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Abstract1

Empirical knowledge of ecosystem stability and of diversity-stability relationships is mostly2

built
::::::
based on the analysis of temporal variability of population and ecosystem properties.3

Variability, however, often depends on external factors that act as disturbances, making it4

difficult to compare its value across systems , and relate it to other stability concepts. Here5

we show how variability, when seen
:::::::
viewed

:
as a response to stochastic perturbationsof various6

types, can reveal inherent stability properties of ecological communities, with clear connec-7

tions with other stability measures
:::::::
notions. This requires abandoning one-dimensional repre-8

sentationsof stability, in which a single variability measurement is taken as a proxy for how9

stable a system is, and instead consider the whole variability spectrum, i.e. the distribution10

of the system’s response to the vast
:::
set

:::
of

:::::::::::
variability

:::::::
values

:::::::::::
associated

::
to

::
a
::::::
given

:::::::::::::
community,11

:::::::::
reflecting

:::::
the

::::::
whole

:
set of perturbations that can generate variability. In species-rich model12

communities
::::::::
Against

::::
the

:::::::::::
vertiginous

::::::::::::::::
dimensionality

::
of

::::
the

::::::::::::::
perturbation

:::
set, we show that there13

exist generic patterns for which specific abundance classes of species govern variability. In14

particular
:
a
::::::::
generic

:::::::::::::::::::::::
variability-abundance

:::::::::
pattern

:::::::::
emerges

:::::
from

:::::::::::::
community

::::::::::
assembly,

:::::::
which15

:::::::
relates

:::::::::::
variability

:::
to

::::
the

::::::::::::
abundance

:::
of

::::::::::::
perturbed

::::::::
species.

:::::
As

::
a

:::::::::::::
consequence, the response16

to stochastic immigration is typically governed by rare species while common species drive17

the response to environmental perturbations. We show that
:::
In

:::::::::::
particular,

:
the contrasting18

contributions of different species abundance classes can be responsible for
::::
lead

::::
to

:
opposite19

diversity-stability patterns. More generally, our work proposes
:
,
:::::::
which

::::
can

::::
be

::::::::::::
understood20

:::::
from

::::::
basic

:::::::::
statistics

:::
of

::::
the

::::::::::::
abundance

:::::::::::::
distribution.

:::::
Our

::::::
work

:::::::
shows

:
that a multidimensional21

perspective on stability
::::::::::
variability

:
allows one to better appreciate the dynamical richness of22

ecosystems, and to better understand the causes and consequences
::::::::::
ecological

:::::::::
systems

::::
and

::::
the23

:::::::::::
underlying

:::::::::
meaning

:
of their stability patterns.24
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Introduction28

Ecological stability is a notoriously elusive and multifaceted concept (Pimm, 1984; Donohue29

et al., 2016). At the same time, understanding its drivers and relationship with biodiversity30

is a fundamental, pressing, yet enduring challenge for ecology (Elton, 1946; MacArthur, 1955;31

May, 1973a; McCann, 2000). Temporal variability (with lower variability being interpreted as32

a higher stability)
::::
The

:::::::::
temporal

:::::::::::
variability

:::
of

::::::::::::
populations

:::
or

:::::::::::
ecosystem

:::::::::::
functions,

::::::
where

::::::
lower33

::::::::::
variability

:::
is

:::::::::::
interpreted

:::
as

:::::::
higher

::::::::::
stability, is an attractive facet of ecological stability, for sev-34

eral notable reasons. First, variability is empirically accessible using simple time-series statis-35

tics such as variance and coefficient of variation (Tilman et al., 1996; Yachi and Loreau, 1999)36

.
:::::::::::::::::::::
(Tilman et al., 1996)

:
.
:
Second, variability – or its inverse, invariability – is a flexible notion37

that can be applied across levels of biological organization (Haegeman et al., 2016) and spatial38

scales (Wang and Loreau, 2014; Wang et al., 2017). Third, variability is
:::
can

:::
be

:
indicative of the39

risk that an ecological system might go extinct, collapse or experience a regime shift (Scheffer40

et al., 2009). During the last decade, the relationship between biodiversity and ecological sta-41

bility has thus been extensively studied empirically by focusing on the temporal variability of42

populations or ecosystem properties (Tilman et al., 2006; Jiang and Pu, 2009; Hector et al., 2010; Campbell et al., 2011; Loreau and de Mazancourt, 2013)43

:::::
using

:::::::::::::
invariability

:::
as

:
a
:::::::::
measure

:::
of

:::::::::
stability

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Tilman et al., 2006; Jiang and Pu, 2009; Hector et al., 2010; Campbell et al., 2011; Gross et al., 2014; Pennekamp et al., 2018)44

.45

In the
::
a literal sense, stability is the property of what tends to remain unchanged (Pimm,46

1991). Variability denotes the tendency of a variable to change in time, so that its inverse,47

invariability, fits this intuitive definitionof stability. However, variability is not necessarily an48

inherent property of the system that is observed (e.g., a community of
:::::::::::
interacting species),49

as it typically also depends on external factors that act as perturbations, and generate the50

observed variability. In other words, the variability of an ecological
:
a
:
community is not a prop-51
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erty of that community alone. It may be caused by a particular perturbation regime (e.g.52

temperature fluctuations), and a different perturbation regime (e.g. precipitation fluctuations)53

would
::
so

:::::
that

::
a

:::::::::
different

:::::::
regime

:::::::
could lead to a different value of variability. Stronger pertur-54

bations will generate larger fluctuations, and the way a perturbation’s intensity is distributed55

and correlated across species is also critical. In other words, a variability measurement reflects56

the response of a system to the specific environmental context in which it is embedded.57

That being said
::::::::
Despite

:::::
this

::::::::::::
complexity, quantifying the fluctuations of ,

:::
an

:::::::::::
ecosystem58

:::::::::
property

::
(e.g., primary productionof an ecosystem

:
)

:
can be of foremost practical interest ,59

as it provides –
::
a

:::::::::
measure

:::
of

:::::::::::::::
predictability

:
in a given environmental context – a measure60

of its predictability (Griffin et al., 2009). However, to generalize results beyond the specific61

context in which variability is measured, use variability to compare the stability of differ-62

ent systems, establish links between different stability notions, or reconcile the conflicting63

diversity-stability patterns and predictions reported in the empirical and theoretical litera-64

ture (Ives and Carpenter, 2007), one needs to know how variability measurements can reflect65

a system’s inherent dynamical properties
::::::::
features.66

To do so
::::
Here, we adopt an approach in which stability is viewed as the inherent ability67

of a dynamical system to endure perturbations (Fig. 1A). As a consequence,
:::
For

:::::::::::
simplicity68

:::
we

::::
will

:::::::::
restrict

:::
to

:::::::::
systems

:::::
near

::::::::::::::
equilibrium,

:::
by

::::::::::::
opposition

::::
to,

:::::
e.g.,

::::::
limit

:::::::
cycles

:::
or

::::::::
chaotic69

:::::::::::
attractors.

::::
We

:::::::::
propose

:::::
that

:
a measure of stability should not be associated with

:::::::
reflect,

::::
not70

a particular perturbation (as in Fig. 1B), but instead should reflect a system’s propensity to71

withstand perturbations in general.72

We
::
a

::::::
whole

:::::
class

::
of

:::::::::::::::
perturbations.

::::
We

:::::::::
therefore

:
consider a vast range of possible perturbations73

that can generate variability
:::::::::::::
perturbation

::::
set, and study , instead of a unique measure,74

the corresponding broad
:::
the

:::::::::::::::
corresponding

:
range of community responses , which we call75

variability spectrum (Fig. 1C). Even from a theoretical perspective, considering all possi-76
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Figure 1: Variability vs stability. A: Stability quantifies the way a system responds to perturbations, seen as

an inherent property of the system (indicated by the red framed box). B: By contrast, temporal variability is

typically a feature of both the system studied and external factors that act as perturbations. C: For variability

to measure the stability
::
be

:::
an

::::::::
inherent

::::::::
property of the system, one can consider a whole set of perturbations,

thus integrating out the dependence on specific external factors.Here we analyze the patterns that emerge

from this approach.
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ble perturbations that any ecological community
::
an

:::::::::::
ecosystem

:
can face is a daunting task.77

More prosaically, we will restrict to communities perturbed near equilibrium
:::
We

:::::
will

:::::
thus78

:::::::
restrict

:::::
our

::::::::::
attention

:::
to

:::::::
model

::::::::::
ecological

::::::::::::::
communities

:::::
near

::::::::::::::
equilibrium,

:::::::::::
perturbed

:
by weak79

stochastic perturbations, and derive analytical formulas for two statistical properties of their80

variability spectrum
:::::::::::::::
complementary

:::::::::
features

:::
of

::::
the

::::
set

::
of

::::::
their

:::::::::::
variability

:::::::
values: its average81

value (mean-case scenario) and its largest value (
:::
and

::::::::::::
maximum,

:::::::::::::::
corresponding

:::
to

::::
the

:::::::
mean-82

::::
and

:
worst-case scenario)

:::::::::::::
perturbation

:::::::::::
scenarios,

::::::::::::
respectively.83

We then apply this framework to species-rich model communities subject to different84

perturbation types
:::::
After

::::::::
having

:::::::::::
developed

:
a
::::::::
general

::::::::
theory

::
of

::::::::::::
variability

:::::
that

::::
can

:::
be

::::::::
applied85

::
to

::::
any

:::::::
model

::::::::::::
community

::::::
near

:::::::::::::
equilibrium,

:::
we

:::::
turn

::::
our

::::::::::
attention

:::
to

::::::::::::
species-rich

::::::::::::::
communities86

::::
that

::::
are

:::::::::::
assembled

::::::
from

::::::::::
nonlinear

::::::::::::
dynamics.

::::
We

::::::
show

:::::
that

::
a
::::::::
generic

:::::::::::::::::::::::
variability-abundance87

::::::::
pattern

::::
can

::::::::
emerge

:::::
from

::::
the

:::::::::
complex

::::::::::::
interactions

:::::::::
between

::::::::
species

:::::::
during

:::::::::::
assembly.

::::
We

::::::
argue88

::::
that

:::::
this

:::::::::
pattern,

:::
in

:::::::::::::
conjunction

:::::
with

::::
the

::::::
type

:::
of

::::::::::::::
perturbations

::::::::::::
considered

:
(environmental,89

demographic, or caused by stochastic immigration), and show that there exist generic patterns90

for which
:::::::::::
determines

::::
the specific species abundance class govern the variability spectrum.

::::
that91

::::::::
governs

::::
the

:::::::::::
variability

::::::::::::::
distribution.

:
In particular, we demonstrate that there is

:::::::::
establish

:
a92

generic link between rare species, worst-case variability, and asymptotic resilience – the long-93

term rate of return to equilibrium following a pulse perturbation. We then explore the role94

of these patterns in determining diversity-stability relationships. We find
::::::
finally

::::::::::
illustrate95

that the contrasting contributions of various species abundance classes can be responsible96

for opposite diversity-stability patterns, probing different dynamical properties of complex97

communities
::::::::::::::::::::::
diversity-invariability

:::::::::
patterns.98

In a nutshell, the
::::
The

:
goal of our work is (i) to demonstrate that variability is an inher-99

ently multidimensional notion, reflecting the multidimensionality of
::
an

:
ecosystem’s responses100

to perturbations; (ii) to show that clear patterns exist within
::
in

:
ecosystem responses to per-101
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turbationsreflecting
:
,
:::::::
which

:::::::
reflect

:
the dynamical properties of distinct species abundance102

classes; (iii) to argue that, in order to compare and predict stability
:::::::::::
variability patterns, it is103

paramount to first identify to which abundance class these patterns or predictions refer to;104

and finally, (iv) to propose that a multidimensional perspective on stability
::::::::::
variability

:
allows105

one to better appreciate the dynamical richness of ecosystems, and the underlying meaning106

of their stability patterns.107

Conceptual framework108

To make the schematic representation of Fig. 1 more concrete, we will restrict to the mathematically109

convenient setting of communities modeled
:::
We

::::::
focus

:::
on

::::::::::::::
communities

::::::::::
modelled

:
as dynamical110

systems close to an
::
at

:
equilibrium, and study their responses to a whole class of stochastic111

white-noise forcing. In this section we outline the theory, focusing on ecological intuitions,112

while Appendix A through D provides a self-contained presentation of its mathematical foun-113

dations.
::::
Our

::::::
work

:::::::
follows

:::::::::::
traditional

::::::::::::
approaches

:::
of

:::::::::::
theoretical

::::::::
ecology

::::::::::::::::::::::::::::::::
(May, 1973a; Ives et al., 2003)114

:
,
::::::::::
extending

::::
the

:::::::::
analysis

:::
to

::::::::::::
encompass

::
a

::::::
large

:::::::::::::
perturbation

:::::
set.

:
115

Perturbed communities116

Consider a community of S interacting species whose biomass are modeled as continuous117

interacting dynamical variables118

:::
LetNi(t) approaching an equilibrium valueNi > 0, with i = 1, 2, ...S. Let xi(t) = Ni(t)−Ni119

denote the difference between
:::::::::
represent

::::
the

::::::::::::
abundance

::::
(or

::::::::::
biomass)

:::
of

:
species i ’s biomass120

Ni(t) at time t, and its
::::::::::::::::::
xi(t) = Ni(t)−Ni:::

its
::::::::::::::
displacement

::::::
from

:::
an equilibrium value Ni:,:::::

with121

:
i
:::::::::
running

:::::
over

::
S

:::::::::::
coexisting

::::::::
species

::::::
that

:::::
form

::::
an

::::::::::
ecological

:::::::::::::
community. We model biomass122

fluctuations
::::::::::::
fluctuations

::
in

::::::::::::
abundance

:
(hence variability) as a response to weak

:::::
some

:
stochas-123
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tic forcing. We focus on stationary fluctuations caused by
:::::
weak perturbations with zero mean,124

implying that the mean of species time-series correspond to their equilibrium value. From 1
:
,125

::::::
which

::::
are

::::::::::
governed

:::
by

::::
the

::::::::::
following

::::::::::::
dynamical

::::::::
system,

:::::::::
written

:::::
from

:
the perspective of any126

focal species i , the dynamics read The
::
as

:
127

d

dt
xi(t)︸︷︷︸

fluctuations

=
S∑
j=1

Aijxj(t)︸ ︷︷ ︸
interactions

+σi
√
Ni

α
ξi(t)︸ ︷︷ ︸

perturbation

.

:::::::::::::::::::::::::::::::::::::::::::

(1)

::
In

:::::
this

::::::::::::
expression,

:::::
the

:
coefficients Aij represent the effect that a small change in biomass128

of
::
of

::::::::::::
abundance

:::
of

:
species j has on the biomass

:::::::::::
abundance

:
of species i. Organized in the129

community matrix A = (Aij), they encode the linearized dynamics near equilibrium of the130

non-linear model that has lead to
::::::::::::
linearization

:::
of

::::
the

:::::::::::
nonlinear

:::::::
system

:::
of

:::::::
which

:
(Ni) . The131

::
is

:::
an

:::::::::::::
equilibrium.

:::
In

::::
the

:
perturbation term,132

σiN
α
2
i Wi(t),

is a stochastic function of time, with Wi(t) denoting a
::::
ξi(t):::::::::

denotes
::
a

:
standard white-noise133

source (Van Kampen, 1997)
::::::::::::::::::::::::::::::::::::
(Arnold, 1974; Van Kampen, 1997). In discrete time Wi(t) ::::

ξi(t)134

would be a normally distributed random variable with zero mean and unit variance, drawn135

independently at each time step (Appendix A). We thus assume no temporal autocorrelations136

of perturbations, i.e. , no memory of past events137

::::::::::::
Community

:::::::
models

:::
of

:::
the

::::::
form

:::
eq.

::::
(1)

:::::
were

::::::::
studied

:::
by

::::::::::::::::::
Ives et al. (2003)

:::
to

::::::::
analyze

::::::::::
ecological138

:::::
time

:::::::
series.

:::
In

::::::
their

:::::::::::
approach,

::::::::::
stability

:::::::::::
properties

::::
are

:::::::::
inferred

::::::
from

::::
the

:::::::::
system’s

::::::::::
response139

::
to

:::::::::
specific

:::::::::::::::
perturbations.

:::::::
Here

::::
we

::::::
build

::::
on

::
a
::::::::
similar

::::::::::::
formalism,

:::::
but

::::::::::
explicitly

:::::::::
explore

::
a140

1
:
If

:::
the

::::::::::::
perturbation

:::::
effect

:::::
does

:::
not

:::::
have

::::
zero

::::::
mean,

:::
an

:::::::::
equivalent

:::::::
system

:::
can

:::
be

:::::::
studied

:::
by

:::::::::
redefining

:::
the

::::::::::
equilibrium

::
as

::::
the

:::::
mean

::
of
:::::::

species
:::::
time

::::::
series.
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::::
vast

::::
set

:::
of

:::::::::
possible

:::::::::::::::
perturbations. Although environmental often follow temporal patterns141

(Vasseur and Yodzis, 2004; Ruokolainen and Fowler, 2008), the absence of temporal autocorrelation142

is not a critical assumption for what follows. We will allow
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Vasseur and Yodzis, 2004; Ruokolainen et al., 2009; Fowler and Ruokolainen, 2013)143

:::
we

::::
will

:::::
not

:::::::::
consider

::::::::::::::::
autocorrelated

::::::::::::::::
perturbations.

:::
It

:::::::
would

::::::
thus

:::
be

::::::::::::
interesting

:::
to

::::::::
extend144

:::
the

:::::::::
analysis

:::
to

:::::::
more

::::::::
general

::::::::::
temporal

:::::::::::
structures

:::
of

::::::::::::::::
perturbations,

:::
as

:::::
well

:::
as

::::
to

::::::::::
nonlinear145

::::::::::
behaviors.

:::::::
What

::::
we

:::::
will

::::::::::
explicitly

:::::::::
consider, however, for

:::
are

:
temporal correlations between146

Wi(t) and Wj(t), which could model
:::::
ξi(t)::::

and
::::::
ξj(t),:a situation in which individuals of species147

i and j are similar in their perception of a given perturbation. The perturbation term (??),148

representing the direct effect that a perturbation has on the biomass of species i, is written149

as some power of Ni, and is proportional to a species-specific term σiWi(t). The latter is a150

function of the perturbation itself, and of traits of species i which determine how individuals151

of that species perceive the perturbation. We will discuss this term in detail in following152

sections.,
:::

a
::::::::::
property

:::::::
known

::::
to

:::::
have

::::::::::::
potentially

:::::::::
strong,

:::::
and

::::::::::::
unintuitive

:::::::
effects

::::
on

::::::::
species153

::::::::::
dynamics

:::::::::::::::::::::::
(Ripa and Ives, 2003).

:
154

Not all dynamical systems written as
::::
For

::::
the

:::::::::::::
fluctuations

::
of

::::::::
species

::::::::::::
abundance

:::
in

:::
eq.

:
(1)155

lead to stationary fluctuations. For this to be the case
::
to

:::
be

:::::::::::
stationary, the equilibrium

:::::
state156

::::
(Ni):must be stable. More technically, the

:::::::::::
eigenvalues

:::
of

::::
the community matrix A must satisfy157

the stability criterion: all its eigenvalues must have negative real part (May, 1973a; Gurney158

and Nisbet, 1998). The eigenvalue with maximal real part determines the slowest long-term159

rate of return to equilibrium following any weak
:
a pulse perturbation. This rate is a commonly160

used stability measure in theoretical studies. We
:
;
:::
we

:
call it asymptotic resilience and denote161

it by R∞ (Arnoldi et al., 2016b). It will serve as a reference
:::
To

::::::::::
illustrate

::::
the

:::::::::::::
connections162

::::::::
between

:::::::::
stability

:::::::::::
concepts,

:::
we

:::::
will

:::::::::
compare

::::::::::::
asymptotic

::::::::::
resilience

:::
to

::::::::::
measures

:::
of

:::::::::::
variability.163
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Perturbation type164

The dependency with species biomass of the perturbation term (??) models a
:::::::::::::
perturbation165

:::::
term

::
in

::::
eq.

