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Abstract: Computational ecology, de�ned as the application of computational
thinking to ecological problems, has the potential to transform the way ecologists
think about the integration of data and models. As the practice is gaining prominence
as a way to conduct ecological research, it is important to re�ect on what its agenda
could be, and how it �ts within the broader landscape. In this contribution, we
suggest areas in which empirical ecologists, modellers, and the emerging community
of computational ecologists could engage in a constructive dialogue to build on one
another expertise; speci�cally, about the need to make predictions from models
actionable, about the best standards to represent ecological data, and about the
proper ways to credit data collection and data reuse. We discuss how training can
be amended to improve computational literacy.
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Computational science happens when algorithms, software, data management
practices, and advanced research computing are put in interaction with the explicit
goal of solving “complex” problems. Typically, problems are considered complex
when they cannot be solved appropriately with mathematical modelling (i.e. the
application of mathematical models that are not explicitly grounded into empirical
data) or data-collection only. Computational science is the application to research
questions of computational thinking (Papert 1996), i.e. the feedback loop of ab-
stracting a problem to its core mechanisms, expressing a solution in a way that
can be automated, and using interactions between simulations and data to re�ne
the original problem or suggest new knowledge. Computational approaches are
commonplace in most areas of biology, to the point where one would almost be
con�dent that they represent a viable career path (Bourne 2011). Collecting eco-
logical data is a time-consuming, costly, and demanding project; in addition, the
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variability of these data is high (both in terms of variance and in terms of quantity
and completeness. In parallel, many ecological problems lack appropriate formal
mathematical formulations, which we need in order to construct strong, testable
hypotheses. For these reasons, computational approaches hold great possibilities,
notably to further ecological synthesis and assist decision-making (Petrovskii &
Petrovskaya 2012).

Levin (2012) suggested that ecology (and evolutionary biology) should continue their
move towards a marriage of theory and data. In addition to the lack of adequately
expressed models, this e�ort is hampered by the fact that data and models are often
developed by di�erent groups of scientists, and reconciling both can be di�cult.
This has been suggested as one of the reasons for which theoretical papers (de�ned
as papers with at least one equation in the main text) experience a sharp de�cit
in numbers of citations (Fawcett & Higginson 2012); this is the tragic sign that
empirical scientists either do not see the value of theoretical work, or have not
received the training to usefully rely on math-heavy theoretical papers, which
of course can be blamed on both parties. One of the leading textbooks for the
mathematical models in ecology and evolution (Otto & Day 2007) is more focused
with algebra and calculus, and not with the integration of models with data. Other
manuals that cover the integration of models and data tend to lean more towards
statistical models (Bolker 2008; Soetaert & Herman 2008). This paints a picture of
ecology as a �eld in which dynamical models and empirical data do not interact
much, and instead the literature develops in silos.

Computational ecology is the application of computational thinking to ecological
problems. This de�nes three core characteristics of computational ecology. First, it
recognizes ecological systems as complex and adaptive; this places a great emphasis
on mathematical tools that can handle, or even require, a certain degree of stochastic-
ity to accommodate or emulate what is found in nature (Zhang 2010, 2012). Second,
it understands that data are the �nal arbiter of any simulation or model (Petrovskii
& Petrovskaya 2012); this favours the use of data-driven approaches and analyses
(Beaumont 2010). On this point, computational approaches di�er greatly from the
production of theoretical models able to stands on their own with no data input.
Finally, it accepts that some ecological systems are too complex to be formulated
in mathematical or programmatic terms (Pascual 2005); the use of conceptual, or
“toy” models, as long as they can be confronted to empirical data, is preferable
to “abusing” mathematics by describing the wrong mechanism well (May 2004).
By contrast, modelling approaches are by construction limited to problems that
can be expressed in mathematical terms. To summarize, we de�ne computational
ecology as the sub-�eld tasked with integrating real-world data with mathematical,
conceptual, and numerical models (if possible by deeply coupling them), in order to
assist with the most needed goal of improving the predictive accuracy of ecological
research (Houlahan et al. 2017; Maris et al. 2017).

