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Abstract

Pathogen transmission studies require sample collection over extended periods, which
can be challenging and costly, especially in the case of wildlife. A useful strategy
can be to collect pooled samples, but this presents challenges when the goal is
to estimate infection prevalencedynamics. In particular, pooling typically results
in

::::::::::
prevalence.

:::::
This

:::
is

::::::::
because

:::::::
pooling

::::
can

::::::::::
introduce

:
a dilution e↵ect where mixing

positive and
:::::::::
pathogen

:::::::::::::
concentration

::
is
::::::::
lowered

:::
by

::::
the

:::::::::
inclusion

::
of

:
negative or lower-

concentration sampleslowers the overall concentration. Simultaneously,
:
,
::::::
while

::
at

:::
the

::::::
same

:::::
time

:
a pooled sample is more likely to test positive as this requires only

one or a few positives. The
:::
can

:::::
test

::::::::
positive

:::::
even

::::::
when

:::::
some

:::
of

::::
the

::::::::::::
contributing

:::::::
samples

::::
are

:::::::::
negative.

:::
If

:::::
these

:::::::
biases

::::
are

:::::
taken

:::::
into

:::::::::
account,

:::
the

:
concentration of a

pooled sample can be used
:::::::::
leveraged

:
to infer the most likely proportion of positive

individuals, and thus improve overall prevalence reconstruction, but few methods
exist that account for the sample mixing processand none can handle common but
non-standard frequency distributions of concentrations.

We present a Bayesian multilevel model that estimates prevalence dynamics over
time using pooled and individual samples

::
in

::
a

:::::::
wildlife

:::::::
setting. The model explicitly

accounts for the
::::::::
complete

:
mixing process that determines pooled sample concentra-

tion, thus enabling accurate prevalence estimation even from pooled samples only.
As it is nearly impossible

::::::::::
challenging

:
to link individual-level metrics such as age,

sex, or immune markers to infection status when using pooled samples, the model
also allows the incorporation of individual-level samples. These are used to further
improve prevalence estimates and estimate variable correlations. Crucially, when in-
dividual samples can test false negative, a potentially strong bias is introduced that
results in wrong regression coe�cient estimates

::::::::
incorrect

::::::::::
estimates

:::
of

::::::::::
regression

::::::::::
coe�cients. The model, however, can use

::::::::
account

:::
for

::::
this

:::
by

:::::::::::
leveraging the combi-

nation of pooled and individual samplesto estimate false negative rate and account
for it so that regression coe�cients are estimated correctly. Last, the model enables
estimation of extrinsic environmental e↵ects on prevalence dynamics.

Using a simulated dataset based on
::::::::
inspired

:::
by

:
virus transmission in flying foxes,

we show that the model is able to accurately estimate prevalence dynamics, false
negative rate, and covariate e↵ects. Using

:::
We

:::::
test

::::::
model

::::::::::::
performance

::::
for a range of

scenarios based on real study systems we show that the model is highly robust
::::::::
realistic

:::::::::
sampling

:::::::::
scenarios

::::
and

::::
find

:::::
that

::::::
while

::
it

::
is

::::::::::
generally

:::::::
robust,

::::::
there

:::
are

::
a
::::::::
number

::
of

::::::
factors

:::::
that

:::::::
should

:::
be

:::::::::::
considered

::
in

::::::
order

:::
to

::::::::::
maximize

::::::::::::
performance.

The model presents an important advance in the use of pooled samples for esti-
mating prevalence dynamics

::
in

::
a
::::::::
wildlife

:::::::
setting, can be used with any biomarker of

infection (Ct values, antibody levels, other infection biomarkers) and can be applied
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to a wide range of human and wildlife pathogen study
:::::::::::::::
ofhost-pathogen

:
systems.
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Introduction

When monitoring and studying pathogen transmission over time, it is essential to
estimate prevalence dynamics. Prevalence, defined as the proportion of individuals
in a population that tests positive for the current (e.g., presence of a pathogen
or its genetic material) or past (e.g., antibody presence) presence of an infectious
organism, is a key metric, yet can be di�cult to estimate. The reason for this is
that it is almost never feasible to test every individual in population, which means
prevalence needs to be estimated from a population subset. As a result, methods are
needed to estimate prevalence from imperfect data due to constraints in the number
and quality of samples.

Sampling will depend on constraints (logistical, technical, individual availability,
monetary), and di↵erent sampling strategies can be used to maximize the number
of individuals being sampled [RN17, RN20]. One such strategy is to pool samples,
either by combining samples collected from di↵erent individuals (which reduces re-
source investments in testing and collection; [RN18]), or by collecting samples that
already consist of material from multiple individuals (e.g., monitoring of SARS-
CoV-2 in sewage; [RN19]). In studies of wildlife disease this latter approach is
relatively common, for example when collecting fecal droppings in a den or cage
containing multiple animals [RN20], or when collecting water samples in a lake or
in wastewater [RN21]. An important drawback of the latter approach to pooling
is that the sample cannot be linked to individual-level data, except indirectly under
certain controlled conditions; [RN94].

Individual samples provide the highest-resolution information, as they allow addi-
tional individual-level data to be collected, including body measurements, estimates
of sex and age class, and a wide range of biomarkers such as antibodies, blood
proteins or other infections. These additional data are highly valuable as they can
be used to learn more about correlates and drivers of infection. Depending on the
study system, however, there can be several challenges to collecting and interpreting
individual samples. A first is that the collection and processing of individual sam-
ples can be costly — in terms of e↵ort, time or monetary resources — which limits
sample sizes and temporal/spatial resolution. It can also be di�cult to capture and
sample individuals, for example when dealing with species that are elusive or live
in low-density populations. Another challenge can arise when individuals do not
shed a pathogen continuously but intermittently because of fluctuating pathogen
concentrations. For example, the rodent Mastomys natalensis is known to shed
arenavirus in varying concentrations [RN29]. Intermittent shedding means that it
is possible to collect a negative sample or a sample with an undetectable pathogen
concentration even though the individual can be considered infectious, leading to
false negative results with regards to determining whether or not an individual is
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infectious.

A powerful study approach is to optimize the trade-o↵ between sampling cost
and data resolution by collecting both pooled and individual-level samples. This is
commonly done in bat pathogen studies, where samples are collected from individual
bats using net captures — which enables the collection of high-quality samples
and associated individual variables — as well as from multiple bats simultaneously
using plastic sheets placed under roosts [RN22, RN23, RN24]. This approach is
particularly useful when the goal is to estimate prevalence dynamics.

