1	Title: Does phenology explain plant-pollinator interactions at different latitudes? An assessment of its
2	explanatory power in plant-hoverfly networks in French calcareous grasslands
3	Authors: Natasha de Manincor ¹ *, Nina Hautekeete ¹ , Yves Piquot ¹ , Bertrand Schatz ² , Cédric
4	Vanappelghem ³ , François Massol ^{1,4}
5	¹ Université de Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
6	² CEFE, EPHE-PSL, CNRS, University of Montpellier, University of Paul Valéry Montpellier 3, IRD,
7	Montpellier, France
8	³ Conservatoire d'espaces naturels Nord et du Pas-de-Calais, 160 rue Achille Fanien - ZA de la Haye,
9	62190 LILLERS
10	⁴ Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for
11	Infection and Immunity of Lille, F-59000 Lille, France
12	
13	E-mail addresses and ORCID numbers:
14	Natasha de Manincor: natasha.de-manincor@univ-lille.fr, natasha.demanincor@gmail.com, 0000-
15	0001-9696-125X
16	Nina Hautekeete: nina.hautekeete@univ-lille.fr, 0000-0002-6071-5601
17	Yves Piquot: <u>yves.piquot@univ-lille.fr</u> , 0000-0001-9977-8936
18	Bertrand Schatz: <u>bertrand.schatz@cefe.cnrs.fr</u> , 0000-0003-0135-8154
19	Cédric Vanappelghem: cedric.vanappelghem@espaces-naturels.fr
20	François Massol: francois.massol@univ-lille.fr, 0000-0002-4098-955X

- 22 **Short title:** Phenology and plant-hoverfly interactions
- 23 Keywords: Bayesian model, interaction probability, latent block model, latitudinal gradient,
- 24 mutualistic network, phenology overlap, species abundance, structural equation model.

- 25 *Corresponding author information: Natasha de Manincor, e-mail: <u>natasha.de-manincor@univ-lille.fr</u>,
- 26 <u>natasha.demanincor@gmail.com,</u>phone: +330362268530

27 Author contributions

- 28 NDM and FM conceived the project, formulated and implemented the model. NDM conducted the
- 29 analysis and prepared the manuscript. FM supervised the analysis and edited the manuscript. NH, YP,
- 30 CV and BS contributed substantially to all later versions. NDM, NH, YP and BS conducted the fieldwork
- 31 and provided the data. CV identified the hoverflies.

32 Data accessibility

- 33 The data supporting the results are archived on Zenodo (DOI: 10.5281/zenodo.2542845).
- 34

35 Abstract

For plant-pollinator interactions to occur, the flowering of plants and the flying period of pollinators 36 37 (i.e. their phenologies) have to overlap. Yet, few models make use of this principle to predict interactions and fewer still are able to compare interaction networks of different sizes. Here, we 38 tackled both challenges using Bayesian Structural Equation Models (SEM), incorporating the effect of 39 40 phenological, overlap in six plant-hoverfly networks. Insect and plant abundances were strong 41 determinants of the number of visits, while phenology overlap alone was not sufficient, but 42 significantly improved model fit. Phenology overlap was a stronger determinant of plant-pollinator 43 interactions in sites where the average overlap was longer and network compartmentalization was 44 weaker, i.e. at higher latitudes. Our approach highlights the advantages of using Bayesian SEMs to 45 compare interaction networks of different sizes along environmental gradients and articulates the various steps needed to do so. 46

Supprimé: logy

49 INTRODUCTION

50 Understanding how phenology determines species interactions is a central question in the case of 51 mutualistic networks. In plant-pollinator networks, phenology shapes their temporal and spatial limits, 52 thus defining the area and the period along the season in which interactions preferably occur (Olesen et al. 2011; Ogilvie & Forrest 2017). Since plant and pollinator phenologies are not equally affected by 53 54 changes in environmental cues, partial or total phenological mismatches can occur as a result of environmental changes such as climate change (Parmesan 2007; Rafferty 2017). Phenological advances 55 56 indeed increase at higher latitudes, as a response to the acceleration of warming temperature along 57 the same gradient (Post et al. 2018), increase phenological mismatch, and have the potential to threaten the synchrony needed for effective pollination (Hutchings et al. 2018). Such environmental 58 59 changes can thus drastically alter pollinator interactions through modified temporal overlap between pollinators and their floral resources leading, in extreme cases, to local extinctions (Memmott et al. 60 61 2007) and the ensuing absence of the partner species at the location and/or time at which the 62 interaction should have taken place (Willmer 2012; Miller-Struttmann et al. 2015; Rafferty et al. 2015; 63 Hutchings et al. 2018).

Because phenological match is crucial to plant-pollinator interactions, and thus ultimately to 64 pollinators' fitness, pollinators have to adapt to phenological shifts either through interaction with 65 66 other plant species (Rafferty et al. 2015) or through changes of their own phenology (Bartomeus et al. 67 2011). Phenology can then influence dynamical network properties, such as the stability and the coexistence of species, through changes in network topology (Encinas-Viso et al. 2012). Moreover, 68 69 phenology predictably affects network compartmentalization as different phenophases likely correspond to different compartments when networks are considered on an annual scale (Martín 70 71 González et al. 2012).

Despite considerable theoretical advances, there are few models available to predict the probability
of interaction in plant-pollinator networks (Staniczenko *et al.* 2017; Cirtwill *et al.* 2019) and fewer still

74 able to make comparisons between networks. Due to their complexity and variation among years 75 (Chacoff et al. 2017), most studies of mutualistic networks have focused on predicting and comparing 76 classic network metrics (nestedness, connectance, modularity, etc.) which are all influenced by 77 network size, i.e. the number of plant and insect species (Fortuna et al. 2010; Staniczenko et al. 2013; 78 Poisot & Gravel 2014; Astegiano et al. 2015). Moreover, few studies have compared interaction networks along environmental gradients (Devoto et al. 2005; Schleuning et al. 2012; Sebastián-79 80 González et al. 2015; Pellissier et al. 2017). In order to compare networks of different sizes, a better 81 alternative is to switch from network-derived metrics to the comparison of the probability of 82 interaction given by regression models, which can consider multiple factors and latent variables and 83 assume that the sampled data are just part of a larger unobserved dataset (Grace et al. 2010).

84 Calcareous grasslands are characterized by highly diverse plant communities with a high proportion of 85 entomophilous species (Baude et al. 2016), thus they are a convenient model for such studies. Most 86 plant-insect pollinator networks involve bee species (Anthophila), but recent studies have also pointed 87 out the importance of hoverflies (Diptera: Syrphidae), which pollinate a large spectrum of wild 88 flowering species (Klecka et al. 2018a) and crops (Jauker & Wolters 2008; Rader et al. 2011). They 89 usually behave opportunistically, i.e. from being pollen generalists to specialists, only limited by morphological constraints (Iler et al. 2013; Klecka et al. 2018a; Lucas et al. 2018). Indeed, their 90 91 generalist behaviour, at the species level, could be the result of individually specialized diets, since 92 most pollen retrieved on hoverfly individuals usually comes from a single plant taxon (Lucas et al. 2018) and depends on flower availability and phenology (Cowgill et al. 1993; Colley & Luna 2000; Lucas et al. 93 94 2018). Moreover, some hoverflies have preferences regarding plant colour, morphology and inflorescence height (Branquart & Hemptinne 2000; Colley & Luna 2000; Lunau 2014; Klecka et al. 95 96 2018b, a).

97	Here we study the consequences of environmental gradients on plant-pollinator interactions, focusing
98	on how phenology overlap affects interactions between plants and insects in six calcareous grassland

99 sites distributed along a latitudinal gradient. We obtained plant and insect phenologies, abundances, 100 and interactions in all sites from April to October 2016. We modelled plant-pollinator interaction 101 networks following a Bayesian Structural Equation Modelling approach (SEM) using latent variables, i.e. unobserved variables (Grace et al. 2010). SEM is a multivariate technique used to test several 102 103 hypotheses in ecological studies. SEM analysis involves cause-effect equations to evaluate multiple causal relationship (Grace 2006; Eisenhauer et al. 2015) using observed and latent variables to explain 104 105 some other observed variables (Grace 2006). SEM can be used to choose among competing models (Grace & Bollen 2008). Thus, SEM are well suited for studying the complexity of ecological networks. 106 107 To test whether phenology affects network compartmentalization, we looked for species subgroups 108 using a latent block model (LBM) which is among the best clustering methods for weighted networks 109 (Leger et al. 2015).

The comparison of 16 SEMs and the analysis of LBMs of sampled networks evinced that phenology overlap is an important determinant of plant-pollinator interactions, but is less informative than species abundances and performs heterogeneously among sites. Our results suggest that the use of SEMs to compare networks of different sizes along an environmental gradient is an innovative approach which can help understand the structure of plant-pollinator networks.

115 MATERIALS AND METHODS

116 Study sites

We sampled plant and hoverfly species in six areas (Fig. S1) of 1 hectare each in different French
regions: two sites in Hauts-de-France (Les Larris de Grouches-Luchuel, thereafter noted LAR,
50°11'22.5"N 2°22'02.9"E and Regional natural reserve Riez de Noeux les Auxi, noted R, 50°14'51.85"N
2°12'05.56"E, in départements Pas-de-Calais and Somme), two sites in Normandie (Château Gaillard –
le Bois Dumont, noted CG, 49°14'7.782"N 1°24'16.445"E and les Falaises d'Orival, noted FAL,
49°04'40.08"N 1°33'07.254"E, départements: Eure and Seine Maritime) and two sites in Occitanie
(Fourches, noted F, 43°55'07.00"N 3°30'46.1"E and Bois de Fontaret, noted BF, 43°55'17.71"N

3°30'06.06"E, départment: Gard). The six sites are included in the European NATURA 2000 network, a network of preserved areas designated to protect a number of habitats and species representative of European biodiversity. The four sites in Hauts-de-France and Normandie are managed by the Conservatoire d'espaces naturels of Normandie, Picardie and Nord – Pas-de-Calais and the sites in Occitanie by the CPIE Causses méridionaux. We sampled each site once a month from April to October 2016, except for the site of Riez that was sampled from May to October.

130 Plant-hoverfly observations and sampling

To collect information at the community level, in each site and at each session we realized: (i) a botanic
inventory of the flowering species, recorded their abundances and the total flower covering in the area
and (ii) a pollinator sampling using a hand net along a variable transect walk.

134 Flowering plants were identified at the species level. We recorded the abundances of all flowering 135 species. At first, we estimated the total percentage of surface covered by all flowering species in the selected area. We then estimated the relative abundance of each flowering species. We used Braun-136 137 Blanquet coefficients of abundance-dominance, ranked from i to 5 (most abundant coefficient class) 138 (van der Maarel 1975, 1979; Mucina et al. 2000), to rank flowering species. We converted the 139 coefficients to percentage intervals and then in mean values of percentage cover classes (Table S1): 140 coefficient **5** = 75-100%, coeff **4** = 50-75%, coeff **3**=25-50%, coeff **2** = 10-25%, coeff **1** = 1-10%, coeff **+** = few individuals less than < 1%, coeff i = 1 individual. All inventories were realized by the same 141 142 surveyors to avoid biases.

Pollinator observations were performed by the same team of 3-5 persons each day. The surveyors walked slowly around any potential attractive resource patch included in the selected 1-hectare area for 4h each day. We split the sampling period into 2 hours in the morning (about 10-12h) and 2 hours in the afternoon (about 14-16h) to cover the daily variability of both pollinator (bees and hoverflies, which are more active in the morning than in the afternoon; D'Amen *et al.* 2013) and flower communities. Sampling took place when we had suitable weather conditions for pollinators (following 149 Westphal et al. 2008). We sampled all flower-visiting insects and we recorded observed interactions. 150 All sampled insects were immediately put individually in a killing vial with ethyl acetate and were later prepared and pinned in the laboratory and identified at the species level by expert taxonomists. Even 151 if we collected both bees and hoverflies, in this study we focus on hoverflies only (since at the moment 152 153 of the study bees were not identified at the species level yet). Overall, we sampled for 41 days, equivalent to about 164 hours in the field (all the surveyors collected at the same time). For all analyses 154 155 described here, we only used the list of visited herbaceous plant species and hoverflies which were found visiting a plant. Despite their rarity and even if hoverflies are known to prefer open flowers 156 (Branquart & Hemptinne 2000), we also considered the interactions between hoverflies and plant 157 158 species of the Fabaceae family because we observed in the field that they visited Fabaceae species 159 that were already opened by other insects, e.g. by large bee species, such as Eucera sp. (de Manincor, 160 personal observation).

161 Plant – hoverfly networks

162 For each site, we constructed an interaction network consisting of all pairs of interacting plant and 163 insect species, pooling data from all months. A pair of species (i,j) was connected with intensity v_{ij} when 164 we recorded v_{ij} visits of insect species i on plant species j in the site. We calculated the network 165 specialization index, H2' (Blüthgen et al. 2006) using the H2fun function implemented in the bipartite package (Dormann et al. 2009; R Core Team 2018). We obtained the d-value (Kullback-166 167 Leibler divergence between the interactions of the focal species and the interactions predicted by the weight of potential partner species in the overall network) and the dmax-value (maximum d-value 168 169 theoretically possible given the observed number of interactions in the network) using the dfun function in the bipartite package (Dormann et al. 2009). We did not use the d' values provided by 170 171 this package as they sometimes yielded spurious results based on the computation of the minimal d 172 value (e.g. reporting low d' for species with only one partner in the network). We then manually calculated the standardized specialization index *d'* (Blüthgen *et al.* 2006) for each plant and insect
species as the ratio of the *d*-value to its corresponding *dmax*-value.

175 We calculated the modularity of the network and the associated partition of species into modules 176 using the cluster leading eigen method for modularity optimization implemented in the igraph package (Csardi & Nepusz 2006; Newman 2006). Modularity optimization can help identify 177 strong, simple divisions of a network into relatively independent sub-networks by looking for highly 178 179 interconnected sub-networks. However, modules are not meant to inform about more subtle 180 groupings among the species, e.g. particular avoidance of interactions between insects of group A and plants of group 1. In order to detect such groups, we implemented latent block models (LBM) using 181 182 the BM poisson method for Poisson probability distribution implemented in the blockmodels package (Leger et al. 2015). Blocks are calculated separately for the two groups (insect and plant) based 183 184 on the number of visits (i.e. a weighted network). The algorithm finds the best divisions of insects and 185 plants through fitting one Poisson parameter in each block of the visit matrix, thus essentially 186 maximizing the ICL (Integrated Completed Likelihood; Biernacki et al. 2000; Daudin et al. 2008). The 187 LBM script is given in Supplementary Information (Appendix S3). All analyses were performed in R version 3.3.3 (R Core Team 2018). 188

189 Plant and hoverfly abundances and phenology overlap

190 We calculated plant abundance using information about the abundance-dominance recorded in the 191 field following the methodology of Braun-Blanquet presented above. We transformed the coefficients 192 of abundance in percentages (Table S1): we used the mean of the percentage corresponding to each 193 class. We then calculated the relative abundance (A_P) of each flowering plant species as the ratio of 194 the focal species cumulated abundance to total flower abundance during its flowering season. For 195 hoverflies, we used the recorded number of visiting individuals (total abundance) and their presence 196 (recorded months) along the season to calculate their average abundance during months when they 197 were present (A_H).

198 We refer to plant phenology as their flowering period and insect phenology as the flying period. We 199 considered only flowering plants which had been visited by pollinators. For the pollinators, we 200 considered only hoverflies which were found in interaction. To build the species phenology tables for both plants and hoverflies, we merged the information provided by two sources of data (field data and 201 202 the literature): we used the observed phenology of both plants and insects during the field session as 203 the only source of information for plants (plants visited by insects and plants found in the botanic 204 inventory in the site at that date), and we complemented the hoverfly phenology with information provided by the Syrph the Net Database (Speight et al. 2016). We then built the phenology overlap 205 206 (PO) matrix based on the species phenology tables by calculating the number of phenologically active 207 months that are shared by each pair of insect and plant species along the season.

208 Bayesian Structural Equation Modelling (SEM)

209 SEM is a confirmatory technique that involves cause-effect equations to evaluate multivariate 210 hypotheses in ecological networks (Grace 2006). The primary interest of SEM analyses lies in its ability 211 to compare different causal models between the same sets of explanatory and explained variables. 212 Another important feature of SEM is that they can relate data through latent variables, i.e. variables 213 which are not measured in the model and which represent underlying causes or effects, coupled with observed variables (Grace 2006; Grace et al. 2010). SEM can now be assessed using Bayesian 214 215 approaches and parameters estimated using MCMC (Markov Chain Monte Carlo)(Grace et al. 2010; 216 Fan et al. 2016).

In our study, we modelled hoverfly-plant interaction networks using a SEM approach (Fig. 1) with latent variables linking the number of visits per plant-pollinator species pair to abundance and phenology overlap (PO) data through a first latent table representing probabilities of interactions, another latent table representing the possible interactions between plant and pollinators (as a realization of the aforementioned interaction probability matrix), and a third latent table yielding the expected number of visits per plant-pollinator species pair (*i.e.* the intensity of interactions). We used the term latent

tables to describe latent variables organized as insect x plant tables, such as the expected number ofvisit matrix.

