally the positive impacts of the carrying
capacities of the current and previous patches on invasion speed.

Besides, experimental results show a clear decrease in velocity for lower carrying capacities in shallow
landscapes, but a much smaller decrease in steep landscapes. (Fig. 5). The difference in speed in the
largest and smallest patches was therefore greater when the gradient was shallower. This is consistent
with the simulation results, for which the difference between speeds in the largest and smallest patch
were greater as the value of ¢ increased (see Supplementary material 4). However, the pattern observed

in the simulations of steep gradients (¢ < 4) was not observed experimentally.

Discussion

Main results

Simulation and experimental results provide evidence for the existence of a ‘memory’ of past carrying

capacities impacting on the speed of invasion, which we refer to here as ‘colonisation debt’, when there
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is a positive density dependence in per capita growth or dispersal. In these cases, taking into account
habitat on the front alone was not sufficient to predict the invasion rate. Our simulation results show that
the carrying capacity encountered previously by the front could substantially affect colonisation success
and speed. We notably showed that invasions were faster overall in downward gradients than in upward
gradients, as were instantaneous speeds, i.e. measured at the scale of a single patch, for the same carrying
capacity. As hypothesized, a lag between changes in K and changes in invasion rate was also observed for
both types of positive density dependence. Hence, the slowest invasion rate was reached a fixed number
of patches after the lowest-quality patch encountered: one patch for density-dependent dispersal and two
for density-dependent growth. This discrepancy can be explained by the functioning of the two density
dependence mechanisms. With both mechanisms, the invasion managed to establish in the colony, after
the smallest patch because of the influx of dispersing individuals from the previous patches. With density-
dependent dispersal, this population on the front was too small to produce dispersing individuals, which
momentarily stopped the front one patch after the smallest one. With density-dependent growth, this
population produced enough dispersing individuals to be detected in the next patch (two patches after
the smallest one), but not enough to overcome the Allee effects. These individuals might not have been
detected if population sizes had been recorded after the growth phase rather than after the dispersal
phase.

Our experimental results using a species known to exhibit positive density-dependent dispersal also
show differences in invasion speed as a function of the carrying capacity on the front, depending on the
size of the patch behind the front. Indeed, invasion speed decreased more strongly with carrying capacity

in the shallow landscapes than in the steep ones, which is consistent with the simulation results.

11
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The impact of the gradient slope on invasion speed varied with the scale considered. At the scale of
a single patch, the upward and downward speeds for the same carrying capacity on the front became
closer as the gradients became shallower (higher values of ¢). Indeed, the difference between the carrying
capacities of the patches behind the front in the two gradients became smaller as ¢ increased, thus making
the effect of colonisation debt less visible. At the scale of the whole invasion, slope had little impact on
the average invasion speed. However, the variance in speed increased with ¢, indicating that the speed

of invasions in shallower gradients was less predictable.

Extent of the memory of past carrying capacities

Our results are consistent with a limited memory of invasions in time and space, with the impact of the
last few colonized patches predominating. The difference in carrying capacity between these patches and
the front was smaller when the gradients were shallower, as was the impact on invasion rate. At the
gradient level, this lead to more extreme slowest and fastest speeds with increasing values of ¢q. At the
whole landscape level, this lead to less predictable average invasion speeds. Indeed, crossing the areas
with small carrying capacity patches became increasingly difficult for the invader as ¢ increased, leading
to more frequent stops of the invasion front during simulations. As dispersal was stochastic, so were
these stops and their duration, generating additional variability in the overall invasion speed. This is
consistent with modeling studies using binary landscapes rather than gradients, which showed that a
larger non-habitat gap was more likely to alter the spread of density-dependent invaders (Dewhirst and
Lutscher, 2009, Morel-Journel et al., 2018). Although this was not tested for this study, experimental
invasion fronts have proved to be inherently stochastic and hardly predictable (Melbourne and Hastings,
2009). The speed of real invasions along shallow gradients might therefore be even more unpredictable.

The influence of distant patches on the speed of the front is also expected to be modulated by the
dispersal abilities of individuals (Dewhirst and Lutscher, 2009). This is likely the case in our study,
when dispersal is local and mostly driven by nearby patches, Not only should lower dispersal distances
limit this influence, but also the ability of invasion fronts to overcome areas with low carrying capacities.
Indeed, studies show that the pinning of invasion fronts is more likely if the size of the gap in habitat is
greater relative to the dispersal distance (Keitt et al., 2001, Morel-Journel et al., 2022). Our simulations
do not exhibit actual pinning, but the very slow instantaneous speeds observed near the smallest patch
correspond to temporary front stops over long time periods. The duration of those stops was greater in
landscapes with shallower gradients, i.e. when large populations were further from the location of the
stop. This suggests that even shallower gradients or smaller dispersal distances could generate pinning.