Ecology as a whole (and community ecology in particular) circumvented the problem
of model and data mismatch by investing in the development and re�nement of
statistical models (see Warton et al. 2014 for an excellent overview) and “numerical”
approaches (Legendre & Legendre 1998) based on multivariate statistics. These
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models are able to explain data, but very rarely do they give rise to new predictions
– despite it being a very clear priority even if we “simply” seek to further our
understanding (Houlahan et al. 2017). Computational ecology can �ll this niche; at
the cost of a higher degree of abstraction, its integration of data and generative
models (i.e. models that, given rules, will generate new data) can be helpful to initiate
the investigation of questions that have not received (or perhaps cannot receive)
extensive empirical treatment, or for which usual statistical approaches fall short. In
particular, we argue that computational approaches can serve a dual purpose. First,
they can deliver a more predictive science, because they are explicitly data-driven.
Second, they can guide the attention of researchers onto mechanisms of interests;
in a context where time and resources are �nite, and the urgency to understand
ecological systems is high, this may be the main selling point of computational
techniques.

In a thought-provoking essay, Markowetz (2017) suggests that all biology is compu-
tational biology – the rationale behind this bold statement being that integrating
computational advances, novel mathematical tools, and the usual data from one �eld,
has a high potential to deliver synthesis. A more reasonable statement would be that
all ecology can bene�t from computational ecology, as long as we can understand how
it interacts with other approaches; in this paper, we attempt to situate the practice
of computational ecology within the broader scope of ecological research. The
recent years have given us an explosion of new tools, training opportunities, and
mechanisms for data access. One can assume that computational approaches will
become more tempting, and more broadly adopted. This requires us to address the
questions of the usefulness and promises of this line of research, as well as the caveats
associated with it. In particular, we highlight the ways in which computational
ecology di�ers from, and complements, ecological modelling. We �nally move on to
the currency of collaborations between di�erent sub-disciplines of ecologists, and
discuss the need to add more quantitative skills in ecological training.

1

A success story: Species Distribution Models

The practice known as “species distributions modelling” (and the species distribution
models, henceforth SDMs, it generates) is a good example of computational practices
generating novel ecological insights. At their core, SDMs seek to model the presence
or absence of a species based on previous observations of its presence or absences,
and knowledge of the environment in which the observation was made. More
formally, SDMs can be interpreted as having the form P(S|E) (or P(S = 1|E) for
presence-only models), where S denotes the presence of a species, and E is an array
of variables representing the local state of the environment at the point where the
prediction is made (the location is represented, not by its spatial positions, but by a
suite of environmental variables).

As Franklin (2010) highlights, SDMs emerged at a time where access to computers
and the ability to e�ectively program them became easier. Although ecological

3



insights, statistical methods, and data already existed, the ability to turn these
ingredients into something predictive required what is now called “computational
literacy” – the ability to abstract, and automate, a system in order to generate
predictions through computer simulations and their validation. One of the strengths
of SDMs is that they can be used either for predictions or explanations of where a
given species occur (Elith & Leathwick 2009) and can be corroborated with empirical
data. To calculate P(S|E) is to make a prediction (what are the chances of observing
species S at a given location), that can be re�ned, validated, or rejected based on
cross-validation (Hijmans 2012) or de novo �eld samplig (West et al. 2016). To
understand E, i.e. the environmental aspects that determine species presence, is to
form an explanation of a distribution that relates to the natural history of a species.

SDMs originated as statistical and correlative models, and are now incorporating
more ecological theory (Austin 2002) – being able to integrate (abstract) ideas
and knowledge with (formal) statistical and numerical tools is a key feature of
computational thinking. In fact, one of the most recent and most stimulating
developments in the �eld of SDMs is to re�ne their predictions not through the
addition of more data, but through the addition of more processes (Franklin 2010).
These SDMs rely on the usual statistical models, but also on dynamical models
(for example simulations; e.g. Wisz et al. (2012) or Pellissier et al. (2013) for biotic
interactions, and Miller & Holloway (2015) for movement and dispersal). What they
lack in mathematical expressiveness (i.e. having a closed-form solution (Borwein
& Crandall 2013), which is often ruled out by the use of stochastic models or
agent-based simulations), they assume to gain in predictive ability through the
explicit consideration of more realistic ecological mechanisms (D’Amen et al. 2017;
Staniczenko et al. 2017).