::::
(1)

:::::::::::
represents

:::
the

:::::::
direct

::::::
effect

:::::
that

::
a

:::::::::::::
perturbation

::::
has

:::
on

::::
the

::::::::::::
abundance

::
of

::::::::
species166

:
i.
:::

It
:::::::::
consists

::
of

::::
two

:::::::
terms:

::::::
some

:::::::
power

::
α

::
of

::::::

√
Ni,::::

and
::
a
::::::::::::::::
species-specific

:::::
term

::::::::
σiξi(t).:::::

The
::::::
latter167

::
is

:
a
:::::::::
function

:::
of

::::
the

:::::::::::::
perturbation

::::::
itself,

:::::
and

::
of

::::::
traits

:::
of

::::::::
species

:
i
:::::
that

:::::::::::
determine

::::
how

::::::::::::
individuals168

::
of

:::::
that

:::::::
species

:::::::::
perceive

::::
the

::::::::::::::
perturbation.

:::::
The

::::::::
former

:::::::
defines

::
a
:
statistical relationship between169

a perturbation’s direct effects and the mean biomass
:::::::::::
abundance

:
of perturbed species. This170

relationship allows to consider many, and very distinct ,
:
It

:::::::
allows

:::
us

:::
to

::::::::::
consider

::::::::::::
ecologically171

::::::::
distinct sources of variability (Fig. 2).172

When individuals of a given species respond in synchrony to a perturbation, its direct173

effect will scale roughly linearly with
:::
the

:::::::
direct

::::::
effect

:::
of

::::
the

:::::::::::::
perturbation

:::::
will

:::
be

:::::::::::::
proportional174

::
to

:
the abundance of that

:::
the

:::::::::::
perturbed

:
species, thus a value of α in eq. (??), close to 2175

::::::::::::::::::::
(Lande et al., 2003). We call this type of perturbation environmental as fluctuations of en-176

vironmental variables typically affect all individuals of a given species, leading, for instance,177

::::
e.g.

:
to changes in

:::
the

:
population growth rate (Lande et al., 2003).

::::::::::::::
(May, 1973b)

:
.
:

178

If individuals respond incoherently, however, e.g., some negatively and some positively,179

the direct effect of the perturbation on that species biomass will scale sublinearly with that180

species abundance. For instance, demographic stochasticity can be seen as a perturbation181

resulting from the inherent stochasticity of birth and death events, which are typically as-182

sumed independent between individuals. In this case α = 1, and we
::::
thus

:
call such type183

demographic (Haegeman and Loreau, 2011). The power-law relationship can also encode184

::::::::::::::::::::
(Lande et al., 2003)

:
.
:

185

:::
We

::::
can

:::::
also

::::::::::
consider

:
purely exogenous perturbations, such as the random removal or186

addition of individuals. This can be done by setting
::
In

::::
this

::::::
case α = 0. We call the latter187

11



of the
:::::
such

::::::::::::::
perturbations

:
immigrationtype

::::::
-type

:
but stress that actual immigration events188

are not necessarily of this type
:::
do

::::
not

::::::::::::
necessarily

::::::::
statisfy

:::::
this

:::::::::::
condition

:
(e.g.

:
,
:
they can be189

density-dependent).190

With the expression (??) we can thus consider a continuum of perturbation type , from191

purely exogenous stochasticity (
::::::::::::::
Furthermore,

::::::::
because

::::
we

::::::
focus

:::
on

::::::::::::
zero-mean

:::::::::::::::
perturbations,192

::::::::::::::
perturbations

:::
of

:::::
this

:::::
type

:::::::::
contain

:::
as

:::::::
much

::::::::::::
emigration

:::::
than

::::::::::::::
immigration.

::::::
The

:::::::::::
reasoning193

:::::::
behind

:::::
this

::::::::::::::
nomenclature

:::
is

::::::
that,

:::
in

:::
an

::::::
open

:::::::::
system,

:::::::::::::
fluctuations

::
of

::::
an

::::::::::
otherwise

::::::::::
constant194

::::::
influx

:::
of

::::::::::::
individuals

:::::::::::::::
(immigration

:::::
flux)

::::::::
would

::::::::::::
correspond

:::
to

::::
an

:
immigration-type α = 0),195

to environmental perturbations (α = 2) , via demographic stochasticity (α = 1) . Although196

::::::::::::::
perturbation.

:
197

:::::
More

::::::::::
generally,

::::
eq.

::::
(1)

::::::
with

::::::::::
α ∈ [0, 2]

:::::
can

:::::::::
describe

::
a
::::::::::::
continuum

:::
of

::::::::::::::
perturbation

:::::::
types.198

:::::
Note

:::::
that,

::::::::::
although not unrelated, the statistical relationship (??)

:::::
such

:
a
:::::::::::
statistical

::::::::::::
relationship199

between a perturbation’s direct effects and the biomass
:::::::::::
abundance of perturbed species is not200

equivalent to Taylor’s (1961) law. The latter is an empirically observed power-law relation-201

ship between
:::
the

:
variance and mean of population biomass time-series.

:::::::::::::
fluctuations.

::::::::
Hence,202

::
in

:::::::::
contrast

:::
to

::::
the

::::::::::::::
perturbation

:::::
type

:::
α,

::::
the

::::::::::
exponent

:::
of

:::::::::
Taylor’s

::::
law

::::::::::
depends

:::
on

::::::::::::
community203

::::::::::
dynamics,

:::::
e.g.,

:::
on

::::::::
species

:::::::::::::
interactions

::::::::::::::::::::::::::::
(Kilpatrick and Ives, 2003)

:
.
:
We will come back to this204

point
::::::
below

:::::
and in the Discussion.205

Community response vs perturbation intensity206

For a given community, a stronger perturbation will naturally lead to stronger fluctua-207

tions. This could reveal non-linear dynamical properties of the system considered, but in208

::
A

:::::::::::::::::
disproportionate

:::::::::
increase

:::
in

:::::
their

:::::::::::
amplitude

:::
as

::::::::::::::
perturbation

:::::::::
intensity

:::::::::
changes

::::::
would

:::::::
reveal209

::::::::::::
nonlinearity

:::
in

::::
the

::::::::::
dynamics

:::::::::::::::::::::
(Zelnik et al., 2019)

:
.
:::
In a linear setting, by definition, this is not210
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the case. Since we placed ourselves in this setting, to see in temporal variability a reflection211

of a community’s dynamical properties, we must control
:::::::::
however,

::::::
such

:::::::
effects

::::::::
cannot

::::::
occur212

::::
and

::::::
there

::
is

:::::
only

::
a
:::::::
linear

::::::::::::
dependency

::::
on

:::::::::::::
perturbation

::::::::::
intensity.

::::::
This

:::::::
trivial

:::::::::::::
dependency

::::
can213

::
be

::::::::::
removed

:::
by

::::::::::::
controlling for perturbation intensity. We now discuss

:::::::::
illustrate how to do so,214

for a simple
:::::
given

:
definition of variability.215

By linearity, the
::
In

:::::
our

::::::::
setting,

:
fluctuations induced by white-noise forcing are normally216

distributed, thus fully characterized by their variance and covariance. It thus makes sense217

::
is

::::::::::
therefore

::::::::
natural

:
to construct a measure of variability based on the variance of species218

biomass. To allow a comparison between communities of different diversity, a simple choice219

is to consider the average variance,
::::::::::::
time-series.

::::
To

:::::::::
compare

:::::::::::
variability

:::
of

::::::::::::::
communities

:::::
with220

::::::::
different

::::::::
species

:::::::::
richness

::::
we

::::
will

:::::::::
measure

::::::
their

::::::::
average

::::::::::
variance:

:
221

σ2
out =

1

S

∑
i

Var(Ni(t)). (2)

We will discuss this choice further, but for now, from this definition of community response,222

we
::
In

::::::::::
empirical

:::::::::
studies,

::::::::::::
variability

::
is
:::::::

often
:::::::::::
associated

:::
to

::::
an

:::::::::::
ecosystem

::::::::::
function

::::::::::
(primary223

:::::::::::::
productivity,

:::::::::::
ecosystem

::::::::::::
respiration,

::::::
etc).

:::::
This

::::::::::
amounts

:::
to

:::::::::::
measuring

::::
the

:::::::::::
ecosystem

:::::::::
response224

:::::
along

:::
a

::::::::::
direction

:::
in

:::::
the

:::::::
space

:::
of

::::::::::::
dynamical

::::::::::
variables.

:::::
In

:::::::::::
Appendix

:::
B

::::
we

:::::::::
explain

:::::
how225

::::::::::::
considering

::::
the

::::::::
average

::::::::::
variance

:::::::::
amounts

::::
to

:::::::
taking

::::
the

::::::::::
expected

::::::::::
variance

::::::
along

::
a
:::::::::
random226

::::::
choice

:::
of

::::::::::
direction

::
of

:::::::::::::
observation.

::::
In

::::
this

:::::::
sense,

:::
eq.

::::
(2)

:::::::::::
represents

::::
the

:::::::::
variance

:::
of

::
a
::::::::::
“typical”227

::::::::::::
observation.

:
228

:::
We

:::::
now

:
wish to remove the trivial effect of perturbation intensity .

:::::
from

::::
eq.

::::
(2).

::
Let us229

start from a one-dimensional system dx/dt = −rx+ σW (t)
:::::::::::::::::::::
dx/dt = −λx+ σξ(t). Its station-230

ary variance is σ2
out = σ2

2r
. We see here the contribution

::::::::::
σ2

out = σ2

2λ
.
::::::

Here
::::
we

:::
see

:::::
the

::::::::::
combined231

:::::
effect

:
of perturbation σ2 and dynamics r in determining the response. Here, a natural choice232

13



for perturbation intensityis
::
λ,

::::::::
leading

:::
us

::
to

:::::::
define

:
σ2

::
as

:::::::::
measure

::
of

::::::::::::::
perturbation

:::::::::
intensity. For233

species-rich communities, if we define the intensity of a perturbation
::
we

:::::::
define

::::::::::::::
perturbation234

:::::::::
intensity

:
as the average intensity

::::
per

::::::::
species,

:::::
that

:::
is,

::::::
using

::::
the

::::::::::::::::
species-specific

:::::::::::
intensities

::::
σ2
i :235

236

σ2
in =

1

S

∑
i

σ2
i .

:::::::::::::::

(3)

::::::
When

:::::::::::
increasing

:::
all

:::::::::::::::::
species-specific

:::::::::::::
perturbation

::::::::::::
intensities

:::
by

::
a

:::::::
factor

::
c,

::::::
both

::::
σ2

in ::::
and

:::::
σ2

out237

::::::::
increase

:::
by

::::
the

::::::
same

::::::
factor. To remove this trivial dependency from our measure of variability,238

we consider the ratio239

V = σ2
out/σ

2
in,

from which we deduce a measure of stability,
::::::
linear

:::::::::::::
dependence,

:::
we

:::::::
define

:::::::::::
variability

:::
as

:
240

V =
σ2

out

σ2
in

,
:::::::::

(4)

::::
i.e.,

::
as

::::
the

::::::::
average

::::::::
species

:::::::::
variance

::::::::
relative

:::
to

:::::::::::::
perturbation

::::::::::
intensity

::::
(see

::::::::::::::::::
Ives et al., 2003

::
for

::
a241

:::::::
similar

::::::::::
definition

:::
of

::::::::::::
variability).

::::::::::::::
Generalizing

:::::::::
previous

:::::
work

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Arnoldi et al., 2016b; Arnoldi and Haegeman, 2016)242

::
to

:::
an

::::::::::
arbitrary

::::::::::::::
perturbation

::::::
type,

::::
we

::::::::::
construct

:
invariability , defined as

::
as

:
243

I = 1/2V (5)

The factor 1/2 in the definition of invariability allows it
:::::::
allows

::
I

:
to coincide, for simple244

systems, with asymptotic resilience . It is the case
:::::::::::::::::::::::
(Arnoldi et al., 2016b).

::::
In

::::::::::::
particular,245

for the one-dimensional example considered above , where R∞ = r and, in response to246

immigration-type perturbations, V = 1/2r, so that I = r = R∞ ::
for

:::::::
which

:::::::::::
R∞ = λ,

:::
we

::::
do247

:::::
have

::::::::::
V = 1/2λ

:::::
and

:::::
thus

::::::::::::::
I = λ = R∞.248
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In empirical studies, temporal variability is often associated to a given observable ecosystem249

function (primary productivity, respiration, basal or top species biomass, and so forth). In250

our setting, this amounts to measuring the ecosystem response along a direction in the space251

of dynamical variables. In Appendix B we explain considering average variance to define252

variability, amounts to taking the expected variance along a random choice of direction of253

observation. In this sense, eq. (2) represents a “typical” observation. We will come back in254

the Discussion (and Appendix I) to other variability metrics that have been used in empirical255

studies, such as coefficient of variation of total biomass or populations.256

Variability spectra
::::::::::::::::::
Perturbation

:::::::::::::::
directions

::::::
and

:::::
the

:::::::::::::::
variability

::::::::::::::::::
distributions257

Once intensity is controlled for, perturbations can still differ in how their intensity is dis-258

tributed and correlated across species. For example, we
:::
We

:
want to be able to model the fact259

that species with similar physiological traits ought to
::::
will

:
be affected in similar ways by, say,260

temperature fluctuations, whereas individuals from dissimilar species may react in unrelated,261

or even opposite, ways
::::::::::::::::::::::
(Ripa and Ives, 2003). We will thus study the effect of changing,, at262

fixed intensity, the covariance structures
::::
the

:::::::::::
covariance

::::::::::
structure

:
of the perturbation terms,263

i.e.changing the
:
,
::::
the

::::::
effect

:::
of

::::
the

:
direction of perturbations, and not their overall intensity.264

:
.
:
Spanning the set of all perturbation directions will naturally define a whole range of com-265

munity response
:::::::::
responses. Assuming some probability distribution over this set consequently266

defines
::::::::::
translates

:::::
into

:
a probability distribution over the set of ensuing responses. We call267

this latter distribution the variability spectrum
:::::::::::
responses,

::::
i.e.,

::
a
:::::::::::
variability

:::::::::::::
distribution

:
(see268

Fig. 2). We will typically assume all perturbation directions to be equiprobable, but our269

framework allows different choices of prior. Fnally
:::::::
Finally, spanning the set of perturbation270

types then reveals a continuous family of variability spectra (blue , green, and red distributions271
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in Fig.
:::::::
family

:
of

::::::::::::
variability

::::::::::::::
distributions.

:::
In

:::::
Fig.

:
2

:::
we

::::::
show

::::::
three

:::::::::::
archetypal

::::::::::
elements

:::
of

::::
this272

:::::::
family,

:::::::::::::::
corresponding

:::
to

::::::
α = 0

::::::
(blue

:::::::::::::::
distribution),

::::::
α = 1

:::::::
(green

::::::::::::::
distribution)

:::::
and

::::::
α = 2

:::::
(red273

::::::::::::
distribution).274

For each spectrum we will
::::::::::::
distribution

::::
we consider two complementary statistics, namely275

:
:
:
mean- and worst-case responses. In Appendix C

::
C

:::::
and

:::
D

:
we prove that the worst-case276

response is always achieved by a perfectly coherent perturbation, i.e., a perturbation whose277

direct effects on species are not independent, but on the contrary, perfectly correlated in time.278

We give an explicit formula –eqs. (C2-D5),
::::::
derive

::::::::
explicit

::::::::::
formulas to compute the worst-case279

::::::::::
variability

:
from the community matrix and species equilibrium biomasses.

:::::::::::::
abundances,

::::
see280

::::
eqs.

:::::
(C2,

::::::
D5).

::
The mean-case scenario

:
,
::::
on

::::
the

::::::
other

:::::::
hand,

:
is defined with respect to the281

prior probability distribution
:
a
::::::
prior

:
over the set of perturbation directions. In the case of282

a uniform distribution (i.e. equiprobable directions, the
:::
For

::::
the

:
least informative prior), we283

prove in Appendix C
::::
and

:::
D

:
that a perturbation affecting all species independently but with284

equal intensityis met with ,
:::::::::

realizes
:
the mean-case response, providing

:
.
::::::

This
::::::::::

provides
:
a285

way to compute it directly
::::
this

:::::::::
response

:
from the community matrix and species equilibrium286

biomasses
:::
the

::::::::
species

:::::::::::::
abundances,

::::::
given

:::
in

:
eqs. (C3-

:
,
:
D6).287

Variability spectra of a
:::::::::::
patterns

:::::
for

::
two-species community288

Before moving on towards more
:::::::::::
considering

:
complex communities, let us illustrate our vari-289

ability framework on the following elementary example, in the form of a 2 × 2 community290

matrix291

A =

 −1 0.1

−4 −1

 . (6)
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Figure 2: The
:
A

::::::::::
theoretical

::::::::::
framework

:::
for

:
variabilityspectrum as a function of perturbations type. Top

row: as previously illustrated in Fig. 1B, a variability measurement of a community (here two species,

represented
::::::::::::
Perturbations

::::
are

::::::::::::
characterized by the orange and purple discs

::::
their

::::
type, whose diameter represent

abundance) is a function of both
::::::::
statistical

:::::::::::
relationship

::::::::
between the dynamics

:::::
direct

:::::
effect of this community

::::::::::::
perturbations

:
and the environmental perturbation P1 that it faces. Subsequent rows: we will consider

various types
::::::::::
abundance of perturbations ranging from environmental to immigration

:::::::::
perturbed

:::::::
species.

::::
For

:
a
:::::
given

:::::
type

::::
and

:::::
fixed

:::::::::
intensity, via demographic stochasticity (see main text for

:::::
there

:::::::
remains

:
a precise

definition). We eliminate the dependence on specific features
:::::
whole

:::
set

:
of

:::::::::
covariance

:::::::::
structure

::
of

:
perturba-

tions (i.e . their direction, see main text)
::::
that

::::
will

::
be

::::::::::::
transformed by sampling many perturbations leading

to
:::::::::
community

:::::::::
dynamics

:::::
into

:
a whole spectrum

:::
set

:
of response

::::::::::
community

:::::::::
responses, called the variability

spectrum
:
i.Considering all types

::
e.,

:::::::
various

:::::::::
covariance

::::::::
structure

:
of perturbations then reveals

::::::
species

:::::::::
stationary

::::
time

::::::
series.

:::
A
:::::::::

sampling
:::

of
:::::
those

::::::::::
responses, for

:::::::::
measured

::::
here

:::
as

:::
an

::::::::
average

::::::::
variance,

::::::
leads

:::
to

:
a given

system
:::::::::
variability

:::::::::::
distribution,

:::
one

::::
for

::::
each

::::::::::::
perturbation

:::::
type.

::::::::::
Spanning

:::
all

::::::::::::
perturbation

:::::
types

::::::
leads

::
to

:
a

family of variability spectra
:::::::::::
distributions

:::
(in

::::
blue

:::::
green

::::
and

:::
red

::
in

::::
the

:::::::::
rightmost

:::::::
column).

::
We

::::::
derive

:::::::::
analytical

:::::::
formulas

::::
for

:::
the

::::::
largest

::::::
value

::::::::::
(worst-case

::::::::
scenario)

::::
and

:::
for

::::
the

:::::
mean

:::::
value

:::::::::::
(mean-case

:::::::::
scenario).

