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Abstract

Parasite genetic diversity has been argued to be informative about the way infectious

diseases spread and interact within their hosts. However, most methods developed to

detect such interactions rely on infection ranks (i.e. number of genotypes per host) and

the few that do use all the
:::
can

::::::
inform

:::
us

:::
on

:::::::::::
transmission

:::::::::
dynamics

::::
but

:::::
most

::::::::
methods

:::::
ignore

::::
the

:::::
exact

:
combinations of genotypeslack an underlying epidemiological setting.

To overcome this limitation, we take advantage of a recent model that captures the

dynamics of an arbitrary number of strains with coinfections and cotransmission.
::::
We

::::::::
introduce

::::
and

::::::::
validate

:
a
::::
new

::::::::
method

::::
that

:::::::::
combines

:::::::
explicit

::::::::::::::
epidemiological

:::::::::
modelling

::
of

::::::::::
coinfections

::::
and

::::::::::
regression

::::::::::::
Approximate

::::::::
Bayesian

::::::::::
Computing

:::::::
(ABC)

:::
to

::::::
detect

::::::::::
within-host

:::::::::::
interactions. Using genital infections by different types of Human

Papillomaviruses (HPVs) as a test case, we show that regression Approximate Bayesian

Computing (ABC) has the power to detect interactions between high-risk and low-risk

HPV types. We also show that contrary to existing method, this detection is not

affected by
::::::
robust

::
to

:
another source of host heterogeneity (here the number of sexual

partners). Overall, combining
:::::
based

::
on

::::::::::
behaviour

::::::::::
differences.

::::::
These

::::::
results

:::::::
suggest

::::
that

:::
the

::::::::::::
combination

::
of mathematical modelling and sophisticated inference techniques
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allows us to use new types of data to extract relevant epidemiological information
::
is

:::::::::
promising

::
to

:::::::
extract

:::::::::
additional

::::::::::::::
epidemiological

:::::::::::
information

:::::
from

:::::::
existing

::::::::
datasets.

::::::::::
keywords:

:::::::
multiple

::::::::::
infections,

:::::
MOI,

::::::::::::::
superspreaders,

:::::::::
inference,

::::::
ABC,

:::::::::::
competition
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Introduction 1

With the advent of next generation sequencing, an increasing number of infections 2

turn out to be coinfections 3

:::::
Hosts

:::
are

::::::
known

:::
to

:::::
often

:::
be

:::::::::::::
simultaneously

::::::::
infected by multiple genotypes 4

Juliano et al. (2010). Of course for some systems, such as genital infections by Human 5

Papillomaviruses (HPVs), this was already known to be the case 6

Thomas et al. (2000), Rousseau et al. (2001). 7

Multiple infections, that is the circulation of several parasite genotypes in a host 8

population Sofonea et al. (2017), raise questions at three levels. At the infection level, 9

the virulence expressed in coinfected hosts (or ‘overall virulence’) can be different from 10

the virulence in single infections. At the epidemiological level, allowing for parasites to 11

infect already infected hosts may affect the way parasites spread. For example, 12

coinfection by malaria and HIV may speed the spread of both parasites 13

Abu-Raddad et al. (2006). Finally, multiple infections create an additional level of 14

selection that may impact the way parasite traits evolve Alizon et al. (2013). 15

:
of
::::

the
:::::
same

:::::::
parasite

:::::::
species

:::
or

::::
even

:::
by

::::::::
multiple

:::::::
parasite

:::::::
species.

::::::
Over

:::
the

::::
last 16

:::::::
decades,

::::
the

:::
gap

::::::::
between

::::
our

::::::
ability

::
to

::::::
detect

::::
this

::::::::
parasite

::::::::::
within-host

:::::::::
diversity

:::
and 17

::
its

::::
use

::
in

::::::::::::::
epidemiological

::::::::
inference

::::::
model

::::
has

::::::::
widened.

:
Here, we investigate how 18

::::::::
introduce

::::
and

::::::::
validate

::
an

:::::::::
approach

::
to

::::::
detect

:::::::::::
within-host

::::::::::
interaction

:::::
from equilibrium 19

prevalence data can help us infer potential interactions between parasite genotypes. 20

Although these methods can be applied to many systems, we focus in particular on 21

genital HPV infections for three reasons. First, HPV multiple infections are well 22

described thanks to screening for HPV-induced cancers 23

Vaccarella et al. (2010), Chaturvedi et al. (2011), Dickson et al. (2013) and 24

prevalences are relatively stable through time Alemany et al. (2014). Second, HPV 25

evolutionary rates are generally slow, which limits within-host evolution and facilitates 26

detection Bravo et al. (2010). Third, the existence of within-host interactions between 27

types is strongly debated, especially in the context of vaccination, given that they may 28

affect a potential parasite evolutionary response Murall et al. (2015). 29

The clearest source of within-host interaction between HPV genotypes is the 30

apparent competition mediated by the immune system. Indeed, pre-vaccine and 31

3/42



vaccine studies have shown that there is limited natural cross-reactivity between 32

phylogenetically related HPV types and that the vaccines confer some cross-immunity 33

against non-target types Herrero (2009), Wheeler et al. (2012), Beachler et al. (2016). 34

Evidence for other kinds of interactions is limited. Within-cell interactions are possible 35

since different HPVscan coinfect the same cell McLaughlin-Drubin & Meyers (2004). 36

For some types, virus loads also seem to be differ in single and in coinfections 37

Xi et al. (2009), which could impact transmission or recovery rates. There is also 38

indirect epidemiological evidence. First, infection by HPV is known to affect the risk 39

of contracting another infection 40

Rousseau et al. (2001), Méndez et al. (2005), Tota et al. (2016) and to decrease type 41

recovery rate Trottier et al. (2008). Second, HPV coinfections may interfere with 42

chronic infection and cancer. For example, when high-risk HPV types coinfect with 43

low-risk types, time to diagnosis is longer and the risk of progression to cancer is lower 44

Sundström et al. (2015). To summarise, we do know that HPV types may interact 45

within hosts but it is unclear whether these interactions are sufficiently strong to be 46

detected at the population level
::::
even

::
in

::::
the

::::::::
presence

::
of

:::::::
another

::::::
source

:::
of

::::::::::::
heterogeneity. 47

::::
This

:::::::
method

:::::
relies

:::
on

::::
the

:::::
exact

:::::::::::
combination

::
of
::::::::

parasite
:::::::::
genotypes

:::
in

::::
each

:::::
host,

::::::
which 48

::
we

:::::
refer

::
to

:::
as

:::
the

:::::::::
‘genotype

::::::::::::
combination’

:::
in

:::
the

:::::::::
following.

::::
We

:::::
focus

:::
on

::::::
genital 49

::::::::
infections

:::
by

::::::::
different

:::::
types

:::
of

::::::
human

:::::::::::::::
papillomaviruses

::::::::
(HPVs),

::::::
which

:::
are

:::::::
known

::
to 50

::
be

::::::
highly

:::::::::
prevalent 51

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Thomas et al., 2000, Rousseau et al., 2001, Chaturvedi et al., 2011),

:::
but

::::
this

:::::::
method 52

:
is
::::::::::
applicable

::
to

::::
any

:::::::
system

::
of

::::::::
multiple

:::
by

:::::::
different

::::::::
parasite

:::::::
species

::
or

:::::::::
genotypes

:::
for 53

:::::
which

:::::
there

::
is
::::::::::
sufficiently

::::
rich

:::::
data. 54

Binary or rank models 55

Most epidemiological models that allow for parasite genotypes to coexist within a host 56

only allow for up to two genotypes per host and do not allow for cotransmission, 57

although there are exception for both 58

May & Nowak (1995), Lion (2013), ?), Sofonea et al. (2015). In spite of these 59

simplifications, these 60

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(May & Nowak, 1995, Lion, 2013, Alizon, 2013, Sofonea et al., 2015).

::::::
These

:::::::
‘binary’ 61
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models have been instrumental in epidemiology Keeling & Rohani (2008)
:::
but

:::
are

:::
by 62

::::::::
definition

:::::::::::::
inappropriate

::
as

:::::
soon

::
as

::::::::
parasite

::::::::
diversity

:::::::
exceeds

:::::
three

::::::::::
genotypes. 63

Studies
::::::::::
Conversely,

::::::
studies

:
on macro-parasites have long been focusing on high 64

multiplicity of host infection Anderson & May (1991)
:::::::::::
incorporating

::::
the

:::::::::::
multiplicity

::
of 65

::::::::
infection

::
in

:::::
their

::::::
models

:::::::::::::::::::::::
(Anderson & May, 1978). They showed that the distribution 66

of the number of macro-parasites per host, which we here refer to as the ‘rank’ of an 67

infection, can provide information regarding the contact structure within the host 68

population. In absence of heterogeneity of any kind, one would expect rank 69

distributions to follow a Poisson distribution. Interestingly, in many populations, the 70

number of macro-parasites per host tends to follow a negative-binomial distribution, 71

which is often interpreted as evidence for some sort of host population structure or a 72

specific functional response 73

Grafen & Woolhouse (1993), Shaw & Dobson (1995), Wilber et al. (2017)
::::::::::::::::::::::::::::::::::::::
(Shaw & Dobson, 1995, Wilber et al., 2017).74

::::
This

:::::::::::
aggregation

:::::::
pattern

::::
then

:::::::
shapes

:::
the

::::::::::
functional

::::::::
response

:::::::
between

::::::::::
parasitism

::::
and 75

::::
host

:::::
death

::::
rate

:::
in

:::::
ways

::::
that

::::
can

::::::::
critically

:::::
affect

::::::::::
population

:::::::::
dynamics 76

::::::::::::::::::::::
(Anderson & May, 1978). 77

Rank distribution for HPV infections. Black dots show data from 5412 sexually 78

active women in the Costa Rica Vaccine Trial reported by Chaturvedi et al. (2011). 79

Lines show maximum likelihood fits performed using the bbmle package in R 80

Bolker (2008). 81

For microparasites, similar studies have been developed, where the rank of the 82

infection
::::::::
infection

::::
rank

:
corresponds to the number of genotypes detected in a host. For 83

example, Chaturvedi et alii Chaturvedi et al. (2011)
::::::::::::::::::::::
Chaturvedi et al. (2011) showed 84

that a Poisson distribution can be rejected for HPV coinfections
::::::
genital

:::::::::
infections 85

suggesting that there is an excess of coinfections compared to what would be expected 86

in a standard Susceptible-Infected (SI) model. Additional analyses
::
of

::::
ours

:
show that a 87

negative binomial distribution provides an excellent fit to the data (Figure ??
:::::
nicely 88

:::::::
captures

::::
the

:::
tail

:::
of

::::
this

::::::::::
distribution

:::::
(Fig

:::
1A). This is consistent with the result of the 89

study that identifies the ‘
::::
fact

::::
that

:::
the

::
‘number of lifetime sex partners’ as

:::::::
partners’ 90

:::
was

:
the cofactor the most strongly associated with being infected by multiple

::::
HPV 91

types instead of a single type Chaturvedi et al. (2011). 92
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Fig 1. The coinfection epidemiological setting. A) The different prevalences that can
be used

:::::::::
Empirical

::::
rank

:::::::::::
distribution

:
for n = 5 genotypes (per genotype

::::
HPV

:::::::::
infections,

per rank or per combination). B) Flow diagram showing the population structure with
‘normal-spreader’ hosts (1 in red) and ‘super-spreader’ hosts (2 in dark blue)

:
,
:::
C)

::::
Host

::::
class

:::::::::::
prevalences

:::
for

:::::
n = 5

::::::::::
genotypes,

:::
D)

::::::::::::
Combination

::::::::::
prevalences

:::
for

::
a
::::::::
scenario

::::
with

::::
weak

::::::::::
(k ≈ 0.02)

::::
and

:::
E)

::::
with

::::::
strong

::::::::::
interaction

:::::::::::::
(k =≈ −0.41). The

:
In

:::
A,

:::::
black

:::::
dots

::::
show

:::::
data

:::::
from

:::::
5, 412

::::::::
sexually

::::::
active

::::::
women

:::
in

:::
the

::::::
Costa

::::
Rica

::::::::
Vaccine

:::::
Trial

::::::::
reported

::
by

::::::::::::::::::::::::::
Chaturvedi et al. (2011) and

::::
lines

:::::
show

::::::::::
maximum

:::::::::
likelihood

:::
fits

::::::::::
performed

:::::
using

:::
the

::::::
bbmle

:::::::
package

::
in
::
R

:::::::::::::
(Bolker, 2008).

:::
In

::
B,

::::
the β and γ indicate transmission and

recovery rates.
:
In

:::
C,

:::::
each

:::::
circle

::::::::
indicates

::
a
::::::::::
prevalence

::::
(per

:::::::::
genotype,

:::
per

:::::
rank

::
or

::::
per

::::::::::::
combination)

::::
that

::::
can

::
be

:::::
used

::
as

::
a
:::::::::
summary

:::::::::
statistics.