SDMs have been a success, but there are many other areas of ecology that could be
improved by a marriage of computational ecology and empirical data. Additional
recent examples have included the novel use of genomic RNA-seq data and worldclim
climate data to create random forest models in order to make predictions where
yellow warbler populations, a species of conservation concern, are most vulnerable
to climate change (Bay et al. 2018), and using environmental DNA metabarcoding
data coupled with machine learning approaches and linear models to create, test,
and predict biodiversity indices for benthic foraminifera, which can be applied to
monitoring health of �sh farm ecosystems (Cordier et al. 2017). The increase in data
volume, coupled with access to computing techniques and power, will result in a
multiplication of these boundary-pushing studies in the next years.

2

Outlining computational ecology

Most research approaches exist on a gradient. In this section, we will outline
research practices which di�er enough in their approaches to fall under the umbrella
of computational science, and speci�cally discuss how they can provide novel
information. We will �rst show how computational ecology complements other
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research approaches, then discuss how it can be used in the current context to
facilitate interactions between theoretical and empirical research.

2.1. Computational ecology in focus The speci�c example of predator-prey
interactions should be a familiar illustration of how the same problem can be ad-
dressed through a variety of research approaches (�g. 1). The classical predator–prey
equations of Lotka & Volterra are an instance of a “modelling” based perspective,
wherein mathematical analysis reveals how selected parameters (rates of inter-
actions and growth) a�ect an ecologically relevant quantity (population stability
and coexistence). These models, although they have been formulated to explain
data generated through empirical observations, are disconnected from the data
themselves. In fact, this family of model lies at the basis of a branch of ecological
modelling that now exists entirely outside of data (Ackland & Gallagher 2004;
Gyllenberg et al. 2006; Coville & Frederic 2013). These purely mathematical models
are often used to describe trends in time series. But not all of them hold up to
scrutiny when explicitly compared to empirical data. Gilpin (1973) famously reports
that based on the predictions of the Lotka-Volterra model, hares in the Hudson bay
are feeding on Lynx – this example goes to show that blindly applying models is
dangerous, and their output should be framed in the context of external data.

By contrast Sallan et al. (2011) study the same issue (sustained persistence and �uc-
tuations of predator–prey couples through time) using a paleo-ecological timeseries,
and interpret their data in the context of predictions from the Lotka-Volterra family
of models (namely, they �nd support for Lotka-Volterra-like oscillations in time).
Although dynamical models and empirical data interact in this example, they do not
do so directly; that is, the analysis of empirical data is done within the context of
a broad family of model, but not coupled to e.g. additional simulations. The two
are done in parallel, and not so much in interaction. A number of other models
have been shown to generate predictions that quantitatively match empirical data
(Nicholson & Bailey 1935; Beverton & Holt 1957) – this represents, in our opinion,
the sole test of whether a mathematical model is adapted to a particular problem
and system. While models are undeniably useful to make mechanisms interact
in a low-complexity setting, it is a grave mistake to assume they will, in and of
themselves, be relevant to empirical systems.

Meta-analyses, such as the one by Bolnick & Preisser (2005), are instead interested in
collecting the outcome of observational and manipulative studies, and synthesizing
the e�ects they report. These are often purely statistical, in that they aggregate
signi�cance and e�ect size, to measure how robust a result is across di�erent systems.
Meta-analyses most often require a critical mass of pre-existing papers (Lortie et al.
2013). Although they are irreplaceable as a tool to measure the strength of results,
they are limited by their need for primary literature with experimental designs that
are similar enough.