:
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This matrix defines a
::::::
linear dynamical system that could represent a predator-prey commu-292

nity, with the first species benefiting from the second at the latter’s expense. It is stable with293

asymptotic resilience
:::
Its

::::::::::::
asymptotic

::::::::::
resilience

:::
is

:
R∞ = 1. Let us suppose that the biomass294

of the prey, N2 (second row
:::::::::
/column

:
of A) is 7.5 times larger than the one of

::::::
more

::::::::::
abundant295

:::::
than

:
its predator, N1 (first row

::::::::
/column

:
of A) and consider stochastic perturbations of this296

community, as formalized in eq. (1).297

In Fig. 3 we represent , for any given type, the set of perturbation directions as a disc, every298

point of the disc corresponding to
::
in

::::::
which

:::::::
every

::::::
point

::
is a unique perturbation direction (see299

Appendix E for details). The effect of a perturbation on a community can be
::
is

:
represented as300

a color, darker tones implying larger response
:
;
:::::::
darker

::::::
tones

:::::::
imply

:::::::
larger

::::::::::
responses, with the301

baseline color (blue, green or red) recalling the perturbation type (α = 0, 1, 2, respectively).302

Points at the borders of the discs correspond to perfectly correlated perturbations, so that303

the largest response is achieved from such perturbations:
::::::::::
boundary

:::
of

::::
the

:::::
disc

::::::::::::
correspond304

::
to

::::::::::
coherent

::::::::::::::::
perturbations,

:::::::
which

:::::
have

:::::
the

::::::::::
potential

:::
to

::::::::::
generate

::::
the

::::::::
largest

::::::
(but

:::::
also

::::
the305

:::::::::
smallest)

::::::::::::
variability.

::::::
This

:::
is

:::::
why

:
the color maps represented in

:
of

:
Fig. 3 which are always306

darkest on the borders of the disc.307

We see in the second row of Fig. 3 that variability not only
::::
take

::::::
their

:::::::::
extreme

:::::::
values

:::
at308

:::
the

:::::::::::
boundary.

:::::
We

::::
see

:::::
that

:::::::::::
variability

::::::::::
strongly depends on the perturbation directions, but309

::::::::::
direction,

::::
and

:
that this dependence is in turn strongly affected by the perturbation type. For310

immigration-type perturbations (in blue) variability is largest when perturbing the predator311

species most strongly (the least abundant species in this example). For demographic-type312

perturbations (in green) perturbations that equally affect the two species but in opposite313

ways achieve the largest variability. For environmental-type perturbations (in red) variability314

is largest when perturbing the prey species (the most abundant species in this example). For315

all types we see that positive correlations between the components of the perturbation (
::::
i.e.,316
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moving upwards on the disc) reduce variability
::::
(see

::::::::::::::::::::::
Ripa and Ives, 2003

:::
for

::::::::
related

::::::::
results).317

Thus, in general, a given community cannot be associated to a single value of variability,318

even if the intensity and type of perturbation is fixed. Importantly, depending on the origin319

:
.
::::::::::::
Depending

:::
on

::::
the

:::::
type

:
of perturbations causing variability, different species can have com-320

pletely different contributionsto variability. This stands in sharp contrast with asymptotic re-321

silience
::::
R∞,

:
which associates a single stability value to the community. Note that it is unclear322

at this stage how the different species contribute to
:::::::::
Although

::::
we

::::::
know

::::::
from

:::::::::
previous

::::::
work323

::::::::::::::::::::::::
(Arnoldi et al., 2016b)

::::
that

::::
the

:::::::::
smallest

::::::::::::::
invariability

::::::
value

:::
in

:::::::::
response

:::
to

:::::::::::::::::::
immigration-type324

::::::::::::::
perturbations

::::
will

::::::::
always

:::
be

::::::::
smaller

::::::
than

:::::
R∞,

::
in

:::::::::
general

:::::
(i.e.,

::::
any

::::::::::::::
perturbation

:::::
type

::::::::
and/or325

::::
any

::::::::::::::
perturbation

:::::::::::
direction)

::::::
there

:::
is,

:::
a

:::::::
priori,

::::
no

:::::::
reason

::::
to

:::::::
expect

:::
a

:::::::::::::
relationship

:::::::::
between326

::::::::::::
invariability

:::::
and

:
asymptotic resilience.327

Stability
:::::::::::::
Generic

::::::::::::::::::
variability

:
patterns of

::::
in

:
complex com-328

munities329

The concept of variability spectra becomes particularly relevant when considering
:::::::::::::::
dimensionality330

::
of

:::::::::::
variability

:::::
will

::::
be

:::::::
larger

:::
in

:
communities comprised of many speciesin interaction. To331

generate such communities, we consider
:
,
:::
as

:::::
their

::::::
sheer

::::::::::
number,

:::
S,

::::::::::
increases

::::
the

:::::::::::
dimension332

::
of

::::
the

::::::::::::::
perturbation

::::
set

:::::::::::::::
quadratically.

::::::
Yet,

:::::::
when

::::::::
species

::::::::::
interact,

::
a

::::::::
generic

::::::::::
structure

:::::
can333

:::::::
emerge

::::::
from

::::::::::
ecological

:::::::::::
assembly,

::::::::::
revealing

::
a

:::::::
simple

:::::::::::::
relationship

:::::::::
between

:::::::::::
variability

:::::
and

::::
the334

:::::::::::
abundance

:::
of

:::::::::::
perturbed

::::::::
species.

:::::
To

:::::
show

::::::
this,

:::
we

:::::
first

::::::::::
generate

:
a pool of species following335

random
::
50

::::::::
species

:::::::::
following

:
Lotka-Volterra interactions

::::::::::
dynamics

:
and let the dynamics settle336

to a realized equilibriumcommunity. By drawing random growth and interaction parameters337

we generate many stable communities of various complexity (see
:::::::
system

::::::
settle

::
to

:::
an

:::::::::::::
equilibrium.338

19



Figure 3: Variability depends on perturbation direction and perturbation type. Top panel: For a two-

species community the set of all perturbation directions can be represented graphically as a disc (shaded in

gray), with the variance of the perturbation term ξ2(t) on the x-axis and the covariance between ξ1(t) and

ξ2(t) on the y-axis. Some special perturbation directions are indicated (numbers 1 to 5, see also Appendix E).

Panels A–C
:::::::
Bottom

::::::
panels: We consider a predator-prey system; the community matrix A is given by eq. (6),

and the equilibrium biomass for the predator
:::
prey

:
(species 1

:
2) is 7.5 times smaller

::::
more

:::::::::
abundant

:
than for

the prey
::
its

:::::::::
predator (species 2

:
1). The induced variability depends on the perturbation directions (darker

colors indicate larger variability), and this dependence in turn depends on the perturbation type α. A: For

immigration-type perturbations (α = 0, in blue) variability is largest when perturbing species 1 most strongly.

B: For demographic-type perturbations (α = 1, in green) perturbations that affect the two species equally

strongly but in opposite ways achieve the largest variability. C: For environmental-type perturbations (α = 2,

in red) variability is largest when perturbing species 2 most strongly. Notice that the worst case is always

achieved by perturbations lying on the edge of the perturbation set. Such perturbations are fully
::::::::
perfectly

correlated (see main text and Appendix E).
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:::
We

:::::::::::
randomly

::::::
draw

::::::::
species

::::::::::::
dynamical

:::::::
traits,

:::::::::
starting

::::::
with

::
a
::::::::::::::
configuration

::::
in

:::::::
which

::::::
mean339

::::::::::::
interspecific

::::::::::::
interaction

:::::::::
strength

:::
is

::::
one

:::::::
tenth

::
of

:::::
the

:::::::::
strength

:::
of

::::::::
species

::::::::::::::::
self-regulation,

:::::
with340

:
a
:::::::::::::
comparable

::::::::::
variation

::::::::
around

:::::
this

::::::
mean

:::
(a

::::::::::
complete

::::::::::::
description

:::
of

::::
the

::::::::::
nonlinear

::::::::
model

::
is341

:::::
given

:::
in

:
Appendix F for details). Importantly, such communities exhibit uneven abundance342

distributions, thus allowing perturbation types to play an important role in a community’s343

variability
::::
and

::::::::
Matlab

::::::::::::
simulation

:::::
code

:::
is

:::::::::
available

:::
as

::::::::::::::::
supplementary

:::::::::::
material).

::::::
Some

::::::::
species344

::::::
would

:::
go

::::::::
extinct

:::::::
during

::::::::::
assembly,

:::::
but

:::
no

:::::
limit

:::::::
cycles,

::::::::
chaotic

::::::::::
behavior

:::
or

:::::::::::::::
multi-stability

:::::
were345

:::::::::
observed.346

In
:::
this

:
species-rich communities

::::::::
context,

:
the perturbation set cannot be represented as347

in the two-dimensional example of Fig. 3. What is possible and enlightening, however, is348

to
:::::::::::::
exhaustively.

:::::
We

::::::::::
therefore focus on the effect of a specific subset of perturbations, those349

that affect
:::::::::
affecting

:
a single species. By superposition, this allows the study of perturbation350

:::::::
Linear

::::::::::::::
combinations

:::
of

::::::
these

:::::::::::::::
perturbations

:::::
will

::::::
span

:::
all

:
scenarios in which species are af-351

fected independently, but it excludes
::::::::
exclude scenarios in which species

:::::
they are perturbed in352

systematically correlated or anti-correlated way2. In Fig. 4 we consider a random community353

of 40 interacting
::::::::::::
community

::
of

::::::::
S = 40

:::::::::::
coexisting

:
species. We order species according to their354

abundance and plot the variability induced by perturbing them. We observe the following355

patterns:356

(i) When
:::::::::::::::
species-specific

:::::::::::::::
perturbations

:::
(of

::::::::
various

:::::::
types)

::::::::
against

:::
the

::::::::::::
abundance

::
of

:::::::::::
perturbed357

::::::::
species.

:
358

::::
The

::::::::
leftmost

:::::::
panel

::::::
shows

::
a

:::::::::
negative

:::::
unit

::::::
slope

:::
on

:::
log

:::::::
scales:

:::::::
when caused by immigration-359

type perturbations, variability is inversely proportional to the abundance of the perturbed360

species(leftmost panel). In other words, randomly
:::::::::::
perturbed

::::::::
species.

::::::::::::
Randomly

:
adding and361

2
:
In

::::::
terms

:::
of

:::
the

:::::::::::
geometrical

:::::::::::::
representation

:::
of

::::
Fig.

:::
3,

::::
this

::::::::
amounts

:::
to

:::::::::
restricting

:::
to

::::
the

:::::::
equator

::
of
::::

the

:::::::::::
perturbation

::::
disc

21



removing individuals from common species generates less variability than when the perturbed362

species is rare. In fact, the worst-case scenario corresponds to perturbing the rarest species.363

Remarkably, worst-case invariability remains
:::::::::::
Worst-case

:::::::::::::
invariability

::
is close to asymptotic re-364

silience, which corroborates previous findings that showed that asymptotic resilience
::::::::
showing365

::::
that

::::
the

:::::::::::
long-term

:::::
rate

:::
of

:::::::
return

:::
to

:::::::::::::
equilibrium

:
is often associated to rare species , pushed366

towards extinction by the rest of the community (Haegeman et al., 2016; Arnoldi et al., 2018)367

.368

(ii) When caused by
::::::::::::::::::::::::::::::::::::::::::::::
(Haegeman et al., 2016; Arnoldi et al., 2018)

:
.
::::
On

::::
the

::::::
other

::::::
hand,

::::
the369

:::::::
middle

::::::
panel

:::
of

::::
Fig.

::
4
:::::::
shows

::::::
that,

::
in

::::::::::
response

:::
to demographic-type perturbations, variability370

seems to be unrelated to the abundance of the perturbed species(middle panel).371

(iii) When
::
is

:::::::::::::
independent

:::
of

:::::::::::
perturbed

::::::::
species’

:::::::::::::
abundance.

:::::::::
Finally,

::::
the

:::::::::::
rightmost

::::::
panel372

::::::
shows

::
a

:::::::::
positive

:::::
unit

::::::
slope

:::
on

::::
log

:::::::
scales:

::::::
when

:
caused by environmental-type perturbations,373

variability is proportional to the abundance of the perturbed species(rightmost panel). In374

this case , despite
:::::::::::
perturbed

::::::::
species.

::::::
The

:::::::
worst

:::::
case

:::
is

::::::
thus

:::::::::
attained

::::
by

::::::::::::
perturbing

::::
the375

:::::
most

:::::::::::
abundant

:::::
one.

::::::::::
Despite

:
being more stable than rare ones ,

:::::
(they

::::::::
buffer

:::::::::::
exogenous376

::::::::::::::
perturbations

::::::
more

::::::::::
efficiently,

::::
see

::::::::::
left-hand

:::::::
panel),

:
common species are more strongly affected377

by environmental perturbations, allowing them to dominate
:::
and

:::::
can

:::::
thus

:::::::::
generate

::::
the

::::::
most378

variability.379

The patterns reported in Fig. 4 are not self-evident
::::::
Those

:::::::::
patterns

::::
are

::::
not

:::::::::::::
coincidental

:
but380

emerge from interactions between species
:::::::
species

:::::::::::::
interactions. In their absence,

:::::
other

:::::::::
patterns381

::::
can

:::
be

::::::::::::
envisioned.

::::::
This

:::
is

:::::::::
because,

:::::::::
without

:::::::::::::
interactions,

:
the response to a perturbation of382

a given species involves only that species , and is entirely driven by its growth rate, r. The383

relationship between variability V and the perturbed species abundance N
:::::::::::::::
species-specific384

:::::::::::::
perturbation

:::::::::
involves

::::
the

:::::::::::
perturbed

::::::::
species

::::::
only.

::::::
The

:::::::::::::::::::::::
variability-abundance

:::::::::::::
relationship is385

then V = Nα/2r, where N coincides with the carrying capacity
:::::
with

:::::::::
N = K.

:::
If

::
r
:::::
and

:
K386
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Figure 4: The contribution of abundant and rare species to variability. We consider a community of S = 40

species, and look at the variability induced by perturbing a single species, whose abundnace
:::::::::
abundance

:
is

reported on the x-axis. Left: When caused by immigration-type perturbations (α = 0), variability is inversely

proportional to the abundance of the perturbed species (notice the log scales on both axis). The worst case is

achieved by perturbing the rarest species, and is determined by asymptotic resilience (more precisely, it is close

to 1/2R∞). Middle: For demographic-type perturbations (α = 1), variability is independent of the abundance

of the perturbed species. The worst case is not necessarily achieved by focusing the perturbation on one

particular species. Right: For environmental-type perturbations (α = 2), variability is directly proportional

to the abundance of the perturbed species. The worst case is attained by perturbing the most abundant one.
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of that species. Recall that α indexes the perturbation type. Thus, as illustated in teh first387

collumn of
:::
are

:::::::::::::
statistically

:::::::::::::
independent

:::
in

::::
the

::::::::::::
community

:::::::::
(top-left

:::::::
panel

:::
in

:
Fig. 5, without388

interactions there is no reason to expect the patterns reported
:
),
:::::
this

::::::
yields

::
a
:::::::::
different

::::::::
scaling389

:::::
than

::::
the

::::
one

:::::
seen

:
in Fig. 4. Moreover, if there is a

:::
In

::::
the

:::::
case

::
of

::::
an

:
rvs -K trade-off ,

::::
(i.e.,390

:::::::
species

:::::
with

:::::::
larger

:::::::::
carrying

:::::::::::
capacities

::::::
have

:::::::
slower

::::::::
growth

::::::
rate),

:
abundant species would be391

the least stable ones and drive variability patterns regardless of its type (
:::::::
species

:::::::::::::
(bottom-left392

:::::
panel

:::
in

:
Fig. 5, bottom left panel) . Yet

::
in

::::::
blue)

:::::::
which

::
is
:::::

the
:::::::::
opposite

:::
of

::::::
what

::::
the

:::::::::
leftmost393

:::::
panel

:::
of

:::::
Fig.

::
4

:::::::
shows.

::::::::::
However, as interaction strength increases (panels from left to right in394

Fig. 5), we see emerging the relationship between abundance and variability described in
::
of395

Fig. 4, showcasing its genericity.396

In
::::::::::
regardless

:::
of

::::
the

:::::::
choice

:::::::
made

::::
for

::::::::
species

::::::::
growth

::::::
rates

:::::
and

:::::::::
carrying

::::::::::::
capacities.

:::::
We397

:::::::
explain

:::
in

:
Appendix G we explain why this reflects a

::::::::
generic,

:
limit-case behavior for so-called398

disordered communities (Barbier et al., 2018; Bunin, 2017) in which equilibrium abundances399

of species are hardly
::
of

:::::::::
complex

::::::::::::::
communities.

::::
It

:::::::
occurs

:::::::
when

::::::::
species

:::::::::::::
abundances,

:::::
due

:::
to400

:::::::::::
substantial

:::::::::
indirect

::::::::
effects

:::::::
during

:::::::::::
assembly,

:::::::::
become

:::::
only

::::::::
faintly

:
determined by their own401

carrying capacities, but mostly by direct and indirect effects with others species, indicating402

a high degree of collective integration in the community
:::::::::
carrying

:::::::::::
capacities3.

:::::::::::::::
Importantly,403

:::
our

::::::::::
example

::::::::::::::
demonstrates

:::::
that

::::
this

::::::
limit

::::
can

:::
be

:::::::::
reached

:::::
even

:::
for

:::::::::::
relatively

:::::
weak

:::::::::::::
interactions404

::::::
(recall

::::::
that

:::
in

:::::
Fig.

::
4
:::::

and
:::

in
:::::

the
::::::::::::
right-hand

:::::::
panels

:::
of

:::::
Fig.

:::
5,

:::::
the

:::::::::::::
interspecific

::::::::::::
interaction405

:::::::::
strengths

::::
are

::::
ten

:::::::
times

::::::::
smaller

:::::
than

::::
the

:::::::::::::
intraspecific

:::::::
ones).

:
406

:::::::::
Although

:::
we

::::::::::::
considered

:
a
::::::::
specific

::::::::
section

::
of

::::
the

:::::::::::::
perturbation

:::::
set,

:::
the

::::::::::
response

::
to

::::::::::::::
single-species407

::::::::::::::
perturbations

:::
of

:::::::::::::
immigration

:::::
and

::::::::::::::::
environmental

::::::
types

:::::
can

:::::
still

:::::
span

:::::
the

:::::::
whole

:::::::::::
variability408

:::::::::::::
distribution,

:::::
from

::::::::::::
worst-case

:::::::
(rarest

:::::
and

::::::
most

:::::::::::
abundant

::::::::
species

:::::::::::
perturbed,

::::::::::::::
respectively)

:::
to409

::::::
mean-

:::::
and

:::::::::
best-case

::::::::::
scenarios

:::::::
(most

::::::::::
abundant

::::
and

:::::::
rarest

:::::::
species

:::::::::::
perturbed,

:::::::::::::::
respectively).

::::
For410

3
:::
The

:::::
slope

::
of

::
a
::::::
linear

:::::::::
regression

::::::::
between

:::::
these

:::::::::
quantities

:::
on

::::::::::
logarithmic

::::::
scales

::::::::::
approaches

:::::
zero.

24



::::::::::::::::::
demographic-type

::::::::::::::
perturbation

::::
the

::::::::::
situation

:::
is

::::::
more

:::::::
subtle

:::
as

::::
the

::::::::::
response

:::
is

:::::::::::::
independent411

::
of

::::::::
species

:::::::::::::
abundance,

:::::
and,

:::
in

:::::::::
general,

::::::::::
extreme

::::::::::
scenarios

:::::
will

:::
be

::::::::::::
associated

:::
to

::::::::::::
temporally412

::::::::::
correlated

:::::::::::::::
perturbations

:::::::::
affecting

::::::::::
multiple

::::::::
species.

:
413

::::
The

:::::::::::::::::::::::
variability-abundance

:::::::::
patterns

:::::::
shown

:::
in

::::::
Figs.