When estimating prevalence, the use of pooled samples presents two well-known
challenges, both resulting from the fact that multiple individuals contribute to the
same sample. The first challenge is that a pooled sample can test positive regard-
less of how many of the contributing individual are actually positive. As a result,
the proportion of positive pooled samples can be biased upwards, leading to over-
estimates of prevalence [RN24]. The second challenge is the opposite of the first,
and is the fact that a pooled sample can test negative even when one or multiple
contributing individuals are positive. This can arise when the sample is diluted by
negative samples, causing the concentration of the positive sample(s) to lower and
fall below a detection threshold (which is called the dilution e↵ect in pooled/group/-
composite testing literature; [RN11]). Assay sensitivity will be an essential factor
in how low the diluted concentration can be before it can no longer be detected.
Several approaches have been suggested to deal with these two challenges [RN11,
RN8], the most recent of which presents a Bayesian mixture model approach that
can account for both at the same time under certain conditions [RN10]. Most
studies on the analysis of pooled samples focus on testing protocols for cost reduc-
tion, with the goal of eventually identifying the positive individuals [RN18, RN25,
RN26]. Perhaps for this reason, few methods have been developed for explicitly
using pooled samples to estimate prevalence in the population [RN5, RN6, RN8,
RN13, RN24], and even fewer have attempted to use the actual concentration
of the infectious agent

:::
(or

::::::::
another

::::::::::
biomarker

:::::
like

:::::::::
antibody

:::::::::::::::
concentration)

:
in the

pooled sample to estimate how many of the contributing individuals are positive
. Furthermore, to our knowledge no methods exist that are able to estimate the
proportion of positive individuals using concentration [RN10, RN8, RN9]

:
.
:::
A

:::::::::
particular

::::::::::
challenge

::::::
arises

:
when the underlying distribution of test values does not

follow a standard-family (e.g. Gaussian) distribution, even though this is the most
common situation, especially for wildlife populations [RN39, RN40].

::::
Few

::::::::
methods

::::
exist

:::::
that

::::
can

::::::::::::
incorporate

:::::
such

:::::::::::::
distributions,

::::
and

:::
to

::::
our

:::::::::::
knowledge

:::::
none

::::::::
provide

:
a

:::::::
method

::::
for

::::::::::::
numerically

:::::::::::
calculating

::::
the

::::
full

:::::::::::
probability

::::::::::::
distribution

:::
of

::::
test

:::::::
values,

:::::::
instead

::::::
using

::::::::::::::
approximation

:::::::::
methods

:
[RN9, RN10]

:
.
:
Leveraging the information

present in the concentration of the infectious agent in pooled samples instead of only
using binary negative/positive information , however, could

::::
can lead to significant
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improvements in the estimation of prevalence, particularly in the case of disease
surveillance in wildlife populations.

We present a multilevel Bayesian modeling approach to estimate infection preva-
lence simultaneously from both individual and pooled samples, explicitly using
the concentration of the infectious agent in pooled samples and thereby account-
ing for the biological mixing process that generates pooled sample concentrations.
Prevalence is modeled over time, and the model leverages the fact that prevalence
values closer in time are likely to be more correlated than those separated by
longer times. The multilevel model further includes regression models at both the
individual level and the temporal/population level, thus allowing the inclusion of
covariates such as antibody levels, age or sex that can provide additional information
about prevalence while testing whether they correlate with individual-level infection
status or with larger-scale ecological processes that drive prevalence fluctuations.
Last, because of the use of both pooled and individual-level data, the model is able
to provide estimates of false negative rates in individual-level samples, which can
occur due to factors such as intermittent shedding, low/undetectable concentration,
sampling conditions or assay characteristics. Through the incorporation of covariates
the model also o↵ers the opportunity to predict the false negative status of specific
individual samples. In summary, the model o↵ers

:::
The

:::::::
model

::::::::
presents

:
two key ad-

vances: first, the ability to estimate the false negative rate ensures that the e↵ect
coe�cients of infection covariates can be estimated correctly, as these can otherwise
be strongly a↵ected by the presence of false negative samples. The second is that by
explicitly modeling the biological mixing process that generates the concentration
values of pooled samples, it becomes possible to estimate prevalence even in the
absence of individual-level data

:::
the

:::::::::::::
introduction

::
of

:::
an

:::::::::::
algorithm

:::::
that

::::::::
enables

:::
the

:::
full

::::::::::
numerical

::::::::::::
calculation

::
of

::::
the

::::::::::::
probability

:::::::
density

:::::::::
function

:::
of

:::::::::::::::
concentrations

::
in

::::::
pooled

:::::::::
samples.

Model use and performance is presented using simulated data based on
::::::::
inspired

::
by

a bat-pathogen study system, but we highlight that this approach can be used for any
situation in which prevalence fluctuations are estimated from pooled samples with a
known (or estimated) number of contributing individuals, especially when combined
with individual samples. To illustrate the broader relevance, and test how the
model performs under di↵erent conditions, we included relevant scenarios that each
resemble a realistic biological situation. The approach presented here is particularly
useful when the goal is not to identify which specific individuals are positive but to
determine prevalence in the population, because there is no need to re-test de-pooled
samples. Examples include monitoring SARS-CoV-2 prevalence [RN13, RN8],
estimating prevalence in wastewater if the number of contributing individuals can be
estimated [RN21], assessing pathogen prevalence in the animal production industry
[RN27], or estimating pathogen prevalence in wildlife populations [RN28]. Note
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that while the example presented here focuses on infection prevalence, the model
can also be applied to other biomarkers such as antibodies.

Methods

The main goal of this study is to estimate the true, unknown, proportion of pathogen-
positive individuals over time, from both pooled and individual samples. Each of
these types of samples presents a challenge for estimating prevalence, but also an
opportunity, as outlined in Table ??. Note that the focus is on ”naturally” pooled
samples, where collection was not done directly from individuals, as opposed to
”technically” pooled samples that were pooled intentionally after collection from
individuals.

Table 1: Sample types and their di↵erent challenges and advantages
for estimating prevalence.

Sample type Challenge Advantage Example

Pooled. Number of positives

unknown; Number of

contributors possibly

unknown; Dilution

e↵ect.

Sample multi-

ple individuals at

once. Lower collec-

tion/testing cost per

individual.

Blood sample pooling to re-

duce testing costs; Urine col-

lected from sheets under a bat

roost.

Individual. False negatives possi-

ble.

Additional individual

measurements

Samples collected in combi-

nation with individual data

such as sex, age and body

weight; Urine, blood samples

and body measurements col-

lected from captured bats.

Here, we simulated data based on
::::::::
inspired

:::
by

:
existing studies on flying foxes

for research on temporal virus dynamics [RN22, RN23, RN24]. For the reasons
mentioned above, bat virus studies often use field sampling designs that rely heavily
on the collection of pooled urine and fecal samples under bat roosts [RN23].

:
A

:::::::::
sampling

::::::
design

:::::
that

:::::::::::::
incorporates

:::::::
pooled

::::::::
samples

::::
will

:::
be

::::::
more

::::::::::
beneficial

:::
for

:::::
some

:::::::
wildlife

:::::::
species

:::::
than

:::
for

:::::::
others,

::::
but

:::::
there

::::
are

:::
no

::::::::
inherent

:::::::::::
limitations

::
to

::::::
which

:::::::
species

::::
this

:::::::::
approach

::::::
could

:::
be

:::::::
applied

:::
to.