::
In

::
D
::::

and
:::
E,

:::
the

::::::::
shading

::::::::
indicates

:::
the

::::::::
infection

:::::
rank

:::
(or

:::::::
number

:::
of

::::::::::
coinfecting

::::::::::
genotypes)

::::
and

:::
the

:::::
class

::
is

::
a

::::::
binary

::::
code

::::::::::
indicating

:::
the

:::::::::
genotypes

::::::::
present.

:::
We

:::::::
assume

:::::
that

:::::::::
genotypes

::
B

::::
and

::
E

:::
are

:::
the

:::
LR

::::
and

:::
A,

::
C

::::
and

::
D

:::
are

::::
the

::::
HR.

Parasite combination prevalences 93

Intuitively, there should be more information in the prevalence of each combination of 94

genotypes than in the rank prevalence. With 5 circulating genotypes, there are only 6 95

host ranks whereas there are 32 combinations (Figure ??A). Some studies have 96

therefore used combination prevalence data to detect interactions. Their approach was 97

to compare the observed prevalence of each combination to an expected value derived 98

from the total prevalence of each genotype
:::::
HPV

::::
type

::
in

::::
the

:::::
study

:::
by

::::::::::::::::
Chaturvedi et al.. 99

Fenton et alii Fenton et al. (2014) Fenton et al. (2014) compared several techniques 100

using a dataset involving 2 species for which the real
:::
real

::::::::::
within-host

:
interactions were 101
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known from laboratory experiments. They concluded that correlation techniques 102

performed worse and that the best method required time series and not just 103

cross-sectional data (see Shrestha et al. (2011)
::::::::::::::::::::
(Shrestha et al., 2011) on how to infer 104

interaction parameters from time series using particle filtering techniques).
::::
This

::
is 105

:::::::::
consistent

::::
with

:::::::::::
longitudinal

:::::
data

:::::
being

:::::::::
generally

:::::
richer

:::
for

::::::::::::::
epidemiological

:::::::::
inference 106

::::
than

:::::::::::
equilibrium

::::
data

::::::::::::::::::::::
(Rohani & King, 2010). However, the restricted number of 107

strain they used also potentially limited the power of their conclusion (3 ranks and 2 108

total prevalences versus 4 combinations). 109

Although longitudinal data is generally richer for epidemiological inference 110

Rohani & King (2010), it is not always available and we often need to deal with 111

equilibrium prevalences. To analyse such data, the study by Vaumourin et 112

alii Vaumourin et al. (2014) 113

::::::::::
Parasite

:::::::::::::::
combination

::::::::::::::
prevalences 114

:::::::::
Intuitively,

::::::
there

::::::
should

:::
be

:::::
more

::::::::::
information

:::
in

:::
the

::::::::::
prevalence

::
of

:::::
each

:::::::::::
combination

::
of 115

:::::::::
genotypes

::::
than

:::
in

:::
the

:::::
rank

::::::::::
prevalence.

:::::
With

::
5
::::::::::
circulating

::::::::::
genotypes,

:::::
there

:::
are

:::::
only

:
6 116

:::::::
possible

:::::
ranks

::::::::
whereas

:::::
there

:::
are

:::
32

:::::::
possible

:::::::::
genotype

::::::::::::
combinations

::::
(Fig

:::::
1C).

:::::::
Earlier 117

::::::
studies

:::::
have

:::::::
already

:::::::
thought

::::::
about

:::::
using

::::
this

:::::
data

::
to

:::::::::::
compensate

:::
for

:::
the

:::::
lack

::
of 118

::::::::::
longitudinal

::::::
data.

::
In

::::::::::
particular,

::::::::::::::::::::::
Vaumourin et al. (2014) considered systems with a 119

larger number of genotypes using a variety of existing techniques (generalised chi-square, 120

network ,
::::::
models

:
and multinomial GLM approaches) and developed a new association 121

screening approach that has the advantage to identify and rank combinations based on 122

their deviation from the expectation (see the Methods). To test the power and 123

accuracy of each method, they used simulated distributions but without an explicit 124

epidemiological model.
:::::::::
Essentially,

:::::
their

::::::::
methods

::::::::
consists

::
in

:::::::
testing

:::::::
whether

::::
the 125

::::::::
observed

::::::::
genotype

:::::::::::
combination

::::::::::
prevalence

:::::::::::
distribution

:::::::::::
significantly

::::::
differs

:::::
from

:::
the 126

:::::::
‘neutral’

:::::::::::
distribution

:::
in

:::::
which

:::::::::
parasites

::
do

::::
not

:::::::
interact

:::
in

:::::
their

::::
host

:::::
(also

:::::::
referred

::
to 127

::
as

:::::
‘H0’).

:::::
This

:::::::
neutral

:::::::::::
distribution

::
is

:::::
built

:::::
from

:::
the

:::::
total

::::::::::
prevalence

::
of

::::
each

:::::::::
genotype 128

::::::::
assuming

::
a

:::::::::::
multinomial

:::::::::::
distribution.

:::
As

::::
the

:::::::
Poisson

:::::::::::
distribution

:::::
used

::
by 129

::::::::::::::::::::::
(Chaturvedi et al., 2011),

::
it
:::::::::
implicitly

::::::::
assumes

:::
an

::
SI

::::::
model

:::::
with

::::::::::::::
co-transmission.

:
130

:::
One

:::
of

:::
the

::::::::::
limitations

::
of
::::
not

::::::
having

:::
an

:::::::
explicit

::::::::::::::
epidemiological

::::::
model

::
is
:::::
that

:::
any 131
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::::
type

::
of

::::::::::::
heterogeneity

:::::
into

:::
the

:::::::
system

::::
may

::::
lead

:::
to

:
a
:::::::::
deviation

:::::
from

:::
H0.

:::
In

::::::::::
particular, 132

:::::::
infected

:::::
hosts

::::
may

::::::
differ

::
in

:::::
their

::::::::::
phenotypes

:::
for

:::::
other

:::::::
reasons

:::::
that

:::
the

:::::::
nature

::
of

:::
the 133

::::::::::
genotype(s)

::::::::
infecting

::::::
them.

:::::::::
Detecting

:::
an

:::::
effect

:::
of

:::::::::::
interactions

:::::::
between

::::::::::
genotypes

::
on 134

::::::::::
equilibrium

::::::::::
prevalences

:::::::::
therefore

:::::::
requires

::::::
ruling

::::
out

:::::
other

:::::::::
important

:::::::
sources

:::
of

::::
host 135

::::::::::::
heterogeneity.

:
136

Inference using explicit modelling 137

We wish to assess whether, in a setting where
:::
Our

::::
goal

:::
in

::::
this

:::::
study

::
is
::::::::
twofold.

:::::
First, 138

::
we

:::::
want

:::
to

:::::
assess

::::
the

:::::::::
additional

:::::::::::
information

::::
that

::::
can

:::
be

::::::::
obtained

:::::
from

::::::::
genotype 139

:::::::::::
combination

:::::
data.

:::::::
Second,

:::
we

::::
also

:::::
want

:::
to

::::::
control

:::
for

::::::::
another

::::::
source

::
of

:::::
host 140

::::::::::::
heterogeneity,

:::::::
namely

:::
the

::::
fact

:::::
that

:::::
some

:::::
hosts

::::
may

::::
act

::
as

:::::::::::::::
‘super-spreaders’ 141

:::::::::::::::::::::::
(Lloyd-Smith et al., 2005).

:::
As

::::::::::
mentioned

::::::
above

:::::::::::::::::::::::
(Chaturvedi et al., 2011),

:::::
these

:::::
hosts 142

::::::
should

::
be

:::::
more

::::::::
exposed

::
to

::::
the

::::::::
infection

::::
and

::::::::
therefore

:::::
have

::::::
higher

::::::::
infection

::::::
ranks 143

::::::::::::
independently

:::
of

:::
any

::::::::
features

::
of

:::
the

:::::::::
parasites

::::::::::
themselves.

:::::
Our

:::::::::
hypothesis

::
is
:::::
that

:::::
using 144

:
a
:::::::::::::
mathematical

::::::
model

::::
that

::::::::
captures

:::
the

::::::::::::::
epidemiological

:::::::::
dynamics

::
of
:
n prevalent 145

parasite genotypes or species are circulating, the prevalence of the
:::::::
parasite

:::::::::
genotypes 146

:::
(or

:::::::
species)

::
in

:::::
their

:
2n coinfected host classes gives us more information about the way 147

parasites spread and interact within their hosts than the n+ 1 rank prevalences. More 148

precisely, our hypothesis is that modelling epidemiological dynamics explicitly can 149

allow us to distinguish between within-host interactions and other types of 150

heterogeneities generated from the host contact structure. Indeed, it is known that for 151

many infectious diseases, especially sexually-transmitted ones Liljeros et al. (2001), 152

some hosts may act as ‘super-spreaders’ Lloyd-Smith et al. (2005). Intuitively, these 153

hosts should be more exposed and therefore have higher infection ranks independently 154

of any features of the parasites themselves (as mentioned in the case of HPV above 155

Chaturvedi et al. (2011)). 156

HPV offers an ideal setting to test these questions because coinfections are frequent 157

and rich data exists. Based on the literature, we use our model to evaluate our ability 158

to test the hypothesis that oncogenic HPV types, also called ‘high-risk’ (HR) types, 159

have a competitive advantage (or disadvantage) when competing with non-oncogenic 160

types or ‘low-risk’(LR)types that tend to cause warts. Given that the probability of 161
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HPV transmission per sexual contact is high Winer et al. (2006), we assume that any 162

interaction between HR and LR types takes place through the recovery rate. 163

To test these hypotheses, we adopt mechanistic approach and simulate 164

epidemiological dynamics. This is made possible by a recent analytical framework that 165

can handle an arbitrary number of types in a Susceptible-Infected-Susceptible (SIS) 166

model Sofonea et al. (2015). In order to assess the ability to infer interactions from 167

the observed coinfection classes, we use a regression-based Approximate Bayesian 168

Computing (ABC) approach Csilléry et al. (2012), Saulnier et al. (2017). We show 169

that our method performs well on simulated data and that existing methods that lack 170

an explicit epidemiological setting cannot distinguish genotype interaction from 171

general host heterogeneity. 172

Results 173

Associations and interaction strength 174

First we use existing methods developed to detect significant associations between 175

parasites from coinfection data. These have been tested by generating distributions 176

but without any epidemiological model
:::::::::
coinfected

::::
host

::::::
classes

::::
can

:::::
allow

:::
us

::
to

:::::::
address 177

::::
both

::::
our

:::::
goals

:::::::::::::
simultaneously. 178

Inferring genotype interactions from the distribution of the combination 179

prevalences using the chi-square (A), the GLM (B), the network (C and D) and the 180

association screening (E and F) approaches. The grayscale indicates the size of the 181

target dataset (100 targets for the network approach and 1000 for the others). Lines 182

show a generalised linear model fit. In A and B the data was scattered vertically for 183

clarity. C and D show the combination and parasite network connectances only when 184

significant. E shows the number of significant interactions and F the fraction of 185

correct predictions based on the correlations from the learning dataset (see Fig S1). 186

Parameter values are drawn in the same prior as the ABC (see Fig S3). 187

The chi-square approach exhibits a slightly positive correlation between the 188

probability that the test is significant and the intensity of interaction between types 189

(estimated by fitting the data using a logistic regression model , Fig 2A). However, 190
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even with only 1,000 individuals sampled (in black), most of the observed prevalence 191

distributions tend to deviate from the expected one. With 5, 000 hosts sampled or 192

more (in gray), most combinations lead to significant tests (Fig 2A). 193

The GLM approach seems to be more robust to sample size (Fig 2B) and the 194

positive association between interaction intensity and test significance only occurs if 195

5,000 or 10,000 individuals are sampled. As for the chi-spare approach, most of the 196

associations remain significant. 197

Vaumourin et al. Vaumourin et al. (2014) cleverly proposed to analyse coinfection 198

combination data using network-based approaches. For the combination network, we 199

found that non-significant runs exhibited higher interaction intensity than significant 200

runs, which was unexpected (Fig S3A). We also found a slight decrease in connectance 201

with increasing interaction intensity, which could be consistent with some 202

combinations being removed due to genotypeinteraction (Fig 2C). 203

For the parasite network, when only 1,000 hosts were sampled significant runs 204

exhibited strikingly high interaction strengths (Fig S3B) . We also find an increase in 205

connectance with interaction strength, but only when sampling 5,000 or 10,000 hosts 206

(Fig 2D). This result should be interpreted with caution since parasite network 207

connectance was rarely significant (2, 10 and 15 of the 100 test runs were significant 208

for 1,000, 5,000
::::::::
Although

::::
our

::::::::
approach

::::
can

:::
be

:::::::
applied

::
to

::::::
many

::::::::
systems,

::
we

::::::
focus

::::
here 209

::
on

:::::::
genital

:::::::::
infections

::::::
caused

:::
by

::::::::
different

:::::
types

::
of

:::::::
human

:::::::::::::::
papillomaviruses

:::::::
(HPVs)

::::
for 210

::::::
several

:::::::
reasons.