::
4
:::::
and

::
5

:::::::
should

:::::
not

:::
be

::::::::::
confused

:::::
with414

::::::::
Taylor’s

::::::::
(1961)

::::
law,

::
a

:::::::::::
power-law

::::::::::::
relationship

:::::::::
between

::
a

::::::::
species’

:::::::::
variance

::::
and

:::
its

::::::
mean

::::::::::::
abundance.415

::
In

:::::
fact,

::::
the

:::::::::::::::::::::::
variability-abundance

::::::::
pattern

::
is

:::::
dual4

::
to

::::::::
Taylor’s

:::::
law,

::
it

:::::::::::
represents

::::
the

::::::::::::
community416

:::::::::
response

::
to

::::::::::::::
single-species

:::::::::::::::
perturbations

::::::::
instead

::
of

:::::
that

::
of

:::::::::::
individual

::::::::
species

::
to

::
a

:::::::::::::::::
community-wide417

:::::::::::::
perturbation.418

Implications for the diversity-stability
::::::::::::::::::::::::::::::
diversity-invariability

::
rela-419

tionship420

We may now explore the underlying role of the above patterns in
::
To

::::::::::
illustrate

::::::
some

:::::::::::::
implications421

::
of

::::
the

::::::::
generic

:::::::::::::::::::::::
variability-abundance

:::::::::
pattern,

:::
we

:::::
now

:::::::::
propose

::
to

:::::::
revisit

::::
the

:
diversity-stability422

relationships. Gradually
::::::::::::
relationship,

::::::
with

:::::::::
stability

:::::::::::
quantified

:::
as

:::::::::::::
invariability

:::
I.

::::
For

::
a

::::::
given423

::::
size

:::
of

::::
the

::::::::
species

::::::
pool,

:::
we

:::::::::::
randomly

::::::::
sample

::::::::
species

::::::::::::
dynamical

::::::
traits

:::
to

::::::::::
assemble

::
a
:::::::
stable424

::::::::::::
community.

:::::
By

:
increasing the size of the species pool and drawing random growth and425

interaction parameters, we generate many different communities of various diversity from the426

same class of random Lotka-Volterra models as above. For every community
::::
pool

:
we

:::::::::
generate427

:::::::::::::
communities

:::
of

:::::::::::
increasing

:::::::
species

:::::::::
richness

:::
S.

:::::
For

:::::
each

:::::::::::::
community,

:::
we

:::::::::::
uniformly

::::::::
sample

::::
the428

:::::::::::
boundaries

:::
of

:::
its

::::::::::::::
perturbation

::::
set

:::
by

:::::::::
drawing

:::::
1000

::::::
fully

:::::::::::
correlated

:::::::::::::::
perturbations

:::::
(i.e.,

::::::
those429

::::
that

::::
can

::::::::
realize

:::
the

::::::::::
maximal

:::::::::::
response),

::
of

::
a
::::::
given

::::::
type.

::::
We

:
compute the bulk of its variability430

spectra (10th to 90th percentilesresponses to uniformly drawn perturbations)together with431

4
::::
Dual

::
in

::::
the

:::::
sense

:::::
that

:::
the

:::::
level

::
of

::::::::::::
organization

::
of

:::::::::::
observation

::::
and

::::::::
response

::::
are

::::::::
reversed.

::::
For

::::::::
Taylor’s

:::
law

::::
the

:::::::::::
perturbation

:::::
acts

::
at

::::
the

::::::::::
community

:::::
level,

::::
and

:::
is

::::::::
observed

::
at

::::
the

::::::::::
population

:::::
level.

:::
In

::::
the

::::::::
patterns

::::::::
described

:::::
here,

:::
the

::::::::::::
perturbation

::::
acts

::
at

::::
the

::::::::::
population

:::::
level,

:::::
while

:::
the

:::::::::::
observation

::
is

::
at

::::
the

::::::::::
community

:::::
level.
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Figure 5: The emergence of the role of species abundance in a community’s variability
:::::::::::::::::::
variability-abundance

::::::
pattern

:
(same procedure as in Fig. 4). Top row: intrinsic growth rates r and carrying capacities K are sampled

independently. Bottom row: Species satisfy a rvs
:
-K trade-off

:::::::::
(r ∼ 1/K). Colors correspond to the three

perturbation types: α = 0 (blue), α = 1 (green) and α = 2 (red). The value β reported in each panel

corresponds to the exponent of the fitted relationship Vi ∝ Nβ
i for each perturbation type. As interaction

strength increases (left to right) we see emerging the relationship between abundance and variability described

in Fig. 4, i.e., β = α − 1. Thus when species interactions are sufficiently strong, variability always ends up

being: (blue) inversely proportional, (green) independent and (red) directly proportional to the abundance

of the perturbed species.
:::::
Note

::::
that

:::::
such

::::::::::::
relationships

:::::
differ

:::::
from

::::::::
Taylor’s

::::
law:

:::::
they

:::::::::
represent

:::
an

:::::::
average

::::::::::
community

::::::::
response

::
to

::::::::::
individual

:::::::
species

:::::::::::::
perturbations,

::::::::
whereas

:::::::
Taylor’s

::::
law

:::::
deals

:::::
with

:::::::::
individual

:::::::
species

::::::::
responses

:::
to

:
a
::::::::::::
perturbation

::
of

::::
the

:::::
whole

:::::::::::
community.
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:::
the

::::::::::
resulting

:::::::::::::
invariability

:::::::::::::
distribution

:::
(5

:::
to

:::
95

:::::::::::::
percentiles),

:::
as

:::::
well

:::
as

:::
its

::::::
mean

:::::
and

:::::::::
extreme432

::::::::
realized

::::::::
values.

::::
We

:::::
also

:::::::::
compute

::::::::::::
theoretical

::::::::::::
predictions

:::
for

:
mean- and worst-case scenarios,433

as well as asymptotic resilience . Following eq. (5) we measure stability as invariability. For434

a given sequence of communities, we observe three qualitatively different stability-diversity435

relationships (Fig. 6).
::::
and

::::::::::::
asymptotic

::::::::::
resilience

:::::
R∞.

:
436

(i) In the
::::
The

:
leftmost panel of Fig. 6 , invariability is defined from the response to437

::::::
shows

::
a

:::::::::
negative

:::::::::::::
relationship

:::::::::
between immigration-type perturbations. It is an exponentially438

decreasing function of diversity (notice the log scale on the y-axis).
:::::::::::::
invariability

::::
and

::::::::
species439

:::::::::
richness.

:
Asymptotic resilience and worst-case invariability mostly coincide, with a decreasing440

rate roughly twice as large as the one
::::
that

:
of the mean case. Here, clearly, diversity begets441

instability (May, 1972).442

(ii) In the middle panel , defining stability from the response to demographic-type perturbations443

gives
::::
The

::::::::
middle

::::::
panel

:::::::::
suggests

:
a different story. Mean-case

::::::::::::::::::
demographic-type

:
invariability444

stays more or less constant whereas the worst-case diminishes at an exponential rate with445

diversity. The rate of decrease is however four times smaller then of asymptotic resilience.446

Here the
:::::
worst

:::::
case

::::::::::::
diminishes

:::::
with

::::::::
species

::::::::::
richness,

::::::::::
although

::::::
much

::::::
more

:::::::
slowly

::::::
than

:::::
R∞.447

::::
The

:
relationship between diversity and stability appears to be ambiguous.448

(iii)
::
is

:::::
thus

:::::::::::::
ambiguous.

::
In the rightmost panel , environmental perturbations yield an449

increase of all realized
:::
we

::::
see

::::
an

:::::::::
increase

:::
in

::::
all

:::::::::
realized

:::::::::::::::::::::
environmental-type

:
invariability450

values with diversity, in sharp contrast with the trend followed by asymptotic resilience.451

:::::::
species

::::::::::
richness,

::::::::::::
showcasing

:
a
:::::::::
positive

:::::::::::::::::::
diversity-stability

:::::::::::::
relationship.

:
452

Thus, the spread of biomass across more and more species as diversity increases has453

opposite effects on variability depending on the type of perturbation causing it. Assuming454

interactions are independent of species richness, the limit of relatively strong interactions455

described in
::::
The

::::::::
generic

::::::
limit

:::::
that

::::::
yields

::::
the

:::::::::::::::::::::::
variability-abundance

:::::::::
patterns

:::
of

:
Figs. 4 and 5456
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is the one towards which a community of increasing diversity
:::::::::::
complexity

::
–

::::::
sensu

:::::::::::::
May (1972)457

:
–
:
will tend. This explains why, in the case of immigration-type perturbations, the increas-458

ing rarity of many species
::
as

:::
S

::::::::::
increases

:
is a source of instability. Indeed, at high enough459

diversity each species genericaly contributes to variability proportionally
:::::::
Species

::::::::::::::
contributions460

::
to

:::::::::::
variability

:::::::::
become

:::::::::::::
proportional

:
to the inverse of its abundance (as in the

::::
their

::::::::::::
abundance461

:
(first panel of Fig. 4). The

:
,
::::
and

::::
the

:
worst-case scenario thus follows the abundance of the462

rarest species, which rapidly declines with diversity. Furthermore, as
:::::::
species

::::::::::
richness.

::::
As463

detailed in Appendix H, mean-case invariability will scale as an average abundance which464

also,
:::::
scales

:::
as

:::::
the

::::::::
average

::::::::
species

:::::::::::::
abundance,

::::::
which

:::::
also

:
typically decreases with diversity.465

::
S.

:
466

The responses to demographic perturbations, on the other hand, are not determined by467

any specific species abundance class (as in the middle
::::::
second

:
panel of Fig. 4). As we argue468

in the Discussion, this is because demographic variability generically reflects the collective469

response of communities, i. e. an inherent property of the interaction network, and not470

species abundances. ,
::::

so
:::::
that

:::
no

::::::::
simple

:::::::::::::
expectations

:::::::
based

:::
on

::::::::
typical

:::::::
trends

:::
of

::::::::::::
abundance471

:::::::::::::
distributions

::::
can

:::
be

::::::::::
deduced.

:
472

In
:::
We

::::::::
recover

:::
a

::::::::
simpler

::::::::::
behavior

::::::
when

:::::::::
looking

:::
at

::::
the

:
response to environmental-type473

perturbations, it
::::::::::::::
perturbation.

:::
It is now abundant species that mostly contribute to variability474

with the worst-case scenario following the abundance of the most common species (as in475

the leftmost
:::::
drive

:::::::::::
variability

::::::::::::
(rightmost

:
panel of Fig. 4). Mean-case variability (and not476

its inverse)
:::
As

:::::::::::
explained

:::
in

:::::::::::
Appendix

:::
H,

::::::::::::
mean-case

:::::::::::::
invariability

:
now scales as an average477

abundance. Here the number of rare species matters for
:::
the

::::::::
inverse

::
of

:::
an

:::::::::
average

::::::::
species478

::::::::::::
abundance.

:::::
The

:::::::
latter

::::::::::
typically

::::::::
declines

::::::
with

::
S
::::::::::::

explaining
::::
the

::::::::::
observed

:::::::::
increase

:::
of

:
mean-479

case variability but not their individual abundance
:::::::::::::
invariability.480

There is thus close connection
::
In

:::
all

:::::::
panels

::
of

:::::
Fig.

:::
6,

:::
the

::::::
bulk

::
of

:::::::::::::
invariability

::::::
stays

:::::
close

:::
to481
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:::
the

:::::::
mean-

::::::
while

::::::::
moving

::::::
away

:::::
from

::::
the

::::::::::::
worst-case.

::::::
This

::
is

::::::::
because

::::
the

:::::::::::
worst-case

:::::::::::::
corresponds482

::
to

::
a

::::::
single

::::::::::
direction

::
of

::::::::::::::
perturbation

::::
met

:::::
with

::::
the

::::::::::
strongest

::::::::::
response,

::
a

:::::::::::
fine-tuned

:::::::::::::
perturbation483

::::::
which

:::::::::
becomes

:::::::::::::
increasingly

:::::::::
unlikely

:::
to

:::
be

:::::::
picked

:::
at

:::::::::
random

:::
as

::
S

:::::::::::
increases.

:
484

::::::
There

::
is

:::
an

:::::::::
analogy

:::
to

:::
be

::::::
made

:
between stability and diversitymetrics. As has been said485

about diversity metrics (
::::
e.g.,

:
species richness, Simpson index or Shannon entropy), different486

invariability measures “differ in their propensity to include or to exclude the relatively rarer487

species”
:::::::
“differ

::
in

::::::
their

:::::::::::
propensity

:::
to

::::::::
include

:::
or

:::
to

::::::::
exclude

::::
the

::::::::::
relatively

::::::
rarer

:::::::::
species” (Hill,488

1973). In this sense, they
::::::::
different

::::::::::::::
invariability

::::::::::
measures

:::::
can

:
probe different dynamical489

aspects of a same community, with potentially opposite dependencies on a given ecological490

parameter of interest.491

In all panels of Fig. 6 the bulk of invariability stays close to the mean-case while moving492

away from its worst-case value. This is because the worst-case scenario corresponds to a single493

direction of perturbation met with the strongest response, i.e., a fine-tuned perturbation494

exploiting specific dynamical interdependencies between species that ought to become less495

and less likely to pick at random as diversity increases. The mean-case is by definition more496

representative of generic perturbations, allowing for compensatory effects between species.497

Discussion498

Summary of results499

Because it is empirically accessible using simple time-series statistics, temporal variability is500

an attractive facet of ecological stability. Yet
::::
But

:
there are many ways to define variability in501

models , or to measure it on
::::
and

::::::::::
empirical

:
data, a proliferation of definitions reminiscent of the502

proliferation of definitions of stability itself (Grimm and Wissel, 1997). From an empirical503
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Figure 6: Different perturbation types yield contrasting diversity-stability
::::::::::::::::::
diversity-invariability

:
rela-

tionships. We generated random Lotka-Volterra competitive communities of increasing diversity
::::::
species

:::::::
richness

::
S

:
and computed their invariability (log scales on both axes). We computed the invariability for

::::::::::
distribution

:::
in

::::::::
response

::
to

:
1000 perturbation directions; full

:::::::
random

:::::::::::::
perturbations.

:::::
Full

:
line: median over

perturbations
::::::::::
invariability, dark-shaded region: 5th to 95th percentile, light-shaded region: minimum to max-

imum realized
:::::
values. The ×-marks correspond to the analytical approximation for the medianinvariability,

the dots to the analytical formula for the worst-caseinvariability. As a reference, the dashed
::::::
Dashed

:
line

follows
:
is

:
asymptotic resilience along the diversity gradient

:::
R∞. For immigration-type perturbations (α = 0,

blue) diversity begets instability, with asymptotic resilience closely
:::
R∞:

following worst-case invariability. For

demographic-type perturbations (α = 1, green) mean-case invariability does not vary with diversity
:::
the

:::::
trend

:
is
:::::::::::

ambiguous. For environmental-type perturbations (α = 2, red) stability increases
::
all

:::::::
realized

:::::::
values

::
of

::::::::::
invariability

::::::::
increase

:
with diversity

:
S.
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perspective, variability
:::::::::::
Variability

:
measurements often depend, not only on the system of504

interest, but also on external factors that act as disturbances, which makes it difficult to505

relate variability to other stability concepts(Donohue et al., 2016). These caveats constitute506

important obstacles toward a synthetic understanding of ecological stability, and its potential507

drivers .
::::::::::::::::::::::::::::
(Ives and Carpenter, 2007)

:
.
:

508

Here we proposed to see in variability a reflection of
::::
We

::::::::::
proposed

:::
to

:::::::::
consider

:::::::::::
variability509

::
as

::
a
:::::

way
::::

to
::::::
probe

:::::
and

::::::::::
measure

:
an ecosystem’s response to stochastic perturbations. We510

showed how, in this approach, variability can reveal
::::::::::::::
perturbations,

::::::
thus

::::::::::
revealing

:
inherent511

dynamical properties of ecological communities
::::
the

::::::::::
perturbed

::::::::
system. We did so not by seeking512

:::
not

::::::
seek

:
for an optimal, single measure of variability but, on the contrary, by accounting513

:::
we

:::::::::::
accounted

:
for a vast set of perturbationsthat a given community can face. We called514

the ensuing response distribution the variability spectrum. We studied two complementary515

statistics of the variability spectrum: the
:
,
::::::::
leading

:::
to

::
a
:::::::
whole

:::::::::::::
distribution

::
of

::::::::::::
responses.

::::
We516

::::::::
focused

:::
on

::::
the

:
worst- and mean-case responses

::::::
values

:::
of

:::::
this

::::::::::::
distribution

:
as functions of the517

abundance, growth rate, and interactionsof species and, importantly, of the
:::::::
species

::::::::::::
abundance,518

:::::
their

:::::::::::::
interactions,

:::::
and

::::
the

:
typeof perturbations

:
of

:::::::::::::::
perturbations

:::::
that

:::::::::::
generates

:::::::::::
variability.519

A perturbation type characterizes a statistical relationship between its direct effect on a520

population and the latter’s abundance. We distinguished between : (i) environmental per-521

turbations, whose direct effects on populations scales proportionally with their abundance,522

(ii)
::
to

::::::
their

::::::::::::
abundance;

:
demographic perturbations, whose direct effect on populations scales523

sublinearly with their abundance, and (iii)
::
to

::::::
their

::::::::::::
abundance;

:::::
and purely exogenous pertur-524

bations, representing random addition and removal of individualindependently
:
,
:::::::::::::
independent525

of the size of the perturbed population (immigration-type). After controlling
:::::::::::
Controlling

:
for526

perturbation type and intensity, we considered all the ways this intensity can be distributed527

and correlated across the speciesof a community. Since each perturbation type defines a528
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variability spectrum, the notion of variability unfolds as a continuous family of variability529

spectra.
:::::::
species.

:
530

On random Lotka-Volterra community models we found that
:::::
After

::::::::
having

:::::::::::
described

::
a531

:::::::
general

::::::::
(linear)

::::::::
theory

:::
for

:::::::::::
variability, depending on perturbation type , both common or

::::::
which532

:::::::::::
emphasizes

::::
its

:::::::
highly

::::::::::::::::::
multidimensional

::::::::
nature,

::::
we

:::::::
turned

:::::
our

::::::::::
attention

:::::::::
towards

::::::::::::
species-rich533

:::::::::::::
communities

:::::::::::
assembled

:::
by

::::::::
random

::::::::::::
(nonlinear)

::::::::::::::::
Lotka-Volterra

:::::::::::
dynamics.

:::::::::
Because

::
of

::::
the

::::::
sheer534

::::::::
number

:::
of

::::::::
species

::::::::::
contained

:::
in

::::::
such

:::::::::::::
communities

:::::::::
(S ≈ 40

:::
in

:::::
our

:::::::::::
examples),

::::
we

:::::::
could

:::::
have535

:::::::::
expected

::::
the

::::::::::::::::
dimensionality

:::
of

:::::::::::::::
perturbations

:::::
and

:::::::::::
responses

:::
to

:::
be

:::
so

::::::
large

::::::
that

:::::::::::
variability536

:::::::::::::
distributions

:::::::
would

:::
be

::::
too

:::::::::
complex

:::::
and

:::::::
broad

:::
to

:::
be

:::::::
clearly

:::::::::::
described.

:::::::::::
However,

::::
the

::::::::
process537

::
of

::::::::::
assembly

::::::::
allowed

:::
for

::
a
:::::::
simple

::::::::::
behavior

::
to

:::::::::
emerge:

::
a

::::::::
generic

::::::::::::
relationship

:::::::::
between

:::::::::::
variability538

::::
and

::::
the

::::::::::::
abundance

:::
of

:::::::::::::
individually

:::::::::::
perturbed

::::::::
species.

::::
In

:::::::::
essence,

::::
this

:::::::::
pattern

:::::::::
predicts

:::::
that539

:::::::
species

:::::::
ability

:::
to

:::::::
buffer

:::::::::::
exogenous

::::::::::::::
perturbations

:::
is

:::::::::
inversely

:::::::::::::
proportional

:::
to

::::::
their

::::::::::::
abundance.540

::
In

:::::::::::::
conjunction

::::
to

:::::
this

:::::::
simple

::::::::::
pattern,

::::
the

::::::
type

:::
of

:::::::::::::::
perturbation

::::
will

::::::
then

::::::::::::
determine

::::
the541

::::::::::
individual

:::::::::::::::
contributions

::
of

::::::::
species

:::
to

::::
the

::::::::::::
variability

:::::::::::::
distribution,

:::
so

:::::
that

::::::
both

:::::::::
common

:::::
and542

rare species can determine variability. This is reminiscent of diversity measures (Hill, 1973):543

some ,
::::::
some

:::
of

::::::
which

:
(e.g.