Conversely, the influence of patches behind the front is expected to be even greater when individuals
also disperse on long distances. Studies have shown that even rare long-distance dispersal events have

a disproportionate impact on invasion speed (Johnson et al., 2006, Nehrbass et al., 2007, Pergl et al.,
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2011), and they have been shown to mitigate the impact of habitat heterogeneity (Marco et al., 2011).
Similarly, we might expect them to limit the strength of the colonisation debt in our context of gradual
environmental change. Indeed, stratified dispersal, i.e. the combination of short-distance and long-
distance dispersal, should diversify the origins of the individuals dispersing to the front, and therefore the
carrying capacity of the patches involved. It could be interesting to investigate the interaction between

long-distance dispersal and the colonisation debt, in order to quantify this interaction.

Link with pushed invasions

The colonisation debt only appeared when either growth or dispersal was density-dependent. Otherwise,
invasion speed remained independent from the carrying capacity, on the front or in the core of the invasion.
Such links between a local mechanism and an invasion-wide pattern were previously documented, notably
in the study of pushed waves (Stokes, 1976, Roques et al., 2012). Pushed waves also stem from a link
between the population dynamics of the core of the invaded area and the spreading speed. Besides, they
are generally associated with positive density-dependent growth, i.e. Allee effects, although they can
also be the result of positive density-dependent dispersal (Haond et al., 2021). Therefore, our results
can be relevantly considered in this framework. It should however be noted that other mechanisms have
been shown to generate pushed waves, among them shifts in environmental conditions (Bonnefon et al.,
2014). While the spatial variations in carrying capacity considered in this study reflect variations in the
amount of habitat available, landscapes are also heterogeneous in other environmental factors susceptible
to constrain species ranges. Garnier and Lewis (2016) notably showed that shifting climate envelopes
could generate pushed waves without any mechanism of positive density-dependence. Conversely to our
study, climate envelope limits the colonisable habitat in space, so that a slow shift due to climate change
constrains the colonisation of new habitats by the species, regardless of density-dependence mechanisms.
It could be interesting to test for the colonisation debt in these pushed waves that exhibit none without

a shifting climate envelope.

Interaction with genetic diversity

The colonisation debt identified in this study is strictly the result of demographic mechanisms. Indeed, the
simulations carried out for this study did not take into account the genetic background of the individuals,
and the strain used for the experiments has a very low genetic diversity, being maintained in the laboratory
through inbreeding. Yet, the colonisation debt can be expected to interact with the genetic diversity
during real invasions. On the one hand, low genetic diversity could be an additional hurdle to colonisation
for invading populations moving along an upward gradient of carrying capacity and having already suffered
from a genetic bottleneck. On the other hand, pushed waves, which are generated by the same mechanisms

as the colonisation debt, are also known to prevent the loss of genetic diversity that can be observed
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during spread (Roques et al., 2012, Bonnefon et al., 2014). We could therefore expect genetic diversity to
maintain at higher levels along downward gradients, thus limiting the apparition of genetic bottlenecks
because of decreasing carrying capacity and population size.

The density-dependence mechanisms themselves are susceptible to evolve along the invasion, and
therefore affect the colonisation debt. On the one hand, increased genetic variance has been shown to
help invasive population to evolve towards a mitigation of positive density-dependent growth (Kanarek
and Webb, 2010, Kanarek et al., 2015). The maintenance of genetic variance in pushed invasions could
therefore also facilitate a weakening of the mechanism on the front. Similarly, studies indicate that
positive density-dependent dispersal is expected to be reduced along invasions, by evolving towards
density-independent dispersal (Travis et al., 2009, Erm and Phillips, 2020), although recent results suggest
that this evolution might not be systematic (Dahirel et al., 2022). Dispersal from the populations behind
the front underlying the colonisation debt might therefore also enable the invader to evolve out of the

density-dependence mechanisms generating the colonisation debt.

Consideration for the management of invasions

Considering the colonisation debt could improve the management of actual invasions or other range
shifts. Firstly, the variations in speed it generates in heterogeneous environments might help identify
density-dependent mechanisms among invasive populations. Our results show that the correlation be-
tween carrying capacity and invasion speed expected according to Haond et al. (2021) might not be as
clear if the amount of habitat varies over space, because of the lag generated by the colonisation debt.
The occurrence of such discrepancies in nature might be an indicator that the invasive population ex-
hibits positive density-dependence. Secondly, targeting populations behind the invasion front has already
been identified as a way to prevent long-distance dispersal that could increase the spread of invaders
(e.g. Johnson et al., 2006). Our results show that it could also reduce the colonisation capabilities of the
populations on the front themselves, and potentially further reduce the speed of invasion. Reducing the
suitability of the environment for an invader to hinder its spread might appear inefficient at first, because
the invading populations still benefit from the last colonisation events, but it might also have a more
durable impact on further colonisation events. These results suggest that targeting core populations as

well as the invasion front itself might prove more efficient to slow down invasions.
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Supplementary material

