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Summary

1. Biodiversity provides support for life, vital provisions, regulating services
and has positive cultural impacts. It is therefore important to have accurate
methods to measure biodiversity, in order to safeguard it when we discover
it to be threatened. For practical reasons, biodiversity is usually measured
at fine scales whereas diversity issues (e.g. conservation) interest regional
or global scales. Moreover, biodiversity may change across spatial scales.
It is therefore a key challenge to be able to translate local information on
biodiversity into global patterns.

2. Many databases give no information about the abundances of a species
within an area, but only its occurrence in each of the surveyed plots. In
this paper, we introduce an analytical framework to infer species richness
and abundances at large spatial scales in biodiversity-rich ecosystems when
species presence/absence information is available on various scattered sam-
ples (i.e. upscaling).

3. This framework is based on the scale-invariance property of the negative
binomial. Our approach allows to infer and link within a unique framework
important and well-known biodiversity patterns of ecological theory, such as
the Species Accumulation Curve (SAC) and the Relative Species Abundance
(RSA) as well as a new emergent pattern, which is the Relative Species
Occupancy (RSO).
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4. Our estimates are robust and accurate, as confirmed by tests performed on
both in silico-generated and real forests. We demonstrate the accuracy of
our predictions using data from two well-studied forest stands. Moreover, we
compared our results with other popular methods proposed in the literature
to infer species richness from presence-absence data and we showed that
our framework gives better estimates. It has thus important applications to
biodiversity research and conservation practice.

Keywords: biodiversity patterns, species-abundance distribution, species-area
relationship, upscaling biodiversity patterns, spatial ecology

Introduction

The problem of inferring total biodiversity when only scattered samples are ob-
served is a long-standing problem. In the 1940s, the British chemist and naturalist
A. S. Corbet spent two years in Malaya to trap butterflies [1]. For every species
he saw, he noted down how many individuals of that species he trapped. When
Corbet returned to England, he showed the table to its colleague R. A. Fisher
and asked him how many new species he would trap if he returned to Malaya for
another couple of years. The father of statistics was only the first to tackle the
problem of species estimation [2], which since then has found large applications
in different scientific fields, from ecology [3, 4, 5] to bioscience [6, 7, 8], leading to
the development of a myriad of estimators [9, 10, 11].
Indeed, although ecological drivers crucial for conservations act at large scales,
biodiversity is typically monitored at limited spatial scales [12, 13]. Extrapolat-
ing species richness from the local to the whole ecosystem scale is not straight-
forward, because it is not additive as a function of the area. As a result, a
huge number of biodiversity estimators have been proposed in ecological litera-
ture [4, 14, 15, 16, 17, 18, 19, 20, 21]. Their commonest limitation is to have a
limited application range (local/regional-scale extrapolations), and to be sensitive
to the trees’ spatial distribution [22, 23, 24], sample coverage and sampling meth-
ods [25].
Many analytical methods have been proposed to upscale species richness using as
input the local Relative Species Abundance distribution (RSA) [26, 27, 28, 29],
i.e. the list of the species present at the sampled scale along with the proportion
of individuals belonging to each of them. For example, estimates of biodiversity
at large scales have been performed using log-series as the RSA [2]. The log-series
distribution is often used to describe RSA patterns in many different ecological
communities, characterised by high biodiversity [24]. Thanks to the availability
and reliability of the species abundance data in forests (given by systematic and
periodic field campaigns and high detectability of species), this method has been
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typically applied to tropical forests. In particular, it has been used to estimate the
species richness of the Amazonia [27] and the global tropical tree species richness
[28].