:
,
:
species richness) are sensitive to

:::
the

:::::::::
presence

:::
of

:
rare species, while544

others are mostly indicative of abundant ones
::::
the

::::::::::::
distribution

:::
of

::::::::::
abundant

::::::::
species (e.g.,

:
Simp-545

son diversity index). For a sequence of model communities of increasing species richness, that546

547

::::::
These

::::::::::::
connections

:::::
with

:::::::::
different

:::::::::
diversity

::::::::
metrics

::::
can

::::::::
explain

::::::::::::
contrasting

:::::::
trends

:::
in

::::::::::::
invariability548

::
as

::
a
::::::::::

function
:::
of

::::::::
species

:::::::::
richness.

::::::::
Since

:
immigration-type perturbations gives a prominent549

role to rare speciesexplains the negative diversity-stability observed in Fig. 6. It reflects the550

growing vulnerability
:::::::
mostly

:::::::
affect

::::
rare

:::::::::
species,

:::::
they

:::::
lead

:::
to

:
a
::::::::::
negative

::::::::::::::::::::::
diversity-invariability551

:::::::::::::
relationship,

::::::::::
reflecting

::
a
:::::::::
growing

:::::::::
number

::::
and

:::::::
rarity

:
of rare speciespushed towards the edge552

of extinction as diversity increases. Such rare species do not regulate well immigration type553
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perturbations, which leads them to determine the largest values of the variability spectrum.554

More generally, the contribution of species to variability generically scales as the inverse555

:
.
:::::

On
::::
the

::::::
other

:::::::
hand,

:::
in

::::::::::
response

:::
to

::::::::::::::
demographic

::::::::::::::::
perturbations,

::::::::
species

:::::::::::::::
contributions

:::
to556

::::::::::
variability

:::::
can

:::
be

::::::::::::::
independent

:
of their abundance(Fig. 4), which leads to a proportional557

relationship between mean-case invariability and average abundance, the latter typically558

declining with diversity(Appendix H). When caused by demographic-type perturbations,559

a species contribution to variability is generically independent of its abundance, allowing560

for potentially ambiguous diversity-stability patterns . By contrast, common species are561

generically the most stable, yet
::
In

:::::
this

::::::
case,

::::::::::::
variability

::
is

:::::
not

::::::::::
expected

:::
to

:::::::
follow

::::::::
trends562

::
in

::::::::::
diversity,

::::
so

:::::
that

:::::::::::::::::::::::
diversity-invariability

::::::::::
patterns

::::
can

::::
be

:::::
less

::::::::::::
predictable

:::::
and

::::::::
harder

:::
to563

::::::::::
interpret.

:::::::::
Finally,

:::::::::
although

::::::::::
common

::::::::
species

:::::::
buffer

:::::::::::
exogenous

:::::::::::::::
perturbations

:::::::::::
efficiently,

:::::
they564

:::
are

:
also the most affected by environmental perturbations, allowing them to drive the larger565

values of the variability spectrum. More generally, the contribution of species to variability is566

generically proportional to their abundance (Fig. 4) which in turns leads to
::::::::::::::::::::
environmental-type567

:::::::::::::::
perturbations.

:::::
This

:::::
can

:::::
lead

:::
to a proportional relationship between average abundance and568

mean-case variability (and not its inverse as was the case for immigration-type), typically569

leading
:::::::::::::
invariability,

::::
and

::::::
hence

:
to a positive diversity-stability relationship.

:::::::::::::::::::::
diversity-invariability570

:::::::::::::
relationship.

:
571

Of the two patterns described – emerging role of abundance and572

:::::::::::::::::
Implications

:::::
for

::::::::::::::
empirical

:::::::::::::
patterns573

::::
Our

::::::::::::
theoretical

:::::::
models

::::::
show

:::::
wide

:::::::::::
variability

:::::::::::::::
distributions.

:::::::
These

:::::::::::::
distributions

:::::::
would

::::::::
become574

:::::
even

::::::
wider

:::::::
when

::::::::::::
accounting

:::
for

:::::::::::
nonlinear

::::::::
system

::::::::::
dynamics

:::::
and

::::::::::::
temporally

::::::::::::::::
autocorrelated575

:::::::::::::::
perturbations.

:::::::::::
Therefore,

::::
we

::::
also

::::::::
expect

::
a

::::::
large

:::::::::::
dispersion

::
of

::::::::::
empirical

::::::::::::
variability

::::::
data,

::::
i.e.,576
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:::::
when

:::::
the

:::::::::::
variability

:::
of

::::
the

::::::
same

::::::::
system

::
is

:::::::::::
measured

::::::::::::
repeatedly.

::::
For

::::::::
certain

::::::::::::::
applications

::
it577

::::::
might

:::
be

::::::::::
sufficient

:::
to

::::::::
restrict

:::
to

::
a
:::::::::::

particular
::::::::::::::
perturbation

:::::::::
regime,

::::
but

:::
in

::::::
order

:::
to

:::::::
detect

:::
in578

::::::::::
variability

::::
an

:::::::::
inherent

:::::::::
stability

::::::::::
property

:::
of

::
a

::::::::
system,

::::
i.e.

::
a
::::::::::
property

:::::
that

:::
is

::::
not

:::::::
bound

:::
to

::
a579

:::::::
specific

::::::::::::::::
environmental

::::::::
context

:::::
(see

:::::
Fig.

:::
1),

::::
one

::::::
must

:::::::::
describe

:::
of

::::
the

::::::::
spread

::
of

::::::::::::
variability.

:
580

::
To

::::
do

::::
so,

::::
the

::::::
most

:::::::
direct

:::::::::::
approach

:::::::::
consists

:::
in

:::::::::::
observing

::::
the

::::::
same

:::::::::::::
community

:::::::
under581

::::::::
multiple

::::::::::::::::
environmental

::::::::::::
conditions.

:::::::
With

::::::::::
relatively

:::::
few

::::::::::::::
observations,

:::::
one

::::
can

::::::::::
estimate

::::
the582

:::::
mean

:::::
and

::::::::
spread

:::
of

::::
the

::::::::::
response

::::::::::::::
distribution.

:::::::
There

:::
is,

::::::::::
however,

:::::::
more

:::::::::::::
information

:::
to

:::
be583

::::::::::
extracted

:::::
from

::
a
::::::

time
:::::::
series

:::::
than

::
a
:::::::

single
:::::::::::
variability

:::::::
value.

::::
If

:::::::::::::
high-quality

:::::
time

:::::::
series

::::
are584

::::::::::
available,

::
it

:::::::
might

::::
be

:::::::::
possible

:::
to

:::::
infer

:::::::
linear

:::::::
model

::::::::::::
dynamics,

:::::::
which

::::
can

::::::
then

:::
be

::::::
used

:::
to585

:::::::::
compute

:::::::::
stability

:::::::::::
properties

:::::::::::::::::::
(Ives et al., 2003),

:::::
and

:::
in

:::::::::::
particular,

:::::::::::
variability

:::::::::::::::
distributions.

:
586

:::
We

::::::::
showed

::::::
that

::::::::
species

:::::::::::::
abundances

::::::::
greatly

:::::::
affect

:::::::::::
variability

:::::::::::::::
distributions.

:::::::
This

:::::
new587

:::::::
insight

::::
has

:::::::
broad

:::::::::::::::
consequences.

::::
For

::::::::::
example,

:::
it

::::
has

:::::
been

::::::::::
reported

:::::
that

::::::::::::::::
ecosystem-level

:::::
and588

::::::::::::::::
population-level

:::::::::
stability

::::::
tend

::
to

:::::::::
increase

:::::
and

:::::::::
decrease,

::::::::::::::
respectively,

:::::
with

:::::::::::
increasing

:::::::::
diversity589

:::::::::::::::::::::::::::::::::::::::::::::
(Jiang and Pu, 2009; Campbell et al., 2011)

:
.
:::::::::::::::::
Ecosystem-level

:::::::::
stability

::
is

::::::
often

::::::::::
quantified

:::::::
based590

::
on

:::::
the

:::::::::::
variability

:::
of

::::::
total

::::::::::
biomass,

:::::::
which

::::::
gives,

::::
by

::::::::::::::
construction,

::
a
::::::::::::::

predominant
::::::::

weight
:::
to591

::::::::::
abundant

::::::::
species.

:::::
On

::::
the

::::::
other

::::::
hand,

::::::::::
averages

:::
of

::::::::::::::
single-species

:::::::::::::
variabilities

:::::
have

::::::
been

:::::
used592

::
to

:::::::::
measure

::::::::::::::::::
population-level

:::::::::
stability

::::::::::::::::
(Tilman, 1996)

:
.
::::::::

These
:::::::::
averages

::::
are

::::::::::
strongly

:::::::::
affected,593

::::
and

::::
can

::::::
even

:::
be

::::::
fully

:::::::::::::
determined,

:::
by

::::::
rare,

:::::::
highly

:::::::::
variable

::::::::
species

::::::::::::::::::::::::::
(Haegeman et al., 2016)594

:
.
::::::::

Thus,
:::::
here

:::
as

:::::
well

::::
as

:::
in

::::
our

::::::::::::
theoretical

::::::::
results

::::::
(Fig.

::::
6),

::::::::::
stability

::::::::
metrics

::::::::::
governed

::::
by595

:::::::::
common,

:::
or

:::::
rare,

::::::::
species

:::::
tend

:::
to

:::::::::
generate

:::::::::::::
respectively

::::::::
positive

::::
and

::::::::::
negative diversity-stability596

relationships – the first is the most robust to modeling choices or details of species traits.597

Indeed, whereas the sign of diversity-stability relationships can depend, amongst other things,598

on the way interactions change with diversity, the described contributions to variability of599

species abundances classes reflect a generic outcome of the assembly of disordered systems.600

As illustrated in Fig. 5 and detailed in Appendix G, the sole requirement isthat interactions601
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in a species-rich community are sufficiently strong and heterogeneous.
::::::::::::::
relationships.

::
It

:::::::
would602

::
be

::::::::::::
interesting

:::
to

::::
test

:::::::::
whether

:::::
this

::::::::::::
observation

::::::
holds

::::::
more

::::::::::
generally,

:::::
e.g.,

::
if
:::
it

::::
can

::::::::
explain

::::
the603

:::::::::::
contrasting

::::::::::::::
relationships

:::::::::
recently

::::::::::
reported

:::
by

::::::::::::::::::::::::::
Pennekamp et al. (2018).

:
604

Our results showcase the fact that variability strongly depends on factors external to the605

system of interest. There are cases, however, in which this does not constitute a fundamental606

problem.When approaching a regime shift, early warning signals based on variability are607

generically independent of the perturbation or of the way that the response is observed608

(Scheffer et al., 2009)
::::
The

:::::
type

::
of

:::::::::::::::
perturbations

:::::::
affects

::::::
which

::::::::
species

:::::::::::
abundance

::::::
class

::::::::::::
contributes609

:::::
most

:::
to

:::::::::::
variability.

:::
In

::::::
turn,

::::
the

::::::::
physical

::::
size

:::
of

::::
the

:::::::
system

:::::::::::
considered

:::::::
affects

:::::::
which

:::::::::::::
perturbation610

:::::
type

::::::::::
dominates. This is because when a system approaches a global instability, most perturbations611

will excite the unstable direction, and most observation will detect it. Similarly, all stability612

measures should coincide near a catastrophic transition. In the absence or far from such613

transitions, stability metrics can branch out, as well as possible invariability measurements,614

and it is in this context that our work ought to be most relevant.
::::
well

:::::::
known

:::
in

::::::::::::
population615

::::::::::
dynamics

:::::::::::::::::::::
(Engen et al., 2008),

::::
but

:::
it

::::
also

::::::::::::
transposes

::
to

::::
the

::::::::::::
community

::::::
level.

::::
At

::::::
small

:::::::
spatial616

::::::
scales,

::::::::::
implying

:::::::
small

:::::::::::::
populations,

::::
we

:::::
may

::::::::
expect

:::::::::::
variability

:::
to

:::
be

::::::::
driven

:::
by

::::::::::::::
demographic617

:::::::::::::
stochasticity.

:::::
At

::::::
larger

::::::::
scales,

::::::::::
implying

:::::::
larger

:::::::::::::
populations,

:::::::::::::::
demographic

:::::::::::::
stochasticity

:::::
will618

::
be

:::::::::::
negligible

::::::::::
compared

::::::
with

:::::::::::::::
environmental

:::::::::::::::
perturbations.

::::::
Just

:::
as

:::::::::
changing

::::
the

::::::::::::::
perturbation619

:::::
type

:::::::::::
transforms

:::::
the

:::::::::::
respective

:::::
roles

:::
of

::::::::::
common

:::::
and

:::::
rare

::::::::
species,

::::::::::
patterns

:::
of

:::::::::::
variability

:::
at620

::::::::
different

:::::::
scales

::::::::
should

:::::::
reflect

:::::::::
different

:::::::::
aspects

::
of

::
a
:::::::::::::
community

::::::::::::::::::
(Chalcraft, 2013)

:
,
:::::::::::
associated621

::
to

::::::::::
different

::::::::
species

::::::::::::
abundance

:::::::
classes

::::::::::::
(abundant

::::::::
species

:::
at

::::::
large

::::::::
spatial

::::::::
scales,

:::::::::::
rare/rarer622

:::::::
species

:::
at

::::::
small

::::::::
spatial

::::::::
scales).

:
623

:::::::::::
Empirically

::::::::::::::
determining

::::
the

::::::::::::::
perturbation

::::::
type,

:::::::
which

:::
is

::
a

:::::::::::::
preliminary

:::::
step

:::
to

:::::
test

::::
the624

::::::::
stability

::::::::::
patterns

::::::::::
predicted

:::
in

::::
this

:::::::
paper,

:::
is

::
a

:::::::::::
non-trivial

::::::
task.

::::
To

::::::::
develop

:::::::::
suitable

::::::::::
methods,625

::
it

::::::
might

:::
be

::::::::
helpful

::
to

:::::
first

::::::::::::
understand

::::
the

::::
link

:::::::::
between

::::
the

:::::::::::::::::::::::
variability-abundance

:::::::::
patterns

::::
(see626
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:::::
Figs.

::
4

::::
and

:::
5)

::::
and

:::::::::
Taylor’s

::::::::
(1961)

::::
law.

:::::
The

::::::
latter

::
is
:::
an

::::::::::::
empirically

:::::::::::
accessible

:::::::::
pattern,

::::::::
relating627

:::
the

::::::
mean

:::::
and

:::::::::
variance

:::
of

:::::::::::
population

::::::
sizes.

:::
A

::::::
close

:::::::::::
connection

:::
is

:::::::
indeed

::::::::::
expected:

::::
we

::::::::
studied628

:::
the

::::::::::
behavior

::
of

::::
the

:::::::::::::
community

:::::::::
response

:::
to

:::
an

:::::::::::
individual

::::::::
species

::::::::::::::
perturbation,

::::::
while

:::::::::
Taylor’s629

:::
law

:::::::::
focuses

:::
on

:::::
the

:::::::::::
individual

::::::::
species

::::::::::
response

:::
to

::
a

::::::::::::::
perturbation

:::
of

::::
the

:::::::
whole

:::::::::::::
community.630

:::::
This

::::::::
duality

::::
also

::::::::::
suggests

:::::
that

:::::::::
Taylor’s

::::
law

:::
is,

:::
at

::::
the

:::::::::::::
community

::::::
level,

:::::::::
strongly

:::::::::
affected

:::
by631

:::::::
species

:::::::::::::
interactions.

:::::::::::
Although

:::::
this

::
is

:::::::
known

:::::::::::::::::::::::::::::
(Kilpatrick and Ives, 2003)

:
,
::::
our

::::::::::
approach

::::::
could632

:::::
shed

::::
new

::::::
light

:::
on

::::
the

:::::::::::::
information

::::::::::
regarding

::::::::
species

:::::::::::::
interactions

:::::
and

::::::
other

:::::::::::
dynamical

:::::::
traits,633

::::::::
actually

:::::::::::
contained

:::
in

:::::::::::::::::
community-level

:::::::::
Taylor’s

::::::
laws.

:
634

Theoretical consequences
::::::
Link

:::::::
with

:::::::::
other

:::::::::::::
stability

::::::::::::::
measures635

We could relate variability to
:::::
noted

:::
a

::::::::::::
connection

:::::::::
between

::::::::::::
variability

:::::
and

:
asymptotic re-636

silience, the most commonly used stability metric
::::::
which

:::
is

::
a

:::::::::
popular

:::::::
notion

:
in theoretical637

studies (Donohue et al., 2016). We found
:::::::
showed

:
that asymptotic resilience is comparable638

to the largest variability in response to an immigration-type perturbation, which is often a639

perturbation of the rarest species (first panel of Fig. 4). While the asymptotic rate of return640

to equilibrium
:::::::::::
asymptotic

::::::::::
resilience

:
is sometimes considered as a measure representative of641

the collective recovery dynamics, we recently showed
:::::::::::
previously

::::::::::
explained

::::::
why that this is642

seldom the case (Arnoldi et al., 2018). The asymptotic rate of return often reflects dynamical643

::
to

::::::::::::
equilibrium

::::::::::
generally

::::::::
reflects

:
properties of rare “satellite” species, pushed at the edge of lo-644

cal extinction by abundant “core” species. By contrast
:::
On

::::
the

::::::
other

::::::
hand, short-time return645

rates can exhibit qualitatively different properties related to
:::::
more

:
abundant species. This646

suggest that647

::
In

:::::
fact,

:
the multiple dimensions of variability are related to the multiple dimensions of re-648

turn times. Indeed, variability reflects
:::::::::::
Variability

::
is

:::
an

::::::::
integral

:::::::::
measure

::
of

::::
the

::::::::::
transient

:::::::
regime649
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:::::::::
following

::::::
pulse

:::::::::::::::
perturbations,

:::::
i.e.,

:
a superposition of responses to pulse perturbations

:::::::
various650

::::::
pulses, some of which have just occurred and are thus hardly absorbed, while others occurred651

long ago and are thus largely resorbed. Variability is thus an integral measure of the transient652

regime following pulse perturbations. If abundant species are faster than rare ones (which,653

as we showed, is typically the case in complex communities
:
,
::::
see

:::::::::::
Appendix

::
G), if they are654

also more strongly perturbed (e.g.
:
,
:
by environmental perturbations), the bulk of the tran-655

sient regime will be relatively short. Thus
::::::
short:

:
variability in response to environmental656

perturbations is associated with
:
a
:

short-term recoverydynamics. By contrast, if all species657

are, on average, equally displaced by perturbations (e.g.,
:
by immigration-type perturbations),658

rare species initially contribute to the overall community displacement as much as abundant659

ones, and if they are much slower to recover (which is often the case), the bulk of the
::
do660

::::::::::
abundant

:::::
ones.

:::::::
Since

:::::
their

:::::::::
recovery

:::
is

:::::::::
typically

:::::
very

::::::
slow,

::::
the

:
transient regime will be longer.661

Thus
:::::
long:

:
variability in response to immigration-type perturbations is associated with the

:
a662

long-term return rate to equilibrium (which converges towards asymptotic resilience)
::::::::
recovery.663

The link between asymptotic resilience, immigration invariability and rare species, also664

suggests a connection with the notion of feasibility: the probability, for a given set of species,665

that a coexistence equilibrium exist, where all species have a positive abundance (Roberts, 1974; Grilli et al., 2017)666

. Indeed, in an assembly context there is a continuum from common, to rare, to extinct.667

If feasibility drops then we can also expect that some species will be rare, and will drive668

asymptotic resilience and worst-case immigration invariability. In other words, we should669

expect these three notions (feasibility, asymptotic resilience, worst-case immigration invariability)670

to go hand in hand in the context of community assembly.671

One could think that asymptotic resilience, and thus variability in response to
::::::::::
Ecologists672

:::::
have

::::
long

:::::::::::::::
acknowledged

::::
the

::::::::::::::
multi-faceted

:::::::
nature

::
of

:::::::::::
ecological

:::::::::
stability

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Pimm, 1984; Grimm and Wissel, 1997; Ives and Carpenter, 2007; Donohue et al., 2016)673

:
,
::::
but

:::::
here

::::
we

::::::
show

:::::
that

:::
a

::::::
single

::::::
facet

:::::::::::::
(variability)

:::
is

:::
in

::::::
itself

:::::::::::
inherently

:::::::::::::::::::
multidimensional,674
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::::
thus

::::::::::::
suggesting

:::::
that

:::::
links

:::::::
across

:::::::
facets

::::
can

:::
be

::::::::
subtle.