In this model, we considered that PO had an effect on possible interactions (I_{ij}) and the number of visits $(\lambda_{ij}) - a$ longer overlap is intuitively expected to drive a higher probability of interaction and a larger number of visits. Interaction probabilities were also assumed to depend on two random effects (plant and insect species identities, E_i and E_j), to represent heterogeneity of species degrees (*i.e.* the number of links) in the network. We modelled the possibility of interaction I_{ij} between insect species *i* and plant species *j* (*i.e.* $I_{ij} = 1$ when species *i* and *j* can interact) as a Bernoulli random variable of probability μ_{ij} given by:

$$logit(\mu_{ij}) = \mu_0 + \mu_{PO}PO_{ij} + E_i + E_j$$

where logit is the usual logistic transformation (log(x/(1-x)), μ_0 is the intercept of this relation, μ_{PO} is the coefficient measuring the effect of PO, and E_i and E_j are the random effects associated with insect species i and plant species j respectively.

236 The number of visits V_{ij} was assumed to depend on plant and hoverfly abundances, as more abundant 237 species are expected to be more often sampled (and thus more often recorded "in interaction"). Please note that we only linked abundances to the number of visits, V_{ij}, and not to the possibility of interaction 238 239 I_{ij} , because the aim of the latter latent table is to capture "forbidden links", while detectability and 240 sampling effects are supposed to be captured by the statistical model of the number of interactions. 241 We integrated species abundances as predictor variables in order to assess the effect of PO on the 242 number of visits on top of a "null model" that already includes sensible drivers of the numbers of visits, such as species abundances. Vij was modelled as a Poisson random variable to allow for sampling 243 variability, with a conditional mean λ_{ij} (the intensity of visits that can occur) given by: 244

245
$$\log(\lambda_{ij}) = \lambda_0 + \lambda_H A_{H,i} + \lambda_P A_{P,j} + \lambda_{PO} \log(1 + PO_{ij})$$

where λ_0 is the intercept of this relation, λ_H is the coefficient measuring the effect of hoverfly abundance A_H , λ_P is that of plant abundance A_P , and λ_{PO} is the coefficient of the effect of PO.

Possible interactions (I_{ij}) and the intensity of visits (λ_{ij}) are multiplied to obtain the unconditional mean

number of recorded visits, *i.e.* V_{ij} is then obtained as a Poisson draw of mean $I_{ij} \lambda_{ij}$.

250 Overall we estimated four main parameters: the effect of phenology overlap on the probability of

interaction ($PO \rightarrow I_{ij}, \mu_{PO}$), the effect of phenology overlap on the intensity of interactions ($PO \rightarrow \lambda_{ij}$,

252 λ_{PO}), the effect of plant abundance on the intensity of interactions ($A_P \rightarrow \lambda_{ij}$, coefficient λ_P) and the

effect of insect (hoverflies) abundance on the intensity of interactions ($A_H \rightarrow \lambda_{ij}, \lambda_H$).

We used the jags function (R2jags package), which provides an interface from R to the JAGS library for Bayesian data analysis, to estimate model parameters. JAGS (Plummer 2003) uses a Markov Chain Monte Carlo algorithm to generate samples from the posterior distribution of the parameters. We ran two Markov chains with 10⁶ iterations per chain to check for model convergence. The code of the model is given in Supplementary Material (Appendix S1 and S2).

259 Model and parameter comparison

260 We estimated the 16 models that included all combinations of 0 and 4 of the above-mentioned effects 261 to understand which effects were more likely to play a role in the structuring of the network. The 262 goodness-of-fit of these models were compared using the leave-one-out cross-validation criterion 263 (LOO) calculated using the R package 100 using Pareto smoothed importance sampling for regularizing importance weights (Vehtari et al. 2017). The LOO criterion is a fully Bayesian method to compare 264 265 models of different complexities and to estimate prediction accuracy using the log-likelihood evaluated 266 at the posterior simulations of the parameter values (Vehtari et al. 2017). Models can thus be ranked 267 according to their LOO scores, with the best model being the one with the lowest LOO value. The LOO 268 criterion is analogous to the classic Akaike and Bayesian Information Criteria, which are used to 269 compare frequentist models, but can instead be applied to Bayesian models, without suffering the instability issues of the Deviance Information Criterion which used to be the main information criterion for Bayesian models(Vehtari *et al.* 2017). To rank the models, we then calculated the ΔLOO (noted Δ_i) as $\Delta_i = LOO_i - LOO_{min}$ (following Burnham & Anderson 2004), where LOO_{min} is the minimum of the LOO_i values among the 16 models. We used Δ_i to obtain model weights ω_i , following the Akaike weight methodology (Burnham & Anderson 2002):

$$\omega_i = \frac{e^{-\Delta_i/2}}{\sum e^{-\Delta_i/2}}$$

We then summed weights (w_H) over all models that incorporated a given focal parameter to ascertain the plausibility of the effect associated to this parameter. We used this sum to evaluate the null hypothesis (H0) that a given factor has no effect on the plant-pollinator interactions by comparing the sum of weights to null expectations, based on the fact that each tested effect is incorporated in exactly half of the tested models. The effect is considered *plausible* when $w_H > 0.5$, *implausible* otherwise, *likely* when $w_H > 0.73$, and *unlikely* when it corresponds to a value of 0.27 or lower, following Massol *et al.* (2007).

283 Predictive power analysis

284 We tested the predictive power of the models we built by making predictions for the I_{ij} table and 285 checking their validity using a binarized version of the visit table V_{ij} . Predictions were obtained by 286 defining a threshold on interaction probability μ_{ij} : values found above the threshold were predicted as 287 occurring interactions, values below the threshold as no interaction. The threshold probability value 288 was found by maximizing the sum of model specificity and sensitivity. We computed accuracy statistics 289 (sensitivity, specificity, omission rate, area under the ROC curve [AUC]) in two situations: (i) when 290 predicting data for the site that was used to build the model (self-validation; e.g. predicting interaction 291 data in the site of Riez based on the model developed for this site) and (ii) when predicting data for 292 the other site from the same region (cross-validation; e.g. predicting data for the LAR site based on the 293 model for the R site). We performed theses analyses using the SDMTools package in R. We only used the set of best models (LOO < 4) found for each site to predict the interactions in the other site through

295 $\,$ a multimodel averaging approach. We obtained the threshold probability using <code>optim.tresh</code>

296 function with option max.sensitivity+specificity.

297 RESULTS

298 Plant-hoverfly networks and phenology overlap

299 At the end of the field campaign we had collected 1584 hoverflies and recorded 1668 interactions 300 between 76 hoverfly species and 115 plant species overall (Table 1, Table S2). The number of sampled 301 hoverfly and plant species varied between sites and among regions. In Normandie we generally 302 sampled a higher number of hoverflies than in the other two regions (Table 1) and the maximum 303 number of visits recorded in the site of FAL was 47 (between Helophilus pendulus and Scabiosa 304 columbaria, Fig. S2) and in the site of CG was 22 (between Eristalis tenax and S. columbaria and 305 between Sphaerophoria scripta and Leontodon hispidus, Fig. 2). We observed the highest diversity of 306 both plants and hoverflies in Occitanie and the lowest diversity of hoverflies in Hauts-de-France. 307 Despite the high species diversity in Occitanie, the total number of interactions recorded in these sites 308 (BF and F) is not the highest recorded in the field (Table 1): the maximum number of visits in the site 309 of BF was 10 (between Spherophoria scripta and Helichrysum stoechas, Fig. S3) and 12 in the site of F 310 (between Syrphus ribesii and Bellis perennis, Fig. 3). In the two southern sites we also recorded the 311 lowest connectance values (BF: 0.07 and F: 0.08) of all six sites, with the highest connectance observed 312 in the site of R (R 0.16; LAR 0.13; CG 0.13; FAL 0.12). The maximum number of visits recorded in the 313 site of LAR was 12 (between Syrphus ribesii and L. hispidus, Fig. S4) and in the site of R was 17 (between 314 Syritta pipiens and Asperula cynanchica, Fig. S5).

In spite of differences in diversity and the number of interactions, the overall level of specialization (H2 index) did not show a high variation among the 6 networks (range: 0.32 – 0.37). However, we found that the sites in Occitanie (BF and F) had a higher average degree of specialization (d') for both insect (BF 0.63 and F 0.57) and plant species (BF 0.58 and F 0.48). The sites in Occitanie also had a higher

Supprimé: 7

Supprimé: 2	
Supprimé: 2	

modularity (BF 0.51 and F 0.48) than the ones in Normandie (CG 0.34 and FAL 0.23) and Hauts-de-France (LAR 0.37 and R 0.34; Table 1). Given that these statistics only compare 6 sites, none of these assessments can be properly statistically tested, but the importance of the differences among sites is highly suggestive of a difference in average specialization and modularity. We found that plant phenology is generally shorter in all sites than that of hoverflies (Table 1). The phenology overlap was shorter in Occitanie (BF and F) than in the other sites (Table 1).

Illustrations of the block clustering provided by the LBM analysis (Latent Block Model) are shown in Fig. 2 and 3 in the main text and in Fig. S2 to S5 in Supplementary Information. We found different numbers of blocks in plants and hoverflies among sites: the BF site had 2 insect blocks and 2 plant blocks (Fig. S<u>3</u>); the F site had 4 of both (Fig. <u>3</u>); the CG and R sites had 3 blocks for the plants and 4 blocks for the insects in (Fig. <u>2</u> and S5); the FAL site had 4 plant blocks and 3 insect blocks (Fig. S<u>2</u>); the LAR site had 3 blocks for the plants and 2 for the insects (Fig. S4).

Supprimé: 2 Supprimé: 2 Supprimé: 3 Supprimé: 3

336 Model ranking and comparison of parameters in each site

337 For each site we compared the 16 models using the LOO criterion (Table 2, ΔLOO values). We found 338 that models 1, 2 and 4 had consistently better goodness-of-fit than the others. The model 339 incorporating all effects except the effect of phenological overlap on the probability of interaction 340 (Model 4: $\lambda_{\mu} \sim A_{H} + A_{P} + PO$, Table 2) was the best model in the sites of CG, FAL and LAR. In the two 341 southern sites (BF and F), we found that the model incorporating all effects except that of phenological 342 overlap on the intensity of visits (Model 1: $\lambda_{ij} \sim A_H + A_P / I_{ij} \sim$ PO, Table 2), was the best one. The model 343 incorporating all effects (Model 0: $\lambda_{ij} \sim A_H + A_P + PO / I_{ij} \sim PO$, Table 2) was found as the best one only in the site of R, but was a suitable model (Δ LOO <4) in all the other sites (Table 2). We also compared the 344 345 sum of model weights of the four parameters among sites (Table 2, Effects weight). We found that the 346 effect of insect abundance on the intensity of interaction $(A_H \rightarrow \lambda_{ij})$ is always likely (*i.e.* the sum of their 347 weights is always higher than 0.73, Table 2) and of large effect size in all sites (standardised coefficient 348 higher than 1, Fig. 4). Likewise, we found that the effect of plant abundance on the intensity of 15

353	interaction ($A_P ightarrow \lambda_{ij}$) was always likely and had large effect size in most part of sites, except in the site
354	of F (w_H = 0.59, Table 2; standardised coefficient = 0.67, Fig. 4). The effects of phenological overlap on
355	the probability of interaction (PO $ ightarrow$ I_{ij}) and the intensity of visits (PO $ ightarrow$ λ_{ij}), however, had variable
356	plausibility among sites. The effect of phenological overlap on the probability of interaction was likely
357	only in half of the sites (Table 2 and Fig. 4). The effect of phenological overlap on the intensity of visits
358	was not plausible only in the two southern sites (BF and F) and plausible in the other four sites (LAR, R
359	CG and FAL, Table 2 and Fig. 4). In all sites, the standardised coefficients of PO effects were always less
360	than 1, thus showing a low effect size of phenology on interaction probability and intensity (Fig. 4).

When assessing the predictive power of the best models, we observed that the sensitivity and specificity values, both for the self-validation and the cross-validation, were higher than 0.5 (Table S₃), which means that the interactions predicted by the models are better than predicted by chance. While area under the curve (AUC) values were all higher than 0.75 for self-validation, cross-validation tests yielded intermediate values (AUC between 0.62 and 0.73), reflecting the fact that abundances and phenology are certainly not sufficient to make accurate predictions on the occurrence of plantpollinator interactions.

368 DISCUSSION

369 Latitude affects the seasonality, with advancing species phenologies at higher latitudes, and thus, can 370 be a limiting factor for the phenological coupling of interacting species (Post et al. 2018). In this study 371 we explored the effect of phenology overlap on a large network of species interactions in calcareous 372 grasslands and how this effect could vary along a latitudinal gradient in France using empirical data on 373 six plant-hoverfly networks. We identified plants and insects at the species level to build detailed 374 interaction networks and hence avoid spurious generalisation levels. In order to better understand the 375 determinants of variation in species interactions in space and time, we used the latitudinal gradient to 376 consider variations linked to environmental cues and the entire flowering period to allow for seasonal 377 variation (Valverde et al. 2016; Pellissier et al. 2017). One of the main problems of comparing networks Supprimé: 2

379 along gradients is the dependence of network metrics on network size (Staniczenko et al. 2013; 380 Astegiano et al. 2015; Tylianakis & Morris 2017). In this study, to avoid the problem of comparing networks with different dimensions, we decided to focus on the determinants of the probability of 381 interaction and the number of visits, rather than the overall structure. We employed Bayesian 382 383 Structural Equation Models (SEM) which is an emergent approach increasingly used to investigate 384 complex networks of relationship in ecological studies (Grace et al. 2010; Eisenhauer et al. 2015; Fan 385 et al. 2016; Theodorou et al. 2017). In our study we used SEM to link the numbers of visits to phenology 386 overlap (PO) and species abundance through latent probabilities of species interaction and expected 387 numbers of visits per plant-pollinator species pair. We tested different models with variable numbers 388 of effects and compared them in each site. In our models, we used species abundances to construct a 389 sensible null model to test whether phenology overlap could help explain the probability and intensity 390 of interactions when the effects of species abundances are already taken into account. In all sites, we found that models that included both PO and abundances had always better goodness-of-fit than 391 392 models that included only abundances. Abundances indeed provided a sensible null model since the 393 goodness-of-fit of models that did not include abundances were always quite worse than the ones 394 which did.

395 We also found that in all sites the most important factor affecting pollinator visits was insect 396 abundance (Table 2). Likewise, we found that plant abundance was also a very important effect in most 397 sites, except in the site of F (Table 2). Since insect abundances are given by visitation data, it is not 398 surprising that the intensity of interactions positively depends on these abundances. Species 399 abundance often explain the linkage level in pollination network studies (Olesen et al. 2008; Bartomeus et al. 2016; Chacoff et al. 2017; Pellissier et al. 2017) but it is often associated with the length of the 400 401 phenology to better assess the general properties of the interaction network (Vázquez et al. 2009; 402 Olito & Fox 2015). In accordance with this verbal prediction, we indeed found that the best models 403 incorporated the effect of PO on either the probability or the intensity of interactions (Table 2), and 404 the model that only considered species abundance (model 5 in Table 2) was not the best one in any

405 site. Phenology overlap generally cannot predict the probability of interaction on its own (Encinas-Viso 406 et al. 2012; CaraDonna et al. 2017). Our findings do agree with this general predicament since no site 407 favoured a model that only incorporated PO effects and because these effects always display lower 408 effect sizes than the other variables. However, our objective was not to compare the effect of 409 phenology overlap to that of species abundance - for such an endeavour, one would need estimates 410 of species abundances independent of visitation data. Because models which consider the effect of PO 411 on the intensity and/or probability of interactions are the best models for all sites, this evinces a clear 412 effect of PO. In our model, the effect of PO on the probability of interaction and the expected number 413 of visits also vary along the latitudinal gradient (Fig. 4). In general, we observed that southern sites (BF 414 and F) showed shorter plant phenology and phenology overlap (PO) than the other four sites (Table 415 1). In these sites, plant species richness is higher and fewer visits were sampled, probably because the 416 presence of specialist species with short phenophases may increase the number of forbidden or undetected links (Olesen et al. 2011; Martín González et al. 2012). Conversely, in sites where plant 417 418 phenology is longer, PO is longer too, as observed in Normandie and Hauts-de-France (CG, FAL, LAR 419 and R, Table 1). Moreover, when plant richness and specialization are lower, a higher number of visits 420 can be observed (Table 1) because generalist species could interact without constraints. Indeed, in 421 Normandie and Hauts-de-France we found that the effect of phenology overlap on the intensity of visits was always likely (PO $\rightarrow \lambda_{ij}$, Table 2) and we observed higher numbers of interactions in the first 422 423 two/three blocks of insects and plants which also corresponded to blocks with longer PO (Fig. 2, S2, S4 424 and S5). A higher phenological overlap is expected to drive a higher probability of interactions and a 425 larger number of visits (Olesen et al. 2011). In Occitanie, we did not find any effect of PO on the number 426 of visits because the more densely visited blocks do not correspond to those with longer phenology 427 overlap. Plant phenology can therefore drive the probability and the intensity of interactions in 428 networks in which plant phenology is shorter, thus suggesting that hoverflies may undergo selection for behavioural flexibility in order to maintain synchrony with their foraging resources (ller et al. 2013; 429 430 Ogilvie & Forrest 2017).