:
We chose to use simulated data only, as the goal

of this study is to present and test a model to estimate prevalence, which can be
done optimally when all underlying parameters are known and di↵erent scenarios
can be generated. This makes it possible to determine how well the model is able to
estimate the known parameters and prevalence dynamics for a range of scenarios.
The simulated datasets are described below at the end of the Methods section.
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The model is described in three parts, representing the multilevel/hierarchical
nature of the model (??). The two main parts, a model for estimating prevalence
from individual samples and a model for estimating prevalence from pooled samples,
are linked by a third model of true, unobserved prevalence dynamics. We used a
Bayesian multilevel model (also called a hierarchical model), as this provides a
solid framework for linking the di↵erent model components, modeling unobserved
latent parameters, incorporating prior knowledge through prior distributions, and
providing posterior distributions of parameter estimates that show the uncertainty.
While not done here, it would be straightforward to include an additional observation
model that takes into account observation/measurement errors.

Figure 1: Multilevel model. A model of true prevalence (A) ensures that prevalence
is estimated smoothly over time, using information about prevalence from the two
other models, which is a shared parameter (highlighted in red). Model (A) is able to
test correlations between prevalence fluctuations and other variables such as temper-
ature and precipitation. Model (B) illustrates the model that estimates prevalence
from pooled samples, using the Ct value and number of contributing individuals as
input data. Model (C) uses individual-level data to estimate prevalence as well as
correlates of infection status

::
in

:
a
::::::
joint

::::::::::
likelihood

:::::::::::
formulation.

Modeling individual samples

Individual (i) test result (negative or positive for biomarker presence) was modeled
as a binary variable yi (0 = negative, 1 = positive), assuming a Bernoulli distribution
with a probability of testing positive that is determined by ✓̂t[i] ::::

✓t[i] (true prevalence
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in the population at time t):

yi ⇠ Bernoulli
✓
(1�  

:
) ⇤ ✓:t[i]

◆
, (1)

where  ̂
::
 

:
is the false negative rate that accounts for the lower prevalence resulting

from the presence of false negative samples. To enable estimation of the correla-
tion between covariates (e.g., biomarkers, age, body weight) and infection status,
which can provide ecological insights and may be used to predict shedding status,
a regression model is added, resulting in a joint distribution for yi:

yi ⇠ Bernoulli

 

(1�  
:
) ⇤ logit�1

 

�
:
0 +

kX

z=1

(�
:
z ⇤ xz,i)

!!

, (2)

where �̂0 ::
�0:is the intercept and �̂z ::

�z:is the coe�cient for covariate xz out of

k covariates. Importantly, this regression model includes (1�  ̂)
:::::::
(1�  ), which

corrects for false negatives when estimating the covariate coe�cients. Without this
correction, the presence of false negatives would lead to wrong coe�cient estimates.

:::::
Note

::::
that

:::
yi ::::::

occurs
:::
in

::::
two

::::::
parts

::
of

::::
the

::::::
model

:::::::::::
(equations

:::
??

::::
and

::::
??)

::::::::
because

::::
✓t[i]::

is

:
a
:::::::
shared

::::::::::
parameter

:::::
and

::::
can

:::::::::
therefore

::::
not

:::
be

:::::::::
redefined

:::
as

:::
the

::::::::::::::
corresponding

:::::
part

::
of

::::::::
equation

::::
??,

:::::::::
resulting

:::
in

::::
this

:::::
joint

::::::::::
likelihood

::::::::::::
formulation.

:

The probability of an individual being positive, even when testing (false) negative,
can be calculated as

P+
i = logit�1

 

�
:
0 +

kX

z=1

(�
:
z ⇤ xz,i)

!

, (3)

where individual shedding probability is informed by an individual’s covariate
value(s). When there is a correlation between shedding status and one or more
individual-level covariates, status can be predicted at the individual level, which is
helpful for identifying which individuals may have tested false negative.

The prior distribution for  ̂
::
 can be a beta distribution as it is bounded by 0

and 1. Because in many cases low false negative rates will be more likely, this could
be a slightly informative distribution such as Beta(1, 3). The prior distributions
for the regression coe�cients �̂z :::

�z :
will depend on the covariate and the way in

which their correlation with shedding status is modeled, but in many cases this can
be an uninformative normal distribution such as Normal(0, 3) when using scaled
covariates.
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Modeling pooled samples

The goal of this model is to estimate the proportion of positive bats using the
Ct value of a pooled sample. The analysis of pooled samples can be challenging,
leading to a large body of studies on pooled testing (also called group testing or
composite testing, depending on the field) addressing the di↵erent problems related
to pooled samples [RN8, RN10, RN11]. Most studies have focused on pooled
testing in the context of laboratory assay cost reduction, where the main challenge
is to find the optimal number of samples to pool given an expected proportion of
positives [RN18]. An evolving challenge that is more applicable for understanding
transmission dynamics is how to estimate the proportion of positive individuals. A
number of approaches have been proposed for this, with many based on the model
presented by [RN6]:

⇡ = (1� (1� ✓̂)n)
::::::::::::::::::
⇡ = (1� (1� ✓)n),

where ⇡ is the probability that a pooled sample tests positive, ✓̂
:
✓
:
is prevalence,

and n is the number of samples in the pool. Parameter ⇡ can then be used to model
Z ⇠ Bernoulli(⇡), where Z is a binary observed variable indicating whether or not
the pooled sample is positive. This implementation has, for example, been proposed
as a way to model prevalence dynamics over time for SARS-CoV-2, in combination
with individual data [RN13]. This approach has two key limitations however.
A first is that above a certain combination of pool size and prevalence (around
50%), most pooled samples will be positive, resulting in large uncertainty intervals
surrounding the prevalence estimates. A second weakness is that this approach does
not account for the fact that the concentration of pathogen is diluted by samples
containing a lower concentration, including negative samples. This dilution e↵ect
has proven to be particularly di�cult to address [RN9].

To date, most approaches have used binary test data for estimating prevalence
using pooled samples [RN25, RN6, RN5]. Most assays, however, provide quan-
titative data, which are then turned into a binary negative/positive result based
on a threshold value, and the additional information provided by the quantitative
assay is lost. This quantitative information o↵ers opportunities, however, that can
address both limitations of the binary approach. Although few studies have de-
veloped methods to use the full quantitative test results for estimating prevalence
from pooled samples [RN8, RN9], the work by [RN10] in particular has shown
how promising this approach can be. They used a Bayesian mixture model ap-
proach to estimate prevalence, taking into account the dilution e↵ect based on
the distribution of biomarker values (e.g. pathogen concentration) of negative
and positive samples. These methods seem to work well for standard probability
distributions, but currently no solution exists when the underlying distribution of
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values is not standard (e. g. Gaussian). Unfortunately, this is typically the case
in biological systems, where biomarker distributions are likely to be skewed and
non-standard , and can change over time . Here, we present an approach that
can use any distribution of biomarker values to estimate prevalence from pooled
samples

::
A

:::::::
crucial

:::::
part

::
of

:::::
these

:::::::::::
approaches

::
is
::::
the

::::
use

::
of

::
a

:::::::::::
probability

:::::::
density

::::::::
function

::
of

::::::::
positive

::::
test

:::::::
values.