These methods have been proved to typically perform better than non-parametric
estimators of biodiversity [30]. In contrast with the former, non-parametric ap-
proaches do not assume a specific family of probability distributions. In particular,
non-parametric methods do not make any assumption on the RSA distribution
and they thus perform no fit of empirical patterns, rather they only take into
account rare species, which are intuitively assumed to carry all the needed infor-
mation on the undetected species in a sample.
Nevertheless, all the aforementioned methods need abundance data in order to
infer biodiversity at larger scale. However, in many open-access databases (e.g.
species abundance data obtained from metagenomics [31]) this information is
highly imprecise, if available at all. Indeed, there are lots of datasets which give
only information about the presence or absence of a species in different surveyed
plots, without specifying the number of individuals within them. Some non-
parametric approaches have been generalized to infer species richness from this
presence-absence data [30, 11]. Table 2 summarizes the most popular estima-
tors and for each one details the predicted biodiversity as a function of the input
data. However, most of them have the strong limitation that they do not have
an explicit dependence of the observation scale, leading to poor estimates of the
number of species at the global scales (see Results). The only estimator which
takes into account the ratio between the surveyed area and the global one is the
one introduced by Chao [30, 25, 11] and denoted here as Chaowor (see Table 2).
This method takes into account the number of species detected in one sample
only and those detected in exactly two samples observed at the sample scale to
infer the total species richness at the whole forest scale. However, it has been
shown that Chao’s method, although giving reliable species estimates, it does not
properly capture the empirical Species Accumulation Curve (SAC) [29], which
describes how the number of species changes across spatial scales. In absence of
spatial correlation, it is equivalent to another macro-ecological pattern of interest
which is the Species Area Relation (SAR).
Moreover, both parametric and non-parametric methods proposed in the literature
do not give any insights on the species abundance at both local or larger scales.
Indeed the problem of relating occupancy data with information on species abun-
dance is a relevant issue in theoretical ecology [32, 33, 34]. In particular, given the
information on the presence or absence of a species in different scattered plots,
one would like to infer its population size or, more generally, the RSA distribution
of the forest.
In this paper, we present a general analytical framework to extrapolate species
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richness and other relevant biodiversity patterns (e.g. RSA, SAC) at the whole
forest scale from local information on species presence/absence. Our framework
exploits the form-invariance property of the Negative Binomial (NB) distribution.
Such a distribution emerges as the long time behavior distribution of a birth and
death stochastic dynamics, accounting for effective immigration and/or intraspe-
cific interactions [35, 24, 29]. Crucially, the functional form of a negative binomial
does not change when sampling different fractions of areas. This property al-
lows for an analytical expression for how parameters of the distribution change
across scales. Form-invariance under different sampling efforts is at the core of
our approach, however our method can be applied any time the dependence of
the distribution on the size of the sampled area can be calculated exactly. We
will find an analytical relation between the NB RSA at a given spatial scale and
the SAC. Thanks to this function, starting from the empirical SAC constructed
at the sample scale from the local presence-absence data (see Eq. (13)), we will
be able to:

1. infer species richness at larger scales, thus the SAC up to the whole forest
scale;

2. obtain information on species abundances in order to construct the RSA at
both local and global scales;

3. introduce and infer the Relative Species Occupancy (RSO), i.e. the dis-
tribution of the occurrences (number of occupied cells) across species, at
both local and global scales. This biodiversity pattern is a prediction of our
modelling framework, can be measured empirically and may be of ecological
relevance as it proxies the distribution of species ranges (the area where a
particular species can be found) in the ecosystem;

We tested our framework on in-silico generated forests and on the two well-studied
tropical forests of Barro Colorado Island and Pasoh. We finally compared the
global estimates with the abundance-based method proposed in [29].
Before illustrating the details of our approach, we want to highlight differences and
similarities between the present work and [29]. Both papers are based on the form-
invariance property of the Negative Binomial distribution but, instead of using
population estimates at local scales [29], here we require only the knowledge of
species’ occurrences at multiple local scales. In other words, the loss of information
at one local scale (i.e. for each sample we know if a species is present, but not
the number of its individuals) is balanced by the presence-absence information
on multiple local scales. Such a generalization of [29] is useful when empirical
datasets provide information only on the presence/absence of species. We will
show that this will be enough to infer population’s distribution as well.
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1. Materials and Methods

1.1. Theoretical Framework

We denote as P (n|1) the relative species abundance, – i.e. the probability that
a species has exactly n individuals – at the whole forest scale (here 1 refers to the
whole forest). Note that P (n|1) should be defined only for n ≥ 1, because S is
the total number of species actually present in the forest, assuming that the area
was exhaustively surveyed with no missing species.
Here the RSA at the scale p = 1, is postulated to be proportional to a Negative
Binomial distribution (NB) [36, 37, 29], P(n|r, ξ) with parameters r > 0 and
0 ≤ ξ < 1:

P (n|1) = c(r, ξ)P(n|r, ξ), for n ≥ 1 (1)

with

P(n|r, ξ) =

(
n+ r − 1

n

)
ξn(1− ξ)r, c(r, ξ) =

1

1− (1− ξ)r
,

where c(r, ξ) is the normalisation constant. Notice that since n ≥ 1, the sum∑
n≥1P(n|r, ξ) < 1 and that is why we need a normalizing factor, taking into

account only species with non-zero abundance, which is different from the usual
NB normalization. It may be worth to mention here that classically, for a NB
distribution, one has r ∈ N whereas in our framework r ∈ R+. Such a distribution
can be derived as the steady-state RSA of a simple birth and death stochastic
dynamics [36, 37, 29], where r, known as the clustering coefficient, models the
effects due to immigration events and/or intraspecific interactions, and ξ is the
ratio between the birth and death rate of a species.
Let us now consider a sub-sample of area a of the whole forest and define p =
a/A the sample scale. Assuming that the local RSA is not affected by spatial
correlations and/or strong environmental gradients, the conditional probability
that a species has k individuals in the smaller area a = pA, given that it has total
abundance n in the whole forest of area A is given by the binomial distribution

Pbinom(k|n, p) =

(
n

k

)
pk(1− p)n−k, k = 0, . . . , n.

It is worth highlighting that this is where we use the ‘well-mixed’ (or mean-field)
hypothesis. This assumption can be tested in the data by looking at the beta-
diversity and RSA patterns. If correlation lengths are of the same scale as the
system linear size, and the RSA of sub-samples displays the same functional shape,
then we can assume that no strong spatial constraints affect the abundance species
distribution.
With this information in hand, it can be proved (see [29], Supplementary Mate-
rials) that, under the hypothesis that the RSA has a negative binomial form, the
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RSA at scale p, P (k|p), is again proportional to a negative binomial, for k ≥ 1,
with rescaled parameter ξp and the same r:

P (k|p) =

{
c(r, ξ) · P(k|r, ξp) k ≥ 1

1− c(r, ξ)/c(r, ξp) k = 0
(2)

with

ξp =
pξ

1− ξ(1− p)
. (3)

A RSA with the property of having the same functional form at different scales
is said to be form-invariant.
The form-invariant property allows for simple formula describing how birth and
death ratios at two different spatial scales are related. Indeed, given the parame-
ters r and ξp∗ of the RSA at the sampling scale p∗, we can get the value of ξ by
inverting (3):

ξ =
ξp∗

p∗ + ξp∗(1− p∗)
. (4)

Using (3) to eliminate ξ from the last equation, one gets the following relation for
the parameter ξ at the two scales p and p∗

ξp =
pξp∗

p∗ + ξp∗(p− p∗)
. (5)

Let now determine the relation between the total number of species at the
whole scale p = 1, S, and the total number of species surveyed at a local scale p,
Sp. For the sampling scale p∗, in the following, we will use the notation S∗ ≡ Sp∗ .
Note that, denoting with S∗(k) the number of species having k individuals at the
scale p∗, one can estimate P (k = 0|p∗) and P (k|p∗) as follows

P (k = 0|p∗) ' (S − S∗)/S, (6)

P (k|p∗) ' S∗(k)/S. (7)

Thus, the total number of species in the whole forest, in terms of the data on the
surveyed sub-plot is given by

S
eq.(6)

' S∗

1− P (k = 0|p∗)
eq.(2)
= S∗

1− (1− ξ)r

1− (1− ξp∗)r
,

(8)

where ξ is given by (4).
In general, given two scales p and p∗, one has the following relation between the
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number of species at the scale p, the one at p∗ and the RSA parameters (r, ξp∗)
at the scale p∗:

Sp ' S∗
1− (1− U(p|p∗, ξp∗))r

1− (1− ξp∗)r
(9)

where

U(p|p∗, ξp∗)
def
=

pξp∗

p∗ + ξp∗(p− p∗)
.