::::::
First,

::::::::
multiple

:::::::::
infections

::::::::
between

:::::
HPV

:::::
types

:::
are

::::::::
common

:::::
(Fig

::::
1A) 211

and 10,000 hosts sampled respectively). In comparison, combination connectance was 212

significant for 21, 31, 32 of
:::
well

:::::::::
described

::::::
thanks

:::
to

::::::::
screening

:::
for

:::::::::::::
HPV-induced

:::::::
cancers 213

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Vaccarella et al., 2010, Chaturvedi et al., 2011, Dickson et al., 2013).

::::::::
Second,

::::
their 214

::::::::::
prevalences

:::
are

:::::::::
relatively

::::::
stable

:::::::
through

:::::
time

:::::::::::::::::::::
(Alemany et al., 2014).

::::::
Third,

:::::
HPV 215

:::::::::::
evolutionary

:::::
rates

:::
are

:::::::::
generally

::::
slow,

::::::
which

::::::
limits

::::::::::
within-host

:::::::::
evolution

::::
and

:::::::::
facilitates 216

::::::::
detection

::::::::::::::::::
(Bravo et al., 2010).

::::::::
Fourth, the 100 runs depending on sampling intensity. 217

Finally, the association screening approach reports an increase in the number of 218

significant associations (i.e. more or less than expected) with host sample size (Fig 219

2E). By computing equilibrium prevalences for 1,000 parameter values, we estimated 220

the correlation between interaction intensity and the prevalence of each host 221

combination (Fig S1). This allowed us to determine whether the prediction made by 222
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the association screening algorithm was correct or not. The fraction of predictions 223

that match our prediction is generally close to 50% with a slight increasing trend with 224

interaction strength for small sample sizes (Fig 2F) This suggests that the other 225

source of heterogeneity (namely contact structure) is sufficient to blur the effect of 226

::::::::
existence

::
of

:
within-host interactions on the equilibrium prevalences. 227

Epidemiological model: single runs 228

Combination prevalence for a scenario with weak (A) and strong interaction (B). The 229

shading indicates the infection rank (or number of coinfecting genotypes) and the class 230

is a binary code indicating the genotypes present. 231

We first show the fraction of each host combination for two scenarios, one with 232

moderate interactions (parameter set #2 with k ≈ 0.02, Fig ??A) and another with 233

strong interactions (parameter set #7 with k ≈ 0.25, Fig ??B). When the interactions 234

are weak, we clearly see the different ranks with uninfected hosts on the top, then a 235

row with the five singly infected host types, etc. When interaction strength increases, 236

these ranks become impossible to distinguish. Fig ??A also illustrates that each 237

parasite genotype in this model has its own infection duration, since they do not all 238

have the same prevalence in single infection . Importantly, we only show the total 239

prevalence of each combination but these may differ among each of the two host types 240

(prevalence is higher in the high rank combinations in the ‘superspreader’ population). 241

Our goal is to infer the intensity and sign of the interaction between HR and LR 242

genotypes (parameter k) in a heterogeneous host population. 243

Inferring interaction strength (k). Prior (A) and posterior distributions using only 244

the ranks (B) or the ranks and the combinations (C) as summary statistics. The 245

dashed blue line shows the target value (k ≈ −0.13) and the red lines show the 95% 246

Highest Posterior Density (HPD). 247

To this end, we applied an ABC approach . As any bayesian method, this means 248

searching a prior distribution in the parameter space. This distribution is shown for all 249

the key parameters in Fig S2. We drew 50,001 parameter sets in this prior, used them 250

to simulate equilibrium densities (as shown in Fig??) . We assessed the performances 251

of the ABC approach following a leave-one-out cross-validation procedure, where we 252
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treated one simulation as observed data and the remaining as learning data. 253

Figure 3 shows the results for parameter set #3 and illustrates how using more 254

summary statistics helps to narrow the distribution from the prior for a dataset with 255

10, 000 individuals. If we only use the ranks, we do narrow the prior distribution but 256

its width remains large enough such that 0 (no interaction) cannot be ruled out from 257

the 95% Highest Posterior Density (HPD), which can be seen as a credibility interval 258

3B). Using the combinations in addition to the ranks as summary statistics for the 259

ABC allows us to narrow this interval and to exclude 0 from the 95% confidence 260

interval (3C). Using additional information, for example being able to distinguish 261

between the two host types , would narrow it even more as we will see below. 262

Epidemiological model: cross-validation 263

The previous analysis was based on a single run but all parameters may vary in a 264

relatively large prior distribution (Fig S2). We therefore repeated the analysis for 100 265

different target runs. We varied the number of sampled individuals (included the 266

deterministic prevalence value as a proxy for an infinite sample size). Furthermore, we 267

report here a third set of summary statistics involving the rank and combinations for 268

the two hosts subpopulations (see the Methods)
::::::::::
interactions

::::::::
between

:::::
HPV

:::::
types

::
is 269

:::::::
strongly

::::::::
debated,

:::::::::
especially

:::
in

:::
the

:::::::
context

::
of

:::::::::::
vaccination,

::::::
given

::::
that

::::
they

:::::
may

:::::
affect

::
a 270

::::::::
potential

:::::::
parasite

::::::::::::
evolutionary

::::::::
response

::::::::::::::::::
(Murall et al., 2015). 271

ABC inference precision over 100 runs. A) 95% Highest Posterior Density (HPD), 272

B) absolute value of the relative error, C) average of the absolute value of interaction 273

intensity in runs where 0 is in the 95% HPD and D) runs for which the target value 274

lies outside the 95% HPD. Grayscales indicate the summary statistics used for the 275

ABC. In D, the lines show the result of a generalised linear model. 276

Logically, the width of the 95% HPD for the estimate of interaction intensity 277

decreased with the number of host sampled (Fig 4A). On the same figure, we see that 278

including more summary statistics also decreased the width of this interval, especially 279

for an infinite sample size. 280

In terms of the relative error regarding the interaction parameter (k), we found a 281

similar effect with a lower error when more host were sampled or more summary 282
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statistics were involved (Fig 4B). However, using the combinations in addition to the 283

ranks only improved the analysis if enough hosts were sampled (5,000 or 10,000). In 284

general, the relative error decreased with interaction strength (figure not shown ). 285

If we focus on the runs for which we could not exclude an absence of interaction 286

(i.e. 0 lied within the 95% HPD), we see that the number of such runs decreased as 287

the number of summary statistics increased (Fig S6). We also see that, in these runs, 288

interaction strength decreased with the sample size and with the number of summary 289

statistics involved (Fig 4C). Notice that for large sample sizes, 95% HPD are narrower, 290

which means that absence of interaction can usually be excluded, making it more 291

difficult to draw conclusions regarding interaction strength because other parameters 292

vary. 293

Finally,
:::::::
Because

::
of

:
the proportion of errors

:::
high

::::::::::
prevalence

::
of
:::::::::::

coinfections
:::::
and, 294

::::
more

:::::::::
generally,

::::::::
because

::
of

:::
the

::::
low

::::::::::::::
immunogenicity

::::
and

::::
low

:::::::::::
pathogenesis

:::
of

:::::
acute

:::::
HPV 295

::::::::
infections

:::::::::::::::::::
(Alizon et al., 2017),

:::::
many

:::::::
believe

:::::
HPV

:::::::::::::
between-types

:::::::::::
interactions

::
in 296

:::::::::
coinfected

:::::
hosts

::
to

:::
be

:::::::::
negligible.

:::::::::
However,

:::::::::::
pre-vaccine

::::
and

:::::::
vaccine

::::::
studies

:::::
have

::::::
shown 297

::::
that

:::::
there

::
is

:::::::
limited

:::::::
natural

:::::::::::::
cross-reactivity

::::::::
between

:::::::::::::::
phylogenetically

:::::::
related

:::::
HPV 298

:::::
types

::::
and

::::
that

::::::::
vaccines

::::::
confer

::::::
partial

::::::::::::::
cross-immunity

:::::::
against

::::::::::
non-target

:::::
types 299

::::::::::::::::::::::::::::::::::::::::::::::::::::
(Herrero, 2009, Wheeler et al., 2012, Beachler et al., 2016).

:::::
This

::::::
means

::::
that

:::::
there 300

:::::
could

::
be

:::::::::
apparent

:::::::::::
competition

:::::::::
mediated

::
by

::::
the

:::::::
immune

::::::::
system.

:::
At

:::
the

:::::::
cellular

:::::
level, 301

:::::
recent

:::::
data

::::::::
supports

:::
the

:::::::::
existence

::
of

:::::::::::::
superinfection, that is when the target value was 302

outside the 95% HPD was close to the expected 5% (6.25% with the ranks and 5% 303

with both the ranks and the combinations) but it slightly increased with interaction 304

strength (Fig 4D). 305

Discussion 306

Multiple infections are
:::
one

:::::
HPV

:::::
type

:::::::::
excluding

:::
the

:::::
other

:::::
from

::::
the

:::
cell 307

::::::::::::::::::::::::
(Biryukov & Meyers, 2018).

::::
For

:::::
some

::::::
types,

:::::
virus

:::::
loads

::::
also

:::::
seem

::
to

::::::
differ

::
in

::::::
single 308

:::
and

:::
in

::::::::::
coinfections

::::::::::::::::
(Xi et al., 2009),

:::::
which

::::::
could

::::::
impact

::::
the

::::
host

::::::::::::
transmission

::::
and 309

:::::::
recovery

::::::
rates.

::::::
There

::
is

::::
also

:::::::
indirect

::::::::::::::
epidemiological

::::::::
evidence.

::::::
First,

::::::::
infection

:::
by

:::::
HPV 310

:
is
:
known to affect the virulence of an infection Balmer & Tanner (2011), the spread of 311

infectious diseases Abu-Raddad et al. (2006) and their evolution Alizon et al. (2013). 312
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This is due to the fact that when sharing a host, parasites can interact in various ways 313

Mideo (2009). The goal of this study was to determine to what extent the prevalence 314

of parasite combinations can inform us on such interactions. 315

By generating prevalence data from an mechanistic epidemiological model, we were 316

able to first test the power of existing heuristic methods based on the distribution of 317

classes. Overall, these results show that these methods are limited. This is largely due 318

to the fact that we introduced host heterogeneity in the model, which affects the 319

distribution of host classes in a way that cannot be distinguished from interaction 320

between parasite genotypes. This therefore corroborates a limitation often mentioned 321

in such studies, which is that departures from expected distributions need not be due 322

to interaction between genotypes.
:::
risk

:::
of

::::::::::
contracting

::::::::
another

::::::::
infection 323

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Rousseau et al., 2001, Méndez et al., 2005, Tota et al., 2016) and

::
to

::::::::
decrease

::::
the 324

:::::::
recovery

::::
rate

:::
of

:::::::
another

::::
type

:::::
after

::::::::::
coinfection

::::::::::::::::::::
(Trottier et al., 2008).

::::::::
Second,

:::::
HPV 325

::::::::::
coinfections

:::::
may

:::::::
interfere

:::::
with

:::::::
chronic

::::::::
infection

::::
and

:::::::
cancer.

::::
For

::::::::
example,

:::::
when 326

::::::::
oncogenic

::::::::::
‘high-risk’

:::::
(HR)

:::::
HPV

:::::
types

::::::::
coinfect

::::
with

:::::::::::::
non-oncogenic

:::::::::
‘low-risk’

:::::
(LR) 327

:::::
types,

:::::
time

::
to

:::::::::
diagnosis

::
is

::::::
longer

::::
and

:::
the

::::
risk

::
of

:::::::::::
progression

::
to

::::::
cancer

::
is
::::::
lower 328

::::::::::::::::::::::
(Sundström et al., 2015).

:
329

We then used an ABC approach to infer parameters from the model. We show that 330

this yields more consistent results than existing heuristic methods. Quite expectedly, 331

the accuracy of the method increases with the number of hosts sampled. We also show 332

that using
:
In

::::::::::
summary,

:::::
there

:::
are

:::::::
reasons

::
to

:::::::::::
hypothesise

:::::
that

:::::
HPV

:::::
types

::::::
might 333

:::::::
interact

:::::
when

::::::::::
coinfecting

::
a

::::
host

::::
and

::::
that

:::::
these

:::::::::::
interactions

::::::
could

::
be

:::::
large

:::::::
enough

::
to 334

:::::
affect the prevalence of all the combinationsof host classes tends to decrease the error 335

made compared to using only the prevalence of infection ranks. Finally, adding 336

knowledge about host type (‘super-spreader’ or ‘normal-spreader’) can further improve 337

the power of the inference. 338

The fact that decent results can be obtained by only using the rank of the 339

infections may seem surprising considering the difficulty from existing models to infer 340

interactions . One reason for this could be that we have a mechanistic model, which 341

limits the range of rank distributions that can be explored. Another reason is that we 342

here use the same model to generate the target dataset and the learning datasets, 343

which facilitates the ABC inference.
:::::
some

::::::::
genotype

:::::::::::::
combinations.

:::::::::
Detecting

:::
or

::::::
ruling 344
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:::
out

::::
such

:::::::::::
interactions

::::::
would

::::
also

:::::
have

:
a
:::::::
strong

::::::
impact

:::
in

:::
the

:::::
field.

::::::::::::
Importantly,

:::
our 345

::::::::
approach

::::
has

::
no

:::::::
explicit

:::::::::::
within-host

::::::::::
component

::::
and

::
is

::::::::
therefore

:::::::
unable

::
to

::::::
detect

::
a 346

::::::
specific

:::::::::::
interaction.