Predator-preys (and other biotic) interactions have been studied with a few compu-
tational approaches to date. Colon et al. (2015) show how an agent-based model can
guide the interpretation of the same system represented as ordinary di�erential
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Figure 1 An overview of how computational
approaches can complement other research ap-
proaches. On the top line, we have represented
empirical studies (center) as well as modelling
(left) and meta-analysis (right; represented as a
funnel plot) approaches. In the bottom line, we
have represented three possible approaches to
study predator-prey relationships: knowledge
graphs can represent interactions between the
concepts; agent-based modelling can provide
some predictions about the future of the system;
methods from machine learning can assist both
in understanding and prediction. Importantly,
the goal of these approaches should always be
to return to empirical data.

equations. This is an important result, as it o�ers suggestions to bridge families of
models – not only can agent-based approaches provide answers about the biological
systems of interest, they can also provide information about the behaviour of other
families of models. Although this example is primarily model-driven, there are a
number of data-driven approaches that rely on computational techniques. One
example is the prediction of species interactions. Stock et al. (2017) suggested linear
�ltering to identify false-negatives (i.e. interactions that exist, but may have been
missed) in empirical dataset. This can guide sampling in the �eld, and is to an extant
a predictive task, but cannot inform our understanding of the system. Similarly,
Desjardins-Proulx et al. (2017a) used various recommender systems to infer the
prey items of predators based on knowledge of (i) diet and (ii) functional traits. This
results in testable predictions, but is not necessarily increasing our understanding
of the rules involved in the system.

Chen et al. (2016) used symbolic regression to infer a di�erential equations model
from data about predator-preys interactions. This is a fascinating result, as it shows
just how much signal is contained in data: enough to describe a mathematical model
explaining their behaviour. And while understanding mechanisms by looking at a
time series may be di�cult, understanding the mechanisms when studying equations
dictated by the data themselves is feasible. In a similar vein, Desjardins-Proulx et
al. (2017b) suggest that logic networks, which describe the relationships between
concepts, can be inferred by optimizing a knowledge bank on the data. This category
of approaches o�er the opportunity to increase our understanding of empirical data,
not by thinking deeply about the rules, but by extracting the rules from the data.

2.2. Computational ecology in context In Life on the Mississippi, Mark Twain
wrote that “There is something fascinating about science. One gets such wholesale
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returns of conjecture out of such a tri�ing investment of fact”. This is a good
description of the purpose of computational ecology: in a data-limited context,
merging phenomenological models with pre-existing datasets is a way to e�ciently
develop conjectures, or more appropriately, build on our knowledge of models and
data to put forward testable, quanti�ed hypotheses. Perretti et al. (2013) intriguingly
report that model-free inference based on data always outperforms the best model:
in other words, we do not understand ecological systems as well as we think,
and approaches putting the data �rst might always outperform those relying on
expert knowledge. Pascual (2005) outlined that computational ecology has a unique
ability to go from the complex (natural systems) to the simple (representations and
conceptual models), and back (testable predictions). Although the natural world is
immensely complex, it is paradoxically the high degree of model abstraction in
computational approaches that gives them generality across several systems. In the
years since this article was published, the explosion in machine learning tools and
their adoption by ecologists (Thessen 2016) could have changed the situation quite
signi�cantly.

Yet, with the exception of a still narrow family of problems that can be addressed by
remote-sensing or meta-genomics, there has been no regime shift in the rate at
which ecological data are collected. Observations from citizen science accumulate,
but are highly biased by societal preferences rather than conservation priority
(Donaldson et al. 2016; Troudet et al. 2017), by proximity to urban centers and
infrastructure (Geldmann et al. 2016), as well as by the interaction between these
factors (Tiago et al. 2017). In addition, Lindenmayer & Likens (2018) raise the
signi�cant concern that the “culture” of ecology must be maintained – even in the
context of a sudden (though debatable) avalanche of data, ecology as a �eld should
always put robust hypotheses �rst. This is especially true since our needs for testable
and actionable predictions increased dramatically. This provides a clear mission
statement for computational ecology: re�ning the models and further integrating
them with data is necessary, and using methods that work well on reduced amounts
of heterogeneous data must be part of this e�ort. Enthusiastic reports about the big
data revolution coming to ecology (Hampton et al. 2013; Soranno & Schimel 2014)
have been premature at best, and the challenge associated with most of our datasets
being decidedly tiny cannot be easily dismissed.