::::::::::::
Short-term

:::::::
return

::::::
rates

:::::
may

:::
be

:::::::
linked675

:::::
with

:::::::::::::::
environmental

::::::::::::
variability,

::::
but

::::::::::::::::
environmental

:::::::::::
variability

::::::
may

:::::
have

:::::::::
nothing

:::
to

::::
do

:::::
with676

immigration-type perturbations, should also be closely linked to May’s (1972) seminal article677

predicting a “complexity bound” beyond which most systems are unstable. Indeed, as in678

many theoretical works since then (e.g. Gross et al., 2009; Allesina and Tang, 2012), stability679

in May’s work referred to the probability of a random community matrix to be stable, thus680

defining a linear dynamical system with positive asymptotic resilience. In our work, however,681

we did not rely on the probability of drawing a stable state: starting from a random pool682

of species, we let community assembly play out to reach an equilibrium, which is stable by683

construction. This nuance is in an important one (Bunin, 2017). Yet, Biroli et al. (2017)684

recently revealed a connection between May’s work and community assembly, showing that685

May’s bound applies to Lotka-Volterra systems, predicting the diversity limit beyond which686

the community is in a collective state of marginal stability, or chaos. The growing instability687

with diversity predicted by May, however, is not to be seen in the asymptotic resilience of688

assembled communities, but in properties of their per-capita interaction matrix, which is689

independent of species abundances (see Appendix G). Recall that we found abundances to690

play no significant role in the response to demographic perturbations (middle panel of Fig. 4).691

This is because, in disordered communities, demographic variability is also an intrinsic feature692

of the per-capita interaction matrix (Barbier et al., 2018). Thus the link between May’s work693

and ours is likely to be found in patterns of demographic variability. Furthermore, because the694

work of Biroli et al. shows that May’s bound signals a collective dynamical shift in complex695

communities, it also suggests that demographic perturbations probe the collective response696

of ecosystems.697

Although these reasonings go beyond the scope of this article, they clearly showcase698

the potential of the variability spectrum framework to encompass previously disconnected699
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theoretical works on ecological stability.700

Empirical consequences701

Of the two statistics of the variability spectrum that we studied (i.e. mean- and worst-case702

variability) , only the mean-case scenario is empirically accessible. Ideally it could be reconstructed703

from multiple observations of a same community under different environmental conditions.704

However, depending on the question addressed, simpler protocols may be sufficient. For705

instance, in diversity-stability studies, observing many communities in the same environment706

(e.g. undergoing a unique perturbation regime) is a way to assess an average response, because707

the direct effect of a perturbation on the community –its direction– depends both on the708

perturbation itself , and on the way individuals from different species perceive it. Thus,709

sampling many communities also spans many perturbation directions.710

On the other hand, the worst-case scenario corresponds to a theoretical prediction that is711

unlikely to be observed. The potentially strong discrepancy between mean- and worst-case712

scenarios implies that the variability spectrum of communities should be expected to be broad,713

so that differences around an average are not solely caused by observational errors but can714

reflect the inherent multidimensionality of an ecosystem’s response to perturbations.715

Variability offers a convenient way to address the stability of ecosystems at different levels716

of organization. For instance, the coefficient of variation (CV) of total biomass has been717

used as a measure of stability at the ecosystem level (Tilman et al., 2006; Hector et al., 2010)718

. On the other hand, the weighted average CV of species biomass is typically interpreted as719

population-level stability. These two variability notions thus differ in the variables observed.720

By contrast, our approach was to consider, for a given observation scheme, the various721

responses caused by various types of perturbation. Empirical studies have reported a general722
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tendency for diversity to correlate positively with stability at the ecosystem level, but negatively723

at the population level (Jiang and Pu, 2009; Campbell et al., 2011). In Appendix I, with the724

same model communities used to generate Fig. 6, we corroborate these empirical findings.725

Instead of defining variability as mean variance, we considered CV-based stability measures,726

and indeed found ecosystem-level invariability to increase with diversity for all perturbation727

types, while population-level invariability always decreases (Fig. I1). This can be explained728

from the fact that, by construction, ecosystem-level stability gives a predominant weight to729

abundant species, while population-level stability gives a large weight to
:::::::::::
variability,

::::
the

::::::
latter730

::::::::
possibly

::::::::
related

::::::
with

:::::::::::
long-term

:::::::
return

::::::
rates

:::::
and

::::::::
driven

:::
by

:
rare species. Here, underlying731

the contrasting diversity-stability relationships, is again a contrasting role given to species732

depending on their abundance, but the difference is now due to the choice of observation733

itself instead of the perturbation type. This highlights the fact that the role given to species734

abundance classes, either because of inherent dynamical reasons or due to the choice of735

observation variable, is a fundamental driver of observed stability patterns.736

While it is clear that the choice of observation predetermines the level of organization of737

interest, that the type of perturbations can also reflect the dynamical properties of distinct738

species abundance classes is a novel statement that opens the door to empirical investigations.739

For instance, the physical size of the system considered should affect which perturbation type740

predominates and thus which species abundance class is most likely to contribute to variability.741

Suppose that a spatially homogeneous community, say the predator-prey system considered in742

Fig. 3, is observed at two spatial scales. At the small scale, implying small populations, we can743

expect variability to be mostly caused by demographic stochasticity. At larger scales, implying744

larger populations, demographic stochasticity will be negligible compared with environmental745

perturbations. Just as changing the perturbation type transformed the variability spectra746

in our simple example presented in Fig. 3, patterns of variability at these two scales will747
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reflect different aspects of the community. Thus, without invoking spatial heterogeneity, there748

are reasons to expect a non-trivial spatial scaling of stability (Chalcraft, 2013), reflecting749

an underlying transition of the
::::::::
Because

:::::::::::
measures

::::
can

::::
be

:::::::::::::
determined

:::
by

::::::::::
different

:
species750

abundance classesthat contribute to the ecosystem’s dynamical response to the perturbations751

that it faces.
:
,
:::
we

::::::::
should

::::
not

:::::::
expect

::
a
:::::::::
general

::::
and

:::::::
simple

::::::::::::
connection

:::
to

:::::
hold

:::::::::
between

:::::::
facets752

::
of

::::::::::
ecological

::::::::::
stability.

:
753

Empirical testing of these ideas would require determining the type of perturbations754

affecting a given community. This means estimating the exponent α that characterizes the755

various perturbation types. This could be done, e.g. by identifying perturbation events and756

fitting a power-law to their effect on species as a function of the latter’s abundance. One757

could also look for a direct relationship between the exponent α and that of Taylor’s (1961)758

law that links mean and variance of population sizes. In fact Taylor’s law is an output of759

our framework with perturbation type as an input, and thus, ought to affected by species760

interactions (Kilpatrick and Ives, 2003). It would thus be useful to check whether the simple761

models of the diversity-stability relationships based on an assumed Taylor’s law are consistent762

with the predictions of our framework.763

Conclusion764

The multidimensional nature of variability can lead to conflicting predictionsbut, once acknowledged,765

::::
but

:::::
once

::::
this

:::::::::::::::::::::
multidimensionality

::
is

::::::::::::::::
acknowledged,

::
it can be used to

:::::::::::
extensively probe the dy-766

namical properties of different species abundance classes within a community, in a similar way767

as various diversity measures reflect the presence of different abundance classes. By shifting768

the focus from a single measure of variability to the variability spectrum, we could more clearly769

appreciate the dynamical richness of complex systems and demonstrate the impossibility of770
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any one-dimensional characterization of their stability. This applies beyond the technical771

setting of our work: although we did not consider strong non-linearities, autocorrelation of772

perturbations or spatial processes, these additional dimensions can also be used to probe773

and reveal other important dynamical behaviors (Zelnik et al., 2019). Overall, this work774

provides a dialectical perspective
:::::::::::
community.

:::::
In

::::::::::::
particular,

:::
in

:::::::::::::
species-rich

::::::::::
systems,

::::
we775

::::::::
revealed

:::
a

::::::::
generic

:::::::::
pattern

::::::::::
emerging

::::::
from

:::::::::::
ecological

:::::::::::
assembly,

:::::::::
relating

::::::::
species

::::::::::::
abundance776

::
to

::::::
their

:::::::::::
variability

::::::::::::::
contribution.

::::::
This

:::::::::
allowed

:::::::::::::
connections

:::
to

:::
be

::::::::
drawn

:::::::::
between

:::::::::::
variability777

::::
and

::::::::::
statistics

:::
of

::::::::::::
abundance

::::::::::::::
distributions.

:::::
We

::::::::
argued

:::::
that

::::::::
similar

:::::::::
patterns

::::::::
should

:::::::::
underlie778

::::::::::
ecosystem

:::::::::::
responses

:::
to

::::::
other

::::::::
families

:::
of

::::::::::::::
perturbations

::::::
(e.g.,

::::::
pulse

:::::::::::::::::
perturbations).

:::::::::::
Therefore,779

:::
we

:::::::::
conclude

:::::
that

:::::::::::
embracing

::::
the

::::::
whole

::::
set

::
of

::
a
:::::::::::
ecosystem

::::::::::
responses

::::
can

:::::
help

::::::::
provide

::
a
:::::::::
unifying780

:::::
view

:
on ecological stability . A community is not a mere aggregation of rare and abundant781

species, as these species can be rare and abundant as a product of their interactions with782

the rest of the community. Variability can probe the dynamics at the species level (rare to783

abundant species) but also of more collective properties. All are intertwined, and all contribute784

to a community’s dynamical identity
::::
and

:::::
shed

::::::
new

:::::
light

::::
on

::::
the

::::::::::
meaning

:::
of

::::::::::
empirical

:::::
and785

:::::::::::
theoretical

:::::::::
stability

:::::::::
patterns.786
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Appendix
::::::::::::::::::::::::
Appendices

The Appendix is
::::::::::::
Appendices

::::
are

:
organized as follows: Appendix A through D provides

a self-contained presentation of the mathematical foundations of our variability theory. Ap-

pendix E through I
:
H

:
provide details concerning specific applications considered in the main

text: two-species communities in Appendix F
::
E, complex Lotka-Volterra communities in ap-

pendices F-G,
:
F

:::::
and

:::
G,

:::::
and

:
the link between abundance statistics and variability in Ap-

pendix Hand, finally, a study of two common population and ecosystem-level variability

notions in Appendix I
:
.
::::

A
::::
list

:::
of

::::
the

::::::
most

::::::::::::
important

::::::::::
notation

:::::
used

:::
in

:::::
the

::::::::::::
Appendices

:::
is

:::::
given

:::
in

:::::::
Table

:::
A1.

A Response to white-noise perturbation

We describe the response of a linear dynamical system, representing the dynamics of dis-

placement of species around an equilibrium value, to a white-noise perturbation. Stochastic

perturbations in continuous time are mathematically quite subtle .
:::::
(see,

:::::
e.g.,

::::::::::::::
Turelli, 1977

:
).

However, in the setting of linear dynamical systems, the effect of a white-noise perturbation

can be analyzed relatively easily. Because this analysis is not readily available in the ecology

literature, we present here a short overview. We start by from a fomulation in vector notation,

dx

dt
= Ax+ ξ(t), (A1)

where x = (xi) denotes the vector of species displacements, ξ = (ξi) the vector of species

perturbations, and A = (Aij) the community matrix.

Suppose that the perturbation ξ(t) consists in a sequence of pulses. We denote the times

at which these pulses occur by tk, and the corresponding pulse directions by uk = (uk,i). The
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Table A1:
:::::
Most

:::::::::::
important

::::::::::
notation

:::::
used

::::::::::::
throughout

::::
the

:::::::::::::
Appendices

:::::::
symbol

:

:::::::::
meaning :::::::::

equation
:

:::
σ2

in:
:::
per

::::::::
species

:::::::::
variance

:::
of

::::::::
applied

::::::::::::::
perturbation

:

:::::
(B2)

:

::::
σ2

out :

:::
per

::::::::
species

:::::::::
variance

:::
of

::::::::
system

:::::::::
response

:::
to

::::::::::::::
perturbation

:

:::::
(B4,

::::
D3)

:

:::
Cu:

:::::::::::
covariance

:::::::
matrix

:::
of

::::::::::
individual

:::::::
pulses

:::
in

::::::::::::
multi-pulse

::::::::::::::
perturbation :::::

(A3)
:

::
f

::::::::::
frequency

:::
at

::::::
which

:::::::
pulses

:::::::
occur

::
in

:::::::::::::
multi-pulse

:::::::::::::
perturbation

:

::
E

:

:::::::::::::
perturbation

::::::::::
direction,

::::::::::::::
proportional

:::
to

:::::
fCu :

:::::
(B5)

:

:::
Cx:

:::::::::::
covariance

:::::::
matrix

:::
of

::::::::
species

::::::::::
responses

:::
to

::::::::::::::
perturbation

:

:::::
(A5,

::::
A9)

:

::
L

::::::::
solution

:::
of

:::::::::::
Lyapunov

::::::::::
equation,

:::::
used

:::
to

::::::::::
compute

:::::::::::
stationary

:::
Cx:

:::::
(A7,

::::
A8)

:

:::
Vα:

::::::::::
variability

::::
for

:::::::::::::::
perturbation

:::::
type

::::
α;

::::::
when

:::::::
index

:::
α

:::
is

::::::::::
omitted,

::::::::::::::::::
immigration-type

:::::::::::::::
perturbations

:::
are

::::::::::
assumed

::::::::
(α = 0)

:

:::::
(D4)

:

::::::
Vworst

:

::::::::::
mean-case

::::::::::::
variability,

:::::
i.e.,

:::::::::::
variability

::::::::::
averaged

:::::
over

::::::::::::::
perturbation

::::::::::
directions

:

:::::
(C2,

::::
D5)

:

::::::
Vmean

:::::::::::
worst-case

:::::::::::::
variability,

:::::::
i.e.,

::::::::::::::
variability

::::::::::::::
maximized

::::::::
over

:::::::::::::
perturbation

:::::::::::
directions

:::::
(C3,

::::
D6)

:

::::::
Vspec i

:

::::::::::
variability

::::
for

::::
the

::::::::::::::
perturbation

:::::
that

:::::::
affects

:::::
only

::::::::
species

::
i

::
I

:::::::::::::
invariability,

::::
i.e.,

::::::::::::::::::
variability-based

:::::::::
stability

:::::::::
measure

:

:::::
(B6)

:
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multi-pulse perturbation can then be written as

ξ(t) =
∑
k

δ(t− tk)uk. (A2)

where we have used the Dirac delta function δ(t).

We model both the pulse times tk and the pulse directions uk as random variables. Specif-

ically, we assume that the pulse times are distributed according to a Poisson point process

with intensity f . This means that the probability that a pulse occurs in a small time interval

of length ∆s is equal to f∆s, and that this occurrence is independent of any other model

randomness. We denote the average over the pulse times tk by Ef .

Furthermore, we assume that the pulse directions uk are independent (mutually indepen-

dent, and independent of any other model randomness) and identically distributed. They

have zero mean, and their second moments are given by the covariance matrix Cu. That is,

denoting the average over the pulse directions uk by Eu, we have Eu uk,i = 0, Eu u2
k,i = Cu,ii,

Eu uk,iuk,j = Cu,ij, and Eu uk,iu`,i = Eu uk,iu`,j = 0 for i 6= j and k 6= `. The latter equations

can be written in vector notation,

Cu = Eu uku
>
k and Eu uku

>
` = 0. (A3)

We use this information to compute the statistics of species displacements x(t). Because

the system response to a single pulse perturbation at time tk in directon uk is equal to

e(t−tk)Auk, the system response to the sequence (A2) of pulse perturbations is equal to

x(t) =
∑
k|tk<t

e(t−tk)A uk. (A4)
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Taking the mean over the perturbation directions, we obtain

Eu x(t) =
∑
k|tk<t

e(t−tk)A Eu uk = 0,

showing that the species displacements fluctuate around the unperturbed equilibrium.

Next, we compute the covariance matrix of the species displacements,

Cx = Ef,u x(t)x(t)>. (A5)

We substitute the response to the multi-pulse perturbation, equation
:::
eq. (A4),

Cx = Ef,u
∑
k|tk<t

e(t−tk)A uk
∑
`|t`<t

u>` e
(t−t`)A>

= Ef
∑
k|tk<t

∑
`|t`<t

e(t−tk)A Eu uku
>
` e

(t−t`)A>

= Ef
∑
k|tk<t

e(t−tk)A Eu uku
>
k e

(t−tk)A>

= Ef
∑
k|tk<t

e(t−tk)ACu e
(t−tk)A>

,

where we have used equation
:::
eq.

:
(A3). To take the average over the pulse times, we partition

the time axis in small intervals of length ∆s. Writing sn = n∆s for any integer n, we get

Cx =
∑
n|sn<t

e(t−sn)ACu e
(t−sn)A>

f∆s,

because the contribution of term n is equal to e(t−sn)ACu e
(t−sn)A>

with probability f∆s, and

52



zero otherwise. Assuming that the time intervals ∆s are infinitesimal, we find the integral

Cx =

∫ t

−∞
e(t−s)ACu e

(t−s)A>
fds

=

∫ ∞
0

esACu e
sA>

fds

=

∫ ∞
0

esA
(
fCu

)
esA

>
ds. (A6)

Hence, we have obtained the stationary covariance matrix of the species displacements under

a stochastic multi-pulse perturbation.

A white-noise perturbation corresponds to a special case of the stochastic multi-pulse

perturbation, namely, to the case of extremely frequent pulses (large f) of
::::::::::
extremely

:
small

size (small ‖u‖). More precisely, we have to take the coupled limit f →∞ and Cu → 0 while

keeping fCu constant. Because equation
:::
eq.

:
(A6) depends on f and Cu through the product

fCu only, the same expression is also valid for white-noise perturbations.

Alternatively, the stationary covariance matrix Cx can be obtained by solving the so-called

Lyapunov equation,

AC + CA> + E = 0, (A7)

where E is the covariance matrix characterizing the white noise, equal to fCu in our case.

Indeed, it can be verified that equation
:::
eq.

:
(A6) satisfies equation

:::
eq. (A7),

ACx + CxA
> =

∫ ∞
0

(
AesA fCu e

sA>
ds+ esA fCu e

sA>
A>
)
ds

=

∫ ∞
0

d

ds

(
esA fCu e

sA>
)
ds

= esA fCu e
sA>
∣∣∣
s→∞

− esA fCu esA
>
∣∣∣
s=0

= −fCu.
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For a stable matrix A this is the unique solution of the Lyapunov equation, for which we

introduce the short-hand notation L(A,E),

L(A,E) =

∫ ∞
0

esAE esA
>
ds. (A8)

Hence, we can write

Cx = L(A, fCu), . (A9)

which is the notation used in the main text. From a numerical viewpoint, the covariance

matrix Cx can be easily obtained by solving the Lyapunov equation
:::
eq.

:
(A7), which can be

written as a system of S2 linear equations, rather than by computing the integral in (A8).

Note also that solution of Lyapunov equation is linear in the perturbation covariance matrix,

L(A, c1E1 + c2E2) = c1 L(A,E1) + c2 L(A,E2). (A10)

B Construction of variability measure

We explain the construction of the variability measure V(E).
::
V ,

::::
see

::::
eq.