Supprimé: 3 Supprimé: 3

433 We also found that modularity decreased along the latitudinal gradient, with richer sites (BF and F) 434 displaying higher modularity (as in Sebastián-González et al. 2015) but also the lower connectance. In the two southern sites, higher modularity could be related to shorter phenologies and higher 435 436 proportions of non-overlapping sets of species, which induce some form of temporal short-term 437 specialisation (Lucas et al. 2018). However, modularity also seems to be influenced by species 438 abundances and degrees (Schleuning et al. 2014), and is expected to increase with link specificity 439 (Morente-López et al. 2018). Indeed, in these sites, species blocks match species degrees (Fig. 3, and 440 S3), with generalist and specialist species forming separate blocks among both plants and insects 441 (Martín González et al. 2012). With lower modularity and more generalist species, we expect a stronger 442 relationship between phenology and the intensity of interactions because interactions are less 443 influenced by insect preferences and more by seasonal rhythm and flower availability (Dormann et al. 444 2017). Thus, different phenophases might correspond to different compartments (Martín González et al. 2012; Morente-López et al. 2018), as observed in CG, FAL, LAR and R where higher overlap 445 446 corresponded to higher numbers of observed visits. Although phenology improved model fit (Table 2), 447 its effect size was modest (Fig. 4), which suggests that other types of data such as traits and phylogenies 448 might help predict specific interactions. In our study, we did not consider competition among studied 449 insect species or with other group of insects, such as bees which were present in all sites. Different types of pollinators with different abundances could have context-dependent effects on network 450 451 topology (Valverde et al. 2016). Moreover, in our study we only considered as "true absence" of the 452 interaction the lack of phenological coupling between species (i.e. plant and hoverfly species which are 453 not present at the same moment along the season cannot interact). We did not consider "false 454 absences", i.e. missing links, since not all the potential links among species are recorded in the field (Olesen et al. 2011) which may introduce bias in the estimation of the probability of interactions 455 456 (Bartomeus et al. 2016; Cirtwill et al. 2019).

To conclude, plant phenology here drives the duration of the phenology overlap between plant and hoverflies, which in turn influences either the probability of interaction or the expected number of Supprimé: 2

Supprimé: 2

461 visits, as well as network compartmentalization. Longer phenologies correspond to less constrained 462 interactions (lower modularity), shorter phenologies to more constrained interactions (higher modularity), which in turn restrict the number of visits. Phenology overlap alone was not sufficient to 463 explain interactions, as suggested elsewhere (CaraDonna et al. 2017). Plant and insect abundances 464 465 played a substantial role to explain the number of visits (as in Chacoff et al. 2017) since abundances may affect partner choice (Trøjelsgaard et al. 2015). Our results, and the ability of the method used 466 467 here to compare different effects on interaction patterns, suggest that the use of Bayesian SEM to compare networks of different sizes is a valuable tool which can help understand plant-pollinator 468 469 networks (Eisenhauer et al. 2015). The use of latent variables can help predict the probability of 470 interaction and the expected number of visits while avoiding circularity - the introduction of plant and 471 insect specific random effects played the role of an implicit "degree" effect. Our results demonstrate 472 the importance of considering differences in plant and insect phenologies to better predict their interactions in pollination networks at different latitudes. The use of morphological traits (e.g. tongue 473 474 length, inter-tegular distance, ...) together with species richness and phylogenies, on top of variables 475 already used, might improve the modelling of interactions and could help better understand some 476 forbidden or missing links in richer communities or considering other pollinators (e.g. wild bees).

477 ACKNOWLEDGEMENTS

478 Financial support was provided by the ANR ARSENIC project (grant no. 14-CE02-0012), the Region 479 Nord-Pas-de-Calais and the CNRS. We also thank Martin Speight for insect identification, Clément Mazoyer for informatic support and all the students who took part in the field campaign. This work is 480 481 a contribution to the CPER research project CLIMIBIO. The authors thank the French Ministère de l'Enseignement Supérieur et de la Recherche, the Hauts-de-France Region and the European Funds for 482 483 Regional Economical Development for their financial support. Version 4 of this preprint has been peer-484 Peer reviewed and recommended bv Community In Ecology 485 (https://doi.org/10.24072/pci.ecology.100034).

Figure 1. Summary diagram of the SEM model. We estimated 4 effects: the effect of plant abundance 488 489 $(AP \rightarrow \lambda ij, coefficient \lambda P)$, the effect of insect (hoverflies) abundance on the intensity of visits (AH \rightarrow 490 λ ij, λ H), the effect of phenology overlap on the intensity of visits (PO $\rightarrow \lambda$ ij, λ PO) and the effect of 491 phenology overlap on the probability of interaction (PO \rightarrow Iij, μ PO). The phenology overlap (PO) is the number of phenologically active months that are shared by each pair of insect and plant species along 492 493 the season. The intensity of visits (λij) and the probability of interaction are latent variables in the 494 model. Effect-i and effect-p are random effects calculated by the model which represent the insect 495 and plant species identities. The Iij (Possible interactions) is a binary variable and the Vij (visits observed) follow a Poisson distribution with an expected value given when the probability of 496 497 interaction is predicted as "true". Rectangles represent observed variables while ovals represent 498 unobserved influences.

Figure 2. Block clustering provided by LBM in the site of Chateau Gaillard (CG, Normandie) overlaid on a heatmap of species phenology overlap. Insect species are displayed in rows and plant species in columns, following their degree (number of partners). The blocks of insects and the blocks of plants are separated by solid black lines. Colours correspond to the number of months that are shared by each pair of plant and insect species (PO, phenology overlap), with higher PO corresponding to darker colours. Numbers are the number of visits observed in the field for a given plant-insect pair. Complete species names are reported in Table S2.

509 Figure 3. Block clustering provided by LBM in the site of Fourches (F, Occitanie), overlaid on a heatmap 510 of species phenology overlap. The LBM algorithm finds the best division for the group of insects and 511 plants independently through fitting Poisson parameters in each block maximizing the likelihood (ICL). 512 Insect species are displayed in rows and plant species in columns, following their degree (number of 513 partners). The blocks of insects and the blocks of plants are separated by solid black lines. Colours 514 correspond to the number of months that are shared by each pair of plant and insect species (PO, 515 phenology overlap), with higher PO corresponding to darker colours. Numbers are the number of visits 516 observed in the field for a given plant-insect pair. Complete species names are reported in Table S2.

Figure 4. Summary diagram of the best models in all sites. The thickness of the arrows is scaled to Akaike weights (thin ER < 0.73; thick ER > 0.73, cf. Table

522 2). Standardised coefficients of the model average (computed based on the Akaike weighted model average) are reported next to the arrows. PO is the

phenology overlap, I_{ij} is the probability of interaction, λ_{ij} is the intensity of visits, A_H and A_P are the hoverflies and plant abundances respectively.

Table 1. Summary table of results obtained in each site (Bois de Fontaret [BF] and Fourches [F] in Occitanie, Château Gaillard [CG] and Falaises [FAL] in Normandie, Larris [LAR] and Riez [R] in Hauts-de-France). H2' and d' indices refer to specialization indices described by Blüthgen *et al.* (2006) and implemented in the R package bipartite (Dormann *et al.* 2009). The modularity score was obtained using the leading-eigenvector method described by Newman (2006) and implemented in the igraph package (Csardi & Nepusz 2006). LBM refers to latent block modelling as implemented in the R package blockmodels (Leger *et al.* 2015).

529

		Collected data			Specialization index			Species phenology			Modularity analysis	LBM		
Site	Region	Sampled insects	Insect species	Plant species	Recorded Interactions	H2' index	d' Insects (average + sd)	d' Plants (average + sd)	Insect (average + sd)	Plant (average + sd)	Phenology overlap (PO) (average + sd)	modularity score	blocks I	blocks P
BF	Occitanie	197	40	43	198	0.37	0.63 ± 0.17	0.58 ± 0.17	5.25 ± 1.51	2.14 ± 1.04	1.77 ± 1.03	0.53	2	2
F	Occitanie	223	36	49	286	0.33	0.57 ± 0.18	0.48 ± 0.19	5.61 ± 1.54	2.08 ± 1.13	1.78 ± 1.14	0.48	4	4
CG	Normandie	295	32	25	297	0.34	0.40 ± 0.21	0.47 ± 0.18	6.03 ± 1.00	3.28 ± 1.24	3.02 ± 1.17	0.34	4	3
FAL	Normandie	363	34	30	374	0.32	0.40 ± 0.18	0.41 ± 0.18	6.06 ± 1.13	3.57 ± 1.59	3.23 ± 1.51	0.23	3	4
LAR	Hauts-de-France	220	24	33	220	0.36	0.48 ± 0.19	0.45 ± 0.15	6.38 ± 0.82	3.18 ± 1.38	2.99 ± 1.36	0.37	2	3
R	Hauts-de-France	286	22	29	293	0.32	0.39 ± 0.16	0.40 ± 0.16	5.55 0.74	3.38 ± 1.47	3.11 ± 1.45	0.34	4	3
	Total	1584	76	117	1668									

531 Table 2. (i) Comparison of SEM models using the leave-one-out cross-validation criterion (LOO); (ii) 532 evidence ratios (ER) of model effects in each site. (i) Models are ranked depending on the number of 533 parameters used (from 0 to 4). The best models are the ones with $\Delta LOO=0$ (underlined and bold 534 values). The other suitable models are the ones with $\Delta LOO < 4$ (underlined and italic values). λ_{ij} is the 535 intensity of visits, I_{ij} is the probability of interaction, A_H is the insect abundance, A_P is the plant 536 abundance and PO is the phenology overlap. (ii) We compared 4 model effects: PO \rightarrow I_{ij} , effect of the phenology overlap on the probability of interaction; PO $\rightarrow \lambda_{ij}$ effect of the phenology overlap on the 537 intensity of visits; $A_H \rightarrow \lambda_{ij}$ and $A_P \rightarrow \lambda_{ij}$ effects of the hoverflies and plant abundances on the intensity 538 of interaction. The w_H limits for unlikelihood is 0.27, plausibility 0.5 and likelihood 0.73. Underlined 539

540 and bold values represent the likely hypothesis only.

					Sit	tes			
			BF	F	CG	FAL	LAR	R	
	Model	Nb of parameters	ΔLOO values						
0	$\lambda_{ij} \sim A_H + A_P + PO / I_{ij} \sim PO$	4	<u>2.98</u>	2.04	3.54	2.54	2.86	0.00	
1	$\lambda_{ij} \sim A_H + A_P / I_{ij} \sim PO$	3	<u>0.00</u>	<u>0.00</u>	36.75	64.04	10.37	<u>2.90</u>	
2	$\lambda_{ij} \sim A_P + PO / I_{ij} \sim PO$	3	8.66	78.23	106.46	184.02	44.60	17.00	
3	$\lambda_{ij} \sim A_H + PO / I_{ij} \sim PO$	3	6.63	<u>1.71</u>	8.09	73.62	11.24	11.42	
4	$\lambda_{ij} \sim A_H + A_P + PO$	3	<u>2.86</u>	8.06	0.00	<u>0.00</u>	<u>0.00</u>	<u>2.24</u>	
5	λ_{ij} ~ PO / I_{ij} ~ PO	2	14.69	73.20	109.85	223.86	55.67	23.09	
6	$\lambda_{ij} \simeq A_H / I_{ij} \simeq PO$	2	<u>1.45</u>	<u>1.31</u>	33.53	119.04	27.23	19.76	
7	$\lambda_{ij} \sim A_P / I_{ij} \sim PO$	2	9.84	72.16	156.61	256.04	47.99	21.53	
8	$\lambda_{ij} \sim A_H + PO$	2	11.49	8.18	5.25	71.97	10.28	13.80	
9	$\lambda_{ij} \sim A_P + PO$	2	10.71	88.67	103.46	182.14	44.36	17.94	
10	$\lambda_{ij} \sim A_H + A_P$	2	24.36	14.04	36.10	66.82	10.51	4.26	
11	I _{ij} ~ PO	1	11.78	68.52	154.26	272.98	64.12	32.39	
12	$\lambda_{ij} \simeq PO$	1	19.99	86.20	108.46	219.66	54.64	25.73	
13	$\lambda_{ij} \sim A_H$	1	25.58	14.41	36.12	123.30	28.27	22.78	
14	$\lambda_{ij} \sim A_P$	1	32.99	87.70	157.74	256.39	48.82	22.87	
15	-	0	34.39	83.89	155.68	274.80	64.78	33.52	
Model effects			Effects weight (WH)						
	$PO \rightarrow I_{ij}$		<u>0.88</u>	<u>0.98</u>	0.15	0.22	0.20	<u>0.74</u>	
	$PO \rightarrow \lambda_{ij}$		0.26	0.35	<u>1.00</u>	<u>1.00</u>	<u>0.99</u>	<u>0.79</u>	
	$A_H \rightarrow \lambda_{ij}$		<u>0.99</u>	<u>1.00</u>	<u>1.00</u>	<u>1.00</u>	<u>1.00</u>	<u>1.00</u>	
	$A_P \rightarrow \lambda_{ij}$		<u>0.74</u>	0.59	0.93	<u>1.00</u>	<u>0.99</u>	<u>1.00</u>	

541

543 Supporting Information

- 544 The following Supporting Information is available for this article:
- 545 Figure S1. Sites location in France.
- 546 Figure S2, Block clustering provided by LBM in the site of Falaises (FAL, Normandie), overlaid on a
- 547 heatmap of species phenology overlap.
- 548 Figure S3. Block clustering provided by LBM in the site of Bois de Fontaret (BF, Occitanie), overlaid on
- 549 <u>a heatmap of species phenology overlap.</u>
- Figure S4. Block clustering provided by LBM in the site of Larris (LAR, Hauts-de-France), overlaid on a
- 551 heatmap of species phenology overlap.
- 552 Figure S5. Block clustering provided by LBM in the site of Riez (R, Hauts-de-France), overlaid on a
- 553 heatmap of species phenology overlap.
- Table S1. Table of transformed plant abundances.
- 555 <u>Table S2. Table of hoverfly and plant species names and abbreviations used in the LBM figures.</u>
- 556 <u>Table S3. Table of model accuracy.</u>
- 557 Appendix S1. Model code.
- 558 Appendix S2. Model script for the 16 models.
- 559 Appendix S3. Script <u>for</u> modularity and latent block model analysis (LBM).

560

Supprimé: 3

562	CONFLICT OF INTEREST DISCLOSURE
563	The authors of this preprint declare that they have no financial conflict of interest with the content of
564	this article. François Massol and Bertrand Schatz are one of the PCI Ecology recommenders.
565	
566	REFERENCES
567 568 569	Astegiano, J., Massol, F., Vidal, M.M., Cheptou, P.O. & Guimarães, P.R. (2015). The robustness of plant-pollinator assemblages: Linking plant interaction patterns and sensitivity to pollinator loss. <i>PLoS One</i> , 10, e0117243.
570 571 572	Bartomeus, I., Ascher, J.S., Wagner, D., Danforth, B.N., Colla, S., Kornbluth, S., <i>et al.</i> (2011). Climate- associated phenological advances in bee pollinators and bee-pollinated plants. <i>Proc. Natl. Acad.</i> <i>Sci. U. S. A.</i> , 108, 20645–9.
573 574 575	Bartomeus, I., Gravel, D., Tylianakis, J.M., Aizen, M.A., Dickie, I.A. & Bernard-Verdier, M. (2016). A common framework for identifying linkage rules across different types of interactions. <i>Funct. Ecol.</i> , 30, 1894–1903.
576 577 578	Baude, M., Kunin, W.E., Boatman, N.D., Conyers, S., Davies, N., Gillespie, M.A.K., <i>et al.</i> (2016). Historical nectar assessment reveals the fall and rise of floral resources in Britain. <i>Nature</i> , 530, 85–88.
579 580	Biernacki, C., Celeux, G. & Govaert, G. (2000). Assessing a mixture model for clustering with integrated completed likelihood. <i>IEEE Trans. Pattern Anal. Mach. Intell.</i> , 22, 719–725.
581 582	Blüthgen, N., Menzel, F. & Blüthgen, N. (2006). Measuring specialization in species interaction networks. <i>BMC Ecol.</i> , 6, 9.
583 584	Branquart, E. & Hemptinne, J. (2000). Selectivity in the exploitation of floral resources by hoverflies (Diptera: Syrphinae). <i>Ecography (Cop.</i>)., 23, 732–742.
585 586	Burnham, K.P. & Anderson, D.R. (2002). <i>Model Selection and Multimodel Inference A Practical Information-Theoretic Approach</i> . 2nd Editio. Springer-Verlag, New York.
587 588	Burnham, K.P. & Anderson, D.R. (2004). Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res., 33, 261–304.
589 590 591	CaraDonna, P.J., Petry, W.K., Brennan, R.M., Cunningham, J.L., Bronstein, J.L., Waser, N.M., <i>et al.</i> (2017). Interaction rewiring and the rapid turnover of plant – pollinator networks. <i>Ecol. Lett.</i> , 20, 385–394.
592 593	Chacoff, N.P., Resasco, J. & Vázquez, D.P. (2017). Interaction frequency, network position, and the temporal persistence of interactions in a plant–pollinator network. <i>Ecology</i> , 99, 21–28.
594 595	Cirtwill, A.R., Eklof, A., Roslin, T., Wootton, K. & Gravel, D. (2019). A quantitative framework for investigating the reliability of network construction. <i>Methods Ecol. Evol.</i> , 10, 902–911.
596 597	Colley, M.R. & Luna, J.M. (2000). Relative attractiveness of potential beneficial insectary plants to aphidophagous hoverflies (Diptera: Syrphidae). <i>Environ. Entomol.</i> , 29, 1054–1059.
598 599	Cowgill, S.E., Wratten, S.D. & Sotherton, N.W. (1993). The selective use of floral resources by the hoverfly <i>Episyrphus balteatus</i> (Diptera: Syrphidae) on farmland. <i>Ann. Appl. Biol.</i> , 122, 223–231.