Yet data, even small, are “unreasonably e�ective” (Halevy et al. 2009) – they can reveal
trends and signal that may not be immediately apparent from causal modelling alone,
for example. Ecological models make, by de�nition, high accuracy predictions, but
they tend to be di�cult to test (Rykiel 1996) – models relying on precise mathematical
expressions can be di�cult to calibrate or parameterize. Observations (�eld sampling)
or manipulative approaches (micro/meso/macro-cosms, �eld experiments) are highly
accurate (but have also immense human and monetary costs that limit the scale
at which they can be applied). There is simply too much nature around for us to
observe, monitor, and manipulate it all. In this perspective, computational approaches
able to generalize some rules from the data (Desjardins-Proulx et al. 2017a, 2017b)
may help guide the attention of researchers onto mechanisms that are worthy of a
deeper investigation. Computational approaches will more likely shine in support to
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more established areas of research.

Recent advances in computational epidemiology (reviewed in Marathe & Ramakr-
ishnan 2013) provide an interesting roadmap for computational ecology: there have
been parallel advances in (i) adapting data acquisition to maximize the usefulness
of novel data analyses methods, (ii) integration of novel analytical methods from
applied mathematics and social sciences, mostly related to computations on large
graphs, to work on pre-existing data, and (iii) a tighter integration of models to data
�uxes to allow near real-time monitoring and prediction. All of these things are
possible in ecological research. In fact, recent examples (Bush et al. 2017; Harris et
al. 2017; Dietze et al. 2018; White et al. 2018) suggest that near real-time forecasting
of biodiversity is becoming feasible, and is identi�ed by computational ecologists as
a key priority.

3

En route towards synthesis

The �eld of ecology as a whole needs to improve the ways in which it can improve
synthesis in order to become policy-relevant. Most of the global policy challenges
have an ecological or environmental component, and outside of the socio-ecological,
socio-economical, socio-cultural, aspects, ecologists can contribute to the mitigation
or resolution of these challenges by i) assessing our knowledge of natural systems,
ii) developing methods to produce scenarios using state-of-the-art models and tools,
and iii) communicating the output of these scenarios to impact policy-making.
White et al. (2015) propose that this falls under the umbrella of action ecology, i.e.
using fundamental knowledge and ecological theory to address pressing, real-world
questions.

Raghavan et al. (2016) suggest that this approach can also accommodate stakeholder
knowledge and engagement. By building models that rely on ecological concepts,
empirical data, and stakeholder feedback, they propose a computational agroecology
program, to use computational tools in the optimization of sustainable agricultural
practices. This example suggests that not only can computational approaches yield
fundamental research results in a short time frame, they can also be leveraged
as a tool for applied research and knowledge transfer now. The de�nition of “a
short time” is highly sensitive to the context – some predictions can be generated
using routine tools (in a matter of weeks), whereas some require to develop novel
methodologies, and may require years. Accelerating the time to prediction will, in
large part, require the development of software that can be deployed and run more
rapidly. Overall, computational ecology is nevertheless nimble enough that it can be
used to iterate rapidly over a range of scenarios, to inform interactions with policy
makers or stakeholders in near real time.

3.1. Mapping the domains of collaboration Understanding how computa-
tional ecology will �t within the broader research practices requires answering three
questions: what can computational ecology bring to the table, what are the needs of
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computational ecologists, and what are the current limitations of computational
approaches that could limit their immediate applicability. It seems, at this point,
important to minimize neither the importance nor the e�ciency of sampling and
collection of additional data. Sampling is important because ecological questions,
no matter how fundamental, ought to be grounded in phenomena happening in
nature, and these are revealed by observation or manipulation of natural systems.
Sampling is e�cient because it is the �nal arbiter: how good any prediction is at
explaining aspects of a particular empirical system is determined by observations of
this system, compared to the predictions.