The proposed method is, under the ‘well mixed’ hypothesis, general and not lim-
ited to tropical forests.
In the sequel we illustrate how, within the theoretical framework developed so
far, it is possible to use presence-absence information on various samples to infer
r, ξ and then S. To start with, let us suppose we surveyed M∗ cells of the same
area a. This assumption is not essential to our approach to species estimation at
the global scale. It simplifies computations and its implementation (see also next
subsection) but can be removed. Suppose we have presence-absence information
on each of M∗ cells. This implies we know Spk (i.e. the number of species at scale
pk) for pk = ka/A, k = 1, . . . ,M∗. From eq. (9) we obtain

Spk ' S∗
1− (1− U(pk|p∗, ξp∗))r

1− (1− ξp∗)r

= S∗
1− (1− U(p̃k|1, ξp∗))r

1− (1− ξp∗)r
,

(10)

where p̃k = pk/p
∗ = k/M∗ is the fraction of sub-sampled cells. In the last equality

of (10) we use that U(p|p∗, ξp∗) = U( p
p∗
|1, ξp∗) which is obtained from (5) factor-

izing p∗.
The latter equation states that the function of p on the righthand side of (9) takes
the value Spk at pk for k = 1, . . . ,M∗. For M∗ >> 1, these information allow for
a robust estimate of the two unknown parameters ξp∗ and r. Therefore from the
empirical values of Spk one can get the parameters r and ξp∗ shaping the RSA
at the sample scale p∗. From these, one can estimate the ξ parameter by using
eq. (4) to predict both the number of species at the global scale S via (8), the
RSA through (1) and the SAC by using (9).
Another important pattern which we can predict with our framework is the rela-
tive species occurrence (RSO) distribution, Q(v|M, 1), which gives the probability
that a species occupies v cells at the global scale, given that the forest can be tiled
in M equal-sized cells of area a. The latter assumption is essential to our deriva-
tion of RSO formulae (see eq. (11) and (12) below). Also notice the difference
between M and M∗: in our notation M is the number of cells at the global scale
whereas M∗ refers to the fraction p∗.
RSO pattern is of ecological relevance as it gives information on the fraction of
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species that occupy the same amount of area of the ecosystem. For example, if
the RSO distribution displayed a small variance unimodal shape, then it means
that most of species have similar species ranges. On the other hand if Q(v|M, 1)
follows a power law behaviour it indicates a strong heterogeneities in the species
ranges.
In order to find an expression for it, we firstly need the probability, Qocc(v|n,M, 1),
that a species occupies v over M cells at the global scale, given that is has abun-
dance n. Under the hypothesis of absence of spatial correlation, this is given by
an hyper-geometric distribution. Indeed there are

(
M
v

)
possibilities to choose the

v filled cells,
(
n−1
v−1

)
possibilities to distribute n species among v cells so that no cell

is empty, and
(
n+M−1
M−1

)
ways to distribute n species in M cells allowing empty bins.

See for example W. Feller, Introduction to probability theory and its applications,
Chapter 2. Thus we compute

Qocc(v|n,M, 1) =

(
M
v

)(
n−1
v−1

)(
n+M−1
M−1

) . (11)

The RSO distribution Q(v|M, 1) can thus be obtained by marginalizing with re-
spect to the abundance n:

Q(v|M, 1) =
∞∑
n=v

Qocc(v|n,M, 1)P (n|1), (12)

where P (n|1) is the global RSA given by eq. (1). This series cannot be calcu-
lated analytically for arbitrary values of the parameters; nevertheless, it has some
regimes which are physically important and can be investigated in more detail.
For instance, when ξ ' 1, P (n|1) can be approximated by a gamma distribu-
tion and, for 0 < r < 1 and v,M � 1 such that v/M � 1, one can show
that Q(v|M, 1) ∝ vr−1. Since for most forest plots r � 1, when M and v are
sufficiently large we expect Q(v|M, 1) = cv−1, where c depends on M, r and ξ.
This prediction is supported by the empirical data we have studied as shown in
Figure 3.