::::::::
Instead,

:::::
what

::
it

:::
can

::::::
detect

::
is
::::

the
::::::
overall

::::::
effect

::
of

:::
all

:::
the

:::::::::
potential 347

::::::::::
within-host

:::::::::::
interactions

:::::::
between

::::::::::
genotypes.

:
348

We do not report it here but the accuracy of
::
As

:::::::::
explained

::
in

::::
the

::::::
model

:::::::
section,

::
it 349

:::::
would

:::
be

::::::::::
impossible

::
to

:::
fit

::
an

:::::::::::
interaction

:::::::::
parameter

::::::::
between

::::
each

:::::
HPV

:::::
type.

::::::::
Instead, 350

::
we

::::
sort

:::::
HPV

:::::
types

::::
into

::::
two

:::::::
groups

:::
and

::::
test

:::
for

::::
the

::::::::
existence

::
of
:::
an

::::::::::
interaction

::::::::
between 351

:::::
HPVs

:::::::::
belonging

:::
to

:::::
these

:::::::
groups.

:::::::::::
Biologically

:::::::::
speaking, the inference varied widely 352

across parameters. For the interaction parameter (k), the inference reduced the initial 353

95% HPD of the prior by 66%. In comparison, this was less than for the transmission 354

probability (β, 75%), but much better than for the assortativity parameter (a, 45%), 355

host heterogeneity (h, 38%) or the individual recovery rates (γi, 13%). 356

There are several ways to extend this framework. One would be to use more 357

powerful regression techniques, such as neural networks. However, these may be more 358

difficult to parameterise. Furthermore, even though it contains several parameters, our 359

model remains relatively simple compared to the power of these algorithms. One 360

possibility to address this could be to use a agent-based model with sophisticated 361

agent behaviours to generate a richer dataset. This would be useful in itself to 362

generate test runs with known parameter values to further test the power of our 363

method on more noisy data. It would also allow to control for biases related to the 364

contact network structure between hosts and the dynamical aspect of sexual 365

partnerships that have been shown to interfere with the detection of coinfection 366

interactions Malagón et al. (2016). 367

Finally,
::::::
groups

:::::
could

::::::::::
correspond

:::
to

:::
HR

::::
and

::::
LR

:::::
HPV

::::::
types.

::::::::
Another

:::::::::
possibility 368

:::::
would

:::
be

::
to

::::::::
compare

:::::::
HPV16

::::
and

::::::::
HPV18,

::::::
which

:::::::
together

::::::::
account

:::
for

:::
the

:::::
vast 369

::::::::
majority

::
of

:::::::::::
HPV-driven

:::::::
cancers,

:::
to

:
the next step is, of course, to test this model using 370

actual epidemiological data. We here used HPV as a case study but it would be 371

possible to study coinfections between different parasite species, although this might 372

require substantial modifications in the model to capture the life-history of each 373

parasite. Even in the case of HPV , analysing real data will require to add several 374

processes we chose to ignore here. First, HPV detection tests may exhibit 375

cross-reactivity between HPV types, thus inflating the prevalence of some 376
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combinations. This effect if well described and can be handled for each detection test. 377

Second, when hosts are infected by many HPV types, some of these may not be 378

detected, thus decreasing the prevalence of high-rank infections. This effect is more 379

subtle and would require to be inferred in the model.
:::::
other

:::::
HPV

::::::
types.

:
380

Overall, ABC and machine learning allow us to extract the information from the 381

equilibrium prevalence of all the combinations of genotype prevalences. Therefore, 382

combining coinfection modelling with epidemiological data can bring new elements to 383

the controversy regarding the importance of interactions between HPV types
:::
To

::::::
detect 384

::::::::::
interactions

::::::::
between

::::
two

::::::
groups

::
of
:::::::
HPVs,

:::
we

:::::
adopt

:::::::::::
mechanistic

:::::::::
approach

::::
and 385

:::::::
simulate

::::::::::::::
epidemiological

::::::::::
coinfection

::::::::::
dynamics.

:::::
This

::
is

:::::
made

:::::::
possible

:::
by

::
a
::::::
recent 386

:::::::::
analytical

:::::::::
framework

:::::
that

:::
can

:::::::
handle

:::
an

::::::::
arbitrary

:::::::
number

:::
of

:::::::::
genotypes 387

:::::::::::::::::::
(Sofonea et al., 2015).

:::
In

:::::
order

:::
to

:::::
assess

::::
the

::::::
ability

::
to

:::::
infer

:::::::::::
interactions

:::::
from

:::
the 388

::::::::
observed

::::::::::
coinfection

:::::::
classes,

::
we

::::
use

::
a

::::::::::::::
regression-based

:::::::::::::
Approximate

::::::::
Bayesian 389

::::::::::
Computing

::::::
(ABC)

:::::::::
approach

::::::::::::::::::::::::::::::::::::::
(Csilléry et al., 2012, Saulnier et al., 2017).

::::
We

:::::
show 390

::::
that

:::
our

::::::::
method

::::::::
performs

::::
well

:::
on

:::::::::
simulated

::::
data

::::
and

::::
can

::::::::::
distinguish

::::::
overall

:::::::::
genotype 391

::::::::::
interactions

:::::
even

::
in

::::
the

::::::::
presence

::
of

::::
host

:::::::::::
behavioural

::::::::::::
heterogeneity. 392

Methods 393

The epidemiological model 394

The model is based on the deterministic ODE-based framework introduced by Sofonea 395

et al. Sofonea et al. (2015)
:::::::::::::::::::
Sofonea et al. (2015) that allows for an arbitrary number of 396

parasite genotypes to circulate in a host population without assuming any particular 397

infection pattern (see Sofonea et al. (2017)
:::::::::::::::::::
Sofonea et al. (2017) for the importance of 398

this relaxation). Furthermore, the framework enables cotransmission in the sense that 399

infected hosts can simultaneously transmit any subset of genotypes they are infected 400

with. 401

Multiple infections Let us consider that hosts can be potentially infected by any 402

combination of n parasite genotypes and sort them in classes according to the genotypes 403

present (we use a binary code to map the presence/absence of the genotypes the hosts 404

class labels). For computational reasons, we assumed
::::::
assume

:::
in

:::
the

:::::::::::
simulations that 405
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n ≤ 5, as the number of classes increases geometrically with the number of genotypes. 406

Epidemiological dynamics follow a classical susceptible-infected-susceptible (SIS) 407

framework, where upon contact with an infected host, a ‘recipient’ host can acquire any 408

subset of the genotypes carried by this ‘donor’ host (cotransmission). In terms of 409

recovery, we assume that genotypes can be cleared independently. Importantly, each 410

genotype g is cleared at a specific rate γg ≥ 1year−1
::::::::::::
γg ≥ 1 year−1. This sets the 411

average infection duration to a year 412

Insinga et al. (2007), Trottier et al. (2008)
:::::::::::::::::::::::::::::::::::::
(Insinga et al., 2007, Trottier et al., 2008). 413

Given that we focus on HPV infections in young adults, we neglect infection-induced 414

mortality. 415

Mathematically, the dynamics can be captured in a compact form using the master

equation Sofonea et al. (2015)
:::::::::::::::::::
(Sofonea et al., 2015):

dy/dt = βΦ(y ⊗ y)− β(Ψy)� y + (Ξ−Θ) y (1)

where y is the vector of densities of the 2n host classes, � denotes the Hadamard 416

(element-wise) matrix product, ⊗ the Kronecker (outer) product, Φ is the infection 417

input flow matrix, Ψ is the infection output flow matrix, Ξ is the recovery input flow 418

matrix and Θ is the recovery output flow matrix and β is the (constant) probability of 419

transmission per contact that scales all infection processes. Equation system 1 allow us 420

to track all the flows going in and out of host compartments through time. For 421

simplicity, we neglect host demography (births and deaths) and assume that the host 422

population size is constant. Given that infected hosts do not always sero-convert and 423

that natural immunity is much lower than vaccine-induced immunity 424

Beachler et al. (2016)
:::::::::::::::::::
(Beachler et al., 2016), we neglect immunisation in the model. 425

Population structure The model was enhanced by splitting the host population

into two sub-populations that differ in their contact rates (‘super-spreader’ versus

‘normal-spreader’ hosts) as shown in Figure ??B . Contact
::
1B

:::::::::::::::::::::::
(Keeling & Rohani, 2008).

:::::::::
Contacts between the two sub-populations follows

:::::
follow

:
a

classical pattern based on the assortment (a) between
::::::
within host types, the proportion

of each host type (p1 = p and p2 = 1− p) and their activity rates (equal to c1 = 1 and
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c2 = h, with h ≥ 1). Overall, the contact rate between a ‘recipient’ individual from

sub-population j and a ‘donor’ individual from sub-population i is

cji = (1− a)
ci cj

p+ (1− p) h
+ δij a ci (2)

where δij is the Kronecker delta and h is the difference in activity between the two host 426

classes
::::
types. 427

This population structure implies that we have two vectors of host classes (y1 and

y2). If we denote the combined vector y• = (y1,y2), the master equation can be

written similarly to 1 by updating the matrices in the following way:

A• = diag (A,A) for A ≡∆,Θ,Ξ, Ψ• =

 c11 c12

c21 c22

⊗Ψ

and Φ• =

 (11T ⊗ (c11, c12)⊗ 1T
)
�Φ′ 0

0
(
11T ⊗ (c21, c22)⊗ 1T

)
�Φ′

 ,
where 1 denotes the 2n-dimensional column vector with unit elements, and Φ′ is 428

obtained by repeating each 2n × 2n block Φ[i] of the original 2n × 22n matrix 429

Φ =
(
Φ[i]

)
i=1,...,2n

as Φ′ =
(
Φ[i],Φ[i]

)
i=1,...,2n

. 430

Model simulations The model was implemented and simulated in R. The script is 431

already available upon request and will be published on a repository along with the
::::
part 432

::
of

:::
the

:
raw data (simulated prevalences). 433

The equilibrium prevalences from the deterministic model were used to generate 434

datasets in finite populations of 1000,5000
:::::
1,000,

:::::
5,000

:
and 10,000 hosts assuming a 435

multinomial distribution
:
,
:
where the probability to draw a host with a given genotype 436

combination was equal to this combination’s prevalence. 437

HPV interactions For simplicity,
:::
We

::::::::
neglected

:
within-host dynamics were 438

neglected here and
:::
and

:::::::::
modelled the effect of genotype diversity on the infection 439

parameters was modelled in the following way. First, we assumed that genotype 440

transmission was unaffected by the presence of other genotypes in the host. This was 441

motivated by the very high transmission probability of HPV per contact 442
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Winer et al. (2006)
:::::::::::::::::
(Winer et al., 2006). Second, we assumed that interactions between 443

HPV types take place through the recovery rates. 444

Even with 5 genotypes, this could mean 20 interaction parameters (e.g.
:
how the 445

presence of genotype A affect the clearance rate of genotype B). To reduce this 446

complexity, we assumed that genotypes could be sorted into two groups . Biologically, 447

these groups can correspond to high-risk (i.e. carcinogenic)and low-risk HPV types, or 448

to any other binary classification
:::
(see

::::
the

::::::::::::
Introduction). Whenever a genotype from the 449

second group coinfects a host with a genotype from the other group, its individual 450

recovery rate is multiplied by a factor 1 + k, with k ∈ [−0.5, 0.5])
:
.
:::
We

::::::::
assumed

:::::
that

:
if 451

::::
there

:::::
were

:::::::
several

:::::::::
genotypes

:::::
from

:::
the

:::::
other

:::::::
group,

:::
the

::::::
factor

::::
was

:::
still

::::::
1 + k. 452

Genotypes from the first group are
::::
were

:
assumed to be unaffected by the presence of 453

other genotypes (otherwise we would need an additional parameter and assumptions as 454

to the interaction between the two parameters). Depending on whether
::
If k is greater 455

or lower than 1
::::
than

::
0, we expect host classes containing genotypes from the second 456

group to be under- or over-represented respectively.
::::::::::::::::
under-represented.

:::::
The

::::::
reverse

::
is 457

::::
true

:
if
::
k
::
is
:::::
lower

:::::
than

::
0.

:
We assumed that one of the groups contains

::::::::
contained

:
3 458

genotypes and the other 2 but
::
2.

:::
We

:::
do

::::
not

::::::
expect

:
a different partitioning would lead 459

to similar results and
::
to

:::::
affect

::::
the

::::::
results

::::
and

::::
the

:::::
exact

:::::::::::
partitioning

:
should eventually 460

be decided based on the data. 461

Inference from distributions 462

In order to compare our framework to existing methods, we use
:
3
:::

of
:::
the

:
4 techniques 463

used by Vaumourin et al. Vaumourin et al. (2014), who implemented them 464

:::::::::::
implemented

:::
by

::::::::::::::::::::::
Vaumourin et al. (2014) in R. These are briefly described here but 465

readers interested in more detailed should refer to the original publication.
:::
For

:::::
each

::
of 466

::::
these

:::::::::::
techniques,

:::
we

::::::::
analysed

::
a

:::::::
dataset

::::
with

::::
two

::::
host

::::::
types

::::::::::::::::
(normal-spreaders

::::
and 467

::::::::::::::
super-spreaders)

::::
and

::
a
:::::::
dataset

::::
with

::
a
:::::::
unique

::::
host

:::::
type.