- Csardi, G. & Nepusz, T. (2006). The igraph software package for complex network research.
 InterJournal, Complex Sy, 1695.
- D'Amen, M., Birtele, D., Zapponi, L. & Hardersen, S. (2013). Patterns in diurnal co-occurrence in an
 assemblage of hoverflies (Diptera: Syrphidae). *Eur. J. Entomol.*, 110, 649–656.
- Daudin, J.J., Picard, F. & Robin, S. (2008). A mixture model for random graphs. *Stat. Comput.*, 18,
 173–183.
- Devoto, M., Medan, D. & Montaldo, N.H. (2005). Patterns of interaction between plants and
 pollinators along an environmental gradient. *Oikos*, 109, 461–472.
- Dormann, C.F., Fründ, J., Blüthgen, N. & Gruber, B. (2009). Indices, graphs and null models: analyzing
 bipartite ecological networks. *Open Ecol. J.*, 2, 7–24.
- Dormann, C.F., Fründ, J. & Schaefer, H.M. (2017). Identifying causes of patterns in ecological
 networks: opportunities and limitations. *Annu. Rev. Ecol. Evol. Syst.*, 48, 12–20.
- Eisenhauer, N., Bowker, M.A., Grace, J.B. & Powell, J.R. (2015). From patterns to causal
 understanding: Structural equation modeling (SEM) in soil ecology. *Pedobiologia (Jena).*, 58, 65–
 72.
- Encinas-Viso, F., Revilla, T.A. & Etienne, R.S. (2012). Phenology drives mutualistic network structure
 and diversity. *Ecol. Lett.*, 15, 198–208.
- Fan, Y., Chen, J., Shirkey, G., John, R., Wu, S.R., Park, H., *et al.* (2016). Applications of structural
 equation modeling (SEM) in ecological studies: an updated review. *Ecol. Process.*
- Fortuna, M.A., Stouffer, D.B., Olesen, J.M., Jordano, P., Mouillot, D., Krasnov, B.R., *et al.* (2010).
 Nestedness versus modularity in ecological networks: Two sides of the same coin? *J. Anim. Ecol.*, 79, 811–817.
- Grace, J.B. (2006). Structural Equation Modeling and Natural Systems. Cambridge University Press,
 New York.
- 624 Grace, J.B., Anderson, T.M., Olff, H. & Scheiner, S.M. (2010). On the specification of structural 625 equation models for ecological systems. *Ecol. Monogr.*, 80, 67–87.
- Grace, J.B. & Bollen, K.A. (2008). Representing general theoretical concepts in structural equation
 models: The role of composite variables. *Environ. Ecol. Stat.*, 15, 191–213.
- Hutchings, M.J., Robbirt, K.M., Roberts, D.L. & Davy, A.J. (2018). Vulnerability of a specialized
 pollination mechanism to climate change revealed by a 356-year analysis. *Bot. J. Linn. Soc.*, 186,
 498–509.
- Iler, A., Inouye, D., Høye, T., Miller-Rushing, A., Burkle, L. & Johnston, E. (2013). Maintenance of
 temporal synchrony between syrphid flies and floral resources despite differential phenological
 responses to climate. *Glob. Chang. Biol.*, 19, 2348–2359.
- Jauker, F. & Wolters, V. (2008). Hover flies are efficient pollinators of oilseed rape. *Oecologia*, 156,
 819–823.
- Klecka, J., Hadrava, J., Biella, P. & Akter, A. (2018a). Flower visitation by hoverflies (Diptera:
 Syrphidae) in a temperate plant-pollinator network. *PeerJPreprints*, 19, 780–785.
- Klecka, J., Hadrava, J. & Koloušková, P. (2018b). Vertical stratification of plant–pollinator interactions
 in a temperate grassland. *PeerJ*, 6, e4998.

- Leger, J.B., Daudin, J.J. & Vacher, C. (2015). Clustering methods differ in their ability to detect
 patterns in ecological networks. *Methods Ecol. Evol.*, 6, 474–481.
- Lucas, A., Bodger, O., Brosi, B.J., Ford, C.R., Forman, D.W., Greig, C., *et al.* (2018). Generalisation and
 specialisation in hoverfly (Syrphidae) grassland pollen transport networks revealed by DNA
 metabarcoding. *J. Anim. Ecol.*, 87, 1008–1021.
- Lunau, K. (2014). Visual ecology of flies with particular reference to colour vision and colour
 preferences. J. Comp. Physiol. A Neuroethol. Sensory, Neural, Behav. Physiol., 200, 497–512.
- van der Maarel, E. (1975). The Braun-Blanquet approach in perspective. Vegetatio, 30, 213–219.
- van der Maarel, E. (1979). Transformation of cover-abundance values in phytosociology and its
 effects on community similarity. *Vegetatio*, 39, 97–114.
- Martín González, A.M., Allesina, S., Rodrigo, A. & Bosch, J. (2012). Drivers of compartmentalization in
 a Mediterranean pollination network. *Oikos*, 121, 2001–2013.
- Massol, F., David, P., Gerdeaux, D. & Jarne, P. (2007). The influence of trophic status and large-scale
 climatic change on the structure of fish communities in Perialpine lakes. J. Anim. Ecol., 76, 538–
 551.
- Memmott, J., Craze, P.G., Waser, N.M. & Price, M. V. (2007). Global warming and the disruption of
 plant-pollinator interactions. *Ecol. Lett.*, 10, 710–717.
- Miller-Struttmann, N.E., Geib, J.C., Franklin, J.D., Kevan, P.G., Holdo, R.M., Ebert-may, D., *et al.* (2015). Functional mismatch in a bumble bee pollination mutualism under climate change.
 Science, 349, 1541–4.
- Morente-López, J., Lara-Romero, C., Ornosa, C. & Iriondo, J.M. (2018). Phenology drives species
 interactions and modularity in a plant flower visitor network. *Sci. Rep.*, 8, 9386.
- Mucina, L., Schaminée, J.H.J. & Rodwell, J.S. (2000). Common data standards for recording relevés in
 field survey for vegetation classification. J. Veg. Sci., 11, 769–772.
- Newman, M.E.J. (2006). Finding community structure in networks using the eigenvectors of matrices.
 Phys. Rev. E Stat. Nonlinear, Soft Matter Phys., 74, 036104.
- Ogilvie, J.E. & Forrest, J.R. (2017). Interactions between bee foraging and floral resource phenology
 shape bee populations and communities. *Curr. Opin. Insect Sci.*
- Olesen, J.M., Bascompte, J., Dupont, Y.L., Elberling, H., Rasmussen, C. & Jordano, P. (2011). Missing
 and forbidden links in mutualistic networks. *Proc. Biol. Sci.*, 278, 725–732.
- Olesen, J.M., Bascompte, J., Elberling, H. & Jordano, P. (2008). Temporal dynamics in a pollination
 network. *Ecology*, 89, 1573–1582.
- Olito, C. & Fox, J.W. (2015). Species traits and abundances predict metrics of plant-pollinator network
 structure, but not pairwise interactions. *Oikos*, 124, 428–436.
- Parmesan, C. (2007). Influences of species, latitudes and methodologies on estimates of phenological
 response to global warming. *Glob. Chang. Biol.*, 13, 1860–1872.
- Pellissier, L., Albouy, C., Bascompte, J., Farwig, N., Graham, C., Loreau, M., *et al.* (2017). Comparing
 species interaction networks along environmental gradients. *Biol. Rev.*, 93, 785–800.
- 678 Plummer, M. (2003). JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling.

- Poisot, T. & Gravel, D. (2014). When is an ecological network complex? Connectance drives degree
 distribution and emerging network properties. *PeerJ*, 2, e251.
- Post, E., Steinman, B.A. & Mann, M.E. (2018). Acceleration of phenological advance and warming
 with latitude over the past century. *Sci. Rep.*, 8, 3927.
- R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for
 Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
- Rader, R., Edwards, W., Westcott, D.A., Cunningham, S.A. & Howlett, B.G. (2011). Pollen transport
 differs among bees and flies in a human-modified landscape. *Divers. Distrib.*, 17, 519–529.
- Rafferty, N.E. (2017). Effects of global change on insect pollinators: multiple drivers lead to novel
 communities. *Curr. Opin. Insect Sci.*
- Rafferty, N.E., CaraDonna, P.J. & Bronstein, J.L. (2015). Phenological shifts and the fate of mutualisms. *Oikos*, 124, 14–21.
- Schleuning, M., Fru, J., Klein, A., Abrahamczyk, S., Albrecht, M., Andersson, G.K.S., *et al.* (2012).
 Report Specialization of Mutualistic Interaction Networks Decreases toward Tropical Latitudes, 1925–1931.
- Schleuning, M., Ingmann, L., Strauß, R., Fritz, S.A., Dalsgaard, B., Matthias Dehling, D., *et al.* (2014).
 Ecological, historical and evolutionary determinants of modularity in weighted seed-dispersal
 networks. *Ecol. Lett.*, 17, 454–463.
- Sebastián-González, E., Dalsgaard, B., Sandel, B. & Guimarães, P.R. (2015). Macroecological trends in
 nestedness and modularity of seed-dispersal networks: Human impact matters. *Glob. Ecol. Biogeogr.*, 24, 293–303.
- Speight, M.C.D., Castella, E., Sarthou, J.-P. & Vanappelghem, C. (2016). StN 2016. In: Syrph the Net on
 CD, Issue 11. Speight, M.C.D., Castella, E., Sarthou, J.-P. & Vanappelghem, C. (Eds.) Syrph the
 Net Publications, Dublin.
- Staniczenko, P.P.A., Kopp, J.C. & Allesina, S. (2013). The ghost of nestedness in ecological networks.
 Nat. Commun., 4, 1391–1396.
- Staniczenko, P.P.A., Lewis, O.T., Tylianakis, J.M., Albrecht, M., Coudrain, V., Klein, A.-M., *et al.* (2017).
 Predicting the effect of habitat modification on networks of interacting species. *Nat. Commun.*,
 8.
- Theodorou, P., Albig, K., Radzevičiūtė, R., Settele, J., Schweiger, O., Murray, T.E., *et al.* (2017). The
 structure of flower visitor networks in relation to pollination across an agricultural to urban
 gradient. *Funct. Ecol.*, 31, 838–847.
- Trøjelsgaard, K., Jordano, P., Carstensen, D.W. & Olesen, J.M. (2015). Geographical variation in
 mutualistic networks: Similarity, turnover and partner fidelity. *Proc. R. Soc. B Biol. Sci.*, 282,
 20142925.
- Tylianakis, J.M. & Morris, R.J. (2017). Ecological networks across environmental gradients. *Annu. Rev. Ecol. Evol. Syst.*, 48, 25–48.
- Valverde, J., Gómez, J.M. & Perfectti, F. (2016). The temporal dimension in individual-based plant
 pollination networks. *Oikos*, 125, 468–479.
- Vázquez, D.P., Chacoff, N.P. & Cagnolo, L. (2009). Evaluating multiple determinants of the structure
 of plant-animal mutualistic networks. *Ecology*, 90, 2039–2046.

- Vehtari, A., Gelman, A. & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out
 cross-validation and WAIC. *Stat. Comput.*, 27, 1413–1432.
- Westphal, C., Bommarco, R., Carré, G., Lamborn, E., Morison, M., Petanidou, T., *et al.* (2008).
 Measuring bee diversity in different European habitats and biogeographic regions. *Ecol. Monogr.*, 78, 653–671.
- Willmer, P. (2012). Ecology: Pollinator-plant synchrony tested by climate change. *Curr. Biol.*, 22,
 R131–R132.
- 727

Supplementary Information

- 729 Does phenology explain plant-pollinator interactions at different latitudes? An assessment of its 730 explanatory power in plant-hoverfly networks in French calcareous grasslands
- 731 N. de Manincor^{1*}, N. Hautekeete¹, Y. Piquot¹, B. Schatz², C. Vanappelghem³, F. Massol^{1,4}
- 732 ¹ Université de Lille, CNRS, UMR 8198 Evo-Eco-Paleo, 59000 Lille, France
- 733 ² CEFE, EPHE-PSL, CNRS, University of Montpellier, University of Paul Valéry Montpellier 3, IRD,
- 734 Montpellier, France
- ³Conservatoire d'espaces naturels Nord et du Pas-de-Calais, 160 rue Achille Fanien ZA de la Haye,
- 736 62190 LILLERS
- 737 ⁴ Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 UMR 8204 CIIL Center for
- 738 Infection and Immunity of Lille, F-59000 Lille, France
- 739
- 740 Natasha de Manincor ORCID: 0000-0001-9696-125X
- 741 Nina Hautekeete ORCID: 0000-0002-6071-5601
- 742 Yves Piquot ORCID: 0000-0001-9977-8936
- 743 Bertrand Schatz ORCID: 0000-0003-0135-8154
- 744 François Massol ORCID: 0000-0002-4098-955X
- 745 746 747

- 746 *Corresponding author
- 748 E-mail adresses: natasha.de-manincor@univ-lille.fr, natasha.demanincor@gmail.com,
- 749 francois.massol@univ-lille.fr, nina.hautekeete@univ-lille.fr, yves.piquot@univ-lille.fr,
- 750 <u>Bertrand.SCHATZ@cefe.cnrs.fr</u>, <u>cedric.vanappelghem@espaces-naturels.fr</u>

Figure S1. Site location in France: in blue the French départements Pas-de-Calais and Somme (Hauts de-France region), in green the départements Eure and Seine Maritime (Normandie region), in orange
 the départment Gard (Occitanie region). The six sites correspond to the red dots (with the sites of
 Fourches and Bois de Fontaret represented by the same dot due to their closeness).

759 Figure S2. Block clustering provided by LBM in the site of Falaises (FAL, Normandie), overlaid on a 760 heatmap of species phenology overlap. Insect species are displayed in rows and plant species in 761 columns, following their degree (number of partners). The blocks of insects and the blocks of plants 762 are separated by solid black lines. Colours correspond to the number of months that are shared by 763 each pair of plant and insect species (PO, phenology overlap), with higher PO corresponding to darker 764 colours. Numbers are the number of visits observed in the field for a given plant-insect pair. Complete 765 species names are reported in Table S2.

Supplementary Information: Phenology and plant-hoverfly interactions

Figure S3, Block clustering provided by LBM in the site of Bois de Fontaret (BF, Occitanie), overlaid on

a heatmap of species phenology overlap. Insect species are displayed in rows and plant species in
columns, following their degree (number of partners). The blocks of insects and the blocks of plants
are separated by solid black lines. Colours correspond to the number of months that are shared by
each pair of plant and insect species (PO, phenology overlap), with higher PO corresponding to darker
colours. Numbers are the number of visits observed in the field for a given plant-insect pair. <u>Complete</u>
species names are reported in Table S2.

Supprimé: 2

Figure S4. Block clustering provided by LBM in the site of Larris (LAR, Hauts-de-France), overlaid on a heatmap of species phenology overlap. Insect species are displayed in rows and plant species in columns, following their degree (number of partners). The blocks of insects and the blocks of plants are separated by solid black lines. Colours correspond to the number of months that are shared by each pair of plant and insect species (PO, phenology overlap), with higher PO corresponding to darker colours. Numbers are the number of visits observed in the field for a given plant-insect pair. <u>Complete</u> species names are reported in Table S2.

Figure S5. Block clustering provided by LBM in the site of Riez (R, Hauts-de-France), overlaid on a heatmap of species phenology overlap. Insect species are displayed in rows and plant species in columns, following their degree (number of partners). The blocks of insects and the blocks of plants are separated by solid black lines. Colours correspond to the number of months that are shared by each pair of plant and insect species (PO, phenology overlap), with higher PO corresponding to darker colours. Numbers are the number of visits observed in the field for a given plant-insect pair. <u>Complete</u> species names are reported in Table S2.

791	Table S1. Table of transformed plant abundances. The first column shows the Braun-Blanquet
792	coefficients of, the second column, their percentages, and the third column, the transformed

abundances used as the plant abundances in the model.

Coefficient Braun-Blanquet	Abundance percentage interval	Abundance percentage
i	1 individual	0.1%
+	< 1 %	0.5%
1	1-10 %	5%
2	10-25 %	15%
3	25-50 %	35%
4	50-75 %	65%
5	75-100 %	85%

795 **Table S2.** Table of hoverfly and plant species names and abbreviations used in the LBM Figures.