The following presents supplementary material of the article Colonisation debt: when invasion history impacts

current range expansion by T. Morel-Journel, M. Haond, L. Duan, L. Mailleret & E. Vercken. It includes:
1. The description of the stochastic model developed for the simulations presented in the study.
2. Additional simulations over a single gradient (either upward or downward)
3. The description of the setup and biological model used for the experiments presented in the study.

4. Instantaneous speeds computed for simulations with every values of ¢ between 1 and 10.



1. Stochastic model of population dynamics

The stochastic model presented here was used by Haond et al. (2021) and Morel-Journel et al. (2022) to
describe the dynamics of populations forming an invasion front. The model is discrete in space, i.e. the
landscape is represented as a linear chain of patches. It is also discrete in time, with non-overlapping generations
and each time step (i.e. generation) including two successive phases: growth and dispersal.

The growth phase describes the replacement of the parent generation by their offspring, as only the offspring
participates in the dispersal phase. At each generation, the number of offspring produced is drawn from a
Poisson distribution as follows:

0,1 ~ Poisson (R (N;) g (Nit)), (1)

with (NN, ;) the mean per-capita growth rate in patch ¢ at time ¢ without Allee effects and g(XV; ;) the number
of reproducing individuals in patch ¢ at time ¢. The mean per-capita growth rate R (N, ;) is defined according

to a Ricker model:

R(N;,) = (%) (2)

with NV; ; the population size in patch 7 at time ¢, r the exponential growth rate and K; the carrying capacity
in patch i. The number of reproducing individuals depends on the presence of mating Allee effects. Without

Allee effects, g(N; ) = N, . With Allee effects, g(NN; ) is defined as follows:

Nt .
Ni,tpR(Ni’t) if Ni,t < pR (Ni,t)

9(Niy) = , 3)
Ni,t If Ni,t > pR (Niﬂg)

with p the Allee threshold. This formulation separates the impacts of the Allee effects (when N; ; < pR (N, 4))
from the impacts of negative density-dependence (when N, ; > pR (N;)) on the population growth rate (Fig
S1).

Dispersal occurs after growth and only affects the offspring. It is isotropic and occurs only between
neighbouring patches. After dispersal, the number of offspring produced in patch i dispersing to the left Oat,

dispersing to the right O7, or remaining in their patch O}, are drawn from a multinomial distribution:

d; d;
(Oﬁ,t, Oy O;t) ~ Multinomial (Om,l, ’t, 1—dig, 2t> . (4)

with d; + the probability of dispersing either to the left or to the right. Without density-dependent dispersal,
di+ = ding, a constant. With density dependent dispersal, the probability varies according to a Hill function,
as follows:

O;
di = dma:v77a ' 5
o )

with 7 the half saturation constant, o the shape parameter of the Hill function, and dy,qz = limo, , o0 di s
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Figure S1: Mean population growth rate <

and p = 20. The growth rate increases until N;; = pR (N;,;) because of the Allee effect, and then decreases because
of negative density-dependent dispersal.

(Fig S2). The value of dyq5 is defined so that d; ; = d;nq when O; ; = 27:

1
dmuw = dind (1 + 2(1) . (6)

Given the dispersal rules defined above, the population size in patch i at t 4+ 1 after dispersal is computed as
follows:

Ni,t+1 = OZt + O;‘fl,t + Oé+1,t . (7)
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Figure S2: Dispersal rate as a function of population size for d;ng = 0.1, 7 = 100 and « = 4.



2. Simulations over a single gradient

To assess the impact of the successive gradients on our results, we also performed additional simulations with
a single gradient of length ¢, either upward or downward, preceded and followed by sets of 10 patches of
size K4, (before the downward gradient and after the upward one) and of size K, (before the upward

gradient and after the downward one) (Fig. S3). Conversely to the landscape considered in the main text, the

> >

Space Space

Figure S3: Schematic representation of the two landscapes with a single gradient (left: downward, right: upward)
considered of size q.