Relying heavily on external information implies that computational research is
dependent on standards for data representation. The Ecological Metadata Language
(Fegraus et al. 2005) is an attempt at standardizing the way meta-data are represented
for ecological data; adherence to this standard, although it has been shown to improve
the ease of assembling large datasets from single studies (Gil et al. 2011), is done on
a voluntary basis (and is therefore abysmal). An alternative approach is to rely on
community e�orts to pre-curate and pre-catalog ecological data, such as with the
�agship e�ort EcoDataRetriever (Morris & White 2013). Yet even this approach is
ultimately limited, because of the human factor involved — when the upstream data
change, they have to be re-worked into the software. A community consensus on
data representation, although unlikely, would actually solve several problems at
once. First, it would make the integration of multiple data sources trivial. Second, it
would provide clear guidelines about the input and storage of data, thus maybe
improving their currently limited longevity (Vines et al. 2014). Finally, it would
facilitate the integration of data and models with minimum e�orts and risk of
mis-communication, since the format would be the same for all. To this extent, a
recent proposal by Ovaskainen et al. (2017) is particularly interesting: rather than
deciding on formats based on knowledge of eco-informatics or data management
best practices, why not start from the ecological concepts, and translate them in
digital representation? The current way to represent e.g. biodiversity data has
largely been designed based on the needs of collection managers, and bears little to
no relevance to most extant research needs. Re-designing the way we store and
manipulate data based on research practices is an important step forward, and
will ultimately bene�t researchers. To be generalized, this task requires a strong
collaboration between ecologists with topic expertise, ecologists with �eld expertise,
and those of us leaning closest to the computational part of the �eld.

With or without a common data format, the problem remains that we have very
limited insights into how error in predictions made on synthetic datasets will
propagate from an analysis to the other (Poisot et al. 2016); in a succesion of
predictive steps, do errors at each step amplify, or cancel one another? Biases exist
in the underlying data and in the models used to generate the predictions, and
these biases can manifest in three possible outcomes. First, predictions from these
datasets accumulate bias and cannot be used. Second, because the scale at which
these predictions are expressed is large, errors are (quantitatively) small enough to
be over-ridden by the magnitude of actual variation. Finally, in the best-case but
low-realism scenario, errors end up cancelling each other out. The best possible
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way to understand how errors propagate is to validate predictions de novo. Model-
validation methods can be used, as they are with SDMs (Hijmans 2012), but de novo
sampling carries the additional weight of being an independent attempt at testing
the prediction. Improved collaborations on this aspect will provide estimates of the
robustness of the predictions, in addition to highlighting the steps of the process
in which uncertainty is high — these steps are natural candidates for additional
methodological development.

Finally, there is a need to assess how the predictions made by purely computational
approaches will be fed back into other types of research. This is notably true
when presenting these approaches to stakeholders. One possible way to make this
knowledge transfer process easier is to be transparent about the way predictions
were derived: which data were used (with citations for credits and unique identi�ers
for reproductibility), which software was used (with versions numbers and code),
and what the model / simulations do (White et al. 2013). In short, the onus is on
practitioners of computational research to make sure we provide all the information
needed to communicate how predictions came to be.

3.2. Establishing the currencies of collaboration An important question to
further the integration of computational approaches to the work�ow of ecological
research is to establish currencies for collaborations. Both at the scale of individuals
researchers, research group, and larger research communities, it is important to
understand what each can contribute to the research e�ort. As ecological research
is expected to be increasingly predictive and policy-relevant, and as fundamental
research tends to tackle increasingly re�ned and complex questions, it is expected
that research problems will become more di�cult to resolve. This is an incentive for
collaborations that build on the skills that are speci�c to di�erent approaches.