Туре	Short name	Scientific name	<u>Notes</u>
			the identification i
		Cheilosia albitarsis (Meigen), 1822 / Cheilosia	not possible, could
<u>Syrphidae</u>	C.albitarsis.ranunculi	ranunculi (Doczkal), 2000	be both species - in
			the analysis we us
Completed.	6	Challes in a second (Marine), 1000	as one species
Syrphidae	<u>C.pagana</u>	Cheilosia paqana (Meigen), 1822	
<u>Syrphidae</u>	C.scutellata	<u>Cheilosia scutellata (Fallen), 1817</u>	
Syrphidae	<u>C.soror</u>	Cheilosia soror (Zetterstedt), 1843	
Syrphidae	<u>C.urbana</u>	Cheilosia urbana (Meigen), 1822	
Syrphidae	<u>C.vernalis</u>	Cheilosia vernalis (Fallen), 1817	
Syrphidae	<u>C.bicinctum</u>	Chrysotoxum bicinctum (L.), 1758	
Syrphidae	<u>C.cautum</u>	Chrysotoxum cautum (Harris), 1776	
Syrphidae	<u>C.cisalpinum</u>	Chrysotoxum cisalpinum (Rondani), 1845	
Syrphidae	<u>C.elegans</u>	Chrysotoxum elegans (Loew), 1841	
<u>Syrphidae</u>	<u>C.octomaculatum</u>	Chrysotoxum octomaculatum (Curtis), 1837	
Syrphidae	D.albostriatus	Dasysyrphus albostriatus (Fallen), 1817	
Syrphidae	E.balteatus	Episyrphus balteatus (De Geer), 1776	
<u>Syrphidae</u>	E.arbustorum	Eristalis arbustorum (L.), 1758	
Syrphidae	E.horticola	Eristalis horticola (De Geer), 1776	
Syrphidae	E.nemorum	Eristalis nemorum (L.), 1758	
<u>Syrphidae</u>	E.pertinax	Eristalis pertinax (Scopoli), 1763	
Syrphidae	<u>E.similis</u>	Eristalis similis (Fallen), 1817	
<u>Syrphidae</u>	<u>E.tenax</u>	Eristalis tenax (L.), 1758	
<u>Syrphidae</u>	<u>E.clavatus</u>	<u>Eumerus clavatus (Becker), 1923</u>	Also falso attained
<u>Syrphidae</u>	Eumerus sp.	<u>Eumerus sp.</u>	the identification i not possible
<u>Syrphidae</u>	E.corollae	Eupeodes corollae (Fabricius), 1794	
<u>Syrphidae</u>	E.latifasciatus	Eupeodes latifasciatus (Macquart), 1829	
<u>Syrphidae</u>	<u>E.luniger</u>	Eupeodes luniger (Meigen), 1822	
<u>Syrphidae</u>	<u>F.aurea</u>	Ferdinandea aurea (Rondani), 1844	
<u>Syrphidae</u>	<u>H.hybridus</u>	Helophilus hybridus (Loew), 1846	
<u>Syrphidae</u>	<u>H.pendulus</u>	<u>Helophilus pendulus (L.), 1758</u>	
<u>Syrphidae</u>	<u>H.trivittatus</u>	Helophilus trivittatus (Fabricius), 1805	
<u>Syrphidae</u>	<u>M.mellinum</u>	Melanostoma mellinum (L.), 1758	
<u>Syrphidae</u>	<u>M.scalare</u>	<u>Melanostoma scalare (Fabricius), 1794</u>	
<u>Syrphidae</u>	<u>Melanostoma sp.</u>	<u>Melanostoma sp.</u>	the identification i not possible
<u>Syrphidae</u>	M.auricollis	Meliscaeva auricollis (Meigen), 1822	
<u>Syrphidae</u>	M.albifrons	Merodon albifrons (Meigen), 1822	
<u>Syrphidae</u>	<u>M.avidus</u>	<u>Merodon avidus (Rossi), 1790</u>	
<u>Syrphidae</u>	M.elegans	<u>Merodon elegans (Hurkmans), 1993</u>	
<u>Syrphidae</u>	M.equestris	Merodon equestris (Fabricius), 1794	
<u>Syrphidae</u>	M.geniculatus	Merodon geniculatus Strobl, 1909	
<u>Syrphidae</u>	<u>M.moenium</u>	<u>Merodon moenium (Wiedemann), 1822</u>	
<u>Syrphidae</u>	M.nigritarsis	<u>Merodon nigritarsis Rondani, 1845</u>	
<u>Syrphidae</u>	<u>M.rufus</u>	Merodon rufus Meigen, 1838	
<u>Syrphidae</u>	M.serratulus	Merodon serrulatus Wiedemann in Meigen, 1822	
<u>Syrphidae</u>	<u>M.analis</u>	Microdon analis (Macquart), 1842	
<u>Syrphidae</u>	M.crabroniformis	Milesia crabroniformis (Fabricius), 1775	
<u>Syrphidae</u>	M.florea	<u>Myathropa florea (L.), 1758</u>	
<u>Syrphidae</u>	N.podagrica	<u>Neoascia podagrica (Fabricius), 1775</u>	
<u>Syrphidae</u>	P.haemorrhous	Paragus haemorrhous Meigen, 1822	

<u>Syrphidae</u>	<u>P.tibialis</u>	Paragus tibialis (Fallen), 1817	
Syrphidae	Paragus sp.	Paragus sp.	the identification is
			not possible
<u>Syrphidae</u>	P.pruinosomaculata	Pelecocera pruinosomaculata Strobl, 1906	
<u>Syrphidae</u>	P.tricincta	Pelecocera tricincta Meigen, 1822	
<u>Syrphidae</u>	<u>P.austriaca</u>	Pipiza austriaca Meigen, 1822	
<u>Syrphidae</u>	<u>P.divicoi</u>	Pipizella divicoi (Goeldlin), 1974	
<u>Syrphidae</u>	<u>P.virens</u>	Pipizella virens (Fabricius), 1805	
<u>Syrphidae</u>	P.zeneggenensis	Pipizella zeneggenensis (Goeldlin), 1974	
<u>Syrphidae</u>	<u>Pipizella sp.</u>	<u>Pipizella sp.</u>	
<u>Syrphidae</u>	P.albimanus	<u>Platycheirus albimanus (Fabricius), 1781</u>	the identification is
<u>Syrphidae</u>	P.albimanus.muelleri	<u>Platycheirus albimanus (Fabricius), 1782 /</u> <u>Platycheirus muelleri (Marcuzzi), 1941</u>	not possible, could be both species
<u>Syrphidae</u>	P.clypeatus	Platycheirus clypeatus (Meigen), 1822	
<u>Syrphidae</u>	P.Platycheirus	<u>Platycheirus sp.</u>	the identification is not possible
<u>Syrphidae</u>	R.campestris	<u>Rhingia campestris Meigen, 1822</u>	
<u>Syrphidae</u>	<u>S.dignota</u>	<u>Scaeva dignota (Rondani, 1857)</u>	
<u>Syrphidae</u>	<u>S.pyrastri</u>	<u>Scaeva pyrastri (L.), 1758</u>	
<u>Syrphidae</u>	<u>S.silentis</u>	<u>Sericomyia silentis (Harris), 1776</u>	
<u>Syrphidae</u>	<u>S.scripta</u>	<u>Sphaerophoria scripta (L.), 1758</u>	
<u>Syrphidae</u>	<u>S.taeniata</u>	<u>Sphaerophoria taeniata (Meigen), 1822</u>	
<u>Syrphidae</u>	<u>S.Sphaerophoria</u>	<u>Sphaerophoria sp.</u>	the female identification is not possible
<u>Syrphidae</u>	S.pipiens	<u>Syritta pipiens (L.), 1758</u>	
<u>Syrphidae</u>	<u>S.ribesii</u>	<u>Syrphus ribesii (L.), 1758</u>	
<u>Syrphidae</u>	<u>S.torvus</u>	Syrphus torvus (Osten-Sacken), 1875	
<u>Syrphidae</u>	S.vitripennis	Syrphus vitripennis (Meigen), 1822	
<u>Syrphidae</u>	V.bombylans	<u>Volucella bombylans (L.), 1758</u>	
<u>Syrphidae</u>	<u>V.inanis</u>	<u>Volucella inanis (L.), 1758</u>	
<u>Syrphidae</u>	V.pellucens	<u>Volucella pellucens (L.), 1758</u>	
<u>Syrphidae</u>	<u>V.zonaria</u>	<u>Volucella zonaria (Poda), 1761</u>	
<u>Syrphidae</u>	X.citrofasciatum	Xanthogramma citrofasciatum (De Geer), 1776	
<u>Syrphidae</u>	<u>X.dives</u>	<u>Xanthogramma dives (Rondani), 1857</u>	
Plants	<u>A.millefolium</u>	<u>Achillea millefolium</u>	
<u>Plants</u>	A.genevensis	<u>Ajuga genevensis</u>	
<u>Plants</u>	A.sphaerocephalon	Allium sphaerocephalon	
<u>Plants</u>	A.pyramidalis	Anacamptis pyramidalis	
<u>Plants</u>	<u>A.ramosum</u>	Anthericum ramosum	
<u>Plants</u>	<u>A.montana</u>	Anthyllis montana	
<u>Plants</u>	<u>A.vulneraria</u>	Anthyllis vulneraria	
<u>Plants</u>	<u>A.monspeliensis</u>	Aphyllanthes monspeliensis	
<u>Plants</u>	<u>A.aggregata</u>	<u>Arenaria aqqreqata</u> Asperula cynanchica	
<u>Plants</u>	A.cynanchica		
<u>Plants</u> <u>Plants</u>	<u>A.linosyris</u> <u>B.perennis</u>	<u>Aster linosyris</u> <u>Bellis perennis</u>	
<u>Plants</u>	<u>B.laevigata</u>	Biscutella laevigata	
<u>Plants</u>	B.perfoliata	Blackstonia perfoliata	
Plants	<u>B.repanda</u>	Brassica repanda	
Plants	<u>B.falcatum</u>	Bupleurum falcatum	
Plants	<u>C.patula</u>	Campanula patula	
Plants	<u>C.rapunculus</u>	Campanula rapunculus	
Plants	C.rotundifolia	Campanula rotundifolia	
		41	

Plants Plants Plants Plants <u>Plants</u> <u>Plants</u> **Plants Plants** Plants <u>Plants</u> **Plants** <u>Plants</u> **Plants Plants** <u>Plants</u> **Plants** <u>Plants</u> **Plants Plants** <u>Plants</u> Plants <u>Plants</u> <u>Plants</u> <u>Plants</u> **Plants** <u>Plants</u> **Plants Plants** <u>Plants</u> **Plants** <u>Plants</u> **Plants** <u>Plants</u> <u>Plants</u> <u>Plants</u> **Plants Plants** <u>Plants</u> Plants <u>Plants</u> **Plants** <u>Plants</u> **Plants Plants** <u>Plants</u> **Plants** <u>Plants</u> **Plants Plants** <u>Plants</u> **Plants** <u>Plants</u> <u>Plants</u>

<u>C.jacea</u>

C.acaule

C.foetida

D.carota

E.ritro

E.esula

E.exigua

E.stricta

L.vulgare

<u>L.delortii</u>

C.erythraea Centaurium erythraea Centaurea jacea C.scabiosa Centaurea scabiosa Cirsium acaule C.vulgare Clinopodium vulgare C.cantabrica Convolvulus cantabrica C.minima Coronilla minima C.capillaris Crepis capillaris Crepi<u>s foetida</u> C.planiflora Cuscuta planiflora var. godronii Daucus carota D.pentaphyllum Dorycnium pentaphyllum E.vulgare Echium vulgare Echinops ritro E.atrorubens Epipactis atrorubens E.campestre Eryngium campestre E.cyparissias Euphorbia cyparissias Euphorbia esula Euphorbia exigua E.nicaeensis Euphorbia nicaeensis Euphrasia stricta F.ericoides Fumana ericoides F.procumbens Fumana procumbens G.corrudifolium Galium corrudifolium <u>G.mollugo</u> <u>Galium mollugo</u> G.pumilum Galium pumilum G.amarella Gentianella amarella **G.vulgaris** Globularia vulgaris G.conopsea Gymnadenia conopsea H.apenninum Helianthemum apenninum <u>H.nummularium</u> Helianthemum nummularium H.oelandicum Helianthemum oelandicum H.stoechas Helichrysum stoechas H.lachenalii Hieracium lachenalii H.pilosella Hieracium pilosella (synonyms) H.comosa Hippocrepis comosa Hypericum perforatum H.perforatum I.montana Inula montana K.arvensis Knautia arvensis L.angustifolia Lavandula angustifolia L.hispidus Leontodon hispidus Leucanthemum graminifolium L.graminifolium Leucanthemum vulgare L.catharticum Linum catharticum L.narbonense Linum narbonense L.tenuifolium Linum tenuifolium L.corniculatus Lotus corniculatus Lotus delortii M.lupulina <u>Medicago lupulina</u> <u>M.minima</u> Medicago minima M.capillacea Minuartia capillacea M.rostrata Minuartia rostrata M.arvensis Myosotis arvensis

Pilosella officinarum (accepted name)

42

<u>Plants</u> **Plants Plants Plants** <u>Plants</u> <u>Plants</u> **Plants** Plants <u>Plants</u> **Plants Plants** <u>Plants</u> **Plants** <u>Plants</u> **Plants** <u>Plants</u> **Plants Plants Plants** <u>Plants</u> <u>Plants</u> <u>Plants</u> **Plants Plants** <u>Plants</u> **Plants** <u>Plants</u> <u>Plants</u> **Plants** <u>Plants</u> **Plants** <u>Plants</u> **Plants** <u>Plants</u> <u>Plants</u> **Plants** <u>Plants</u> **Plants** <u>Plants</u> <u>Plants</u> Plants **Plants**

<u>Plants</u>

O.verna O.supina <u>O.natrix</u> O.repens O.vulgare **O.angustifolium** P.orbiculare P.hieracioides P.saxifraga P.lanceolata P.media P.neumanniana P.reptans P.veris P.grandiflora R.bulbosus **R.gramineus** R.lutea R.pumilus R.canina S.minor S.columbaria S.triandra S.autumnalis S.acre S.album S.jacobaea S.libanotis S.montanum S.spiralis <u>S.recta</u> Taraxacum sp. <u>T.montanum</u> T.humifusum T.dolomiticus T.praecox T.vulgaris T.pratensis T.pratense <u>T.glauca</u> V.persica V.tetrasperma V.hirundinaria

Odontites verna **Onobrychis supina** Ononis natrix Ononis repens Origanum vulgare Ornithogalum angustifolium Phyteuma orbiculare Picris hieracioides Pimpinella saxifraga Plantago lanceolata <u>Plantago media</u> Potentilla neumanniana Potentilla reptans Primula veris Prunella grandiflora Ranunculus bulbosus Ranunculus gramineus Reseda lutea **Rhinanthus pumilus** <u>Rosa canina</u> Sanguisorba minor Scabiosa columbaria Scabiosa triandra Scilla autumnalis Sedum acre Sedum album subsp. micranthum Senecio jacobaea Seseli libanotis Seseli montanum Spiranthes spiralis Stachys recta Taraxacum sp. Teucrium montanum Thesium humifusum Thymus dolomiticus Thymus praecox Thymus vulgaris Tragopogon pratensis Trifolium pratense <u>Trinia qlauca</u> Veronica persica Vicia tetrasperma Vincetoxicum hirundinaria

796

797 Table S3, Table of model accuracy. The upper part of the table shows the results of the self-validation: in the region Occitanie the self-validation was tested

for the site Bois de Fontaret (BF ~ BF) and the site of Fourches (F ~ F); in the region Normandie for the site of Château Gaillard (CG ~ CG) and the sites of 798

Falaises (FAL ~ FAL); and in the region Hauts-de-France for the site of Larris (LAR ~ LAR) and for the site of Riez (R ~ R). The lower part of the table shows the 799 results of the cross-validation only between each site of the same region: in the region Occitanie between Bois de Fontaret et Fourches (BF ~ F and vice versa 800

801 F ~ BF); in the region Normandie between the site of Château Gaillard and Falaises (CG ~ FAL and vice versa FAL ~ CG); and in the region Hauts-de-France

between the site of Larris and Riez (LAR ~ R and vice versa R ~ LAR). 802

Model type	Region	Sites	Threshold	AUC	Omission rate	Sensitivity	Specificity	Prop correct	Карра
Self-validation	Occitanie	BF ~ BF	0.15	0.78	0.20	0.80	0.75	0.75	0.22
	Occitanie	F ~ F	0.16	0.78	0.19	0.81	0.74	0.75	0.25
	Normandie	CG ~ CG	0.44	0.75	0.29	0.71	0.79	0.78	0.34
	Normandie	FAL ~ FAL	0.37	0.76	0.16	0.84	0.67	0.69	0.27
	Hauts-de-France	$LAR \sim LAR$	0.29	0.75	0.16	0.84	0.66	0.69	0.27
	Hauts-de-France	$R \sim R$	0.27	0.81	0.23	0.77	0.86	0.84	0.53
Cross-validation	Occitanie	BF ~ F	0.15	0.73	0.14	0.86	0.59	0.63	0.20
	Occitanie	$F \sim BF$	0.16	0.67	0.30	0.70	0.64	0.65	0.17
	Normandie	CG ~ FAL	0.44	0.62	0.45	0.55	0.70	0.67	0.21
	Normandie	FAL ~ CG	0.37	0.68	0.24	0.76	0.60	0.63	0.25
	Hauts-de-France	$LAR \sim R$	0.29	0.63	0.35	0.65	0.61	0.61	0.17
	Hauts-de-France	$R \simeq LAR$	0.27	0.65	0.42	0.58	0.72	0.69	0.22