::::
Our

::::::::::
hypothesis

::
is
:::::
that

:::::
these 468

:::::::
methods

:::::::
should

:::
not

:::
be

::::
able

:::
to

::::::::::
distinguish

::::::::
between

:::
the

::::::::::::
heterogeneity

:::::::
caused

:::
by

:::
the 469

::::::::
genotype

::::::::::
within-host

:::::::::::
interactions

::::
and

::::
that

:::::::
caused

:::
by

::::
host

::::::::::
behaviour.

:
470

Assocation
:::::::::::
Association

:
screening This approach involves simulating datasets of 471

occurrence count of each combination
:
of

:::::::::
gentoype based on the genotype prevalences 472
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Vaumourin et al. (2014)
::::::::::::::::::::::
(Vaumourin et al., 2014). From these simulations, a 473

95% confidence envelope is calculated for each combination, thus allowing to detect 474

deviation from the expected distribution in the dataset
::::
(also

:::::::
referred

:::
to

::
as

::::
H0). 475

Multinomial GLM This model consists in calculating the deviance from a 476

statistical distribution obtained with a Generalised Linear Model and a multinomial 477

family. Practically, the multinomial logistic regression model was performed using the 478

vglm function from the VGAM package in R Yee (2015)
::::::::::
(Yee, 2015). 479

Generalised chi-square This test does not involve any simulations and is based on 480

the expected chi-square distribution of combinations
::
the

::::::::::
prevalence

::
of

:::::
each 481

:::::::::::
combination

::
of

:::::::::
genotype given the total prevalence of each parasite strain

::::::::
genotype. 482

Note that combinations with
:::::
found

::::
only

:::
in 5 hosts or less were

::
are

:
grouped together. 483

Network connectance Another possibility is to represent the parasite 484

combinations as a network and to study the connectance, that is the proportion of 485

observed edges relative to the number of edges. Here, individuals are connected if they 486

share the same parasite (parasite network) or the same combination of parasites 487

(combination network). Connectance was computed using the igraph R package. 488

These scripts are available upon request and will be published on a repository. 489

Regression-ABC 490

The methods used here follow
::::
This

:::::::
method

:::::::
follows that developed in phylodynamics 491

Saulnier et al. (2017) and apply them to different summary 492

statistics
:::::::::::::::::::
(Saulnier et al., 2017). In short, Approximate Bayesian Computation (ABC) is 493

a likelihood-free method to infer parameter values from a given dataset 494

Beaumont (2010)
::::::::::::::::
(Beaumont, 2010). It consists in simulating many datasets, for which 495

by definition the underlying parameters are known, and comparing them to the target 496

dataset
:
, the parameters of which we want to estimate. This comparison is often done by 497

breaking the datasets into summary statistics. We use regression-ABC 498

Csilléry et al. (2012)
::::::::::::::::::
(Csilléry et al., 2012), which is divided into two steps. First, a

::
in 499

:::
the rejection step, where only the simulated runs that are close enough from the target 500
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are kept. Second, a regression model is learnt on the remaining runs. Once we know 501

how to map summary statistics to the parameter space, we can infer the parameters 502

from any target dataset from which the same summary statistics can be extracts. 503

Here, using model
:::::
Using

::::::::
equation

:::::::
system

:
(1) and following Sofonea et al. (2015), 504

we calculated the equilibrium prevalences of each of the 64 host classes (32 classes for 505

each host type) for 50,001 parameter combinations
::::
sets. We used large and 506

uninformative priors for the varied parameters (Figure S2). More specifically, we varied 507

the interaction strength
:::::::::::
competition

::::::::
intensity

:
(our parameter of interest, 508

k ∈ [−0.5, 0.5]) the transmission rate (β ∈ [0.5, 1.5]), the assortativity (a ∈ [0, 1]), the 509

activity difference between host types (h ∈ [1, 20]
:::::::::
h ∈ [2, 20]) and the specific infection 510

duration modified
::::::::
modifiers

:::
for

::::
the

:::::::::::::::
genotype-specific

:::::::::
infection

::::::::
durations

:
(di ∈ [0.6, 1], 511

::::
with

:::
the

:::::::::::::
normalisation

::::::
d1 = 1). 512

We report
::::::::
compare three sets of summary statistics: 513

• the ranks set: the
:
,
::::::
which

:::::::
includes

::::
the

:
5
:
rank prevalences and the

:
5 total 514

prevalence of each genotype, that is 10 summary statistics 515

• the comb set:
:
,
:::::
which

::::::::
includes

:
the rank set combined with all the combination 516

prevalences
:::
and

:::
the

:::::::::::
prevalences

::
of

:::
the

:::
32

::::::::::::
combinations

:::
of

:::::::::
genotypes, that is 42 517

summary statistics 518

• the all set:
:
,
::::::
which

:::::::
includes

:
the comb set for each of the two types of hosts (84 519

summary statistics) plus all the differences between the
::::
each

:
combination 520

prevalence and the
::
its

:
corresponding rank prevalence (64 summary statistics), 521

that is 148 summary statistics. 522

The first set is intended to be compared to classical methods that
::::::
mimic

::
an

:::::::::
approach 523

::::
that

:::::
would

:
ignore combinations of genotypes , the second

::::
(but

:::::
that

:::::
would

::::::::
capture

::::
host 524

::::::::::::
heterogeneity

::::
with

::::::::::::::::
super-spreaders).

::::
The

:::::::
second

:::
set is based on the type of data that 525

could be easily accessedand the
::::::
readily

:::
be

::::::::
accessed.

:::::
The third is for a very

:::::
most 526

optimistic scenario in which we would know which group every
::::
each host belongs to. 527

:::::::::::
Importantly,

:::
we

:::
are

:::::
using

::::
the

:::::
same

:::::::::::
information

::::
used

:::
by

::::::
earlier

::::::::
methods

::::::
based

:::
on

:::
the 528

::::::::::
prevalences

::
of

::::
the

::::::::
genotype

:::::::::::::
combinations.

::::
The

:::::
only

:::::::::
difference

::
is

::::
that

:::
we

::::::::
combine 529

::::
some

:::
of

:::::
these

::::::::::
prevalences

:::
to

::::::::
generate

:::::::::
additional

:::::::::
summary

:::::::::
statistics.

:
530
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We compared several levels of tolerance using a preliminary run of the model (with 531

narrower priors) and identified 50% as an optimal cut-off for the rejection: lowering the 532

tolerance did not improve the inference (measured via the fraction of runs where the 533

target value ended up in the 95% HPD), whereas increasing it decreased the inference 534

quality. 535

Following an earlier study Saulnier et al. (2017)
:::::::::::::::::::
(Saulnier et al., 2017), we used a 536

LASSO regression to learn the model. Although it performs a linear regression, it has 537

the advantage to be less prone to overlearning
::::::::::
over-fitting than more elaborate 538

non-linear regressions, such as Support Vector Machines
:
,
::::::
neural

::::::::
networks

:::
or

:::::::
random 539

::::::
forests. The LASSO adjustment was implemented using the glmnet R package and the 540

ABC itself was performed using the abc package. In practice, one of the 50,001 runs 541

was removed and used as a target, whereas the remaining runs were used to learn the 542

regression model (after performing a rejection step). We repeated the operation 100 543

times to generate 100 target datasets.
:::
For

::::::::::::
completeness,

:::
we

::::
also

:::::::::
analysed

:::
100

:::::
runs 544

::::
with

::::
only

::
a
::::::
single

::::
host

::::
type

:::
to

::::::::
compare

:::
our

::::::::
method

::
to

:::::::
existing

:::::
ones

::::
and

::::::::::
investigate 545

:::
the

::::::::::
robustness

::
of

:::
the

:::::
ABC

:::
to

:
a
::::::::::

mismatch
:::::::
between

::::
the

::::::
model

::::
used

:::
to

::::::::
simulate

:::
the 546

:::::
target

::::::
model

::::
and

::::
the

:::
one

:::::
used

::
to

:::::
learn

::::
the

:::::::::
regression

::::::
model.

:
547

::::::::::
Results 548

:::::::::::::::
Associations

:::::
and

:::::::::::::::
competition

:::::::::::
intensity 549

:::
We

::::::::::::
hypothesised

::::
that

:::::::
current

:::::::::
methods,

:::::
which

:::::::::
implicitly

:::::::
assume

::
a

::::::
simple

:::
SI 550

:::::::::::::
epidemiological

::::::
model

:::::
with

::::::::::::::
cotransmission,

::::
may

:::::
have

:::::::::
difficulties

:::
to

::::::
detect

:::::::::::
within-host 551

::::::::::
competition

::::::::
between

::::::
HPVs

::
if

:::::
there

::
is

:::::::
another

::::::
source

:::
of

::::
host

::::::::::::
heterogeneity

:::::
than 552

:::::::::
coinfection

:::::::
status.

:::
To

::::
test

::::
this

::::::::::
hypothesis,

:::
we

:::::
used

:::
our

::::::
model

:::
to

::::::::
simulate

::::::
target

:::
sets 553

::
of

::::::::
genotype

::::::::::::
combination

::::::::::
prevalences

:::
for

::::::
known

::::::::::
parameter

::::::
values.

:
554

:::::
Figure

::
2
::::::
shows

:::
the

::::::::::::
performance

::
of

::::
the

::::::::::
association

::::::::
screening

:::::::::
approach

:::::::::
conceived

:::
by 555

::::::::::::::::::::::
Vaumourin et al. (2014).

:::::
With

::::
two

::::
host

::::::
types,

:::::::::::::::::
‘normal-spreaders’

::::
and 556

:::::::::::::::
‘super-spreaders’,

::::
the

:::::::
number

::
of

::::::::::
significant

:::::::::::
interactions,

:::
i.e.

::::
the

:::::::
number

::
of
:::::
host

:::::
types 557

::::
that

:::::
show

:
a
::::::::::
prevalence

::::
that

:::::::
departs

:::::
from

::::
the

::::::
neutral

:::::::::::
expectation

::::::
(H0),

::
is

:::::::::::
independent 558

::::
from

::::
the

::::::::
intensity

::
of

:::
the

:::::::::::
competitive

::::::::::::
interactions,

:::
|k|

::::
(Fig.

:::::
2A).

::::::::::::
Furthermore,

:::
the 559
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Fig 2.
::::
Total

::::::::
number

::
of

:::::::::::
interactions

::::::::
detected

::::
with

::::
the

::::::::::
association

:::::::::
screening

:::::::
method

::
(A

::::
and

:::
B)

::::
and

:::::::
fraction

::
of
::::::
these

::::::::::
interactions

:::::
that

:::
are

:::::::::
consistent

:::::
with

::::::
model

::::::::::
predictions

::
(C

::::
and

::::
D).

::::
This

::::::::
analysis

::
is

:::
ran

:::
for

::
a
::::::
model

:::::
with

:::
two

:::::
host

:::::
types

:::
(A

::::
and

:::
C)

::
or

::
a

:::::
single

::::
host

::::
type

:::
(B

::::
and

:::
D).

:::::
The

::::
blue

::::
lines

:::::
show

::::
the

:::::
result

:::
of

:
a
::::::
linear

::::::
model

:::
fit

::
(A

::::
and

:::
B)

:::
and

::::::::::
generalised

::::::
linear

::::::
model

:::
fit

::::::::
assuming

::
a
:::::::
Poisson

:::::::::::
distribution

::
of

::::
the

::::::::
outcome

:::::::
variable

:::
(C

::::
and

:::
D).

:::::
Grey

:::::
areas

::::
are

:::::::::
prediction

::::::::
intervals

::::::
based

::
on

::::
the

::::::::
standard

:::::
error

::
of

:::
the

:::
fit.

:::
In

::::::
panels

::
A

::::
and

:::
C,

:::::
h = 1

::::
and

::::::
a = 0.

:::
We

:::::::
assume

:::::
that

:::::
there

:::
are

::::::::::
N = 5, 000

::::
hosts

:::
in

:::
the

:::::::::::
population.

:::::::
fraction

::
of

:::::
these

::::::::::
predictions

:::::
that

::::::::::
correspond

::
to

:::::
what

::::
the

:::::::::
analytical

::::::
model

::::::
would 560

::::::
predict

::::::
based

::
on

::::
the

::::::
nature

:::
of

:::
the

:::::::::::
interaction,

:::
i.e.

:::
the

::::
sign

:::
k,

::
is

::::::
always

:::::
close

::
to

:::::
50% 561

::::
(Fig.

:::::
2C).

:::
On

:::
the

:::::::::
contrary,

::
if

:::
we

:::::::
assume

::::
that

:::::
there

:::
are

:::
no

:::::::::::::::
super-spreaders,

::::
then

::::
the 562

:::::::
number

::
of

:::::::::
significant

:::::::::::
interactions

:::::::::
increases

::::
with

:::::::::::
competition

::::::::
intensity

:::::
(Fig.

:::::
2B).