::::
(4)

:::
in

::::
the

:::::
main

::::::
text.

The construction is based on the comparison of the intensity of the system response relative

to the intensity of the applied perturbation. It should be stressed that, while we take special

care of quantifying these intensities in a reasonable way, alternative choices are possible.

Perturbation intensity A reasonable measure of the perturbation intensity should in-

crease with the number of pulses and the intensity of each pulse separately. In particular,

we expect it to be proportional to the pulse frequency f and to some function of the pulse

covariance matrix Cu.
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We propose to look at the squared displacements ‖uk‖2 induced by pulses uk. The accu-

mulated squared displacement in time interval [t, t+ T ] is

∑
tk∈[t,t+T ]

‖uk‖2.

Taking the average over pulse times and pulse directions,

Ef,u
∑

tk∈[t,t+T ]

‖uk‖2 =
∑

n|t<sn<t+T

Eu‖u‖2 f∆s,

where we have partitioned the time axis in small intervals of length ∆s (see derivation of

equation
:::
eq. (A6)). Then,

Ef,u
∑

tk∈[t,t+T ]

‖uk‖2 = Tr
(
Cu
)
fT.

The result is proportional to the length T of the considered time interval. The average

accumulated squared displacement per unit of time is

1

T
Ef,u

∑
tk∈[t,t+T ]

‖uk‖2 = Tr
(
fCu

)
. (B1)

As expected, this quantity is proportional to the pulse frequency f and increases with the pulse

covariance matrix Cu. Note also that f and Cu appear as a product, so that the expression

is compatible with the white-noise limit.

Equation
:::
Eq. (B1) quantifies the intensity of the perturbation applied to the entire ecosys-

tem. This measure is not directly appropriate to normalize the pertubation intensity across

systems. Indeed, when keeping the total perturbation intensity constant, the perturbation

applied to a given species would be weaker in a community with a larger number of species.

To eliminate this artefact, we normalize the perturbation intensity on a per species basis.
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Thus, we propose to quantify the perturbation intensity as

σ2
in =

f

S
TrCu. (B2)

Response intensity We measure the intensity of the system response in terms of the co-

variance matrix Cx. This matrix encodes the statistical properties of the biomass
:::::::::::
abundance

:::
(or

::::::::::
biomass)

:
fluctuations in stationary state. For example, species biomass

:::::::::::
abundance xi(t)

fluctuates around its equilibrium value Ni with variance Cx,ii. More generally, we can de-

scribe the fluctuations of any function ϕ of species biomasses
:::::::::::
abundance. The dynamics near

equilibrium are

ϕ(n(t)) = ϕ(N ) + v>x(t),

where vector v = ∇ϕ is the gradient of the function ϕ evaluated at the equilibrium N . This

vector gives the direction in which the system fluctuations are observed. Then, denoting the

temporal mean and variance by Et and Vart, we have

Vart (ϕ(n(t)) = Et
((
v>x(t)

)2
)

= Et
(
v>x(t)x(t)>v

)
= v>Et

(
x(t)x(t)>

)
v

= v>Cx v. (B3)

We use this variance to quantify the intensity of the system response. Rather than choosing

a particular vector v, we consider the average over all observation directions. Specifically, we

restrict attention to unit vectors v and average over the uniform distribution of such vectors.
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Denoting this average by Ev, we get

Ev Vart
(
ϕ(n(t)

)
= Ev

(
v>Cxv

)
= Tr Ev vv

>Cx.

It follows from species symmetry that the average Ev vv> is proportional to the unit matrix.

Moreover, because Tr vv> = 1 for all vectors v, the constant of proportionality is equal to 1
S

.

Hence,

Ev Vart
(
ϕ(n(t)

)
=

1

S
TrCx.

Therefore, we propose to quantify the response intensity as

σ2
out =

1

S
TrCx. (B4)

Variability and invariability We define variability V as the ratio of the response intensity

σ2
out and the perturbation intensity σ2

in,

V =
σ2

out

σ2
in

=
1
S

TrCx
f
S

TrCu
=

TrCx
f TrCu

.

Substituting equation
:::
eq.

:
(A9) for Cx, we get

V =
TrL(A, fCu)

f TrCu
= TrL

(
A,

Cu
TrCu

)
,

where we have used the linearity property (A10). We see that only the normalized perturba-

tion covariance matrix matters in this expression. That is, the variability measure focuses on

the directional effect of the perturbation. We make this dependence explicit in the notation,

and write

V(E) = TrL(A,E), (B5)
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where E = Cu
TrCu

is the perturbation direction, i.e., a covariance matrix with unit trace.

Variability is inversely related to stability: the more variable an ecosytem, the less stable

it is. For purpose of comparison, we construct a stability measure based on variability V(E),

which we call invariability I(E),

I(E) =
1

2V(E)
. (B6)

The factor 2 in this definition guarantees that we recover asymptotic resilience for the simplest

dynamical systems. To see this, consider a system of S non-interacting species, in which all

species have the same return rate λ. The community matrix is equal to A = −λ1 where

1 denotes the identity matrix. From the Lyapunov equation (A7) we get the stationary

covariance matrix L(A,E) = 1
2λ
E. Therefore, V(E) = 1

2λ
and I(E) = λ, which is equal to

the asymptotic resilience of this example system.

C Worst-case and mean-case variability

Worst-case variability is defined as

Vworst = max
E
V(E) = max

E
TrL(A,E) (C1)

where the maximum is taken over perturbation directions, i.e., over covariance matrices E

with TrE = 1. The function TrL(A,E) is linear in the perturbation direction E, see equation

:::
eq.

:
(A10), and the set of perturbation directions is convex. Hence, the maximum is reached

at an extreme point, that is, on the boundary of the set. The extreme points are the purely

directional perturbations (see Appendix E for the argument in the two-species case), so that

the maximum is reached at a purely directional perturbation. Arnoldi et al. (2016b) showed

that the worst-case variability can be easily computed, namely, as a specific norm of the
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operator Â−1 that maps E to L(A,E). Concretely

Â = A⊗ 1 + 1⊗ A,

so that
:
,
:::::::::
defining

:::::::::::::::::::::
Â = A⊗ 1 + 1⊗ A,

:

Vworst = ||Â−1||, (C2)

where || · || stands for the spectral norm of S2 × S2 matrices.

To define mean-case variability Vmean, we assume a probability distribution over the

perturbation directions, and compute the mean system response over this distribution. Due

to the linearity property (A10), this mean response is equal to the response to the mean

perturbation direction. Hence, we do not have to specify the full probability distribution over

the perturbation directions; it suffices to determine the mean perturbation direction. As can

be directly verified in the two-species case (Appendix E), if, averaged over the distribution

of perturbation directions, perturbation intensities are evenly distributed across species, and

positive and negative correlations between species perturbations cancel out, then the mean

perturbation direction is adirectional. This corresponds to the center of the set of perturbation

directions (the disc center in the two-species case
:::
the

:::::
disc

:::::::
center

::::::::::::
represented

:::
in

:::::
Fig.

::
3), and

is proportional to the identity matrix, that is, E = 1
S

1. Therefore,

Vmean = TrL(A, 1
S

1). (C3)
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D Perturbation types and variability

The perturbation type (environmental-, demographic- or immigration-type) affects how the

perturbation intensity is distributed across species. Therefore, it also affects our measure of

variability, as defined in Appendix B. Here we describe how the variability definition has to

be modified.

We defined variability measure (B5) as the intensity of the system response relative to the

intensity of the applied perturbation. To quantify the perturbation intensity in the case of

biomass-dependent
:::::::::::::::::::::::
abundance-dependent perturbations, we distinguish the intrinsic effect of

the perturbation on a species, which does not depend on the species’ biomass
:::::::::::
abundance, and

the total effect of the perturbation on the species, which does depend on biomass
:::::::::::
abundance.

We propose to express the perturbation intensity in terms of the intrinsic perturbation, while

it is the total perturbation that acts on the species dynamics.

Formally, for species i, we denote the intrinsic perturbation by ξintr
i (t) and the total per-

turbation by ξtot
i (t). Then, for a type-α perturbation, we have

ξtot
i (t) = N

α
2
i ξintr

i (t), (D1)

where Ni is the biomass
:::::::::::
abundance of species i. Thus, the intrinsic perturbation ξintr(t) can

be interpreted as the perturbation per unit of biomass. Equation
::::
per

:::::::
capita

::::::::::::::
perturbation

:::::::::
strength.

:::::
Eq. (D1) can be written in vector notation as

ξtot(t) = D
α
2 ξintr(t), (D2)

where D is the diagonal matrix whose entries are species equilibrium biomass
:::::::
values (Dii =

Ni).
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Both the intrinsic and total perturbation are multi-pulse. If we denote the pulses of the

intrinsic perturbation by uk, then, by equation
:::
eq. (D2), those of the total perturbation are

Dαuk::::::
D

α
2uk. Then, to quantify the perturbation intensity, we use the covariance matrix of the

pulses in the intrinsic perturbation. Repeating the
::::
The derivation leading to equation

:::
eq. (B2)

, we have

σ2
in =

1

S
Tr
(
fCu

)
.

::
is

::::
still

::::::
valid.

:
However, to compute the covariance matrix of the species displacements, we use

the covariance matrix of the pulses in the total perturbation. This corresponds to replacing

Cu by D
α
2CuD

α
2 in the derivation of equation

:::
eq. (B4), so that we get

σ2
out =

1

S
TrL

(
A, fD

α
2CuD

α
2

)
. (D3)

The variability measure for a type-α perturbation becomes

Vα =
σ2

out

σ2
in

= TrL
(
A,
D

α
2CuD

α
2

TrCu

)
,

or, in terms of the (intrinsic) perturbation direction E,

Vα(E) = TrL
(
A,D

α
2ED

α
2

)
. (D4)

Applying the same arguments as in Appendix C), we find that worst-case variability,

Vworst
α = max

E
Vα(E) = max

E
TrL

(
A,D

α
2ED

α
2

)
,

is attained at a perfectly correlated perturbation. If we define the operator (an S2 × S2
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matrix)

Dα = D
α
2 ⊗D

α
2 ,

then the worst case-variability can be computed as

Vworst
α = ||Â−1 ◦ Dα||, (D5)

where || · || is the spectral norm for S2 × S2 matrices. On the other hand, the mean-case

variability,

Vmean
α = TrL

(
A, 1

S
Dα
)
, (D6)

is attained by the uniform, uncorrelated perturbation.

E Perturbation directions in two dimensions

Variability spectra are built on the notion of perturbation directions. They are characterized

by a covariance matrix E with TrE = 1. To gain some intuition, we study the set of

perturbation directions in the case of two species.

Any perturbation direction E in two dimensions can be written as

E =

 1− x y

y x

 . (E1)

with 0 ≤ x ≤ 1 and y2 ≤ x(1 − x). The first inequality guarantees that the elements on

the diagonal are variances, i.e., positive numbers. The second inequality guarantees that the

off-diagonal element is a proper covariance, in particular, that the correlation coefficient is

contained between −1 and 1. Note also that matrix (E1) has always TrE = 1.

62



It follows from equation
::
eq.

:
(E1) that the set of perturbation directions in two dimensions

is parameterized by two numbers x and y. Using these numbers as axes of a two-dimensional

plot, we see that the set of perturbation directions corresponds to a disc with radius 0.5 and

centered at (0.5, 0) (cf.
:::
see

:
Fig. 3).

It is instructive to study the position of specific perturbation directions on the disc. The

point (0, 0) corresponds to a perturbation affecting only the first species, whereas point (1, 0)

is a perturbation only affecting the second species. More generally, any point on the boundary

of the disc correspond to a multi-pulse perturbation for which the individual pulses have a

fixed direction. For example, the point (0.5, 0.5) is a perturbation for which each pulse has

the same effect on species 1 and species 2, whereas the perturbation corresponding to point

(0.5,−0.5) consists of pulses that affect the two species equally strongly, but in an opposite

way. Perturbations on the boundary are perfectly correlated.

The perturbations towards the center of the disc are composed of pulses with more variable

directions. For example, a multi-pulse perturbation for which half of the pulses affect only

the second species, and the other pulses affect the two species equally strongly corresponds to

the point 1
2
(0, 1) + 1

2
(0.5, 0.5) = (0.25, 0.75). The mixture of different pulse directions is the

strongest at the center of the disc (0.5, 0). Examples of ways to realize this perturbation are

1
2
(0, 0) + 1

2
(1, 0), 1

2
(0.5, 0.5) + 1

2
(0.5,−0.5) and 1

4
(0, 0) + 1

4
(0.5, 0.5) + 1

4
(1, 0) + 1

4
(0.5,−0.5). In

each of these example, the pulses have their intensities, averaged over time, evenly distributed

across species, and affect them, again averaged over time, in an uncorrelated way. The

perturbation corresponding to the point (0.5, 0) is thus evenly distributed across species but

uncorrelated in time.

F Random Lotka-Volterra model
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Consider
::::
The

::::::::::::::
communities

:::::
used

:::
in

::::::
Figs.

::
4,

::
5
:::::
and

::
6

::::
are

:::::::::::::
constructed

:::::
from

::::
the

::::::::::::::::
Lotka-Volterra

::::::
model

:::::
with

:::::::::
random

::::::::::::
parameters.

::::
We

:::::::::
consider

:
a pool of species following random Lotka-Volterra

interactions
:::::::::
governed

:::
by

::::
the

:::::::::::
dynamics

dNi(t)

dt
=
riNi(t)

Ki

(
Ki −Ni −

Spool∑
j=1
j 6=i

BijNj(t)

)
, (F1)

and
::
we

:
let the dynamics settle to an equilibrium community of S remaining species. In the

above equation, the fact that species j has an effect of species i is noted as j  i. We fixed

the network connectance of 1
2
, so that species interact, on average, with half of the pool. By

gradually increasing the size of the pool and drawing random parameters –growth
:::
By

:::::::::
drawing

::::::::
random

:::::::
values

::::
for

::::
the

::::::::::::
parameters

::
–
::::::::
growth

:
rates ri, carrying capacities Ki, and interaction

strengths
:::::::::::::
competition

::::::::::::
coefficients

:
Bij – we generated many different

::::::::
generate

:
communities

of various diversity. We consider a single trophic level, representing unstructured, mostly

competitive, communities. The mean interaction strength is set to 0.1 and its standard

deviation to 0.1, thus allowing some occasional

:::
For

::::
the

:::::::::::::
communities

:::
in

::::
Fig.

:::
4,

:::
we

::::
set

:::::::::::
Spool = 50,

:::::
and

::::::
chose

:::
the

:::::::::::
parameter

:::::::
values

:::
as

::::::::
follows,

:
ri:

::::::::::
randomly

:::::::
drawn

::::::
from

:::::::::::
N (1, 0.2),

::
a
::::::::
normal

:::::::::::::
distribution

::::::
with

::::::
mean

::
1
:::::
and

:::::::::
standard

::::::::::
deviation

::::
0.2

::::::::::::::
(independent

:::::::
draws

::::
for

:::::::::
different

:::::::::
species)

:::
Ki:

::::::
drawn

::::::
from

::::::::::
N (1, 0.2)

:

:::
Bij:

::::
half

:::
of

::::
the

:::::::::::::
competition

::::::::::::
coefficients

::::
are

::::
set

:::::::
equal

:::
to

::
0;

:::::
the

::::::
other

:::::
half

::::
are

::::::
drawn

::::::
from

:::::::::::::
N (0.1, 0.1).

:
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:::::
This

:::::::::::
procedure

:::::::::
resulted

:::
in

::
a
:::::::::::::

community
:::
of

::::::::
S = 50

:::::::::::
persistent

:::::::::
species.

:::::::
Note

:::::
that

::::::
some

:::
of

:::
the

:::::::::::::
competition

::::::::::::
coefficients

:::::
can

:::
be

::::::::::
negative,

:::
so

:::::
that

::::::
there

:::::
can

:::
be

:
positive interactions (e.g.

facilitation). Growth rates

:::
For

::::
the

::::::::::::::
communities

:::
in

::::
the

:::::
top

::::
row

:::
of

:::::
Fig.

:::
5,

::::
we

:::::::::
followed

:::::
the

::::::
same

:::::::::::
procedure,

::::::::
except

::::
that

::::
we

:::::::::
changed

::::
the

:::::
way

:::
of

:::::::::::
generating

::::
the

:::::::::::::
competition

::::::::::::
coefficients

:::::
Bij.:::

In
::::
the

:::::
case

:::::::::
without

:::::::::::::
interactions,

:::
all

::::
Bij :::::

were
::::
set

:::::
zero;

:::
in

::::
the

:::::
case

:::::
with

::::::
weak

:::::::::::::
interactions,

::::
the

:::::::::
non-zero

::::::::::::
coefficients

:::
Bij::::::

were
:::::::
drawn

:::::
from

:::::::::::::::
N (0.02, 0.02);

::::
and

:::
in

::::
the

:::::
case

:::::
with

:::::::
strong

::::::::::::::
interactions,

::::
the

:::::::::
non-zero

::::
Bij

:::::
were

:::::::
drawn

:::::
from

:::::::::::::
N (0.1, 0.1),

:::
as

:::
for

::::
the

:::::::::::::
community

::
of

:::::
Fig.

:::
4.

:

:::
We

::::::::
applied

:
a
::::::::
similar

:::::::::::
procedure

::
to

:::::::
obtain

::::
the

::::::::
bottom

::::
row

:::
of

::::
Fig.

:::
5,

::::
but

:::
for

::::::
these

:::::::::::::
communities

:::
the

:::::::::
growth

::::::
rates

:::
ri :

and carrying capacities are independently drawn
::
Ki::::::

were
:::::
not

:::::::
drawn

:::::::::::::::
independently.

:::::::::
Instead,

::::
we

:::::
first

:::::
drew

::::::::::
auxiliary

::::::::::
variables

:::
ai :::::

from
:::::::::::
N (1, 0.2),

:::
bi from a normal

distribution of unit mean and 0.2 standard deviation
::::::::::
N (1, 0.1)

::::
and

::
ci::::::

from
::::::::::
N (1, 0.1),

:::::
and

:::::
then

:::
set

:::::::::
ri = biai:::::

and
:::::::::::
Ki = ci/ai.

Increasing the
::::
For

::::
the

::::::::::::::
communities

:::
of

:::::
Fig.

:::
6,

::::
we

:::::::
varied

::::
the

:
size of the pool from one

species
:::::::
species

:::::
pool

::::::
Spool:::

so
::::::
that

::::
the

:::::::::
realized

::::::::
species

:::::::::
richness

::::::::
covered

::::
the

:::::::
range

::::::
from

::
1
:::
to

:::
20.

:::::::::::::
Specifically,

::::
we

::::::
drew

::::::
Spool ::::::::::

randomly
::::::
from

::
1
:
to one hundred we generated communities

of various realized diversity.We repeated the process until we had 50
::::
100,

:::::
and

:::::::::::
generated

:::
the

::::::::::::
parameter

:::::::
values

:::
as

:::
in

::::
Fig.

:::
4.

:::::
We

::::::::::
repeated

::::
this

:::::::::::
procedure

:::::::
many

:::::::
times,

::::::
until

::::::::::
obtaining

:::::
1000

:
communities for each value of realized diversity, from 1 to 30. For each realization

of the random
:::::::
species

:::::::::
richness

:::
S

::::::
from

::
1
:::

to
:::::

20.
::::::::

Then,
::::
for

:::::
each

:::::::::
realized

:
community, and

a given perturbation type we then
:::
for

::::::
each

:::
of

::::
the

::::::
three

::::::::::::::
perturbation

:::::::
types

::::::::
(α = 0,

:::::::
α = 1

::::
and

::::::::
α = 2),

::::
we

:
generated 1000 random perturbations leading to

::
a

:::::::::::
variability

:::::::::::::
distribution

::
of

:
1000 valuesof variability. From each variability distribution we extracted its mean, its

first and second quartile, its maximum and minimum values. From the
:
.
::::::
From

::::
the

:::::::::::
variability

:::::::::::::
distributions

:::
we

::::::::::
extracted

:::::::::
median,

::::
5th

:::::
and

:::::
95th

:::::::::::
percentile,

::::
and

:::::::::::
minimum

::::
and

::::::::::::
maximum.