803

Supprimé: 2 Supprimé:

806 Appendix S1: Model Code

807	The model code (in JAGS language) given in this supplementary material refers to the "model Z0" which
808	considers all four parameters (model effects, Table 2 in the main text). Overall, we estimated 16
809	models that included between 0 and 4 of the above-mentioned effects. To create the code for these
810	other models, parameters should be removed following the order in the Tab. 2. The four parameters
811	tested in the model are: (i) alpha: effect of the phenology overlap (cooc) on the probability of
812	interaction; (ii) epsilon: effect of the phenology overlap on the intensity of visits; (iii) gamma: effect of
813	the insect abundances (ab_l) on the intensity of visits; and (iv) delta: effect of the plant abundances
814	(ab_P) on the intensity of visits.
815	

816	model
817	{
818	for(i in 1 : dim1) {
819	for(p in 1 : dim2) {
820	inter[i , p] ~ dbern(mu[i , p])
821	logit(mu[i , p]) <- beta + alpha*cooc[i , p] + effet_l[i] + effet_P[p]
822	lambda[i,p] <- exp(theta[i,p])
823	theta[i,p] <- theta0 + gamma*ab_I[i] + delta*ab_P[p] + epsilon*log(1+cooc[i,p])
824	visit[i,p] ~ dpois(inter[i,p]*lambda[i,p])
825	loglik[i,p] <- log(ifelse(visit[i,p]==0,1-mu[i,p]+mu[i , p]*dpois(visit[i,p],lambda[i,p]),mu[i ,
826	p]*dpois(visit[i,p],lambda[i,p])))
827	}
828	}
829	
830	for(i in 1 : dim1) {
831	effet_l[i] ~ dnorm(0.0,tau_l)
	45 Supplementary Information: Phenology and plant-hoverfly interactions

- 833
- 834 for(p in 1 : dim2) {
- 835 effet_P[p] ~ dnorm(0.0,tau_P)
- 836

}

- 837
- 838 tau_l ~ dexp(10)
- 839 tau_P ~ dexp(10)
- 840 alpha ~ dnorm(0,0.01)
- 841 beta ~ dnorm(0,0.01)
- 842 theta0 ~ dnorm(0,0.01)
- 843 gamma ~ dnorm(0,0.01)
- 844 delta ~ dnorm(0,0.01)
- 845 epsilon ~ dnorm(0,0.01)
- 846 }
- 847

848	Appendix 2: Model script for the 16 models – LOO values
849	The following generic script was applied to all the study sites using all 16 models. The script is separated
850	in three blocks which communicate among them: the script options, the model definitions and the
851	execution (model inference). We defined three options to set (i) the name of the directory (-d), (ii) the
852	site (-s) and (iii) the type of model (-m).
853	We used, as an example, the information for the site of Bois de Fontaret (BF).
854	Exemple: Rscript (name) "script-SEMLOO_generique.R" "-d o-BFs-2016" "-s BFs"
855	In order to calculate the standardised coefficients for each parameters used, at the end of the third
856	block, we added the functions to get the parameter values for each site and each model.
857	######################################
858	library(optparse)
859	option_list = list(
860	make_option(c("-d", "dir"), type="character", default=NULL, help="directory",
861	metavar="character"),
862	make_option(c("-s", "site"), type="character", default=NULL, help="site name",
863	metavar="character"),
864	make_option(c("-m", "modele"), type="character", default="all", help="modele name",
865	metavar="character"))
866	opt_parser = OptionParser(option_list=option_list);
867	<pre>opt = parse_args(opt_parser);</pre>
868	site<-opt\$site
869	dossier<-opt\$dir
870	######################################
871	library(bipartite)
872	library(vegan)
873	library(igraph)
	47

875	library(dummies)
876	library(MuMIn)
877	library(rjags)
878	library(boot)
879	library(R2jags)
880	library(coda)
881	library(lattice)
882	library(ggplot2)
883	library(loo)
884	library(matrixStats)
885	######################################
886	write_values<-function(x, f, app)
887	{
888	write.table(x, append=app, file=f, sep="\t", row.names=T, col.names=T, quote=F)
889	}
890	######################################
891	#Model function and model initialization: one function for each model from model Z15, with 0
892	parameters, to Z00 with all the parameters#
893	### MODEL Z015
894	mZ015<-function(){
895	init.funZ015 <-function(){
896	list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "beta" = rnorm(1,0,1), "theta0" =
897	rnorm(1,0,1), "effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0)
898	}

library(magrittr)

899	mod.Z015<<-jags(inits=init.funZ015,model.file = "modelZ015_code.txt",data =
900	list("visit","dim1","dim2"),parameters.to.save =
901	c("mu","effet_I","effet_P","tau_I","tau_P","beta","theta0", "loglik"),n.chains = 1, n.iter=1000000,
902	n.burnin = 250000, n.thin = 250)
903	mod.Z015.mcmc<-as.mcmc(mod.Z015)
904	mZ015<-mod.Z015\$BUGSoutput\$sims.list
905	mZ015.deviance<-mZ015\$deviance
906	mZ015.loglik<-mZ015\$loglik
907	dimSEM<-dim(mZ015.loglik)[1]
908	list.mZ015<-sapply(1:dimSEM,function(x) matrix(mZ015.loglik[x,,],nrow=dim1*dim2))
909	list.tmZ015<-(t(list.mZ015))
910	mZ015.loo<-loo(list.tmZ015)
911	<pre>loo_file<-paste(dossier, "/", site, "_Z015_loo.txt", sep="")</pre>
912	write_values("mZ015", app=F, loo_file)
913	mZ015_loo_pointwise<-mZ015.loo\$pointwise
914	mZ015_loo_pareto_k<-mZ015.loo\$pareto_k
915	mZ015.loo\$pareto_k<-NULL
916	mZ015.loo\$pointwise<-NULL
917	write_values(as.matrix(mZ015.loo), app=T, loo_file)
918	<pre>save.image(paste(dossier, "/", site, "_Z015.RData", sep=""))</pre>
919	}
920	### MODEL 2014
921	mZ014<-function(){
922	init.funZ014 <-function(){
923	list("tau_l" = rexp(1,10), "tau_P" = rexp(1,10), "beta" = rnorm(1,0,1), "delta" = rnorm(1,0,1),
924	"theta0" = rnorm(1,0,1), "effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0)
	49 Supplementary Information: Phenology and plant-hoverfly interactions

925	}
926	mod.Z014<<-jags(inits=init.funZ014,model.file = "modelZ014_code.txt",data =
927	list("visit","ab_P","dim1","dim2"),parameters.to.save =
928	c("mu","effet_I","effet_P","tau_I","tau_P","delta","beta","theta0","loglik"),n.chains = 1,
929	n.iter=1000000, n.burnin = 250000, n.thin = 250)
930	mod.Z014.mcmc<-as.mcmc(mod.Z014)
931	mZ014<-mod.Z014\$BUGSoutput\$sims.list
932	mZ014.deviance<-mZ014\$deviance
933	mZ014.loglik<-mZ014\$loglik
934	dimSEM<-dim(mZ014.loglik)[1]
935	list.mZ014<-sapply(1:dimSEM,function(x) matrix(mZ014.loglik[x,,],nrow=dim1*dim2))
936	list.tmZ014<-(t(list.mZ014))
937	mZ014.loo<-loo(list.tmZ014)
938	mZ014.loo
939	<pre>loo_file<-paste(dossier, "/", site, "_Z014_loo.txt", sep="")</pre>
940	write_values("mZ014", app=T, loo_file)
941	mZ014_loo_pointwise<-mZ014.loo\$pointwise
942	mZ014_loo_pareto_k<-mZ014.loo\$pareto_k
943	mZ014.loo\$pareto_k<-NULL
944	mZ014.loo\$pointwise<-NULL
945	write_values(as.matrix(mZ014.loo), app=T, loo_file)
946	<pre>save.image(paste(dossier, "/", site, "_Z014.RData", sep=""))</pre>
947	}
948	### MODEL 2013
949	mZ013<-function(){
950	init.funZ013 <-function(){
	50

951	list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "beta" = rnorm(1,0,1), "gamma" =
952	rnorm(1,0,1), "theta0" = rnorm(1,0,1), "effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1),
953	"inter"=inter0)
954	}
955	mod.Z013<<-jags(inits=init.funZ013,model.file = "modelZ013_code.txt",data =
956	list("visit","ab_l","dim1","dim2"),parameters.to.save =
957	c("mu","effet_I","effet_P","tau_I","tau_P","gamma","beta","theta0","loglik"),n.chains = 1,
958	n.iter=1000000, n.burnin = 250000, n.thin = 250)
959	mod.Z013.mcmc<-as.mcmc(mod.Z013)
960	mZ013<-mod.Z013\$BUGSoutput\$sims.list
961	mZ013.deviance<-mZ013\$deviance
962	mZ013.loglik<-mZ013\$loglik
963	dimSEM<-dim(mZ013.loglik)[1]
964	list.mZ013<-sapply(1:dimSEM,function(x) matrix(mZ013.loglik[x,,],nrow=dim1*dim2))
965	list.tmZ013<-(t(list.mZ013))
966	mZ013.loo<-loo(list.tmZ013)
967	mZ013.loo
968	<pre>loo_file<-paste(dossier, "/", site, "_Z013_loo.txt", sep="")</pre>
969	write_values("mZ013", app=T, loo_file)
970	mZ013_loo_pointwise<-mZ013.loo\$pointwise
971	mZ013_loo_pareto_k<-mZ013.loo\$pareto_k
972	mZ013.loo\$pareto_k<-NULL
973	mZ013.loo\$pointwise<-NULL
974	write_values(as.matrix(mZ013.loo), app=T, loo_file)
975	<pre>save.image(paste(dossier, "/", site, "_Z013.RData", sep=""))</pre>
976	}

977	### MODEL Z012
978	mZ012<-function(){
979	init.funZ012 <-function(){
980	list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "beta" = rnorm(1,0,1), "theta0" =
981	rnorm(1,0,1), "epsilon" = rnorm(1,0,1), "effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1),
982	"inter"=inter0)
983	}
984	mod.Z012<<-jags(inits=init.funZ012,model.file = "modelZ012_code.txt",data =
985	list("cooc", "visit", "dim1", "dim2"), parameters.to.save =
986	c("mu","effet_I","effet_P","tau_I","tau_P","beta","theta0","epsilon","loglik"),n.chains = 1,
987	n.iter=1000000, n.burnin = 250000, n.thin = 250)
988	mod.Z012.mcmc<-as.mcmc(mod.Z012)
989	mZ012<-mod.Z012\$BUGSoutput\$sims.list
990	mZ012.deviance<-mZ012\$deviance
991	mZ012.loglik<-mZ012\$loglik
992	dimSEM<-dim(mZ012.loglik)[1]
993	list.mZ012<-sapply(1:dimSEM,function(x) matrix(mZ012.loglik[x,,],nrow=dim1*dim2))
994	list.tmZ012<-(t(list.mZ012))
995	mZ012.loo<-loo(list.tmZ012)
996	mZ012.loo
997	<pre>loo_file<-paste(dossier, "/", site, "_Z012_loo.txt", sep="")</pre>
998	write_values("mZ012", app=T, loo_file)
999	mZ012_loo_pointwise<-mZ012.loo\$pointwise
1000	mZ012_loo_pareto_k<-mZ012.loo\$pareto_k
1001	mZ012.loo\$pareto_k<-NULL
1002	mZ012.loo\$pointwise<-NULL
	52

1003	write_values(as.matrix(mZ012.loo), app=T, loo_file)
1004	<pre>save.image(paste(dossier, "/", site, "_Z012.RData", sep=""))</pre>
1005	}
1006	### MODEL Z011
1007	mZ011<-function(){
1008	init.funZ011 <-function(){
1009	list("tau_l" = rexp(1,10), "tau_P" = rexp(1,10), "alpha" = 0.1,"beta" = rnorm(1,0,1), "theta0"
1010	= rnorm(1,0,1), "effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0)
1011	}
1012	mod.Z011<<-jags(inits=init.funZ011,model.file = "modelZ011_code.txt",data =
1013	list("cooc","visit","dim1","dim2"),parameters.to.save =
1014	c("mu","effet_I","effet_P","tau_I","tau_P","alpha","beta","theta0","loglik"),n.chains = 1,
1015	n.iter=1000000, n.burnin = 250000, n.thin = 250)
1016	mod.Z011.mcmc<-as.mcmc(mod.Z011)
1017	mZ011<-mod.Z011\$BUGSoutput\$sims.list
1018	mZ011.deviance<-mZ011\$deviance
1019	mZ011.loglik<-mZ011\$loglik
1020	dimSEM<-dim(mZ011.loglik)[1]
1021	list.mZ011<-sapply(1:dimSEM,function(x) matrix(mZ011.loglik[x,,],nrow=dim1*dim2))
1022	list.tmZ011<-(t(list.mZ011))
1023	mZ011.loo<-loo(list.tmZ011)
1024	mZ011.loo
1025	<pre>loo_file<-paste(dossier, "/", site, "_Z011_loo.txt", sep="")</pre>
1026	write_values("mZ011", app=T, loo_file)
1027	mZ011_loo_pointwise<-mZ011.loo\$pointwise
1028	mZ011_loo_pareto_k<-mZ011.loo\$pareto_k
	53 Supplementary Information: Phenology and plant-hoverfly interactions

1029	mZ011.loo\$pareto_k<-NULL
1030	mZ011.loo\$pointwise<-NULL
1031	write_values(as.matrix(mZ011.loo), app=T, loo_file)
1032	<pre>save.image(paste(dossier, "/", site, "_Z011.RData", sep=""))</pre>
1033	}
1034	### MODEL Z010
1035	mZ010<-function(){
1036	init.funZ010 <-function(){
1037	list("tau_l" = rexp(1,10), "tau_P" = rexp(1,10), "beta" = rnorm(1,0,1), "gamma" =
1038	rnorm(1,0,1), "delta" = rnorm(1,0,1), "theta0" = rnorm(1,0,1),
1039	"effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0)
1040	}
1041	mod.Z010<<-jags(inits=init.funZ010,model.file = "modelZ010_code.txt",data =
1042	list("visit","ab_I","ab_P","dim1","dim2"),parameters.to.save =
1043	c("mu","effet_I","effet_P","tau_I","tau_P","gamma","delta","beta","theta0","loglik"),n.chains = 1,
1044	n.iter=1000000, n.burnin = 250000, n.thin = 250)
1045	mod.Z010.mcmc<-as.mcmc(mod.Z010)
1046	mZ010<-mod.Z010\$BUGSoutput\$sims.list
1047	mZ010.deviance<-mZ010\$deviance
1048	mZ010.loglik<-mZ010\$loglik
1049	dimSEM<-dim(mZ010.loglik)[1]
1050	list.mZ010<-sapply(1:dimSEM,function(x) matrix(mZ010.loglik[x,,],nrow=dim1*dim2))
1051	list.tmZ010<-(t(list.mZ010))
1052	mZ010.loo<-loo(list.tmZ010)
1053	mZ010.loo
1054	<pre>loo_file<-paste(dossier, "/", site, "_Z010_loo.txt", sep="")</pre>
	54 Supplementary Information: Phenology and plant-hoverfly interactions

1055	write_values("mZ010", app=T, loo_file)
1056	mZ010_loo_pointwise<-mZ010.loo\$pointwise
1057	mZ010_loo_pareto_k<-mZ010.loo\$pareto_k
1058	mZ010.loo\$pareto_k<-NULL
1059	mZ010.loo\$pointwise<-NULL
1060	write_values(as.matrix(mZ010.loo), app=T, loo_file)
1061	<pre>save.image(paste(dossier, "/", site, "_Z010.RData", sep=""))</pre>
1062	}
1063	### MODEL Z09
1064	mZ09<-function(){
1065	init.funZ09 <-function(){
1066	list("tau_l" = rexp(1,10), "tau_P" = rexp(1,10), "beta" = rnorm(1,0,1), "delta" = rnorm(1,0,1),
1067	"theta0" = rnorm(1,0,1), "epsilon" = rnorm(1,0,1),
1068	"effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0)
1069	}
1070	mod.Z09<<-jags(inits=init.funZ09,model.file = "modelZ09_code.txt",data =
1071	list("cooc","visit","ab_P","dim1","dim2"),parameters.to.save =
1072	c("mu","effet_I","effet_P","tau_I","tau_P","delta","beta","theta0","epsilon","loglik"),n.chains = 1,
1073	n.iter=1000000, n.burnin = 250000, n.thin = 250)
1074	mod.Z09.mcmc<-as.mcmc(mod.Z09)
1075	mZ09<-mod.Z09\$BUGSoutput\$sims.list
1076	mZ09.deviance<-mZ09\$deviance
1077	mZ09.loglik<-mZ09\$loglik
1078	dimSEM<-dim(mZ09.loglik)[1]
1079	list.mZ09<-sapply(1:dimSEM,function(x) matrix(mZ09.loglik[x,,],nrow=dim1*dim2))
1080	list.tmZ09<-(t(list.mZ09))
	55 Supplementary Information: Phenology and plant-hoverfly interactions