::::
The

:::::::::
methods

:::
in [RN8, RN10]

::::::::
provide

::
a

::::::
useful

:::::::::
approach

:::
for

::::::::::
estimating

:::::::
these.

:::
To

::::::::::::
complement

::::::
these

::::::::::::
approaches,

:::
we

::::::::
provide

:::
an

::::::::::
algorithm

::
to

:::::::::::
numerically

:::::::::
calculate

:::::
this

:::::::::::
probability

:::::::
density

:::::::::
function

:::
so

::::
that

:::
it

::::::
covers

:::
all

::::::::
possible

:::::::::::::
combinations

::
of

::::::::::
numbers

:::
of

::::::::
positive

:::::
and

:::::::::
negative

:::::::::::
individuals

:::::::
while

:::::::
taking

::::
into

:::::::
account

::::
the

:::::::::::
underlying

::::::::::::
distribution

::
of

:::::
test

::::::
values

:::
in

::::
the

:::::::::::
population.

:

We modeled pooled samples using their cycle threshold (Ct) value, a measure
of the concentration of viral genetic material obtained using qRT-PCR (lower Ct
value = higher concentration). The virus concentration in a pooled urine sample is
determined by three key factors that influence the final pooled concentration: (1)
proportion of positive bats, (2) concentration of virus shed by each positive bat, (3)
urine volume

:::::::
relative

::::::
urine

::::::::
volumes

:
collected from each bat.

:::::
Here

:::
we

::::::
focus

:::
on

:::
the

::::
first

::::
two

::::::::
factors,

::::
and

:::::::
assume

:::::
that

::::
the

::::::::
volumes

:::::::::
collected

:::::
from

:::::
each

::::
bat

:::
are

:::::::
equal. In

order to estimate the proportion of positive bats using the Ct value, it is necessary
to calculate a probability distribution of Ct values for pooled samples, as this in turn
enables calculating the likelihood of observing certain values given a combination of
parameter values. A Ct probability distribution can be calculated by combining two
key parts, a standard binomial probability density function (to take into account
prevalence) and an ad-hoc distribution of probabilities of observing a pooled Ct
value given a combination of negative and positive bats:

Cj ⇠ PooledCt(Nj , ✓:t[j]), (4)

where Cj is the Ct value of pooled sample j, Nj is the total number of bats

contributing to sample j, ✓̂t[j] :::
✓t[j]:is prevalence at the time sample j was collected,

and

PooledCt =
X

q̂j=0qj=0
:::

Nj

 
Nj

q
:
j

!

✓:t[j]
q̂j qj

: (1� ✓:t[j])
Nj�q̂jNj�qj

:::::P (Cj |q
:
j , Nj). (5)

Here,
�Nj
q̂j

�
✓̂
q̂j
j (1� ✓̂j)Nj�q̂j

:::::::::::::::::::

�Nj
qj

�
✓
qj
j (1� ✓j)Nj�qj

:
is the binomial probability of ob-

serving q̂j ::
qj:positive out of Nj contributing individuals in pooled sample j, given

a prevalence ✓̂t[j]. P (Cj |q̂j , Nj) ::::
✓t[j].:::::::::::::

P (Cj |qj , Nj):is the probability of observing Ct
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value Cj given q̂j ::
qj:positive out of Nj individuals. q̂j and ✓̂t[j] :

qj:::::
and

::::
✓t[j]:are the

estimated parameters, while Nj and Cj are observed. ::::
This

:::::::::
equation

:::::::
closely

::::::::
matches

::::::::
equation

::
2
:::
in [RN9].

:

Prior to model fitting, P (Cj |q̂, N)
::::::::::
P (Cj |q,N)

:
must be calculated for each possible

combination of q̂
:
q, Nj and Cj , which is done according to the following algorithm:

1. Determine all possible combinations (with repetition) of q̂
:
q possible Ct values

and Nj � q̂
:::::::
Nj � q negative values.

2. For each combination:

— 2.1. Transform the Ct values of the positive samples to virus concentrations
(conversion based on laboratory controlled testing, or testing of a range of individual
samples).

— 2.2. Calculate the mean virus concentration.

— 2.3. Back-transform the mean virus concentration to its corresponding Ct
value. Round up the Ct value to the next integer to mimic detection in RT-PCR (a
concentration even slightly higher than a certain Ct value will not be detected until
the next PCR cycle).

3. Count the number of combinations that result in Ct value C, and divide by the
total number of combinations. This is Ct observation probability P (Cj |q̂, Nj):::::::::::

P (Cj |q,Nj),
without accounting for prevalence in the population.

All code used for the calculation of the probability distributions can be found in
Supplementary Information.

There are a number of important considerations when calculating P (Cj |q̂, Nj) :::::::::::
P (Cj |q,Nj).

A first is that while the algorithm assumes that each Ct value (in step 1) is equally
likely, this is rarely the case. The distribution of Ct values in a population rarely
follows a uniform distribution, and can instead follow many possible non-standard
distributions (e.g., a skewed distribution when low concentrations are more likely).
These distributions can also change over time and with changing biological condi-
tions [RN95]. When this is the case, probability P (Cj |q̂, Nj) :::::::::::

P (Cj |q,Nj):can be
calculated by first calculating the total probability of each combination, then taking
the sum of the total probabilities of all combinations that result in Ct value C, and
dividing this by the sum of all total probabilities of all combinations. When the un-
derlying Ct distribution changes over time, or under certain conditions, P (Cj |q̂, Nj)

:::::::::::
P (Cj |q,Nj):must be calculated for each of these situations. Individual samples, if
collected, can be used to inform this distribution.

A second consideration is that urine volume is assumed to be equal for all N
contributing bats. If this is not the case, the combinations can be corrected by
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normalizing for volume in the sample. This step requires knowledge of the volumes
contributed by each individual. While this is possible in situations where samples
are pooled after collection from individuals, this is unrealistic in field conditions. In
this situation, the most parsimonious solution is to assume that all bats contributed
equally to a pooled sample. This will of course rarely be the case, but variation in
contributed volumes should not a↵ect inference as long as it is not biased. Such
biases could arise if infected bats, or bats shedding lower or higher virus concentra-
tions, excrete di↵erent volumes than others. It is possible however to account for
this when calculating P (Cj |q̂, Nj) ::::::::::::

P (Cj |q,Nj) if there is a model of how this bias
occurs.

A third consideration is computational burden, which enforces a limit on the num-
ber of Ct values and the number of contributing bats. This is due to the fact that
for each possible Ct value of a pooled sample, a probability is calculated for each
possible combination (C+N�1)!