average carrying capacity is therefore different between the landscapes. These simulations were performed for
the three scenarios described in the main text: (i) without any positive density-dependence, (ii) with p = 15,
and (iii) with « = 4 and 7 = 225. Each combination of parameters was repeated 1000 times. We computed
downward and upward gradient speeds and instantaneous speed in the middle patch of the gradient as defined
in the main text. Since each landscape included a single gradient, we could not compare speeds for a given
simulation. To get the differences in speeds, we randomly matched simulations of upward and downward
gradients generated with the same set of parameters, and computed the difference between the two. Results

were similar to those presented in the main text for ¢ > 4 (Fig. S4). First, there was no difference in speed
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Figure S4: Difference between the downward and upward gradient speed (A) and instantaneous speed in the middle
patch (B), for simulations without density dependence (green), density-dependent growth (yellow) and dispersal (blue).
Positive values indicate faster invasions in downward gradients compared to the upward ones. Intervals contain 80%
of the simulations. Results were slightly shifted on the x-axis for better readability.



in the absence of positive density-dependence mechanisms. In simulations with positive-density dependence,
the difference between upward and downward gradients as they became shallower. However, the variability in
the simulation results was greater than for simulations with multiple gradients. Unlike the results presented in
the main text, we did not observe discrepancies for the smaller values of ¢. This suggests that the patterns
observed for ¢ < 4 in landscapes with multiple gradients do come from the impact of the previous gradient on

the next one.



3. Experimental setup using Trichogramma chilonis

The organism used for the artificial invasions is the oophagous parasitoid wasp Trichogramma chilonis, which
is commonly used as a biological control agent against various crop pests. This species is particularly suitable
for microcosm experiments, due to their small size and short generation time, e.g. 14 days for the strain used
in this study. Besides, this strain is also known to exhibit density-dependent dispersal, as noted in previous
studies (Morel-Journel et al., 2016, Haond et al., 2021). During the experiment, T. chilonis was reared on
irradiated eggs of Ephestia kuehniella, which allow the normal emergence of the parasitoid while preventing
the emergence of host caterpillars. To ensure a constant resource availability over time, the E. kuehniella eggs
were replaced at each new generation of T. chilonis.

The experimental setups used for this study are artificial microcosm landscapes. These landscapes are
designed as linear chains of seven tubes, each representing a patch, connected by pipes representing the
dispersal pathways. For the duration of the experiment, these landscapes were placed in controlled conditions
of temperature (20.5°C), hydrometry (> 70%) and light period (16h). Landscape invasions were initiated
with parasitized eggs introduced at one end of the landscape, and lasted for 14 generations.

A generation starts at the emergence of adults from the eggs. During the first 48 hours, adults are free
to disperse through the pipes, mate and lay eggs. Then, adults and pipes are removed and the larvae can
develop during 12 days, until the next emergence. Generations are therefore non-overlapping, as only the
offspring is conserved. Population sizes are assessed on the 7*" day after adult emergence, by counting the
number of parasitized eggs in each patch. Indeed, the eggs turn black because of the chitinization of the
T. chilonis pupae developing inside (Reay-Jones et al., 2006). Eggs are photographed for each generation
and each replicate and population sizes are counted using the ImageJ software (Abramoff et al., 2004). The
number of eggs provided to T. chilonis is a hard limit on the maximal population size. Indeed, superparasitism
(i.e. parasitising the same egg multiple times) seldom results in more than one emergence of adult, with rather
low survival rates and sex-ratio biases among the emerging individuals (Suzuki et al., 1984). In addition to
demographic stochasticity that affect small populations in general, over-competition can also destabilize T.

chilonis populations with low number of eggs.



4. Instantaneous speeds for every value of g

No Density—dependent Density—dependent
density—dependence growth dispersal
- % E O upward
g 5] X downward
2 2] X
q=1 %" %
3]
g EE % ® T % % 5
a=2 § 1 %
3: % O
??C% vEy ¥ X X g
=3 § 4] o)
5] e
%’.E:% § X ? by % X 6 o
q=4 " i? Q
‘Yeee80
1;;- Ei % I (§ ? § I % % X é 6 o
q=5 § " %
. 1ggeese g XXX®O
25 X @QQ
q=6 ¢ 1
& %X QQ
q=7 § ] @
3 . %%f‘f?%@fr XXX XSSO0
& 1 %X QQ
58] ﬁ)
= 5:
o | e I
5 1 XXQ
q=9 ] %%?
-
E o] HH XXW
a=10¢ "1 %ﬁ

T T T T T T T T T T T T T T T T
0 100 200 300 400 5000 100 200 300 400 5000 100 200 300 400 500

Carrying capacity Carrying capacity Carrying capacity

Figure S5: Instantaneous speed as a function of carrying capacity, for ¢ € [1 : 10] (rows) and either no mechanism
(green, 1% column), Allee effects (yellow, 2% column) or density-dependent dispersal (blue, 3¢ column). Mean values
over all patches with the same carrying capacity are represented by crosses if the patch is in a downward gradient, and
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