1081	mZ09.loo<-loo(list.tmZ09)
1082	mZ09.loo
1083	loo_file<-paste(dossier, "/", site, "_Z09_loo.txt", sep="")
1084	write_values("mZ09", app=T, loo_file)
1085	mZ09_loo_pointwise<-mZ09.loo\$pointwise
1086	mZ09_loo_pareto_k<-mZ09.loo\$pareto_k
1087	mZ09.loo\$pareto_k<-NULL
1088	mZ09.loo\$pointwise<-NULL
1089	write_values(as.matrix(mZ09.loo), app=T, loo_file)
1090	<pre>save.image(paste(dossier, "/", site, "_Z09.RData", sep=""))</pre>
1091	}
1092	### MODEL Z08
1093	mZ08<-function(){
1094	init.funZ08 <-function(){
1095	list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "beta" = rnorm(1,0,1), "gamma" =
1096	rnorm(1,0,1), "theta0" = rnorm(1,0,1), "epsilon" = rnorm(1,0,1),
1097	"effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0)
1098	}
1099	mod.Z08<<-jags(inits=init.funZ08,model.file = "modelZ08_code.txt",data =
1100	list("cooc","visit","ab_l","dim1","dim2"),parameters.to.save =
1101	c("mu","effet_I","effet_P","tau_I","tau_P","gamma","beta","theta0","epsilon","loglik"),n.chains = 1,
1102	n.iter=1000000, n.burnin = 250000, n.thin = 250)
1103	mod.Z08.mcmc<-as.mcmc(mod.Z08)
1104	mZ08<-mod.Z08\$BUGSoutput\$sims.list
1105	mZ08.deviance<-mZ08\$deviance
1106	mZ08.loglik<-mZ08\$loglik
	56

1107	dimSEM<-dim(mZ08.loglik)[1]
1108	list.mZ08<-sapply(1:dimSEM,function(x) matrix(mZ08.loglik[x,,],nrow=dim1*dim2))
1109	list.tmZ08<-(t(list.mZ08))
1110	mZ08.loo<-loo(list.tmZ08)
1111	mZ08.loo
1112	loo_file<-paste(dossier, "/", site, "_Z08_loo.txt", sep="")
1113	write_values("mZ08", app=T, loo_file)
1114	mZ08_loo_pointwise<-mZ08.loo\$pointwise
1115	mZ08_loo_pareto_k<-mZ08.loo\$pareto_k
1116	mZ08.loo\$pareto_k<-NULL
1117	mZ08.loo\$pointwise<-NULL
1118	write_values(as.matrix(mZ08.loo), app=T, loo_file)
1119	<pre>save.image(paste(dossier, "/", site, "_Z08.RData", sep=""))</pre>
1120	}
1121	### MODEL 207
1122	mZ07<-function(){
1123	init.funZ07 <-function(){
1124	list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "alpha" = 0.1,"beta" = rnorm(1,0,1), "delta" =
1125	rnorm(1,0,1), "theta0" = rnorm(1,0,1), "effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1),
1126	"inter"=inter0)
1127	}
1128	mod.Z07<<-jags(inits=init.funZ07,model.file = "modelZ07_code.txt",data =
1129	list("cooc","visit","ab_P","dim1","dim2"),parameters.to.save =
1130	c("mu","effet_I","effet_P","tau_I","tau_P","alpha","delta","beta","theta0","loglik"),n.chains = 1,
1131	n.iter=1000000, n.burnin = 250000, n.thin = 250)
1132	mod.Z07.mcmc<-as.mcmc(mod.Z07)
	57 Supplementary Information: Phenology and plant-hoverfly interactions

1133	mZ07<-mod.Z07\$BUGSoutput\$sims.list
1134	mZ07.deviance<-mZ07\$deviance
1135	mZ07.loglik<-mZ07\$loglik
1136	dimSEM<-dim(mZ07.loglik)[1]
1137	list.mZ07<-sapply(1:dimSEM,function(x) matrix(mZ07.loglik[x,,],nrow=dim1*dim2))
1138	list.tmZ07<-(t(list.mZ07))
1139	mZ07.loo<-loo(list.tmZ07)
1140	mZ07.loo
1141	loo_file<-paste(dossier, "/", site, "_Z07_loo.txt", sep="")
1142	write_values("mZ07", app=T, loo_file)
1143	mZ07_loo_pointwise<-mZ07.loo\$pointwise
1144	mZ07_loo_pareto_k<-mZ07.loo\$pareto_k
1145	mZ07.loo\$pareto_k<-NULL
1146	mZ07.loo\$pointwise<-NULL
1147	write_values(as.matrix(mZ07.loo), app=T, loo_file)
1148	<pre>save.image(paste(dossier, "/", site, "_Z07.RData", sep=""))</pre>
1149	}
1150	### MODEL Z06
1151	mZ06<-function(){
1152	init.funZ06 <-function(){
1153	list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "alpha" = 0.1,"beta" = rnorm(1,0,1), "gamma"
1154	= rnorm(1,0,1), "theta0" = rnorm(1,0,1), "effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1),
1155	"inter"=inter0)
1156	}
1157	mod.Z06<<-jags(inits=init.funZ06,model.file = "modelZ06_code.txt",data =
1158	list("cooc","visit","ab_I","dim1","dim2"),parameters.to.save =
	58 Supplementary Information: Phenology and plant-hoverfly interactions

1159	c("mu","effet_I","effet_P","tau_I","tau_P","alpha","gamma","beta","theta0","loglik"),n.chains = 1,
1160	n.iter=1000000, n.burnin = 250000, n.thin = 250)
1161	mod.Z06.mcmc<-as.mcmc(mod.Z06)
1162	mZ06<-mod.Z06\$BUGSoutput\$sims.list
1163	mZ06.deviance<-mZ06\$deviance
1164	mZ06.loglik<-mZ06\$loglik
1165	dimSEM<-dim(mZ06.loglik)[1]
1166	list.mZ06<-sapply(1:dimSEM,function(x) matrix(mZ06.loglik[x,,],nrow=dim1*dim2))
1167	list.tmZ06<-(t(list.mZ06))
1168	mZ06.loo<-loo(list.tmZ06)
1169	mZ06.loo
1170	loo_file<-paste(dossier, "/", site, "_Z06_loo.txt", sep="")
1171	write_values("mZ06", app=T, loo_file)
1172	mZ06_loo_pointwise<-mZ06.loo\$pointwise
1173	mZ06_loo_pareto_k<-mZ06.loo\$pareto_k
1174	mZ06.loo\$pareto_k<-NULL
1175	mZ06.loo\$pointwise<-NULL
1176	write_values(as.matrix(mZ06.loo), app=T, loo_file)
1177	<pre>save.image(paste(dossier, "/", site, "_Z06.RData", sep=""))</pre>
1178	}
1179	### MODEL 205
1180	mZ05<-function(){
1181	init.funZ05 <-function(){
1182	list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "alpha" = 0.1,"beta" = rnorm(1,0,1), "theta0"
1183	= rnorm(1,0,1), "epsilon" = rnorm(1,0,1), "effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1),
1184	"inter"=inter0)
	59

1185	}
1186	mod.Z05<<-jags(inits=init.funZ05,model.file = "modelZ05_code.txt",data =
1187	list("cooc","visit","dim1","dim2"),parameters.to.save =
1188	c("mu","effet_I","effet_P","tau_I","tau_P","alpha","beta","theta0","epsilon","loglik"),n.chains = 1,
1189	n.iter=1000000, n.burnin = 250000, n.thin = 250)
1190	mod.Z05.mcmc<-as.mcmc(mod.Z05)
1191	mZ05<-mod.Z05\$BUGSoutput\$sims.list
1192	mZ05.deviance<-mZ05\$deviance
1193	mZ05.loglik<-mZ05\$loglik
1194	dimSEM<-dim(mZ05.loglik)[1]
1195	list.mZ05<-sapply(1:dimSEM,function(x) matrix(mZ05.loglik[x,,],nrow=dim1*dim2))
1196	list.tmZ05<-(t(list.mZ05))
1197	mZ05.loo<-loo(list.tmZ05)
1198	mZ05.loo
1199	<pre>loo_file<-paste(dossier, "/", site, "_Z05_loo.txt", sep="")</pre>
1200	write_values("mZ05", app=T, loo_file)
1201	mZ05_loo_pointwise<-mZ05.loo\$pointwise
1202	mZ05_loo_pareto_k<-mZ05.loo\$pareto_k
1203	mZ05.loo\$pareto_k<-NULL
1204	mZ05.loo\$pointwise<-NULL
1205	write_values(as.matrix(mZ05.loo), app=T, loo_file)
1206	<pre>save.image(paste(dossier, "/", site, "_Z05.RData", sep=""))</pre>
1207	}
1208	### MODEL Z04
1209	mZ04<-function(){
1210	init.funZ04 <-function(){
	60

1211	list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "beta" = rnorm(1,0,1), "gamma" =
1212	rnorm(1,0,1), "delta" = rnorm(1,0,1), "theta0" = rnorm(1,0,1), "epsilon" = rnorm(1,0,1),
1213	"effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0)
1214	}
1215	mod.Z04<<-jags(inits=init.funZ04,model.file = "modelZ04_code.txt",data =
1216	list("cooc","visit","ab_I","ab_P","dim1","dim2"),parameters.to.save =
1217	c("mu","effet_I","effet_P","tau_I","tau_P","gamma","delta","beta","theta0","epsilon","loglik"),n.chai
1218	ns = 1, n.iter=1000000, n.burnin = 250000, n.thin = 250)
1219	mod.Z04.mcmc<-as.mcmc(mod.Z04)
1220	mZ04<-mod.Z04\$BUGSoutput\$sims.list
1221	mZ04.deviance<-mZ04\$deviance
1222	mZ04.loglik<-mZ04\$loglik
1223	dimSEM<-dim(mZ04.loglik)[1]
1224	list.mZ04<-sapply(1:dimSEM,function(x) matrix(mZ04.loglik[x,,],nrow=dim1*dim2))
1225	list.tmZ04<-(t(list.mZ04))
1226	mZ04.loo<-loo(list.tmZ04)
1227	mZ04.loo
1228	<pre>loo_file<-paste(dossier, "/", site, "_Z04_loo.txt", sep="")</pre>
1229	write_values("mZ04", app=T, loo_file)
1230	mZ04_loo_pointwise<-mZ04.loo\$pointwise
1231	mZ04_loo_pareto_k<-mZ04.loo\$pareto_k
1232	mZ04.loo\$pareto_k<-NULL
1233	mZ04.loo\$pointwise<-NULL
1234	write_values(as.matrix(mZ04.loo), app=T, loo_file)
1235	<pre>save.image(paste(dossier, "/", site, "_Z04.RData", sep=""))</pre>
1236	}

1239	init.funZ03 <-function(){
1240	list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "alpha" = 0.1,"beta" = rnorm(1,0,1), "gamma"
1241	= rnorm(1,0,1), "theta0" = rnorm(1,0,1), "epsilon" = rnorm(1,0,1),
1242	"effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0)
1243	}
1244	mod.Z03<<-jags(inits=init.funZ03,model.file = "modelZ03_code.txt",data =
1245	list("cooc","visit","ab_I","dim1","dim2"),parameters.to.save =
1246	c("mu","effet_I","effet_P","tau_I","tau_P","alpha","gamma","beta","theta0","epsilon","loglik"),n.cha
1247	ins = 1, n.iter=1000000, n.burnin = 250000, n.thin = 250)
1248	mod.Z03.mcmc<-as.mcmc(mod.Z03)
1249	mZ03<-mod.Z03\$BUGSoutput\$sims.list
1250	mZ03.deviance<-mZ03\$deviance
1251	mZ03.loglik<-mZ03\$loglik
1252	dimSEM<-dim(mZ03.loglik)[1]

- 1253 list.mZ03<-sapply(1:dimSEM,function(x) matrix(mZ03.loglik[x,,],nrow=dim1*dim2))
- 1254 list.tmZ03<-(t(list.mZ03))
- 1255 mZ03.loo<-loo(list.tmZ03)
- 1256 mZ03.loo

1238

MODEL Z03

mZ03<-function(){

- 1257 loo_file<-paste(dossier, "/", site, "_Z03_loo.txt", sep="")
- 1258 write_values("mZ03", app=T, loo_file)
- 1259 mZ03_loo_pointwise<-mZ03.loo\$pointwise
- 1260 mZ03_loo_pareto_k<-mZ03.loo\$pareto_k
- 1261 mZ03.loo\$pareto_k<-NULL

1262 mZ03.loo\$pointwise<-NULL

62

1263	write_values(as.matrix(mZ03.loo), app=T, loo_file)
1264	<pre>save.image(paste(dossier, "/", site, "_Z03.RData", sep=""))</pre>
1265	}
1266	### MODEL Z02
1267	mZ02<-function(){
1268	init.funZ02 <-function(){
1269	list("tau_l" = rexp(1,10), "tau_P" = rexp(1,10), "alpha" = 0.1, "beta" = rnorm(1,0,1), "delta" =
1270	rnorm(1,0,1), "theta0" = rnorm(1,0,1), "epsilon" = rnorm(1,0,1),
1271	"effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0)
1272	}
1273	mod.Z02<<-jags(inits=init.funZ02,model.file = "modelZ02_code.txt",data =
1274	list("cooc","visit","ab_P","dim1","dim2"),parameters.to.save =
1275	c("mu","effet_I","effet_P","tau_I","tau_P","alpha","delta","beta","theta0","epsilon","loglik"),n.chain
1276	s = 1, n.iter=1000000, n.burnin = 250000, n.thin = 250)
1277	mod.Z02.mcmc<-as.mcmc(mod.Z02)
1278	mZ02<-mod.Z02\$BUGSoutput\$sims.list
1279	mZ02.deviance<-mZ02\$deviance
1280	mZ02.loglik<-mZ02\$loglik
1281	dimSEM<-dim(mZ02.loglik)[1]
1282	list.mZ02<-sapply(1:dimSEM,function(x) matrix(mZ02.loglik[x,,],nrow=dim1*dim2))
1283	list.tmZ02<-(t(list.mZ02))
1284	mZ02.loo<-loo(list.tmZ02)
1285	mZ02.loo
1286	loo_file<-paste(dossier, "/", site, "_Z02_loo.txt", sep="")
1287	write_values("mZ02", app=T, loo_file)
1288	mZ02_loo_pointwise<-mZ02.loo\$pointwise
	63 Supplementary Information: Phenology and plant-hoverfly interactions

1289	mZ02_loo_pareto_k<-mZ02.loo\$pareto_k
1290	mZ02.loo\$pareto_k<-NULL
1291	mZ02.loo\$pointwise<-NULL
1292	write_values(as.matrix(mZ02.loo), app=T, loo_file)
1293	<pre>save.image(paste(dossier, "/", site, "_Z02.RData", sep=""))</pre>
1294	}
1295	### MODEL Z01
1296	mZ01<-function(){
1297	init.funZ01 <-function(){
1298	list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "alpha" = 0.1,"beta" = rnorm(1,0,1), "gamma"
1299	= rnorm(1,0,1), "delta" = rnorm(1,0,1), "theta0" = rnorm(1,0,1),
1300	"effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0)
1301	}
1302	mod.Z01<<-jags(inits=init.funZ01,model.file = "modelZ01_code.txt",data =
1303	list("cooc","visit","ab_I","ab_P", "dim1", "dim2"),parameters.to.save =
1304	c("mu","effet_I","effet_P","tau_I","tau_P","alpha","gamma","delta","beta","theta0","loglik"),n.chain
1305	s = 1, n.iter=1000000, n.burnin = 250000, n.thin = 250)
1306	mod.Z01.mcmc<-as.mcmc(mod.Z01)
1307	mZ01<-mod.Z01\$BUGSoutput\$sims.list
1308	mZ01.deviance<-mZ01\$deviance
1309	mZ01.loglik<-mZ01\$loglik
1310	dimSEM<-dim(mZ01.loglik)[1]
1311	list.mZ01<-sapply(1:dimSEM,function(x) matrix(mZ01.loglik[x,,],nrow=dim1*dim2))
1312	list.tmZ01<-(t(list.mZ01))
1313	mZ01.loo<-loo(list.tmZ01)
1314	mZ01.loo
	64

1315	<pre>loo_file<-paste(dossier, "/", site, "_Z01_loo.txt", sep="")</pre>	
1316	write_values("mZ01", app=T, loo_file)	
1317	mZ01_loo_pointwise<-mZ01.loo\$pointwise	
1318	mZ01_loo_pareto_k<-mZ01.loo\$pareto_k	
1319	mZ01.loo\$pareto_k<-NULL	
1320	mZ01.loo\$pointwise<-NULL	
1321	write_values(as.matrix(mZ01.loo), app=T, loo_file)	
1322	<pre>save.image(paste(dossier, "/", site, "_Z01.RData", sep=""))</pre>	
1323	}	
1324	### MODEL Z00	
1325	mZ00<-function(){	
1326	init.funZ00 <-function(){	
1327	list("tau_I" = rexp(1,10), "tau_P" = rexp(1,10), "alpha" = 0.1, "beta" = rnorm(1,0,1), "gamma"	
1328	= rnorm(1,0,1), "delta" = rnorm(1,0,1), "theta0" = rnorm(1,0,1), "epsilon" = rnorm(1,0,1),	
1329	"effet_I"=rnorm(dim1,0,1),"effet_P"=rnorm(dim2,0,1), "inter"=inter0)	
1330	}	
1331	mod.Z00<<-jags(inits=init.funZ00,model.file = "modelZ00_code.txt",data =	
1332	list("cooc","visit","ab_I","ab_P","dim1","dim2"),parameters.to.save =	
1333	c("mu","effet_I","effet_P","tau_I","tau_P","alpha","gamma","delta","beta","theta0","epsilon","loglik	
1334	"),n.chains = 1, n.iter=1000000, n.burnin = 250000, n.thin = 250)	
1335	mod.Z00.mcmc<-as.mcmc(mod.Z00)	
1336	mZ00<-mod.Z00\$BUGSoutput\$sims.list	
1337	mZ00.deviance<-mZ00\$deviance	
1338	mZ00.loglik<-mZ00\$loglik	
1339	dimSEM<-dim(mZ00.loglik)[1]	
1340	list.mZ00<-sapply(1:dimSEM,function(x) matrix(mZ00.loglik[x,,],nrow=dim1*dim2))	
	65 Supplementary Information: Phenology and plant-hoverfly interactions	