In an editorial to the New England Journal of Medicine, Longo & Drazen (2016)
characterized scientists using previously published data as “research parasites”
(backlash by a large part of the scienti�c community caused one of the authors
to later retract the statement – Drazen (2016)). Although community ecologists
would have, anyways, realized that the presence of parasites indicates a healthy
ecosystem (Marcogliese 2005; Hudson et al. 2006), this feeling of unfair bene�t for
ecological data re-analysis (Mills et al. 2015) has to be addressed, because it has no
empirical support. The rate of data re-use in ecology is low and has a large delay
(Evans 2016), and there are no instances of re-analysing existing data for the same
(or similar) purpose their were produced for. There is a necessary delay between
the moment data are available, and the moment where they are aggregated and
re-purposed (especially considering that data are, at the earliest, published at the
same time as the paper). This delay is introduced by the need to understand the
data, see how they can be combined, develop a research hypothesis, etc..

On the other hand, there are multiple instances of combining multiple datasets
collected at di�erent scales, to address an entirely di�erent question (see GBIF 2016
for an excellent showcase) – it is more likely that data re-use is done with the intent
of exploring di�erent questions. It is also worth remembering that ecology as a
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whole, and macroecology and biogeography in particular, already bene�t immensely
from data re-use. For example, data collected by citizen scientists are used to generate
estimates of biodiversity distribution, but also set and re�ne conservation targets
(Devictor et al. 2010); an overwhelming majority of our knowledge of bird richness
and distribution comes from the eBird project (Sullivan et al. 2009, 2014), which is
essentially fed by the unpaid work of citizen scientists.

With this in mind, there is no tip-toeing around the fact that computational ecologists
will be data consumers, and this data will have to come from ecologists with active
�eld programs (in addition to government, industry, and citizens). Recognizing that
computational ecology needs this data as a condition for its continued existence
and relevance should motivate the establishment of a way to credit and recognize
the role of data producers (which is discussed in Poisot et al. 2016, in particular
in the context of massive dataset aggregation). Data re-users must be extremely
pro-active in the establishment of crediting mechanisms for data producers; as the
availability of these data is crucial to computational approaches, and as we do not
share any of the cost of collecting these data, it behooves us to make sure that our
research practices do not accrue a cost for our colleagues with �eld or lab programs.
Encouraging conversations between data producers and data consumers about what
data will be shared, when, and how databases will be maintained will improve both
collaborations and research quality. In parallel, data producers can bene�t from the
new analytical avenues opened by advances in computational ecology. Research
funders should develop �nancial incentives to these collaborations, speci�cally by
dedicating a part of the money to developing and implementing sound data archival
and re-use strategies, and by encouraging researchers to re-use existing data when
they exist.

3.3. Training data-minded ecologists The fact that data re-use is not instan-
taneously convenient reveals another piece of information about computational
ecology: it relies on di�erent skills, and di�erent tools than those typically used by
�eld ecologists. One of the most fruitful avenue for collaboration lies in recognizing
the strengths of di�erent domains: the skills required to assemble a dataset (taxo-
nomic expertise, natural history knowledge, �eld know-how) and the skills required
to develop robust computational studies (programming, applied mathematics) are
di�erent. Because these skills are so transversal to any form of ecological research,
we are con�dent that they can be incorporated in any curriculum. If anything,
this calls for increased collaboration, where these approaches are put to work in
complementarity.

Barraquand et al. (2014) highlighted the fact that professional ecologists received
less quantitative and computational thinking that they think should be necessary.
Increasing the amount of such training does not necessarily imply that natural
history or �eld practice will be sacri�ced on the altar of mathematics: rather, ecology
would bene�t from introducing more quantitative skills and reasoning across all
courses, and introductory ones in particular (Ho�man et al. 2016). Instead of dividing
the �eld further between empirically and theoretically minded scientists, this would
showcase quantitative skills as being transversal to all questions that ecology can
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address. What to teach, and how to integrate it to the existing curriculum, does of
course requires discussion and consensus building by the community.

A related problem is that most practising ecologists are terrible role models when
it comes to showcasing good practices of data management (because there are
no incentives to do this); and data management is a crucial step towards easier
computational approaches. Even in the minority of cases where ecologists do share
their data on public platforms, there are so few metadata that not being able to
reproduce the original study is the rule (Roche et al. 2014, 2015). This is a worrying
trend, because data management a�ects how easily research is done, regardless of
whether the data are ultimately archived. Because the volume and variety of data
we can collect tends to increase over time, and because we expect higher standard
of analysis (therefore requiring more programmatic approaches), data management
has already became a core skill for ecologists to acquire.