N !(C�1)! of Ct values C and individuals N . For example, in a
simple situation where only 2 Ct values are possible, and a sample has 3 contribut-
ing individuals, the probability of observing a certain Ct value of the pooled sample
must be calculated for (2+3�1)!

3!(2�1)! = 4 combinations. For more realistic numbers of 15
possible Ct values and 10 individuals, this becomes 1,961,256 combinations, increas-
ing exponentially and rapidly reaching a maximum computationally feasible limit
around combinations above 15 Ct values and 15 individuals. There are solutions
for this, however. One solution would be to discretize Ct values into larger inter-
vals (e.g., [21-24), [24-26), etc.), and/or setting all numbers of individuals above
a certain maximum value equal to that value. This would lower the number of
possible combinations and reduce computation time to feasible levels. Another so-
lution, which would not require discretizing biomarker values or limiting the number
of contributing individuals, would be to approximate the Ct probability distribu-
tion using Monte Carlo simulation/sampling [RN41] to generate a large number
of random combinations of all values (versus numerically calculating every possible
combination). While these solutions are likely to still result in good prevalence esti-
mates, this will depend on the situation and should be tested with simulations prior
to model fitting.

:::
We

::::::::::::
recommend

:::::::
taking

:::::
these

:::::
pool

:::::
size

:::::::::::::
requirements

::::
into

::::::::
account

::::::
during

::::
the

:::::
field

:::::::::::::
experimental

:::::::
design

::::::::
process.

:

A full working example of the procedure to calculate the Ct probability distribu-
tion is provided in Figure ??.

Modeling true prevalence in the population over time

The final model component is a model of ✓̂t ::
✓t dynamics, which explicitly incorpo-

rates the information about prevalence from individual and pooled samples through
their respective models. This is possible because prevalence parameter ✓̂t ::

✓t is shared
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Figure 2: Illustration of how the probability of observing a Ct value in a pooled sam-
ple is calculated. In the example, we want to calculate the probability of observing
a Ct of 36 with 2 out of 3 positive bats and 20% prevalence in the population.
First (A), the pooled Ct value is calculated for every possible combination (with
repetition) of 1 negative and 2 positive bats. For each combination, the Ct values
(ln scale) are converted to genome copies (Gc) so that the pooled concentration
can be calculated on a linear scale. The pooled genome copy concentration is then
converted back to a Ct value, rounding up to the next integer to emulate the RT-
PCR detection process. Next, for each combination of Ct values the corresponding
probability of observing the pooled value is calculated by summing the respective
individual probabilities that are estimated from the Ct distribution in individual
bats. The probabilities corresponding with the target value of 36 are then summed
and divided by the sum of all probabilities, to get an overall probability of observing
Ct 36 (B). This probability is multiplied by overall prevalence in the population.
The probability of observing 2 out of 3 positive individuals given a prevalence of
20% is then calculated (C) and multiplied by the probability of observing Ct 36 to
get the final Ct probability given 20% prevalence and 2 out of 3 positive individuals
(D).

::::
This

:::::::::
example

::::
was

::::::::::
randomly

:::::::
chosen

::::
for

:::::::::::
illustration

::::::::::
purposes,

::::
and

::::::
these

:::::
steps

:::
are

:::::::::
repeated

:::
for

:::::
each

::::::::
possible

::::::::::::
combination

::
of

:::
Ct

:::::::
values

::::
and

::::::::::::
contributing

:::::::::::
individuals.
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by both models, which further ensures that each of those two model components can
benefit from the information about prevalence contained in the other. Prevalence
✓̂t ::
✓t:changes over time t in a smooth way where prevalence will be more similar for

times that are close together than for those that are farther apart. This temporal
autocorrelation can be modeled in a variety of ways, and the choice of which model
to use will depend on the research questions of interest. If the goal is to estimate
prevalence dynamics over time, relatively simple smoothing functions can be used
such as splines, weighted average or kernel functions [RN42]. If the goal is to model
the underlying biological dynamics, it will be necessary to develop a more complex
transmission model [RN43]. Here, we used a relatively simple Gaussian Process
(GP) smoothing function, which uses a Gaussian kernel to model prevalence over
time. This approach was based on the one used in [RN13].

A GP is a time continuous stochastic process {Xt}t2⌧ where the set of variables
Xt = (Xt1, ..., Xtn)⌧ is a multivariate Gaussian random variable (i.e., every combi-
nation of (Xt1, ..., Xtn) has a univariate Gaussian distribution). Because ✓t 2 [0, 1],
a transformation must be used to map the real support of Xt to the [0, 1] inter-
val, for which we used the inverse probit function �(·). We did this by model-
ing a latent prevalence process W := {Wt}t2⌧ and transforming this to prevalence
✓̂t = �(Wt)::::::::::

✓t = �(Wt). As prevalence and the form of the unobserved dynamic pro-
cess are unknown, we used a GP prior on W with a covariance function that enables
interpolation of prevalence over time (i.e., smoothing). There are multiple options
for suitable covariance functions. Here, we used the exponentiated quadratic co-
variance function, which includes parameters for both the amplitude (lengthscale `)
and the oscillation speed (�2) of the smoothing process,

Q = Cov(t, t0|�2, `) = �2exp

 
�(t� t0)2

2`2

!

. (6)

Wt thus becomes Wt ⇠ GP (0, Q), a zero-mean GP that allows independent mod-
eling of the mean, which is useful for modeling the e↵ect of covariates on prevalence,
as ✓̂t becomes ✓̂t = �(Wt + µ)

::
✓t :::::::::

becomes
:::::::::::::::
✓t = �(Wt + µ), where µ can be any re-

gression model.

A useful property of the covariance function is that by fitting the lengthscale
/amplitude parameter (`), we can learn from the data how temporally correlated
prevalence

::::::::::
prevalence

:::::::::
covaries

:::::
over

:::::
time

:
is: the correlation

::::::::::
covariance

:
between

prevalence values separated by a time interval ` will be exactly �2exp(�`2

2`2 ) =

�2exp(�1
2) = �20.61, for an interval of 2` this will be �2exp(�22

2 ) = �20.14, and so
on.

The prior distributions for parameters � and ` can be any continuous positive
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distribution. We used a truncated normal distribution for � (Normal(0, 1), with
0 as lower bound for sampling) and an inverse gamma distribution for ` (Inv �
Gamma(2.5, 150)). All priors used for model fitting can be found in the code in
Supplementary Information.

Testing model performance using simulated data

To test how well the model can estimate parameters under various circumstances, we
simulated datasets that resemble realistic infection prevalence

::::::::
sampling

:
scenarios.

These datasets consisted of individual-level samples (collected directly from captured
bats) and pooled urine samples (collected using a sheets under a roost), collected at
certain time intervals (e.g., [RN22, RN23, RN24]). We created a main simulated
dataset that resembles a common situation with regards to sample size and temporal
resolution and was used as a point of reference for all analyses. To test model
performance in di↵erent scenarios this main dataset was adapted in a number of
ways that are described below.