1341	list.tmZ00<-(t(list.mZ00))	
1342	mZ00.loo<-loo(list.tmZ00)	
1343	mZ00.loo	
1344	<pre>loo_file<-paste(dossier, "/", site, "_Z00_loo.txt", sep="")</pre>	
1345	write_values("mZ00", app=T, loo_file)	
1346	mZ00_loo_pointwise<-mZ00.loo\$pointwise	
1347	mZ00_loo_pareto_k<-mZ00.loo\$pareto_k	
1348	mZ00.loo\$pareto_k<-NULL	
1349	mZ00.loo\$pointwise<-NULL	
1350	write_values(as.matrix(mZ00.loo), app=T, loo_file)	
1351	<pre>save.image(paste(dossier, "/", site, "_Z00.RData", sep=""))</pre>	
1352	}	
1353	###### end model functions	
1354	print("JOB DONE")	
1355	*****	
1356	### Network information (do not change) ###	
1357	*******	
1358	######################################	
1359	#launch_modele<-function(){	
1360	ntw<-read.table(paste(dossier, "/", site, "_ntw.txt", sep=""),	
1361	sep="\t",header=T,row.names=1)	
1362	dim1<-dim(ntw)[1]	
1363	dim2<-dim(ntw)[2]	
1364	web<-as.matrix(ntw,dim1,dim2)	
1365	<pre>inter0<-dget(paste(dossier, "/", site, "_web_i.txt", sep=""))</pre>	
1366	<pre>cooc<-dget(paste(dossier, "/", site, "_co.txt", sep=""))</pre>	
	66 Supplementary Information: Phenology and plant-hoverfly interactions	

1367	visit<-read.table(paste(dossier, "/", site, "_ntw.txt", sep=""),sep="\t",header=T)
1368	visit<-as.matrix(visit)
1369	abundancel<-read.table(paste(dossier, "/", site, "_abl.txt", sep=""), sep="\t", header=T)
1370	ab_I <- log(abundancel[,2])
1371	abundanceP<-read.table(paste(dossier, "/", site, "_abP.txt", sep=""), sep="\t", header=T)
1372	ab_P <- log(abundanceP[,2])
1373	if(opt\$modele == "all")
1374	{
1375	print("modele: all")
1376	for(i in 0:15)
1377	{
1378	<pre>print(paste("COMPUTING MODELE ", i, "\n", sep=""))</pre>
1379	mod<-eval(parse(text=paste("mZ0", i, sep="")))
1380	mod()
1381	
1382	}
1383	}else{
1384	print(paste("modele: ", opt\$modele), sep="")
1385	mod<-eval(parse(text=paste("m", opt\$modele, sep=""))) #recupération de la
1386	fonction du modele
1387	mod()
1388	}
1389	#### end model execution
1390	#launch_modele()
1391	
1392	######################################
	67 Supplementary Information: Phenology and plant-hoverfly interactions

1393	library(optparse)	
1394	option_list = list(
1395	make_option(c("-d", "dir"), type="character", default=NULL, help="model directory",	
1396	metavar="character"),	
1397	make_option(c("-s", "site"), type="character", default=NULL, help="site name",	
1398	metavar="character"))	
1399	<pre>opt_parser = OptionParser(option_list=option_list);</pre>	
1400	opt = parse_args(opt_parser);	
1401	rdata<-list.files(opt\$dir, pattern="*_Z015.RData")	
1402	load(paste(opt\$dir, "/", rdata, sep="")) #chargement du RData qui contient tous les modèles pour un	
1403	site donné	
1404	print(paste("RData ", rdata, " loaded", sep=""))	
1405	for(mod in ls(pattern="mod.Z0*"))	
1406	{	
1407	<pre>print(paste("getting values from ", mod, sep=""))</pre>	
1408	model<-eval(parse(text=mod))	
1409	if(is.null(model\$BUGSoutput\$mean\$alpha)){model\$BUGSoutput\$mean\$alpha<-NA}	
1410	if(is.null(model\$BUGSoutput\$mean\$beta)){model\$BUGSoutput\$mean\$beta<-NA}	
1411	if(is.null(model\$BUGSoutput\$mean\$delta)){model\$BUGSoutput\$mean\$delta<-NA}	
1412	if(is.null(model\$BUGSoutput\$mean\$epsilon)){model\$BUGSoutput\$mean\$epsilon<-NA}	
1413	if(is.null(model\$BUGSoutput\$mean\$gamma)){model\$BUGSoutput\$mean\$gamma<-NA}	
1414	val<-matrix(c(model\$BUGSoutput\$mean\$alpha, model\$BUGSoutput\$mean\$beta,	
1415	model\$BUGSoutput\$mean\$delta, model\$BUGSoutput\$mean\$epsilon,	
1416	model\$BUGSoutput\$mean\$gamma), 1, 5, dimnames=list("values", c("alpha", "beta", "delta",	
1417	"epsilon", "gamma")))	

write.table(val, file=paste(opt\$dir, "/", opt\$site, "_", mod, "_values.txt", sep=""), quote=F, 1418

sep="\t", row.names=F, col.names=T) 1419

1420 }

1421

1422 Appendix S3: Modularity and latent block model analysis

1423	We calculated the modularity of the network using the <code>cluster_leading_eigen</code> method for
1424	modularity optimization implemented in the $igraph$ package (Csardi and Nepusz 2006, Newman
1425	2006). We then performed latent block models (LBM) using the ${\tt BM_poisson}$ method for
1426	quantitative network data implemented in the blockmodels package (Leger et al. 2015). Blocks
1427	are calculated separately for the two groups (insect and plant) based on the number of visits (i.e. a
1428	weighted network). The algorithm finds the best divisions of insects and plants through fitting one
1429	Poisson parameter in each block of the visit matrix, thus essentially maximizing the ICL (Integrated
1430	Completed Likelihood; Biernacki et al. 2000, Daudin et al. 2007).
1431	
1432	library(bipartite)
1433	library(vegan)
1434	library(igraph)
1435	library(dummies)

- 1436 library(blockmodels)
- 1437 library(ade4)
- 1438 library(fields)
- 1439
- 1440 #site data (ex: Bois de Fontaret, BFs)
- 1441 BFs<-read.table("ntwBFs.txt",header=T,sep="\t")
- 1442 webBFs <- as.matrix(BFs)
- 1444 BFs.graph.bin<-graph_from_incidence_matrix(webBFs,multiple=F) #binary
- 1445 BFs.bin.cle<-cluster_leading_eigen(BFs.graph.bin)
- 1446 BFs.bin.cle
- 1447 #get phenology overlap matrix

1448	coBF<-dget("coBFs.txt")
------	-------------------------

1449 bmi_BFs<-BM_poisson('LBM', webBFs) 1450 1451 bmi_BFs\$estimate() numi_BFs<-which.max(bmi_BFs\$ICL) 1452 1453 densi_BFs<-sum(webBFs)/(nrow(webBFs)*ncol(webBFs)) 1454 probi_BFs<-bmi_BFs\$model_parameters[[numi_BFs]]\$lambda 1455 row.nb.gpi<-nrow(probi_BFs) 1456 col.nb.gpi<-ncol(probi_BFs) 1457 prob.rowi<-bmi_BFs\$memberships[[numi_BFs]]\$Z1 1458 hh.namei<-rownames(webBFs) 1459 mbrshp.hhi<-apply(prob.rowi,1,which.max) 1460 ls.freq.rowi<-rowSums(webBFs) res.hhi<-cbind.data.frame(hh.namei=hh.namei, mbrshp.hhi=mbrshp.hhi, freq.hhi=ls.freq.rowi) 1461 1462 res.hh.ordi<-res.hhi[order(res.hhi\$freq.hhi),] 1463 cpt=0 1464 for(k in 1: (nrow(res.hh.ordi)-1)) 1465 { if (res.hh.ordi\$mbrshp.hhi[k] !=res.hh.ordi\$mbrshp.hhi[k+1]) cpt=cpt+1 1466 1467 } 1468 nb.diff.hhi=cpt-(length(levels(as.factor(res.hh.ordi\$mbrshp.hhi)))-1) 1469 #write tables write.table(res.hh.ordi,sep="\t",row.names=FALSE) 1470 prob.coli<-bmi_BFs\$memberships[[numi_BFs]]\$Z2 1471 1472 sp.namei<-colnames(webBFs)</pre> mbrshp.spi<-apply(prob.coli,1,which.max) 1473 71 Supplementary Information: Phenology and plant-hoverfly interactions

1474	ls.freq.coli<-colSums(webBFs)
1475	res.spi<-cbind.data.frame(sp.namei=sp.namei, mbrshp.spi=mbrshp.spi, freq.spi=ls.freq.coli)
1476	res.sp.ordi<-res.spi[order(res.spi\$freq.spi),]
1477	cpt=0
1478	for (k in 1: (nrow(res.sp.ordi)-1))
1479	{
1480	if(res.sp.ordi\$mbrshp.spi[k] !=res.sp.ordi\$mbrshp.spi[k+1]) cpt=cpt+1
1481	}
1482	nb.diff.spi=cpt-(length(levels(as.factor(res.sp.ordi\$mbrshp.spi)))-1)
1483	res.sp.ord2i=res.spi[order(res.spi\$mbrshp.spi),]
1484	write.table(res.sp.ordi,sep="\t",row.names=FALSE)
1485	write.table(probi_BFs,file="_prob_BFs",sep="\t",row.names=FALSE)
1486	
1487	######################################
1488	par(mfrow=c(1,1))
1488 1489	par(mfrow=c(1,1)) webBFs2<-webBFs
1489	webBFs2<-webBFs
1489 1490	webBFs2<-webBFs webBFs[which(webBFs>1)]=1
1489 1490 1491	webBFs2<-webBFs webBFs[which(webBFs>1)]=1 nb.row=nrow(webBFs)
1489 1490 1491 1492	webBFs2<-webBFs webBFs[which(webBFs>1)]=1 nb.row=nrow(webBFs) nb.col=ncol(webBFs)
1489 1490 1491 1492 1493	webBFs2<-webBFs webBFs[which(webBFs>1)]=1 nb.row=nrow(webBFs) nb.col=ncol(webBFs) nds=webBFs
1489 1490 1491 1492 1493 1494	webBFs2<-webBFs webBFs[which(webBFs>1)]=1 nb.row=nrow(webBFs) nb.col=ncol(webBFs) nds=webBFs nps=coBF
1489 1490 1491 1492 1493 1494 1495	<pre>webBFs2<-webBFs webBFs[which(webBFs>1)]=1 nb.row=nrow(webBFs) nb.col=ncol(webBFs) nds=webBFs nps=coBF res.prob=read.table("_prob_BFs",sep="\t",h=TRUE)</pre>
1489 1490 1491 1492 1493 1494 1495 1496	<pre>webBFs2<-webBFs webBFs[which(webBFs>1)]=1 nb.row=nrow(webBFs) nb.col=ncol(webBFs) nds=webBFs nps=coBF res.prob=read.table("_prob_BFs",sep="\t",h=TRUE) ls.ord.col.prob=order(colSums(res.prob),decreasing=TRUE)</pre>
1489 1490 1491 1492 1493 1494 1495 1496 1497	<pre>webBFs2<-webBFs webBFs[which(webBFs>1)]=1 nb.row=nrow(webBFs) nb.col=ncol(webBFs) nds=webBFs nds=webBFs nps=coBF res.prob=read.table("_prob_BFs",sep="\t",h=TRUE) ls.ord.col.prob=order(colSums(res.prob),decreasing=TRUE) ls.ord.row.prob=order(rowSums(res.prob),decreasing=TRUE)</pre>

1500	row.nb.gpi=length(levels(as.factor(res.hhi\$mbrshp.hhi)))
1501	res.hh.ord3i=NULL
1502	for (h in ls.ord.row.prob)
1503	{
1504	part=res.hh.ord2i[res.hh.ord2i\$mbrshp.hhi==h,]
1505	part.ord=part[order(part\$freq.hhi,decreasing=TRUE),]
1506	res.hh.ord3i=rbind.data.frame(res.hh.ord3i,part.ord)
1507	}
1508	ls.ord.sp=sapply(res.spi\$mbrshp.spi,function(x) which (x==ls.ord.col.prob))
1509	res.sp.ord2i=res.spi[order(ls.ord.sp),]
1510	col.nb.gb=length(levels(as.factor(res.spi\$mbrshp.spi)))
1511	res.sp.ord3i=NULL
1512	for (h in ls.ord.col.prob)
1513	{
1514	part=res.sp.ord2i[res.sp.ord2i\$mbrshp.spi==h,]
1515	part.ord=part[order(part\$freq.spi,decreasing=TRUE),]
1516	res.sp.ord3i=rbind.data.frame(res.sp.ord3i,part.ord)
1517	}
1518	nds=nds[as.character(res.hh.ord3i\$hh.namei),as.character(res.sp.ord3i\$sp.namei)]
1519	nps=nps[as.character(res.hh.ord3i\$hh.namei),as.character(res.sp.ord3i\$sp.namei)]
1520	webBFs2=webBFs2[as.character(res.hh.ord3i\$hh.namei),as.character(res.sp.ord3i\$sp.namei)]
1521	
1522	######## Plot matrix with heatcolours and the number of visits ########
1523	visits<-matrix(webBFs2,nrow=dim(webBFs2)[1]*dim(webBFs2)[2],ncol=1)
1524	visits<-visits[which(visits>0)] #without the zeros
1525	coord.function<-function(x,nI,nP){
	73 Supplementary Information: Phenology and plant-hoverfly interactions

- 1526 c(((x-1)%%nl)+1,((x-1)%/%nl)+1)
- 1527
- 1528 func.plot.matrix<-function(x,y){
- 1529 indices<-which(x==1)
- 1530 min<-min(y)

}

- 1531 max<-max(y)
- 1532 yLabels<-rownames(x)
- 1533 xLabels<-colnames(x)
- 1534 title<-c("Bois de Fontaret")
- 1535 if(is.null(xLabels)){
- 1536 xLabels<-c(1:ncol(x))
- 1537
- 1538 if(is.null(yLabels)){

}

- 1539 yLabels<-c(1:nrow(x))
- 1540 }
- 1541 reverse<-nrow(x):1
- 1542 yLabels<-yLabels[reverse]
- 1543 y<-y[reverse,]
- 1544 image.plot(1:length(xLabels),1:length(yLabels),t(y),col=c("white",heat.colors(12)[12:1]), xlab="",
- 1545 ylab="",axes=FALSE,zlim=c(min,max))
- 1546 if(!is.null(title)){
- 1547 title(ylab="Insects", line=8, cex.lab=1)
- 1548 title(xlab="Plants", line=6, cex.lab=1.2)
- 1549 title("Bois de Fontaret")
- 1550 }
- 1551 axis(BELOW<-1,at=1:length(xLabels),labels=as.factor(as.character(xLabels)),las =2, cex.axis=0.6)

1552	axis(LEFT<-2,at=1:length(yLabels), labels=as.factor(as.character(yLabels)),las= 2,cex.axis=0.6)
1553	axis(BELOW<-1,at=1:length(xLabels),labels=rep("",length(xLabels)),las =2,cex.axis=0.6)
1554	axis(LEFT<-2,at=1:length(yLabels),labels=rep("",length(yLabels)),las=2,cex.axis<-0.6)
1555	coo<-t(rbind(sapply(indices,function(xx) coord.function(xx,nrow(x),ncol(x)))))
1556	text(coo[,2],nrow(webBFs)+1-coo[,1],labels=visits, cex=0.6)
1557	}
1558	func.plot.matrix(nds,nps)
1559	####### Black lines to delimit blocks in the plot ######
1560	if (row.nb.gpi>1)
1561	{
1562	ls.class=as.numeric(as.data.frame(table(res.hh.ord2i\$mbrshp.hhi))[ls.ord.row.prob,2])
1563	ls.cum=sum(ls.class)-cumsum(ls.class)
1564	abline(h=ls.cum+0.5,col="grey20", lwd=3)
1565	}
1566	if (col.nb.gpi>1)
1567	{
1568	ls.class=as.numeric(as.data.frame(table(res.sp.ord2i\$mbrshp.spi))[ls.ord.col.prob,2])
1569	ls.cum=cumsum(ls.class)
1570	abline(v=ls.cum+0.5,col="grey20", lwd=3)
1571	}