1.2. Implementation of the Framework

Our analytical framework consists of the following steps (see Figure 1).

• First, given a set of scattered samples, list the species in it.
In formulae, sample C = {c1, . . . , cM∗}, M∗ ≥ 2, cells covering a fraction
p∗ of the whole forest in which S∗ species are observed. To each cell ci,
associate a vector Ω(ci) = {ωi

1, . . . , ω
i
S∗}, with ωi

s ∈ {0, 1}, s ∈ {1, . . . , S∗},
i ∈ {1, . . . ,M∗}. The entry ωi

s of vector Ω(ci) gives information on the
presence/absence of the species s in the cell ci – i.e. ωi

s = 1 if species s is
present in cell ci, ω

i
s = 0 otherwise.
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• Compute the empirical species-area curve as follows. From now on, let us
suppose that all the M∗ cells are of equal size a. This assumption does
not affect the general framework but it simplifies the computation of the
SAC. Call A the area of the whole forest, so that p∗ = M∗a/A. At each
sub-sampling scale pk = ka/A, with k ∈ {1, . . . ,M∗}, compute the average
number of observed species as

Semp(pk) =
1(
M∗

k

) ∑
I⊆{1,...,M∗}
|I|=k

S∗∑
s=1

1

(∑
i∈I

ωi
s ≥ 1

)
, (13)

where 1(E) is the indicator function, which equals one when the random
event E happens and it is zero otherwise.
In words: for every scale pk, one should compute the empirical average of
the number of the species observed in all subsets of k cells. Since computing
all subsets of k cells among M∗ is numerically expensive for large M∗, in
the analyses we computed the average among 100 randomly chosen subsets.
Note that computing the species accumulation curve through the empirical
average of the number of species in k random selected cells, we are neglecting
any spatial information. Let us stress once again that null or small spatial
correlation is required for a rigorous derivation of our estimates.

• Fit the empirical species accumulation curve with the theoretical equation

S(pk) = S∗
1− (1− U(p̃k|1, ξp∗))r

1− (1− ξp∗)r
(14)

and obtain the parameters (r, ξp∗) which best describe the empirical curve
Semp(pk). These are the parameters of the NB relative species abundance
distribution at the sample scale p∗. This protocol allows us to capture some
spatial effects in the effective parameters.

• As showed in [29], under the hypotheses of absence of strong spatial cor-
relations due to both inter-specific or intra-specific interactions, strong en-
vironmental gradients and abundances distributed according to a negative
binomial at the whole forest scale, the RSA distributions at different scales
have the same functional form of the RSA at the scale p∗, and only the
values of the parameter ξ changes as a function of the scale. Thus we obtain
an analytical form of the upscaled RSA at any scale p given we know it at
scale p∗ in term of the equation ξ(p|ξp∗) = U(p|p∗, ξp∗), relating ξp = ξ(p)
to p, p∗ and ξp∗ = ξ(p∗). Therefore, using the RSA parameters at scale p∗

and the upscaling equations (see below), we can predict the total number of
species, S, at the whole forest scale, p = 1.
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• The key feature of the method is the possibility, given only presence/absence
data, to connect and infer different biodiversity patterns at the global scale.
Indeed, we can predict, in addition to the SAC, the RSO, the cell occu-
pancy distribution, and the RSA, the abundance proportions of the S species
present at p = 1.
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Figure 1: Schematic presentation of our theoretical upscaling framework. It consists
of three steps. (A) We start from a dataset in the form of a binary matrix giving information on
the presence or absence of S∗ species within each of the M∗ surveyed plots. (B) We perform the
best fit of the empirically SAC computed via (13). (C) Using the best-fit parameters obtained
in (B) and using our upscaling Eqs. (8), (9) and (12), we predict the species richness S of the
whole forest and three important macro-ecological patterns: the SAC, the RSA and the RSO.