For the main dataset, an autocorrelated fluctuating prevalence time series was
generated for a time period of 300 (an arbitrary number,

:::::::
where

::::
the

:::::
unit

::::
can

:::
be,

:::
but

:::
is

::::
not

::::::::::
restricted

:::
to,

:::::
days) time points using a b-spline function with knots at

times 1, 100, 200 and 300. Coe�cients for the b-spline function were chosen so that
the function would result in realistic prevalence fluctuations

::::::::::
reasonable

::::::::::
prevalence

::::::::::::
fluctuations,

::::
not

::::::
based

::
on

::
a
:::::::
specific

::::::::
system

:::
but

:::::::
useful

:::
for

:::::::
testing

::::::
model

::::::::::::
performance

:::::
under

::
a
:::::::
range

::
of

::::::::
sample

:::::::::::
availability

:::::::::
scenarios

:
(Figure ??). Ten sampling sessions

were selected to occur evenly between times 1 and 300. At each sampling session, 50
individual-level catch samples and 50 pooled samples were generated. The infection
status (negative/positive) of each individual sample was generated using a Bernoulli
distribution with success probability equal to population prevalence at the time of
the corresponding sampling session (Figure ??A). To test how well the model was
able to account for false negative results in individual-level samples, a proportion
(10%) of randomly selected positive bats was changed to negative.

For each pooled sample, a Ct value was generated in four steps (Figure ??C).
First, the number of bats contributing to the sample was simulated using a negative
binomial distribution with size 30 and mean 2.3 (which results in a range between 1
and 10, with most numbers around 1 to 4). Next, each of the contributing bats was
randomly assigned an infection status using a binomial distribution with success
probability equal to prevalence at the corresponding sampling session. Then a Ct
value was generated for each individual bat, with negative bats receiving a Ct value
of 0 and positive bats receiving a Ct value randomly drawn from a non-standard,
realistic probability distribution of Ct values. Last, the resulting Ct value of the
pooled sample was calculated by first converting each individual Ct value to number
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of genome copies [RN95], calculating the mean number of genome copies (including
the negative samples), and re-converting this mean of the pooled sample to a Ct
value. Note that while a Ct value is generated for individuals contributing to a
pooled sample, the individuals used for the ”individual sample” model described in
the previous paragraph only have a negative or positive status, and not a Ct value.

::::::
When

::::::::
required

::
it
:::
is

::::::::
possible

:::
to

::::
add

:::
an

::::::::::::
observation

:::::::
process

::::::
layer

::
to

::::
the

:::::::
model

::::
that

:::::::::
explicitly

:::::::
models

::::
the

::::::::::::
classification

:::
of

:::::::
sample

::::
into

::::::::::
negatives

::
or

:::::::::
positives

::::::
based

:::
on

:::
the

::::::::::::::
concentration,

::
as

::::
for

::::::::
example

:::::::
shown

::
in

:
[RN9, RN10]

:
.
:

To test whether the model is able to estimate the e↵ects of covariates on the infec-
tion status of an individual, we simulated four covariates with information at both
the individual and the population level. We simulated individual covariates with
a range of association strengths with infection status (Figure ??B). This was done
by randomly drawing a value for each covariate from a normal distribution for each
individual, where the mean depended on infection status. For the strongly corre-
lated covariate the means were 1.5 units apart for negative and positive individuals,
with standard deviations of 0.5 (resulting in a regression coe�cient of 5.3 log odds).
For the moderately correlated covariate the means were also 1.5 units apart but the
standard deviation was 1 (resulting in a regression coe�cient of 1.9 log odds). For
the covariate that did not correlate, the mean was 0 and the standard deviation was
1 (resulting in a regression coe�cient of -0.11 log odds). Main dataset simulation
parameters are summarized in Table ??. Additionally, we show the importance of
accounting for false negative individual samples when estimating covariate e↵ects
by fitting a model that does not include the false negative rate parameter.

Last, to test model performance under di↵erent scenarios of data availability, we
generated additional scenarios that are outlined in Table ??, including biological
examples of when these scenarios can occur.

:::::::
Details

::::
and

:::::::
results

::::
for

:::::
these

:::::::::
scenarios

:::
are

:::::::::
provided

::
in

::::::::::::::::
Supplementary

::::::::::::
Information,

::::::::::
including

::::::::::
combined

:::::::::
scenarios.

:

Model implementation and code

All coding was done in R [RN16]. Model fitting was done with Stan [RN14] using R
package rstan [RN15]. Plotting was done using packages ggplot2 [RN98], ggridges
[RN105], patchwork [RN99] and Rcolorbrewer [RN100]. Prevalence splines were
generated using the package splines [RN16]. Ct value probability distribution gener-
ation used the package Rccpalgos [RN101]. Supplementary information (including
all code) is available online at https://doi.org/10.5281/zenodo.10660032.
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Table 2: Overview of the parameters used for the
main simulated dataset

Parameter Value

Times 300 (arbitrary) time units

Number of sampling sessions 10

Timing of sampling session Every 34 time units

Individual samples per session 50

Pooled samples per session 50

Infection data of individual samples Binary (negative or positive)

Infection data of pooled samples Concentration (Ct value)

False negative rate 10% of positive individual samples

tests negative

Individual covariate, strong

correlation

E↵ect estimate = 5.3

Individual covariate, weak

correlation

E↵ect estimate = 1.9

Individual covariate, no

correlation

E↵ect estimate = -0.11

Ct distribution used to simulate

pooled Ct values

Skewed low to high (details in

Supplementary Information)
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Figure 3: Simulated data. Black lines show true prevalence in the population, which
was used to generate samples for 10 sessions over a period of 300 time points. Panel
A shows individual negative (blue) and positive (red) samples, with false negative
samples shown as red triangles. Panel B shows boxplots and data points for three
simulated covariates for individual samples, with correlations being strong (top),
moderate (middle) and random (bottom). Panel C shows pooled negative (blue)
and positive (blue to red gradient corresponding with Ct value) samples. Note that
infection data are binary (neg/pos) for individuals, and concentrations (Ct values)
for pooled samples.
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Table 3: Simulated scenarios to test model performance. Details
and model fit results are provided in Supplementary Information.

Scenario Details and examples

Pooled data only Only pooled samples are used for model fitting.  ̂
:
 
:
not estimated.

This situation occurs when it is not possible not collect any individual

data. Example: collecting wastewater samples for COVID-19 monitor-

ing [RN19].

Individual data only Only individual samples are used for model fitting.  ̂
:
 not estimated.

This situation is the most common when sampling populations. Ex-

ample: cross-sectional sampling for monitoring arenavirus prevalence

in rodents [RN85].

Irregular sampling The timing of sampling sessions is not regular, resulting in uneven time

gaps between sessions. This situation occurs when regular sampling

is not possible, or when sampling sessions need to be canceled due to

conditions. Example: gaps in influenza A monitoring time series due

to political instability [RN87].