This view is echoed in recent proposals. Mislan et al. (2016) suggested that high-
lighting the importance of code in most ecological studies would be a way to bring
the community to adopt higher standards, all the while de-mystifying the process
of producing code. As with increased mandatory data release along manuscript
publication required by funding agencies, mandatory code release would bene�t a
more reproductible science and how data were transformed during the analysis.
This also requires teaching ecologists how to evaluate the quality of the software
they use (Poisot 2015). Finally, Hampton et al. (2015) proposed that the “Tao of Open
Science” would be particularly bene�cial to the entire �eld of ecology; as part of the
important changes in attitude, they identi�ed the solicitation and integration of
productive feedback throughout the research process. Regardless of the technical
solution, this emphasizes the need to foster, in ecologists in training, a culture of
discussion across disciplinary boundaries.

All of these points can be distilled into practical training recommendations for
di�erent groups in the community of ecologists. Classes based around lab or �eld
experience should emphasize practical data management skills which have been
validated as best practices by the community (Soyka et al. 2017), and introduce tools
that would make the maintenance of data easier. Modelling classes, especially when
concerned about purely mathematical models, should add modules on the way these
models can be integrated with empirical data. Finally, computational classes should
emphasize communication skills: what do these new tools do, and how can they
be used by other �elds in ecology; but also, how do we properly track citations to
data, and give credit to data producers? Building these practices into training would
ensure that the next generation of ecologists will be able to engage in a meaningful
dialogue across methodological boundaries.

4

Concluding remarks

None of these approaches to ecological research have any intrinsic superiority –
in the end, direct observation and experimentation trumps all, and serve as the
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validation, rejection, or re�nement of predictions derived in other ways, but lacks
the scaling power to be the only viable solution. The growing computational power,
growing amount of data, and increasing computational literacy in ecology means
that producing theory and predictions is becoming cheaper and faster (regardless
of the quality of these products). Yet the time needed to test any prediction is
not decreasing (or at least not as fast). Computational science has resulted in the
development of many tools and approaches that can be useful to ecology, since
they allow ecologists of all kinds to wade through these predictions and data.
Confronting theoretical predictions to data is a requirement, if not the core, of
ecological synthesis; this is only possible under the conditions that ecologists engage
in meaningful dialogue across disciplines, and recognize the currencies of their
collaborations.

Discussing the place of computational ecology within the broader context of the
ecological sciences will highlight areas of collaborations with other areas of science.
Thessen (2016) makes the point that long-standing ecological problems would
bene�t from being examined through a variety of machine learning techniques
– We fully concur, because these techniques usually make the most of existing
data (Halevy et al. 2009). Reaching a point where these methods are routinely used
by ecologists will require a shift in our culture: quantitative training is currently
perceived as inadequate (Barraquand et al. 2014), and most graduate programs do
not train ecology students in contemporary statistics (Touchon & McCoy 2016).

Ultimately, any additional data collection has its scope limited by �nancial, human,
and temporal constraints — or in other words, we need to chose what to sample,
because we can’t a�ord to sample it all. Computational approaches, because they
can work through large amounts of data, and integrate them with models that
can generate predictions, might allow answering an all important question: what
do we sample, and where? Some rely on their ecological intuition to answer;
although computational ecologists may be deprived of such intuitions, they have
the know-how to couple data and models, and can meaningfully contribute to this
answer. Computational ecology is also remarkably cost-e�ective. Although the
reliance on advanced research computing incurs immense costs (including hardware
maintenance, electrical power, and training of highly quali�ed personnel; these
are often absorbed by local or national consortia), it allows to generate predictions
that are highly testable. Although the accuracy of these predictions is currently
unknown (and will vary on a model/study/question basis), any additional empirical
e�ort to validate predictions will improve their quality, reinforcing the need for
dialogue and collaborations.
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