2. Results

2.1. Tests on in-silico databases

We test our presence/absence upscaling method on four computer generated
forests without and with spatial correlations. Indeed, we expect that in the first
case our framework will give more accurate estimates, and we wish to test how
the introduction of correlations affect the reliability of our results.
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As RSA we choose a negative binomial (NB forest) of parameters r = 0.8 and
ξ = 0.999 and a log-normal (LN forest) with parameters µ = 5 and σ = 1. Once
generated the abundance of every species (S = 4974 for the NB forest and 5000
for the LN forest), we distribute the individuals within the forest area, here set
equal to a square of 4900 × 4900 units, according to two different processes: at
random or according to a modified Thomas process [38, 29, 39] with a clustering
radius of 15 units.
We then divide each forest generated as described above into M = 98× 98 units
cells and compute the M × S presence/absence matrix, thus forgetting the in-
formation about the species distribution. Finally, we sub-sample the 5% of the
cells (corresponding to a fraction p = 0.05 of the total forest area) and apply our
method to infer the total number of species in each of the four in-silico forests.
We also compared our results to those obtained by accounting for the data on
species populations with an abundance-based upscaling framework developed and
tested in [29]. In the case of the NB forest, the two methods performed very well
for both the random and the clumped distribution (i.e. individuals distributed on
the space according to a Thomas point process) with an average prediction error
below 1% in absolute value (see Table1). In the Thomas distributed forests, the
error increased, although remaining around 3% for the presence/absence method
and around 7.5% for the abundance-based one (using maximum likelihood meth-
ods. The latter percentage error can be improved using calibrated statistical
method for the single fit). Thus, with respect to the degree of individuals’ clus-
tering, the new framework seems to give more robust estimates than the second
one. This is due to two main reasons: 1) For the presence-absence case, we fit the
empirical SAC, which has a very smooth functional shape, and it is easy to de-
scribe through our analytical SAC. On the other hand, the RSA displays a more
complex and variable shape and thus fitting it with the NB is a more delicate
task (indeed we find sensible differences on the accuracy using different statistical
methods for the fit); 2) Binary data on which the empirical SAC is based are less
sensitive to sampling fluctuations.

2.2. Tests on real databases

We finally test our method on sub-samples taken from two empirical forest
data for which we have informations on both species occurrence and abundances.
In particular we extract abundances of tree species observed in 50ha of rainforests
from Pasoh (Malaysia) and Barro Colorado Island (Panama) together with the
spatial locations of each of their individual.
Firstly, we divide both forest data into a grid consisting of M = 800 equal-sized
cells of area 625 m2 and we derive the M ×S∗ presence/absence matrix for the S∗

observed species (S∗ = 927 for Pasoh forest and 301 for BCI). We then sub-sample
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Table 1: Predictive error for three generated forest (characterized by a log-normal and a negative
binomial RSA) having individuals distributed according to a high clustering Thomas process
and at random. Tests were performed by sampling a fraction p = 0.05 of each forest and by
applying our framework (P/A columns) and the abundance-based method (RSA columns) to
predict the true number of species S (5000 for the LN forest and 4974 for the NB forest). For
each estimated Spred, the average relative percentage error (Spred−S)/S · 100 between the true
number of species and the predicted one is shown together with the corresponding standard
deviation. Results are relative to 100 iterations.

Forest RSA

Spatial Distribution

Random Thomas

P/A RSA P/A RSA

Log-normal 3.1± 0.51 7.6± 0.52 2.5± 1.8 7.2± 3.1

Negative binomial −0.50± 0.34 −0.52± 0.28 −0.81± 1.6 −0.60± 1.7

species occurrence for different fractions 0 < p < p∗ of the cells and apply our
framework to infer the number of species and other biodiversity patterns (RSA,
RSO and SAC) at the corresponding largest empirically-observable scale p∗, for
which we know the ground truth.