Low sample sizes Lower sample sizes (20 instead of 50 for each sample type) per session.

This situation occurs when it is not possible to sample many indi-

viduals. Example: logistically challenging captures of lions for canine

distemper virus monitoring [RN89].

Ct distribution

mismatch

The distribution of Ct values used to calculate the likelihood for pooled

sample Ct values is di↵erent from the true distribution used to simulate

pooled Ct values. This situation can occur when the distribution of Ct

values in the population is not well known. Example: small numbers

of positive samples in individual bats make it di�cult to describe the

viral load distribution of filoviruses [RN90].

Pool contribution

count error

An error is added to the number of individuals contributing to a pooled

sample. This situation occurs when it is di�cult to count or estimate

the number of individuals contributing to a pooled sample. Exam-

ple: environmental sampling for Leptospira sp. prevalence estimation

[RN91].

Prevalence dynamics

shape

A number of di↵erent, uncommon prevalence fluctuations are used to

simulate the data. This situation occurs because prevalence dynam-

ics can vary strongly depending on many factors. Example: measles

prevalence dynamics exhibiting multi-annual cycles of varying magni-

tude [RN92].

Prevalence covariate A covariate that correlates with prevalence is estimated using Gaussian

Process regression. Example: climate can drive inter-annual cycles of

cholera transmission [RN97].
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Results

Shedding prevalence dynamics estimated using the combined pooled and individual
data, closely matched the true dynamics, with true prevalence always within the 95%
credible intervals

::::::::
posterior

::::::::::::
distribution

:
(Figure ??A). All individual and prevalence

covariate coe�cients were estimated correctly (Figure ??B-D). The ability to predict
individual shedding status depended on the amount of information provided by
the covariate: prediction accuracy was 94.2% (95% CrI: 92.8-94.2%) when using
the strongly correlated covariate, 81.0% (95% CrI: 79.8-81.8%) for the moderately
correlated covariate and 58.4% (95% CrI: 55.6-58.4%) for the random covariate
(Supplementary Information). The model correctly estimated the false negative
rate ( ̂

:
 ) regardless of which covariate was used (Figure ??C). Moreover, the model

was able to identify 100% (21/21) (95% CrI: 100-100%) of individual false negative
samples when using the strongly correlated covariate, 76.2% (95% CrI: 66.7-81.0%)
when using the moderately correlated covariate and 0.0% (95% CrI: 0.0-9.5%) when
using the random covariate. Exclusion of the false negative rate parameter from
the model resulted in wrong estimation of the strongly correlating covariate, where
the correct coe�cient was 5.1 but the posterior mean estimate was 2.8 (95% CrI:
2.4-3.2).

When using only a single type of data (either pooled or individual data) the
model was still able to capture true dynamics (Figure ??A-B), although there was
a slight overestimation of prevalence when only using pooled data, and a slight
underestimation when using individual data only. The false negative rate could not
be estimated in the absence of pooled data as there was no additional source of
information to provide information about true prevalence over time.

When sampling sessions were timed irregularly, prevalence dynamics were still
estimated well but with a higher degree of uncertainty was observed between larger
time gaps (Figure ??C and Supplementary Information) and for the times beyond
the time limits of the data. For regular sampling with low sample sizes the model
still performed well (Figure ??D). Asynchronous sampling of pooled and individ-
ual sessions resulted in prevalence dynamics that were very similar to those of the
”main” simulated dataset (Supplementary Information).

:::::
When

:::::::::::
combining

::::::::
irregular

::::
and

:::::::::::::
asynchronous

:::::::::
sampling

:::::
with

::::::
lower

:::::::
sample

:::::
sizes

:::
or

:::::
with

:::::
fewer

:::::::::
sampling

::::::::
sessions

::::::::::
prevalence

::::::::::
dynamics

:::::
were

::::::::::
estimated

::::::
well,

::::
but

:::::
with

:::::::
higher

::::::::
degrees

:::
of

:::::::::::
uncertainty

:::
due

:::
to

::::
the

::::::
lower

:::::::
sample

:::::
size

::
or

:::::::
during

:::::::
larger

:::::
time

:::::
gaps

::::::::
without

:::::::::
available

::::::::
samples

:::::::::::::::
(Supplementary

::::::::::::::
Information).

:

A mismatch of the Ct distribution in the population (i.e., the Ct distribution
used to construct P (Cj |q̂, Nj) :::::::::::

P (Cj |q,Nj):did not correspond with the distribution
used to simulate Ct values for pooled samples, see Supplementary Information for
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Figure 4: Model outputs for the main simulated dataset. (A) shows the distribu-
tion of fitted prevalence curves (cloud of 6,000 iterations from 5 chains) with 50%
credible interval

:::::
band overlaid. The black

:::::
grey line is the true prevalence. The pro-

portion of positive pooled and individual samples in each sampling session is shown
using diamond and plus shapes, respectively. Panels (B) to (D) show the posterior
distributions (95% credible intervals in orange) for the three di↵erent covariates,
and panel (E) shows the posterior distribution for the false negative rate  ̂

::
 , with

black dots indicating the true values.
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Figure 5: Fitted prevalence curves for di↵erent simulated scenarios. All scenarios
use the same sample types, sizes and sessions as the main scenario shown in Figure
2, except where indicated. Session prevalence of pooled and individual data is shown
using diamond and plus shapes, respectively. Black lines show true prevalence in the
population. Specifics for each scenario are: (A) only pooled data; (B) only individual
data; (C) sampling sessions are unevenly spaced over time; (D) lower sample sizes
(10 samples per sample type instead of 30) per session; (E) the Ct distribution used
to simulate Ct values of pooled samples was not the same as that used to calculate
the Ct probability distribution in the model, with the shapes inverted (i.e. low Ct
values more likely); (F) an incorrect number of individuals contributing to a pooled
sample was provided to the model for 50% of pooled samples; (G) and (H) data
were simulated using irregular, unconventional prevalence dynamics.
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details) had a noticeable e↵ect on the estimated prevalence dynamics (Figure ??E).
Specifically, the model tended to overestimate prevalence, particularly during peaks,
despite overall good performance. This e↵ect was less pronounced when the distri-
bution was less di↵erent from the true distribution (Supplementary Information).
The model was not sensitive to moderately misspecified counts of the number of
individuals contributing to a pooled sample (Figure ??F; 30% of the data were o↵
by N = 1, 20% by N = 2), but was more strongly a↵ected by large misspecifications
(80% wrong by 1 or 2, 80% wrong by 1 to 5; Supplementary Information).

Last, the shape of the prevalence dynamics did not a↵ect the model’s ability to
estimate prevalence, as long as data were available to inform the fluctuations (??G
and Supplementary Information). For example, the dynamics in Figure ??H show
an initial peak that was not predicted by the model because this peak occurred
between two sampling sessions.