::::
The 563

:::::::::
proportion

:::
of

::::::
correct

::::::::::
predictions

::::
also

:::::::::
increases

::::
with

:::::::::::
competition

:::::::::
intensity

::
to

:::::
reach

::
a 564

:::::::::
maximum

:::::::::
estimated

:::::::
median

::
of

::::::
above

::::
75%

:::::
(Fig.

::::
2D).

:::::
This

::::::::
suggests

::::
that

::::
this

:::::::
method 565

:::
can

:::
be

:::::::::::
appropriate

::
to

::::::
detect

::::::
strong

:::::::::::
competitive

:::::::::::
interactions

::
in

::::::::::::
homogeneous

:::::
host 566

:::::::::::
populations.

:
567

:::
The

::::::::::
Chi-square

::::
and

::::::
GLM

::::::::::
approaches

:::
are

:::::
more

:::::::::::
qualitative:

::::
they

::::::
either

::::::
detect

::
a 568

::::::::
difference

:::::
with

:::
H0::

or
:::::
not.

::
In

::::::::::::::
Supplementary

::::::
Figure

::::
S8,

:::
we

::::
show

:::::
that

:::
the

:::::
GLM

:::::
fails

::
in 569
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Fig 3.
:::::::
Inferring

:::::::::::
competition

:::::::::
intensity

:::
(k).

::::::
Prior

::::
(A)

:::
and

:::::::::
posterior

::::::::::::
distributions

:::::
using

:::
the

::::::
ranks

:::
(B)

::
or

::::
the

:::::
comb

:::
set

:::
(C)

::
of
:::::::::

summary
:::::::::
statistics.

::::
The

:::::::
dashed

::::
blue

::::
line

::::::
shows

:::
the

::::::
target

:::::
value

:::::::::::
(k ≈ −0.13)

::::
and

:::
the

::::
red

::::
lines

::::
the

::::
95%

:::::::
Highest

:::::::::
Posterior

:::::::
Density

:::::::
(HPD).

::::
both

::::::
cases.

:::
For

::::
the

:::::::::
chi-square

::::::::::
approach,

::
we

:::
do

::::::
detect

:::
an

:::::::::
increasing

:::::::::::
probability

::::
that 570

:::
the

::::
test

::
is

:::::::::
significant

:::::
with

:::::::::
increasing

:::::::::::
competition

::::::::::
intensities

::::
(|k|)

:::::
with

:
a
::::::::::
maximum

::
of 571

::::::
≈ 70%.

::::
As

::
we

::::
will

:::
see

:::::
later

:::
on,

:::::::::
analysing

::::
the

:::::
same

::::::
target

:::::::
datasets

:::::
with

:::
the

:::::
ABC 572

::::::::
approach

::::::
yields

::::
very

::::::::
different

::::::::
patterns.

:
573

:::::::::::::::::::
Epidemiological

::::::::
model:

::::::::
single

::::::
runs 574

:::
We

::::
first

:::::
show

:::
the

:::::::::::
prevalences

::
of

::::::::::::
combination

::
of

:::::::::
genotypes

::
in

::::
two

:::::::::
scenarios,

::::
one

::::
with 575

::::::::
moderate

:::::::::::
interactions

::::::::::
(parameter

:::
set

::::
#2

::::
with

::::
the

:::::::::::
competition

::::::::
intensity

::::::::::
parameter 576

::::::::
k ≈ 0.02,

::::
Fig.

::::
1D)

::::
and

:::::::
another

:::::
with

::::::
strong

:::::::::::
interactions

::::::::::
(parameter

:::
set

:::
#7

:::::
with 577

:::::::::
k ≈ −0.41,

:::::
Fig.

::::
1E).

::::::
When

:::
the

:::::::::::
interactions

:::
are

::::::
weak,

:::
we

::::::
clearly

:::
see

::::
the

::::::::
different 578

:::::
ranks:

::::::::::
uninfected

:::::
hosts

::::
are

::
on

::::
the

::::
top,

::::
then

::::::
there

::
is

:
a
::::
row

:::::
with

:::
the

::::
five

:::::
singly

::::::::
infected 579

::::
host

::::::
types,

:::
etc.

::::::
When

:::::::::::
competition

:::::::::
intensity

:::::::::
increases,

:::::
these

:::::
ranks

:::::::
become

::::::::::
impossible 580
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::
to

::::::::::
distinguish.

:::::::
Figure

:::
1D

::::
also

:::::::::
illustrates

:::::
that

::::
each

::::::::
parasite

::::::::
genotype

:::
in

:::
this

::::::
model

::::
has 581

::
its

::::
own

::::::::
infection

:::::::::
duration,

:::::
since

:::::
they

::
do

::::
not

:::
all

::::
have

::::
the

:::::
same

:::::::::
prevalence

:::
in

:::::
single 582

::::::::
infection

::::
(see

::::
rank

::
1

:::::
point

::::::
data).

::::::::::::
Importantly,

:::
we

::::
only

:::::
show

:::
the

:::::
total

::::::::::
prevalence

::
of 583

::::
each

:::::::::::
combination

::::
but

:::::
these

::::
may

::::::
differ

::::::
among

:::::
each

::
of

:::
the

::::
two

::::
host

::::::
types

:::
(in

:::
the 584

::::::::::::::
‘super-spreader’

::::::::::
population

::::
high

:::::
rank

::::::::
genotype

:::::::::::::
combinations

:::
are

:::::
more

::::::::::
prevalent).

:
585

:::
Our

:::::
goal

::
is

::
to

:::::
infer

:::
the

::::::::
intensity

::::
and

::::
sign

:::
of

:::
the

::::::::::
interaction

::::::::
between

:::
HR

::::
and

::::
LR 586

:::::::::
genotypes

::::::::::
(parameter

:::
k)

::
in

::::
such

::
a
:::::::::::::
heterogeneous

::::
host

:::::::::::
population.

:::
To

::::
this

::::
end,

:::
we 587

::::::
applied

:::
an

:::::
ABC

:::::::::
approach.

:::
As

::::
any

::::::::
bayesian

::::::::
method,

::::
this

::::::
means

:::::::::
searching

::
a

::::
prior 588

::::::::::
distribution

:::
in

:::
the

::::::::::
parameter

:::::
space.

:::::
This

:::::::::::
distribution

::
is
::::::
shown

:::
for

:::
all

::::
the

:::
key 589

::::::::::
parameters

::
in

::::::
Figure

::::
S2.

:::
We

:::::
drew

::::::
50,001

::::::::::
parameter

::::
sets

::
in

::::
this

::::::
prior,

::::
used

:::::
them

:::
to 590

:::::::
simulate

:::::::::::
equilibrium

::::::::
densities

:::::::
similar

::
to

::::
the

::::
ones

::::::
shown

::
in

:::::::
Figures

::::
1D

::::
and

::
E.

:
591

:::::
Figure

::
3
::::::
shows

:::
the

:::::::
results

:::
for

:::::::::
parameter

:::
set

::::
#3

::::
and

:::::::::
illustrates

::::
how

:::::
using

:::::
more 592

::::::::
summary

::::::::
statistics

::::::
helps

::
to

:::::::
narrow

:::
the

:::::::::::
distribution

:::::
from

:::
the

:::::
prior

:::
for

::
a
:::::::
dataset

::::
with 593

::::::
10,000

::::::::::
individuals.

:::
If

::
we

:::::
only

:::
use

::::
the

::::::
ranks,

:::
we

::
do

:::::::
narrow

::::
the

:::::
prior

::::::::::
distribution

::::
but 594

::
its

::::::
width

:::::::
remains

:::::
large

:::::::
enough

:::::
such

::::
that

::
0

:::
(no

:::::::::::
interaction)

::::::
cannot

:::
be

:::::
ruled

::::
out

:::::
from 595

:::
the

::::
95%

:::::::
Highest

:::::::::
Posterior

:::::::
Density

:::::::
(HPD),

::::::
which

::::
can

:::
be

::::
seen

::
as

::
a
:::::::::
credibility

::::::::
interval 596

::::
(Fig.

:::::
3B).

:::::
Using

::::
the

:::::::::
prevalence

:::
of

:::
the

:::::::::
genotype

::::::::::::
combinations

::
in

::::::::
addition

::
to

::::
the 597

:::::::::
prevalence

::
of

::::
the

::::::::
infection

:::::
ranks

:::
as

:::::::::
summary

::::::::
statistics

:::
for

:::
the

:::::
ABC

::::::
allows

:::
us

::
to 598

::::::
narrow

::::
this

:::::::
interval

::::
and

:::
to

:::::::
exclude

:
0
:::::
from

::::
the

::::
95%

::::::::::
confidence

:::::::
interval

:::::
(Fig.

::::
3C). 599

:::::
Using

:::::::::
additional

::::::::::::
information,

:::
for

::::::::
example

:::::
being

::::
able

:::
to

::::::::::
distinguish

::::::::
between

:::
the

::::
two 600

::::
host

::::::
types,

:::::
would

:::::::
narrow

::
it

:::::
even

:::::
more

::
as

:::
we

::::
will

:::
see

::::::
below.

:
601

:::::::::::::::::::
Epidemiological

::::::::
model:

::::::::::::::::::::
cross-validation 602

:::
The

::::::::
previous

::::::::
analysis

::::
was

:::::
based

:::
on

::
a

:::::
single

:::
set

:::
of

::::::
target

:::::::::::
parameters.

:::::
Since

:::
all 603

::::::::::
parameters

::::
may

::::
vary

:::
in

:
a
:::::::::

relatively
:::::
large

:::::
prior

:::::::::::
distribution

::::
(Fig

::::
S2)

::::
and

:::::
since

:
k
:::::
may 604

::
be

::::::
easier

::
to

:::::
infer

::
in

:::::
some

::::::::
settings,

:::
we

::::::::
assessed

:::
the

::::::::::::
performance

::
of

:::
the

:::::
ABC

:::::::::
approach 605

::::::::
following

:
a
:::::::::::::

leave-one-out
::::::::::::::
cross-validation

::::::::::
procedure,

:::::
where

:::
we

:::::::
treated

::::
one

::::::::::
simulation 606

::
as

::::::::
observed

:::::
data

:::
and

::::
the

:::::::::
remaining

:::
as

:::::::
learning

:::::
data.

::::
We

::::::
varied

::::
the

:::::::
number

::
of 607

:::::::
sampled

::::::::::
individuals

::::
and

:::::
used

:::
100

:::::::
targets

:::
for

:::::
each.

:::::::::::::
Furthermore,

:::
we

:::::::
analyse

:
a
:::::
third 608

::
set

:::
of

::::::::
summary

:::::::::
statistics

::::::::
involving

::::
the

::::::::::
prevalences

:::
of

::::::::
infection

:::::
ranks

::::
and

:::::::::
genotype 609

::::::::::::
combinations

:::
for

:::
the

::::
two

:::::
hosts

::::::::::::::
sub-populations

::::
(see

::::
the

:::::::::
Methods).

:
610
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Fig 4.
::::
ABC

:::::::::
inference

::::::::
precision

::::
over

::::
100

:::::
runs.

:::
A)

::::
95%

::::::::
Highest

::::::::
Posterior

::::::::
Density

:::::::
(HPD),

::
B)

::::::::
absolute

:::::
value

:::
of

:::
the

:::::::
relative

::::::
error,

:::
C)

:::::::
average

::
of

::::
the

:::::::
absolute

::::::
value

::
of

::::::::::
competition

:::::::::
intensity

::
in

::::
runs

::::::
where

::
0
::
is

::
in

::::
the

::::
95%

:::::
HPD

::::
and

:::
D)

::::
runs

:::
for

::::::
which

::::
the

:::::
target

:::::
value

::::
lies

:::::::
outside

:::
the

:::::
95%

:::::
HPD.

:::::::
Colours

::::::::
indicate

:::
the

:::::::::
summary

:::::::::
statistics

::::
used

::
for

::::
the

:::::
ABC.

:::
In

:::
D,

:::
the

:::::
lines

:::::
show

:::
the

::::::
result

::::::::::
generalised

:::::
linear

:::::::
models

::::
fits

::::::::
assuming

::
a

::::::::
binomial

::::::::::
distribution

:::
of

:::
the

::::::::
outcome

::::::::
variable.

::
As

:::::::::
expected,

:::
the

::::::
width

::
of
::::
the

::::
95%

:::::
HPD

:::
for

::::
the

::::::::
estimate

::
of

:::::::::::
competition

::::::::
intensity 611

::::::::
decreased

:::::
with

:::
the

::::::::
number

::
of

::::
host

::::::::
sampled

:::::
(Fig.

::::
4A).

::::
On

:::
the

:::::
same

::::::
figure,

:::
we

::::
see

::::
that 612

::::::::
including

:::::
more

:::::::::
summary

::::::::
statistics

::::
also

:::::::::
decreased

::::
the

:::::
width

:::
of

:::
this

::::::::
interval,

:::::::::
especially 613

::
for

:::
an

:::::::
infinite

:::::::
sample

::::
size.