We compared our results on species richness obtained only from presence-
absence data with the most popular non-parametric indicators proposed in the
literature [30, 11], which are summarized in Table2. We found that our method
outperforms all the others for both BCI and Pasoh forests. We also remark that
all these methods have the further limitation that they can only infer the total
species richness, without allowing for an estimate of the abundances’ and occur-
rences’ distributions, i.e the shape of the RSA and the RSO.
Indeed, as shown in Figure 3, from the local presence-absence data, we can recon-
struct, among the SAC, the RSA at the whole tropical forest scale, thus relating
species occurrence data with information on the abundances. In particular we can
see that the inferred RSA are statistically comparable with the empirical ones ob-
tained by using all the information on species’ abundances which we deleted before
applying our method.
Another biodiversity pattern that we can infer from our framework is the RSO. As
shown in Figure 3, we find that, as for the RSA, this pattern seems to have a uni-
versal form which can be well described and correctly inferred through our neutral
approach. Also, our finding suggests that, when spatial effects are negligible, the
RSO distribution has a wide range of values in which it is well approximated by a
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Figure 2: Test from different scales for Pasoh and BCI. For each forest we sub-sample
a fraction p of p∗ of the available spatial cells and apply different popular upscaling methods
based on presence/absence data (see Table 2) and our method to predict the true number of
species, S∗ (dashed line) , observed in our data. While our (P/A NB) and Chaowor methods do
converge at Sp∗ as p goes to p∗, all the others have a monotonically increasing behaviour due to
the independence, in their predictions, of the scale p∗. We can see that for both rainforests, our
method outperforms all the others. Bottom panels show the relative percentage error (Spred −
S∗)/S∗ · 100 obtained with our framework between the predicted number of species Spred and
S∗. We find that the method underestimated the true number of species of at most 5%. The
larger the sample area, the smaller the relative error.

universal power law, regardless of the details of the populations’ dynamics. One
may assume that this latter is driven by a simple stochastic process with constant
per capita birth and death rates. Such a slow decay of Q(v|M, 1) indicates that
species in real systems exhibit huge variations in their occurrences, which may be
weakly correlated to species’ habitat preferences or environmental heterogeneities.
We should expect strong asymmetries among their occurrences: for instance, if
we tile up a landscape into M = 1, 000 elementary cells, then about a third of
all species should live in less than 1% of them; whereas about 1.5% of the species
should be found in more than 90% of the total cells (see Figure 3).
We highlight that the SAC (green line), the cumulative RSA (red line) and cu-
mulative RSO (blue line) predicted patterns in Figure 3 have not been obtained
through the fit of some parameters, but they have been analytically predicted
through our upscaling equations (1), (12) and (9). The only fitting occurs at the
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scale p = 0.1p∗ using the empirical SAC to parametrize eq. (13). In other words,
by fitting species occurrence data at the sample scale, our framework allows to
estimate: 1) The RSA at the sample scale; 2) The SAC, the RSA and the RSO
at larger scales. We provide an open source R code that performs the above esti-
mates giving as input only the presence-absence matrix data.
After testing our model on controlled computer generated data and real forest
sub-samples, we apply our framework to predict the species richness of the two
tropical forests. Moreover, we compare our results to those obtained with the
upscaling framework based on RSA pattern previously developed and tested in
[29] by our group.
We therefore predict, through the presence/absence method, the species richness
at the whole forest scale (p = 1) for BCI and Pasoh tropical forests. Figure 4)
shows the prediction of the overall (and unknown) SAC for a scale ranging from 50
to 14000 hectares for the Pasoh (p∗ ≈ 0.0036) and to 1560 for the BCI (p∗ ≈ 0.032).
The blue curves represent the prediction obtained only using presence-absence
data whereas red curves are the SAC inferred by exploiting also the information
about species’ population through the abundance-based method (see [29]).
We find that the two methods give comparable results for both the databases, a
confirm of the robustness of the theoretical framework.