Discussion

Sample pooling o↵ers major benefits through collecting data from multiple individ-
uals at the same time, lowering costs for collection and testing, and enabling the
use of samples that would otherwise be disregarded (such as sewage or fecal/urine
under bat roosts or in animal dens) [RN19, RN21, RN23]. This study presents
a Bayesian modeling approach that enables the estimation of prevalence dynam-
ics from both pooled and individual samples by leveraging infection concentration
of infectious agent in the pooled samples, allowing the distribution of infection
concentration

::::::::::::::
concentrations

:
to be any shape, and accounting for false negative

results.

The model is able to successfully reconstruct prevalence dynamics for a wide
range of eco-epidemiological scenarios. Model performance was tested for a range of
realistic

::::::::
relevant scenarios of infection dynamics and sampling schemes including ir-

regular prevalence fluctuations, irregular timing of sampling, inclusion of associated
individual-level covariates, and misspecified counts of individuals contributing to the
pooled samples,

:::::
and

:::::::::::::
combinations

:::
of

::::::::
multiple

::::::::::
scenarios. The model performs well

when only one sample type was provided, which is particularly encouraging in the
case of pooled samples, as it shows that field studies targeting only pooled samples
would still allow precise reconstruction of prevalence dynamics. These results high-
light the key strengths of the model: the explicit modeling of the mixing process
in pooled samples allows accurate estimation of prevalence even when using only
pooled samples, and the inclusion of pooled samples also enables correcting for the
prevalence estimation bias in individual samples introduced by false negatives when
both sample types are available. False negative rate is an epidemiological parame-
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ter commonly neglected in wildlife studies, yet important for inferring dynamics of
infection at the individual level. In the model, estimation of false negative rates is
made possible by the explicit integration of information about prevalence included
in both data types. Importantly, accounting for false negative results ensures that
covariate coe�cients in individual-level regression models are estimated correctly,
which we show would otherwise lead to estimation errors.

The main technical advance of the model is the calculation of a
::::::
model

::::::::::
introduces

::
an

:::::::::::
algorithm

:::
to

:::::::::::
empirically

::::::::::
calculate

::::
the

:
probability distribution of observing a

certain infection biomarker (here Ct from qRT-PCR) value given the estimated
prevalence in the population and the number of individuals that contributed to the
sample. This probability distribution enables the calculation of a likelihood for the
biomarker values of the pooled samples. This approach for calculating a proba-
bility distribution can be adapted to other systems (e.g., analyzing pooled SARS-
CoV-2 samples for monitoring prevalence) and other biomarkers (e.g., antibodies,
blood chemistry). It builds on existing methods for the analysis of pooled samples
and advances them by providing a solution for dealing with the dilution e↵ect
where biomarker concentration in the pooled sample decreases or turns negative
due to mixing with negative or lower-concentration samples . The approach also
provides a way to deal with

::::
The

:::::::::
approach

::::
can

:::::::::::
incorporate

:::::
any non-standard family

distributions
:::::::::::
distribution

:
of the biomarker, thereby making it more flexible than

existing methods . Encouragingly, we found that the model is quite robust against
misspecifications of the underlying biomarker distribution.

:::
The

::::::::::::
calculation

::
of

::::
this

::::::::::
probability

::::::::::::
distribution

:::::::::
function

:::::
relies

:::
on

::
a

:::::::
correct

::::::::::::::
determination

::
of

::::
the

:::::::::::
distribution

::
of

::::::::::
biomarker

:::::::
values

::
in

::::
the

::::::::::::
population.

::::
We

::::::
found

::::
that

::::::::::
assuming

::
a

::::::::::::
distribution

::::
that

::::::
di↵ers

::::::::
strongly

:::::
from

::::
the

::::
real

::::::::::::
distribution

::::
can

::::::
result

:::
in

:::::::
biased

::::::::::
prevalence

::::::::::
estimates.

:::
We

:::::::::
therefore

::::::::::::
recommend

::::
an

::
in

:::::::
depth

:::::
prior

::::::::::::
exploration

:::
of

::::::::::
biomarker

::::::::::::
distribution

::
in

::::
the

:::::::::::
population,

:::
as

:::::
well

:::
as

::
a

::::::::::
sensitivity

:::::::::
analysis

::
to

:::::::
assess

::::
how

:::::::::
di↵erent

::::::::
realistic

::::::
shapes

:::
of

::::
the

:::::::::::
distribution

::::::
a↵ect

:::::::
model

::::::::
output.

:

Prevalence reconstruction is a goal for many epidemiology and disease ecology
studies, but this is often done as a necessary step towards learning what the drivers
of pathogen transmission are. Such drivers can be intrinsic, such as individual im-
munity, herd immunity, individual variation in shedding, or behavior/movement
(which can a↵ect contact/transmission rates), or extrinsic, such as temperature
and rainfall a↵ecting pathogen survival, food availability a↵ecting individual stress
(which in turn a↵ects immune competence, susceptibility and shedding). The mod-
eling framework provides a way to incorporate and statistically test the e↵ect of
such covariates on the individual and the population/prevalence level. This enables
testing of hypotheses about intrinsic or extrinsic drivers of infection, thereby con-
tributing to a more mechanistic understanding of infection dynamics, beyond the
phenomenological patterns. This also enables the development of models to predict
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prevalence.

The current model formulation has a number of requirements. Firstly, the model
uses estimates of the number of individuals that contributed to a pooled sample.
While the model is robust against moderately misspecified counts, we find that
errors have to be within reasonable limits. However, when these counts are un-
known or uncertain, this can be incorporated in the model by specifying a prior
distribution of the number of individuals contributing to a pooled sample based on
available data. A second model requirement is that the distribution of biomarker
values, which are used to calculate the biomarker probability distribution of pooled
samples, is assumed to be constant over time. Although this can be a reason-
able baseline assumption, recent work suggests this may not always be the case
[RN95]. Therefore, it is possible to adapt the model using a time-dependent prob-
ability distribution when pathogen shedding concentrations are known or suspected
to be higher during certain periods. We recommend an in-depth analysis of the
distribution of biomarker values in individuals

::::
wild

:::::::::::
individual

::::::::
samples

:
over time

to determine whether the probability distribution used in the model needs to be
time-dependent.

The model presented here provides a way to simultaneously leverage pooled and
individual samples to accurately estimate the true underlying prevalence of infection
in a population. It introduces a way to explicitly account for the biological mix-
ing/dilution process in pooled samples, and ensures that individual covariate e↵ects
can be estimated correctly when false negative results are possible (this requires the
use of both pooled and individual samples). The model is also shown to be robust
against common issues associated with field-based data collection, such as observa-
tion noise and the often unknown shape of the underlying prevalence fluctuations.
Crucially, this approach enables the accurate reconstruction of prevalence dynamics
even when using pooled samples only, which is encouraging for designing lower-cost
sampling strategies. The application of this model can directly enhance the e�cacy
and e�ciency of bio-surveillance e↵orts by increasing inference and prediction. This
is of particular interest in the case of wildlife that hosts pathogens of concern for
human and animal health in geographical areas of high spillover risk.
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