:
614

::
In

:::::
terms

:::
of

:::
the

:::::::
relative

:::::
error

:::::
made

::::::
when

:::::::::
estimating

::::
the

:::::::::::
competition

::::::::
intensity 615

:::::::::
parameter

::::
(k),

:::
we

:::::
found

::
a
:::::::
similar

:::::
effect

::::
with

::
a
:::::
lower

:::::
error

:::::
when

:::::
more

:::::
host

::::
were 616

:::::::
sampled

:::
or

:::::
more

::::::::
summary

:::::::::
statistics

::::
were

::::::::
involved

::::
(Fig

:::::
4B).

:::::
Using

::::
the

::::::::::
prevalences

:::
of 617

:::
the

::::::::
genotype

::::::::::::
combinations

:::
in

::::::::
addition

::
to

::::
that

:::
of

:::
the

::::::::
infection

:::::
ranks

:::::
only

::::::::
improved

::::
the 618

:::::::
analysis

::
if

:::::::
enough

:::::
hosts

::::
were

::::::::
sampled

::::::
(5,000

:::
or

:::::::
10,000).

:::
In

:::::::
general,

::::
the

:::::::
relative

:::::
error 619

::::::::
decreased

:::::
with

:::::::::::
competition

::::::::
intensity

:::::::
(figure

:::
not

:::::::
shown).

:
620
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:
If
:::
we

:::::
focus

:::
on

:::
the

:::::
runs

:::
for

::::::
which

:::
we

:::::
could

::::
not

:::::::
exclude

::
an

::::::::
absence

::
of

::::::::::
interaction 621

:::
(i.e.

::::::
k = 0

:::
lied

:::::::
within

:::
the

::::
95%

:::::::
HPD),

::
we

::::
see

::::
that

:::
the

:::::::
number

:::
of

::::
such

:::::
runs

::::::::
decreased

:::
as 622

:::
the

:::::::
number

::
of

:::::::::
summary

::::::::
statistics

:::::::::
increased

::::
(Fig

:::::
S6).

:::
We

::::
also

:::
see

:::::
that,

:::
in

:::::
these

:::::
runs, 623

::::::::::
competition

:::::::::
intensity

:::::::::
decreased

::::
with

:::
the

:::::::
sample

::::
size

::::
and

::::
with

::::
the

:::::::
number

::
of

:::::::::
summary 624

::::::::
statistics

:::::::
involved

:::::
(Fig.

:::::
4C).

::::::
Notice

::::
that

:::
for

:::::
large

:::::::
sample

:::::
sizes,

::::
95%

:::::
HPD

:::
are

:::::::::
narrower, 625

:::::
which

::::::
makes

::
it

:::::
more

::::::::
difficult

::
to

:::::::
exclude

:::
an

:::::::
absence

:::
of

::::::::::
competitive

::::::::::::
interactions.

:
626

::::::
Finally,

::::
the

::::::::::
probability

::
to

::::::
make

::
an

:::::
error

:::
in

:::
the

:::::::::
inference,

::::::
which

:::
we

::::::
define

::
as 627

::::::
having

:::
the

::::::
target

:::::
value

:::::::
outside

::::
the

::::
95%

::::::
HPD,

:::
was

:::::
close

:::
to

:::
the

::::::::
expected

::::
5%

::::::
(6.25% 628

::::
with

:::
the

::::::
ranks

::::
and

:::
5%

:::::
with

:::
the

:::::
comb

:::::
sets).

:::::
This

:::::::::::
probability

:::::::
slightly

::::::::
increased

:::::
with 629

::::::::::
competition

:::::::::
intensity,

:::::::::
especially

:::::
when

::::
the

::::::::
genotype

::::::::::::
combination

::::::::::
prevalences

:::::
were 630

::::::
ignored

:::
in

:::
the

:::::
ABC

:::::
(Fig.

:::::
4D).

:::::::::
Therefore,

:::
we

:::::
have

:::
the

:::::::::
somehow

::::::::::
unexpected

::::::
result

::::
that 631

::::::::
genotype

:::::::::::
combination

:::::
data

::
is

::::
even

:::::
more

::::::::::
important

::
to

:::::::
anayse

::::::::
datasets

:::::
where 632

::::::::::
competitive

:::::::::::
interactions

:::
are

:::::::::::
particularly

:::::::
strong.

:
633

::::::::::::
Removing

::::::
host

::::::::::::::::
heterogeneity 634

:::
We

::::
then

:::::
used

:::
the

:::::
ABC

:::::::::
approach

::
to

:::::::::
reanalyse

::::
the

::::::
target

:::
sets

:::::
with

::
a

:::::
single

:::::
host

::::
type 635

:::::
shown

:::
in

::::::
Figure

::::
2B.

::::
This

:::::::
allowed

:::
us

::
to

:::
do

:::::
more

:::::
than

::::::
simply

::::::::
compare

:::::::::
methods. 636

::::::
Indeed,

:::
in

:::
our

:::::
prior

:::
for

::::
the

:::::
ABC,

::::
the

::::::::::::
heterogeneity

::::::::::
parameter

::
is

::::::
greater

:::::
than

::
2.

:::::
This 637

:::::
means

::::::
there

::
is

:
a
:::::::::
mismatch

::::::::
between

:::
the

::::::
model

:::
we

::::::::
assumed

:::
for

::::
the

:::::
ABC

::
(2

:::::
host

:::::
types 638

::::
with

:::::
some

::::::::::::
heterogeneity

::::::::
between

::::::
them)

::::
and

::::
that

:::::
used

::
to

::::::::
generate

::::
the

:::::
target

:::::
data

::
(1 639

::::
host

::::::
type).

:::
We

::::
can

::::::::
therefore

::::::::
evaluate

::::
the

:::::::::
robustness

:::
of

:::
the

::::::::
inference

::::::::
method

::
to

::
a 640

:::::
small

::::
error

:::
in

::::::
model

::::::::::::
specification.

:
641

:::
We

:::::::::::
investigated

:::
the

:::::::::::
relationship

::::::::
between

::::::::
genotype

:::::::::::
competition

::::::::
intensity

::::
(k)

::::
and 642

:::
our

::::::
ability

::
to

::::::
reject

:::
an

:::::::
absence

::
of

::::::::::
interaction

:::::::
(k = 0)

:::::
from

:::
the

:::::
95%

:::::
HPD

::
in

::
a

::::::::
situation 643

::::
with

::::
two

::::
host

:::::
types

::::
and

::::
one

::::
host

:::::
type

::
in

:::
the

::::::
target

::::::::
dataset.

::::::
Priors

:::::
were

::::::::
identical

::
to 644

:::
the

:::::
other

::::::::
analyses

::::
and

::::::
shown

::
in

::::::
Figure

::::
S2.

:::
In

::::
both

::::::::::
situations,

:::::
cases

::::::
where

:::
the

::::
true 645

::::::::::
competition

::::::
value

:::
was

::::
not

::
in

::::
the

::::
95%

:::::
HPD

:::::::
interval

:::::
were

:::::
close

::
to

::::
5%

::
as

::
in

::::
the

:::::
other 646

::::
runs.

::::
We

:::::
then

:::::::::::
investigated

::::
how

:::::
often

:::
an

:::::::
absence

::
of

:::::::::::
competition

:::::
(that

::
is
:::::::
k = 0)

:::::
could 647

::
be

::::::::
rejected.

:::::
This

::
is

::::::
similar

:::
to

:::
the

::::
H0 ::::::

tested
::
by

:::::::::::::::::::::::
Vaumourin et al. (2014).

:::
We

::::::
found 648

::::
that

:::
we

:::::
could

::::::
detect

:::::::::::
competition

:::
for

::::
55%

:::
of

:::
the

::::::
target

::::::
values

::
in

::
a
::::::
model

::::
with 649

::::::::::::::
super-spreaders

:::
and

::::
for

::::
63%

::
of

::::
the

:::::
target

::::::
values

:::
in

::::::
model

::::
with

:::::
only

:
a
::::::
single

::::
host

:::::
type. 650
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Fig 5.
:::::::
Inferring

:::::::::::
competition

::::::::::
parameter

:::
(k)

:::
in,

::
a
::::::
setting

:::::
with

::::
(A)

::::
and

:::::::
without

::::
(B)

::::
host

:::::::::::
behavioural

::::::::::::
heterogeneity.

:::::
Red

::::
lines

:::::
show

::::
the

::::
95%

:::::::::
credibility

::::::::
interval

:::
and

::::
the

::::
blue

:::
line

::::::
shows

::::
the

:::::::
absence

::
of

::::::::::
interaction

::::::::
(k = 0).

::::
The

::::::
target

:::::
runs

:::
are

::::::::
identical

::
to

::::
that

::
in

:::::::
Figures

::
4

::::
and

:
2
:::::
with

::::::::::
N = 5, 000

:::::
hosts

::::
and

:::
the

::::::
comb

:::
set

::
of

:::::::::
summary

:::::::::
statistics.

::
In

:::
the

::::::
latter

:::
we

::::
also

:::::
made

::::
one

:::::
error,

:::
i.e.

::::::::
inferred

:
a
::::::::
positive

::::::::::
interaction

:::
for

::
a

::::::::
negative 651

::::::
target.

:::::
This

::
is

:::::::
because

::
in

::::
this

:::::::
specific

::::::::::
parameter

:::
set,

::::
the

:::::::::
modifiers

:::
for

:::
the

::::::::
infection 652

:::::::
duration

:::
of

:::
the

::::
two

:::
LR

::::::::::
genotypes

:::
(d2::::

and
:::
d5)

:::::
were

::::
low,

::::::::
whereas

::::
that

::
of

::::
the

:::
HR

:::::
were 653

::
all

:::::
high,

:::::::::
therefore

::::::::
perfectly

:::::::::
mimicking

::
a
:::::::::::
competition

:::::::::::
interaction.

::::::
Figure

::
5
::::
also

::::::
shows 654

::::
that,

:::
as

:::::::::
expected,

:::
the

::::::
ability

:::
to

:::::
reject

:::
H0:::::::::

increased
:::::
with

:::::::::::
competition

::::::::
intensity. 655

:::::::
Overall,

:::::::::
removing

:::
the

::::::::::::
heterogeneity

:::
in

:::
the

:::::
data

:::
due

:::
to

::::::::::
differences

::
in

::::
host

::::::::::
behaviour 656

::::
does

:::::::::
increased

:::
our

::::::
ability

:::
to

::::::
detect

:::::::::::
competitive

:::::::::::
interactions.

:
657

:::::::::::::::
Discussion 658

:::::::
Multiple

:::::::::
infections

::::
are

::::::
known

::
to

::::::
affect

:::
the

:::::::::
virulence

::
of

:::
an

::::::::
infection 659

:::::::::::::::::::::::
(Balmer & Tanner, 2011),

:::
the

:::::::
spread

::
of

:::::::::
infectious

:::::::
diseases 660

:::::::::::::::::::::::::::
(Abu-Raddad et al., 2006) and

:::::
their

::::::::
evolution

:::::::::::::::::::
(Alizon et al., 2013).

:::::
This

::
is

::::
due

::
to

::::
the 661

:::
fact

:::::
that

:::::
when

:::::::
sharing

::
a

::::
host,

:::::::::
parasites

:::
can

::::::::
interact

::
in

:::::::
various

:::::
ways

::::
such

:::
as 662

:::::::::
competing

:::
for

::::
host

::::::::::
resources,

:::::::::
exploiting

:::::::::
molecules

::::
they

::::::::
produce

::
or

:::::
even

:::::::::
indirectly

:::
via 663

::::::::::::
cross-reactive

:::::::
immune

::::::::
response

::::::::::::::
(Mideo, 2009).

::::
The

::::
goal

:::
of

::::
this

:::::
study

::::
was

::
to 664

:::::::::
determine

::
to

:::::
what

::::::
extent

::::
the

:::::::::
prevalence

:::
of

:::::::
specific

::::::::
genotype

::::::::::::
combinations

::::
can

::::::
inform 665

::
us

:::
on

:::
the

::::
net

:::::
effect

::
of

:::
all

:::::
these

:::::::::::
interactions.

:
666

::
By

::::::::::
generating

::::::::::
prevalence

::::
data

:::::
from

::
a

:::::::::::
mechanistic

::::::::::::::
epidemiological

::::::
model,

:::
we

:::::
were 667

::::
able

::
to

::::
first

::::
test

:::
the

::::::
power

:::
of

:::::::
existing

::::::::
heuristic

::::::::
methods

::::::
based

::
on

:::::::
neutral

::::::::::::
distributions 668

::::
that

:::::::::
implicitly

::::::
assume

::
a
::::::::::::::::::
Susceptible-Infected

::::
(SI)

::::::
model

:::::
with

::::::::::::::
co-transmission

::::
and

::::
only 669
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:
a
::::::
single

::::
type

::
of

::::::
hosts.

::::
We

:::::::
showed

::::
that

:::::::::::
introducing

::::
host

::::::::::::
heterogeneity

::::
into

::::
the

::::::
model 670

:::
can

:::::::
modify

:::
the

:::::::::::
distribution

::
of

:::::::::
genotype

:::::::::::
combination

:::::::::::
prevalences

::
in

::
a

::::
way

::::
that

::::::
makes 671

::::::::::
within-host

:::::::::::
interactions

:::::::
between

::::::::::
genotypes

::::::
largely

:::::::::::::
undetectable.