3. Discussion

In this work we proposed and tested a novel rigorous statistical framework to
upscale ecological biodiversity patterns from local information on species occur-
rence data. Different upscaling approaches have been proposed in ecological liter-
ature [26, 28, 40, 4, 9, 10, 11, 18, 41, 40]. However, to the best of our knowledge,
they have not been generalized to the case of binary data. The present paper pro-
vides a generalization of the method recently proposed in [29] to presence-absence
information. In [29] species abundance distributions at one given scale was re-
quired to make predictions at global scale, whereas the present approach allows
to extract abundance distributions at any scale from species occurrence data in
multiple small scale samples. The underlying hypotheses that we need in order
to perform these estimates is that the RSA at a given scale is a negative binomial
distribution, a RSA that arises naturally as the steady-state species abundance
distributions for ecosystems undergoing simple birth and death dynamics [42, 24].
The negative binomial is a simple and versatile distribution that depending on
its parameters can display an interior mode or log-series like behaviour, i.e. it
can accommodate different RSA shapes. Therefore we can use the same RSA
function to reproduce different ecosystems’ RSA, as those typically observed in
real ecosystems [43, 44, 45, 35, 46, 47, 48, 49, 24]. Even more generally, by using
mixtures of negative binomials - a case for which our framework still works - we
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can fit more complex RSA shapes (see [29]).
Furthermore, we introduce a new descriptor/measure of biodiversity within an
ecological community, the RSO, which describes the distribution of species oc-
currences in scattered plots. The RSO distribution displays a fat tail, indicating
that many species typically occupies only few scattered plots, while only very few
species are pervasive and are found in most of the plot. Our prediction is that
this property is not particular for the dataset here considered, rather it is another
emergent patterns [50, 24] pervasive in highly biodiverse ecosystems. Our frame-
work gives directly all parameters of the RSO by solely fitting the SAC curve,
through which one can obtain the r and ξ parameters, which well describe both
the RSA and the RSO distributions at all spatial scales of interest.
Expanding the ability to upscale species richness and obtain abundance distribu-
tions from presence-absence data is of fundamental importance in many contexts,
where abundance information are not available or trustable. This is particularly
true for microbial or marine (e.g. plankton) ecological data obtained from metage-
nomics [51] and 16S ribosomal gene sequences [52]. The use of sequence-based
taxonomic classification of environmental microbes has exploded in recent years
[52, 53, 51, 31] and these approaches are becoming a standard method for char-
acterizing the biodiversity of both prokaryotes and eukaryotes [53]. Thanks to
advance in high throughput sequencing we begin to be able quantifying the vast
number of microbes in our environments, expanding our knowledge on microbial
diversity [31]. However, large fractions of the sequence reads remain unclassified
[51] and also species abundance estimated have a very high uncertainty [31]. Thus,
being able to estimated species richness and abundance distributions from species
occurrence data may lead to a big step-forward in the taxonomic classification of
microbial ecosystems.
To summarize, this flexible analytical method provides, from local presence/ab-
sence information, robust estimates of species richness and important macro-
ecological patterns of biodiversity (SAC, RSA, RSO), as tested in both in-silico
generated and two rainforests. The method may be applied to any database in
the form of a binary matrix, where presence/absence features (tree species in our
case) are detected across different samples.
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Figure 3: Test on ecological macro-patterns for Pasoh and BCI. For each forest we
sub-sample a fraction p = 0.1 of the available spatial cells and apply our framework to predict
three important ecological pattern at the largest scale at which we have information, p∗. In the
first row we see the prediction for the SAC curve, which describes how the number of observed
species increases with the sampled area, from p = 0.1 to 1, corresponding to p∗ in these tests.
In the second row we plot the cumulative empirical RSA, the distribution of abundances across
species against the framework prediction in logarithmic scale. Finally, in the third and fourth
rows we test the ability of the model to capture the empirical RSO, i.e. the distribution of
the occurrences (number of occupied cells) across species in logarithmic scale (third row panel
shows the cumulative distribution). In figures, predicted patterns are in the form of confidence
intervals obtained from the SAC fitting errors on the r and ξp∗ parameters. For both forests,
all the three patterns result to be well described by our framework.
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Figure 4: SAC predicted for Pasoh and BCI using abundance method versus pres-
ence/absence method. Using all the available data for both tropical forests, we compare the
prediction for the SAC curve obtained by the abundance method [29] with the results obtained
with the presence/absence framework presented here. At the whole forests’ scale p = 1, the two

predictions are 3σ compatible (Sabund
Pasoh = 1193 ± 36, S

p/a
Pasoh = 1260 ± 22, Sabund

BCI = 366 ± 15,

S
p/a
BCI = 359± 2).
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