::::
This

:::::::::
therefore 672

:::::::::::
corroborates

::
a

:::::::::
limitation

:::::
often

::::::::::
mentioned

::
in

::::
such

::::::::
studies,

:::::
which

::
is
:::::
that

::::::::::
departures 673

::::
from

::::::::
‘neutral’

::::::::::::
distributions

:::::
(H0)

::::
need

::::
not

::
be

::::
due

:::
to

::::::::::
interaction

:::::::
between

::::::::
parasite 674

:::::::::
genotypes.

:
675

:::
We

::::
then

:::::
used

::
an

:::::
ABC

:::::::::
approach

::
to

:::::
infer

::::::::::
parameters

:::::
from

::::
the

::::::
model.

::::
We

:::::
show

::::
that 676

:::
this

::::::
yields

:::::
more

:::::::::
consistent

::::::
results

:::::
than

:::::::
existing

:::::::::
methods.

:::
As

:::::::::
expected,

:::
the

:::::::::
accuracy

::
of 677

:::
the

:::::::
method

::::::::
increases

:::::
with

:::
the

::::::::
number

::
of

:::::
hosts

::::::::
sampled.

::::
We

::::
also

:::::::
showed

::::
that

::::::
using 678

:::
the

::::::::::
prevalence

::
of

:::
all

:::
the

::::::::::::
combinations

::
of
:::::

host
::::::
classes

::::::
tends

::
to

::::::::
decrease

:::
the

:::::
error

::::::
made 679

::::::::
compared

:::
to

:::::
using

:::::
only

:::
the

::::::::::
prevalence

::
of

::::::::
infection

::::::
ranks.

::::::::
Finally,

::::::
adding

:::::::::::
information 680

::
in

:::
the

::::::
target

:::::
data

:::::
about

:::::
host

::::
type

:::::::::::::::
(‘super-spreader’

:::
or

:::::::::::::::::
‘normal-spreader’)

:::
can

:::::::
further 681

:::::::
improve

:::
the

::::::
power

:::
of

:::
the

:::::::::
inference.

:
682

:::
The

::::
fact

:::::
that

::::::
decent

::::::
results

::::
can

:::
be

::::::::
obtained

:::
by

::::
only

:::::
using

::::
the

::::
rank

:::
of

:::
the 683

::::::::
infections

:::::
may

:::::
seem

:::::::::
surprising

::::::::::
considering

::::
the

::::::::
difficulty

:::::
from

:::::::
existing

:::::::
models

::
to

:::::
infer 684

:::::::::::
interactions.

:::::
This

:::::
could

:::::
mean

:::::
that

::::::::::
accounting

:::
for

::::
host

:::::::::::
behavioural

::::::::::::
heterogeneity

::
is 685

::::
more

::::::::::
important

::::
than

:::::::
adding

:::::::::
additional

:::::::::::
information

::::
via

:::
the

:::::::::
genotype

::::::::::::
combinations. 686

:::::::
Another

::::::
reason

::::::
could

::
be

:::::
that

:::
we

::::
here

::::
use

:::
the

:::::
same

::::::
model

::
to

::::::::
generate

::::
the

::::::
target 687

::::::
dataset

::::
and

::::
the

:::::::
learning

:::::::::
datasets,

:::::
which

:::::::::
facilitates

::::
the

:::::
ABC

:::::::::
inference.

:::::::::
However,

:::
we 688

::
do

:::::
show

::::
that

::::
our

::::::::
inference

::::::::
method

::::::::
performs

::::
very

::::
well

:::
to

::::
infer

:::::::::::
competitive

:::::::::::
interactions 689

:::::
when

:::::
there

::
is

:
a
::::::
slight

:::::::::
mismatch

::::::::
between

:::
the

::::
true

::::::
model

::::
and

::::
that

:::::
used

::
in

::::
the

:::::
ABC.

:
690

::
As

::::::::::
illustrated

::
by

::::
Fig

:::
S7,

::::
the

::::::::
accuracy

::
of

::::
the

::::::::
inference

::::::
varied

::::::
widely

::::::
across 691

::::::::::
parameters.

::::
For

::::
the

::::::::::
interaction

:::::::::
parameter

::::
(k),

:::
the

:::::::::
inference

:::::::
reduced

::::
the

::::::
initial

::::
95% 692

::::
HPD

:::
of

:::
the

:::::
prior

:::
by

:::::
66%.

::
In

::::::::::::
comparison,

:::
this

::::
was

::::
less

:::::
than

:::
for

:::
the

::::::::::::
transmission 693

::::::::::
probability

:::
(β,

:::::
75%),

::::
but

:::::
much

::::::
better

:::::
than

:::
for

::::
the

:::::::::::
assortativity

::::::::::
parameter

:::
(a,

:::::
45%), 694

::::
host

::::::::::::
heterogeneity

:::
(h,

:::::
38%)

:::
or

:::
the

::::::::::
individual

:::::::
recovery

:::::
rates

:::
of

::::
each

:::::::::
genotype

:
i
::::
(γi, 695

:::::
13%).

:
696

:::::
There

:::
are

:::::::
several

:::::
ways

::
to

:::::::
extend

::::
this

::::::::::
framework.

::::
One

::::::
would

:::
be

::
to

::::
use

:::::
more 697

:::::::
powerful

::::::::::
non-linear

::::::::
machine

:::::::
learning

::::::::::
regression

::::::::::
techniques,

:::::
such

::
as

::::::
neural

:::::::::
networks. 698

::::::::
However,

:::::
these

::::
may

:::
be

:::::
more

::::::::
difficult

::
to

::::::::::::
parameterise

::::
than

::::
the

:::::
linear

::::
one

:::
we

:::::
used. 699

:::::::::::
Furthermore,

:::::
even

:::::::
though

::
it

::::::::
contains

::::::
several

:::::::::::
parameters,

::::
our

::::::
model

:::::::
remains

:::::::::
relatively 700

::::::
simple

:::::::::
compared

::
to

::::
the

:::::
power

:::
of

:::::
these

::::::::::
algorithms.

:
701
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::::
Here,

:::
we

:::::
have

::::
also

:::::::::
generally

::::::::
assumed

::::
that

:::
the

::::::::::::::
epidemiological

::::::
model

::
is
:::::::
known. 702

:::::
There

:::
are

::::
two

:::::
ways

:::
to

::::::
extend

::::
this.

:::::
One

::::
can

::
be

:::
to

:::::::
perform

::::::::
rigorous

::::::
model

:::::::::::
comparison 703

::
to

:::
see

::::::::
whether

:
a
:::::::
simpler

::::::
model

::::
(for

::::::::
instance

::::
with

::
a
::::::
single

::::
host

::::::
type),

:::::
might

::::
not

::
fit

::::
the 704

::::
data

::::::
better.

:::::
This

::::::
could

::
be

:::::
done

:::::::
readily

:::::
using

:::::::::::::::
regression-ABC,

:::
for

::::::::
instance

::::
with 705

:::::::
random

::::::
forests

::::::::::::::::::
(Pudlo et al., 2016).

::::::::
Another

:::::::::
extension

::::::
would

:::
be

::
to

::::
use

::
an 706

::::::::::
agent-based

::::::
model

:::::
with

::::::::::::
sophisticated

:::::
agent

::::::::::
behaviours

:::
to

::::::::
generate

:
a
::::::
richer

::::::::
dataset. 707

::::
This

::::::
would

::
be

::::::
useful

:::
in

::::
itself

:::
to

::::::::
generate

::::
test

::::
runs

:::::
with

::::::
known

::::::::::
parameter

::::::
values

::
to 708

::::::
further

::::
test

:::
the

::::::
power

:::
of

:::
our

:::::::
method

:::
on

:::::
more

:::::
noisy

:::::
data.

:::
It

::::::
would

::::
also

:::::
allow

::
to 709

::::::
control

:::
for

::::::
biases

:::::::
related

::
to

:::
the

::::::::
contact

:::::::
network

:::::::::
structure

:::::::
between

::::::
hosts

:::
and

::::
the 710

:::::::::
dynamical

::::::
aspect

::
of

::::::
sexual

::::::::::::
partnerships

::::
that

:::::
have

:::::
been

::::::
shown

::
to

::::::::
interfere

:::::
with

:::
the 711

::::::::
detection

::
of

::::::::::
coinfection

:::::::::::
interactions

:::::::::::::::::::::
(Malagón et al., 2016).

:
712

::::::
Finally,

::::
the

::::
next

:::::
step

::
is,

::
of

:::::::
course,

:::
to

:::
test

::::
this

::::::
model

::::::
using

::::::
actual

::::::::::::::
epidemiological 713

::::
data.

::::::
Even

::
in

:::
the

:::::
case

::
of

::::::
HPV,

::::::::
analysing

::::
real

:::::
data

::::
will

::::::
require

:::
to

::::
add

::::::
several 714

::::::::
processes

:::
we

:::::
chose

:::
to

::::::
ignore

:::::
here.

:::::
First,

:::::
HPV

:::::::::
detection

:::::
tests

::::
may

:::::::
exhibit 715

:::::::::::::
cross-reactivity

::::::::
between

:::::
HPV

::::::
types,

::::
thus

::::::::
inflating

::::
the

:::::::::
prevalence

:::
of

:::::
some

::::::::
genotype 716

::::::::::::
combinations.

:::::
This

:::::
effect

::
if
::::
well

:::::::::
described

::::
and

:::
can

:::
be

::::::::
handled

:::
for

::::
each

:::::::::
detection

::::
test. 717

:::::::
Second,

:::::
when

:::::
hosts

:::
are

::::::::
infected

:::
by

:::::
many

:::::
HPV

::::::
types,

:::::
some

::
of

:::::
these

:::::
may

:::
not

:::
be 718

::::::::
detected,

::::
thus

::::::::::
decreasing

:::
the

::::::::::
prevalence

::
of
:::::::::
high-rank

::::::::::
infections.

:::::
This

:::::
effect

::
is

:::::
more 719

:::::
subtle

::::
and

::::::
would

:::::::
require

::
to

:::
be

:::::::
inferred

:::
in

:::
the

:::::::
model. 720

:::::::::::
Importantly,

:::
we

:::::::
focused

::::
here

:::
on

:::::
HPV

::::
but

:::::
other

:::::::
systems

::::::
could

::
be

::::::::
studied,

::
in 721

:::::::::
particular

::::::::::
coinfections

::::::::
between

::::::::
different

::::::::
parasite

:::::::
species.

:::::::::
However,

::
it

::
is

:::::::::
important

:::
to 722

:::::
stress

::::
that

::::
the

::::::::::
underlying

::::::::::::::
epidemiological

:::::
model

:::::
must

:::
be

:::::::::
consistent

:::::
with

:::
the

::::
the 723

:::::::::
life-history

:::
of

:::
the

:::::::::::
parasite(s). 724

:::::::
Overall,

:::::
ABC

::::
and

:::::::
machine

::::::::
learning

:::::
allow

:::
us

::
to

:::::::
extract

::::
the

::::::::::
information

:::::
from

::::
the 725

::::::::::
equilibrium

::::::::::
prevalence

::
of

:::
all

:::
the

::::::::::::
combinations

:::
of

::::::::
genotype

:::::::::::
prevalences.

::::::::::
Therefore, 726

:::::::::
combining

::::::::::
coinfection

:::::::::
modelling

:::::
with

::::::::::::::
epidemiological

::::
data

::::
can

:::::
bring

::::
new

::::::::
elements

:::
to 727

:::
the

::::::::::
controversy

:::::::::
regarding

::::
the

::::::::::
importance

:::
of

::::::::::
interactions

::::::::
between

:::::
HPV

::::::
types.

:
728
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Fig S1. Correlation between interaction
:::::::::::
competition intensity and combination, rank

or genotype prevalence. The values show the Pearson correlation coefficient obtained
using 1,000 parameter sets from the ABC training dataset (priors in Figure S2).
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::::
We

:::
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::::::::::
parameter

:::
set

:::
#3

:::
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:::
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::::::
target

::::
and

:::
the

::::::::::
remaining

::::::
50,000

:::
sets

:::
to

:::::::
perform

::::
the

:::::
ABC.

::::
The

:::::::
dashed

::::
blue

:::::
lines

:::::
show

:::
the

::::::
target

::::::
values

::::
and

::::
the

:::
red

::::
lines

:::::
show

:::
the

:::::
95%

:::::::
Highest

::::::::
Posterior

::::::::
Density

:::::::
(HPD).
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Fig S8.
::::::::::
Significancy

:::
of

:::
the

:::::
GLM

:::
(A

::::
and

:::
B)

::::
and

:::
the

::::::::::
chi-square

:::
(C

::::
and

::
D)

:::::::::::
approaches.

::::
This

:::::::
analysis

::
is
::::
ran

:::
for

::
a

::::::
model

::::
with

::::
two

::::
host

::::::
types

:::
(A

:::
and

:::
C)

:::
or

:
a
::::::

single
::::
host

:::::
type

::
(B

::::
and

::::
D).

::
In

::::::
panels

::
A
::::
and

:::
C,

:::::
h = 1

::::
and

::::::
a = 0.
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