::::
For
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:::
the

:::::::::
realized

:
communities we computed asymptotic resilience, worst-case variability and the

prediction for the mean. Then
::::::::
median.

:::::::::
Finally, we computed the median of these statistics

and predictionsover the set of 50 realizations per values of diversity, leading to
:
,
:::
all

::::::::::::
represented

::
in

:
Fig. 6.

G Limit of strong interactions
::::::::::::::::::
Genericity

:::::
in

::::::::::::::::
strongly

::::::::::::::::::
interacting

:::::::::::::::::::::::
communities

We give some elements as to why the behavior reported in Figs. 4 and 5 in the main text can be

expected to be a general trend in diverse communities of interacting species. For that purpose,

consider
:::::::
Denote

:::
by

:::::::
Vspec i
α ::::

the
::::::::::::
community

:::::::::::
variability

:::::::::
induced

:::
by

::
a

:::::::
type-α

::::::::::::::
perturbation

:::::
that

::
is

:::::
fully

::::::::
focused

:::
on

::
a

::::::
single

:::::::
species

::
i.
:::::

We
:::
are

:::::::::::
interested

::
in

::::
the

:::::::::::::
relationship

:::::::::
between

::::
this

:::::::::::
variability

::::
and

::::
the

::::::::::::
equilibrium

::::::::::::
abundance

:::
Ni:::

of
::::
the

:::::::::::
perturbed

::::::::
species

::
i.

:

:::::
First,

:::::
note

:::::
that

::::
for

::::::::::::::
single-species

:::::::::::::::
perturbations

::::
the

:::::::::::
variability

::::::::
metrics

:::::::
Vspec i
α ::::

for
:::::::::
different

:::::::::::::
perturbation

::::::
types

::
α
::::
are

:::::::::
directly

::::::::
linked.

::::::
From

::::::::::
definition

::::::
(D4)

:::
we

::::
get

:::::
that

:

Vspec i
α = Nα

i V
spec i
α=0 .

:::::::::::::::::::
(G1)

:::::::
Hence,

::
it

::::::::
suffices

:::
to

:::::::
study

::::
the

:::::::::
behavior

:::
of

:::::::
Vspec i
α=0 .

:

:::::
Next,

:::::::::
consider

:::::::
again

:
the Lotka-Volterra dynamics (F1) , from the perspective of a focal

species (of index 0)
:
i. If a stable equilibrium exists in which the focal species survivesat

abundance N0,
:
,
::::::
small

:
displacements from equilibrium xi = Ni(t) − Ni will be

:::
are

:
met with
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the dynamics

dxi
dt

=
riNi

Ki

(
− xi −

∑
j 6=i

Bijxj

)
=

1

τi

(
− xi −

∑
j 6=i

Bijxj

)
, (G2)

In this expression τ0 sets the
::::::
where

::::::::::
τi = Ki

riNi ::::
has

:::::::
units

:::
of

::::::
time.

:::::
We

:::::::
claim

:::::
that

:::
τi:::::

sets
::
a

characteristic time scale of the focal species dynamics. This species-specific time scale
:
;

::
it

::::::::::
measures

::::
the

::::::::
typical

::::::
time

:::
it

::::::
takes

::::
for

:::::
the

::::::::
species

:::
to

::::::::
recover

::::::
from

:::
a

::::::::::::::
perturbation

:::::
that

:::::::::
displaces

::
it

::::::
from

:::
its

:::::::::::::
equilibrium.

::::::
This

:::::::
species

::::::::::
response

:::::
time

:
is directly related to the species’

contribution to variability . Indeed,
::::::::::
variability

::::::::
Vspec i
α=0 :

::
the slower the species, the larger

the impact of a repeated perturbation acting on this species, and the larger the species’

contribution to variability
::::::::
induced

:::::::::::
variability.

:

:::
We

::::::::::
illustrate

::::
the

:::::::::::::
relationship

:::::::::
between

::
τi:::::

and
::::::
Vspec i
α=0 :::

in
:::::
Fig.

::::
G1

::::::
(inset

:::::::::
panels).

::::
For

::::
the

::::
six

:::::::::::::
communities

:::
of

::::
Fig.

:::
5,

:::
we

:::
fit

::::
the

::::::::::::
power-law

::::::::::::
relationship

:

Vspec i
α=0 ∝ τ νi ,

::::::::::::
(G3)

::::::
where

::::
the

:::::::
index

:
i
::::::

runs
:::::
over

::::
the

::::
set

:::
of

:::::::::::
persistent

::::::::
species.

::::::
The

::::::::::
estimates

:::
of

:::::
the

::::::::::
exponent

::
ν

::::::
(using

:::::::
linear

:::::::::::
regression

::::
on

::::
the

::::::::
log-log

:::::
plot)

:::::
are

:::
all

::::::
close

:::
to

:::::
one.

::::::
This

:::::::
result

:::
is

::::::::
obvious

::::
for

:::
the

::::::::::::::
communities

:::::::::
without

:::::::::::::
interactions,

::::
for

::::::
which

:::::::::::::
Vspec i
α=0 = 1

2
τi:(see also Discussion).

:::::::::
left-hand

::::::::
panels).

::::::
But

::::
the

::::::
same

:::::::
result

:::::::::
remains

::::::
valid

:::
in

::::
the

::::::::::
presence

:::
of

::::::::::::::
interactions.

:::::
We

:::::
find

:::::
that

::::::::::::
interactions

:::
do

::::
not

:::::::::::::
substantially

::::::::
modify

::::
the

:::::
time

:::::
scale

:::
on

:::::::
which

::
a

:::::::
species

::::::::::
responds

::
to

:::::::::::::::
perturbations

:::::::::
affecting

:::::
only

:::::
that

::::::::
species.

:

Without interactions, we have N0 = K0 and therefore τ0 = 1/r0. In this case the time

scale of that speciesdynamics is set by the inverse of its growth rate, a priori unrelated to its

abundance K0. This is the case in the example on the first row %DIF ¿
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Figure G1:
:::::::::
Clarifying

:::
the

:::::::::::
relationship

::::::::
between

::::::::::
abundance

::
of

:::::::::
perturbed

:::::::
species

::::
and

::::::::::
community

::::::::::
variability.

::
In

:::::::::
Appendix

::
G

:::
we

:::::::::
introduce

:::
the

:::::::::
auxiliary

:::::::
variable

:::
τi,:::

the
::::::::::::
characteristic

:::::
time

:::::
scale

::
of

:::::::
species

:
i,
:::
to

:::::::
explain

:::
the

::::::::::
relationship

::::::::
between

:::::::::
variability

::::::
Vspec i
α=0 ::::

and
::::::::::
abundance

::::
Ni. :::

For
::::
the

:::
six

:::::::::::
communities

::
of

::::
Fig.

::
5
::
in

::::
the

::::
main

:::::
text,

::
we

::::
plot

:::
τi ::

vs
:::
Ni::

in
::::
the

:::::
main

::::::
panels,

::::
and

:::::::
Vspec i
α=0 ::

vs
::
τi:::

in
:::
the

:::::
inset

::::::
panels.

::::
We

:::
fit

:
a
::::::
power

::::
law

::
to

:::::
each

::
of

:::::
these

::::::::::::
relationships,

:::::
using

::::::
linear

:::::::::
regression

:::
on

:::
the

:::::::
log-log

::::
plot.

:::::
The

:::::::::
estimated

::::::::::
exponents

:
γ
::::

(for
::::
the

::::
data

:::
τi ::

vs
::::
Ni)

:::
and

::
ν
::::
(for

:::
the

:::::
data

::::::
Vspec i
α=0 :::

vs
:::
τi) :::

are
::::::::
reported

::
in

::::
the

::::::
panels.
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::::::::::
Therefore,

:::
to

::::::
study

::::
the

:::::::::::::
relationship

:::::::::
between

:::
Ni:::::

and
:::::::
Vspec i
α ,

::::
we

::::
can

::::::::
restrict

:::
to

::::
the

::::::::
simpler

::::::::::::
relationship

:::::::::
between

:::
Ni::::

and
::::::::::
τi = Ki

riNi
,
:::::::
which

::
is

::::::::::::
determined

:::
by

::::
the

:::::::::::::
correlations

::::::::
between

::::::::
growth

:::::
rates

:::
ri,:::::::::

carrying
:::::::::::
capacities

:::
Ki:::::

and
::::::::::::
equilibrium

:::::::::::::
abundances

::::
Ni.:::::

Fig.
::::
G1

::::::
(main

::::::::
panels)

:::::::
shows

::::
this

:::::::::::::
relationship

:::
for

::::
the

::::
six

:::::::::::::
communities

:
of Fig. 5, in which we drew

::
5.

::::::::
Fitting

::::
the

:::::::
power

::::
law

τi ∝ Nγ
i ,

::::::::
(G4)

:::
we

:::::
find

::::::::
various

::::::::::
estimates

::::
for

::::
the

::::::::::
exponent

:::
γ.

:::::::::::
Without

:::::::::::::
interactions,

::::
we

:::::
have

::::::::::
Ni = Ki,:::::

and

::::::
hence,

:::::::::
τi = 1

ri
.
::
If

:
growth rates and carrying capacities independently. Alternatively

:::
are

:::::::
drawn

:::::::::::::::
independently,

::::::::::::
abundance

:::::
and

:::::::::
response

::::::
time

::::
are

:::::::::::
unrelated,

:::::::::
leading

:::
to

:::::::
γ ≈ 0

::::::
(Fig.

::::
G1, we

could assume some trade-off between
::::::::::
upper-left

::::::::
panel).

::::::::::::::::
Alternatively,

::
if

:
growth rates and

carrying capacities , causing low abundance to be associated with lower contribution to

variability, illustrated on the second row of
::::::
satisfy

::::::
some

::::::::::
trade-off,

::::::::
higher

:::::::::::
abundance

::::::::
(larger

::::
Ki) ::

is
:::::::::::
associated

::::::
with

:::::::
longer

::::::::::
response

:::::
time

:::::::::
(smaller

:::::
ri), ::::::::

leading
:::
to

:::::::
γ > 0

:
(Fig. 5. In other

words, without interactions, there is no clear relationship to be expected between abundance

of perturbed species and variability.

If species interact, however, the focal species equilibrium abundance will satisfy

N0 = K0 +
∑
j

B0jNj,

where the sum measures the contribution of all
::::
G1,

::::::::::
lower-left

::::::::
panel).

::::::::
When

:::::::::::
increasing

::::
the

:::::::::::::
interactions,

::::
the

:::::
link

:::::::::
between

::::
Ni:::::

and
::::
Ki::::::::::

becomes
::::::::
weaker.

::::::::::
Indeed,

::::::
from

::::
the

:::::::::::::
equilibrium
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::::::::::
condition

:::
for

::::::::
species

:
i
::::
we

:::::
have

:

Ni
::

= Ki +
∑
j 6=i

BijNj

:::::::::::::::::

= Ki +

(∑
j 6=i

BijKj +
∑
k 6=j 6=i

BijBjkKk +
∑

l 6=k 6=j 6=i

BijBjkBklKl + . . .

)
,

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

::::::
where

:::
in

::::
the

::::::::
second

::::
line

::::
we

:::::
have

::::::
used

::::
the

::::::::::::
equilibrium

:::::::::::
condition

:::
for

::::
the

:
other species. This

term involves potentially very indirect effects between species. Other surviving species satisfy

similar conditions so that

N0 = K0 +
∑
j

B0jKj +
∑
j,k

B0jBjkKk +
∑
j,k,l

B0jBjkBklKl + . . .

where we see direct interactionsj  0 (B0j) but also indirect effects k  j  0 (B0jBjk) and

so on. Hence, if the overall interactions with all other species plays a preponderant role in

determining the focal species abundance, then the carrying capacity K0 will not control N0.

Hence, the characteristic time scale τ0 of the focal species can become inversely proportional

to its abundance N0. If this is the case,
::::
For

:::::::::::
sufficiently

:::::::
strong

::::::::::::::
interactions,

::::
the

::::::
terms

:::::::::
between

::::::::
brackets

:::::::::::
dominate

::::
the

::::::
term

::::
Ki,:::

so
:::::
that

:::
Ni:::::

and
::::
Ki ::::::::

become
:::::::::::
unrelated.

::::
In

::::
this

::::::
case,

::::
we

:::::
have

::::::::
τi ∝ 1

Ni
,
:::::::::
leading

:::
to

:::::::::
γ ≈ −1:

::
more abundant species have faster dynamics and generate a

smaller response if perturbed independently of their abundance, that is, if the perturbation

is of the immigration type (α = 0). This explains the
:::::::
smaller

::::::::::
response

::::::
time.

::::::
This

:::::::::
limiting

::::
case

:::
is

:::::::::
observed

::::::
both

::
if
:::
ri:::::

and
:::
Ki::::

are
::::::::::::::
independent,

:::::
and

::
if
::::::
they

:::::::
satisfy

::
a
::::::::::
trade-off

::::::
(Fig.

::::
G1,

:::::::::::
right-hand

:::::::::
panels).

:
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:::::::
Finally,

:::::::::
putting

:::::::::
together

::::
eqs.

::::::
(G1,

::::
G3,

::::::
G4),

:::
we

::::
get

:

Vspec i
α ∝ Nα

i τ
ν
i ∝ Nα+γν

i ≈ Nα+γ
i ,

::::::::::::::::::::::::::::::::::
(G5)

::::::
where

:::
in

::::
the

:::::
last

:::::
step

::::
we

:::::
have

::::::
used

:::::
that

:::::::
ν ≈ 1.

::::::
The

:
relationship between abundance and

variability shown in the leftmost panel of Fig. 4. If perturbation intensity depends on

species abundance
::
of

:::::::::::
perturbed

::::::::
species

:::::
and

:::::::::::::
community

:::::::::::
variability

:::
is

:::::::::
strongly

:::::::::::::
determined

::
by

:::::
the

::::::::::
exponent

:::
γ,

::::::
that

:::
is,

::::
by

::::
the

:::::::::::::
relationship

:::::::::
between

::::::::::::
abundance

::::
Ni:::::

and
:::::::::
response

::::::
time

::
τi.::::

In
:::::

the
:::::
case

:::
of

::::::
weak

::::::::::::::
interactions,

::::
the

:::::::
latter

:::::::::::::
relationship

::::::::::
depends

:::
on

::::
the

::::::::::
assumed

:::::
link

::::::::
between

::::::::
growth

:::::
rate

:::
ri ::::

and
::::::::::
carrying

:::::::::
capacity

::::
Ki,:::

so
:::::
that

::::
no

::::::::::::::
unambiguous

:::::::::::::
relationship

::
is

:::
to

::
be

::::::::::
expected

::::::::::
between

:::::::::::
abundance

:::::
and

::::::::::::
variability.

::::::::::
However, in the case of demographic-type

(α = 1) or environmental-type (α = 2) perturbations, we obtain the relationships shown in

the other two panels of Fig. 4. In summary, if species interactions are sufficiently strong and

heterogeneous, we expect clear relationships between abundance of perturbed species
::::
limit

:::
of

::::::
strong

::::::::::::::
interactions,

:::
we

::::::
have

::::::::
γ ≈ −1

:
and community variability

Vspec i
α ∝ Nα−1

i .
:::::::::::::::

(G6)

:::::::
Hence,

:::
for

:::::::::::::::::::
immigration-type

:::::::::::::::
perturbations

::::::::
(α = 0)

:::::::::::
variability

::
is

::::::::::
inversely

:::::::::::::
proportional

:::
to

::::
the

:::::::::::
abundance

:::
of

::::
the

:::::::::::
perturbed

:::::::::
species.

::::
In

::::::::::
contrast,

:::
for

::::::::::::::::
environmental

:::::::::::::::
perturbations

:::::::::
(α = 2),

::::::::::
variability

:::
is

::::::::
directly

::::::::::::::
proportional

:::
to

::::
the

::::::::::::
abundance

::
of

::::
the

:::::::::::
perturbed

:::::::::
species.

:::::::
These

::::
are

::::
the

:::::::::::::
relationships

:::::::::
depicted

:::
in

::::::
Figs.

::
4

::::
and

::
5
:::
of

::::
the

::::::
main

:::::
text.
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H Variability and abundance statistics

From the observed relationship between abundance and variability (Figs. 4 and 5), patterns

for worst- and mean-case variability can be deduced. This reveals a connection between

stability and diversity metrics.

Conisder the variability
:::::::
Denote

::::
by Vspec i

α caused by a perturbation of type
:::
the

::::::::::::
community

::::::::::
variability

:::::::::
induced

:::
by

::
a
::::::
type-α ,

:::::::::::::
perturbation fully focused on species i. In communities with

strong and heterogeneous interactions (
::::
We

::::::
start

:::::
from

:::::
the

::::::::::::::::::::
power-relationship

::::::
(G6),

::::::::
linking

::::
this

:::::::::::
variability

:::::
and

::::
the

:::::::::::::
equilibrium

::::::::::::
abundance

::
of

::::::::
species

:::
i.

::::
As

::::::::
argued

:::
in

:
Appendix G) we

have that

Vspec i
α ∝ Nα

i︸︷︷︸
perturbation

× N−1
i︸︷︷︸

response

= Nα−1
i .

:
,
:::
we

::::::::
expect

::::
this

:::::::::::::
relationship

:::
to

:::::
hold

::::
for

:::::::::::
sufficiently

::::::::
strong

:::::::::::::
interactions.

:

For immigration-type perturbations (α = 0), worst-case variability is approached by taking

the maximum over species which gives

Vworst
α=0 ≈ max

i
Vspec i
α=0 ∝

1

miniNi

. (H1)

so that worst-case variability
:::
the

::::::
worst

:::::
case

:
is governed by the rarest species. Furthermore,

::::::::
Because

:
the abundance of the rarest species typically decreases with diversity, so that the cor-

responding diversity-stability relationship is decreasing. For mean-case variability
:
,
::::::::::
averaging

::::
over

::::::::
species

:::::::::::
individual

:::::::::::::::
contributions,

:
we get

Vmean
α=0 =

1

S

∑
i

Vspec i
α=0 ∝

1

S

∑
i

1

Ni

= 〈N〉−1
harm, (H2)

where 〈N〉harm stands for the harmonic mean of species abundances. Mean abundance typ-
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ically decreases with diversity, so that the corresponding diversity-stability relationship is

decreasing.

When caused by environmental-type perturbations (α = 2), variability is proportional to

the abundance of the perturbed species, so that the worst case is
::::::::::
worst-case

:::::::::::
variability

:::
is

approached by taking the maximum over species, giving

Vworst
α=2 ≈ max

i
Vspec i
α=0 ∝ max

i
Ni., (H3)

so that worst-case invariability
:::
the

:::::::
worst

:::::
case is governed by the most abundant species. For

mean-case variability , averaging over species individual contributions, we get

Vmean
α=2 ∝

1

S

∑
i

Ni = 〈N〉arith, (H4)

the arithmetic mean of species abundances. Mean abundance typically decreases with diver-

sity, so that the corresponding diversity-stability relationship is increasing.

Note , that when caused by demographic-type perturbations (α = 1) the species-by-species

approach does not work: demographic variability probes a purely collective property of the

community.
::::
The

:::::::::
different

::::::::::::::
relationships

:::::::::
between

::::::::::::
abundance

:::::
and

:::::::::::
variability

::::
are

:::::::::::
illustrated

:::
in

::::
Fig.

::::
H1.

:

I Population- and ecosystem-level stability

In this appendix we revisit the diversity-stability relationships reported in Fig. 6. Instead

of using average variance, eq. (2), to define variability, as we did so far, let us consider two

measures that have been proposed to quantify stability at the ecosystem and at the population

level. The first one, Ieco, is simply the inverse CV of total biomass Ntot. The second, Ipop, is
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Figure H1: Invariability and species abundance. Top row: mean-case, bottom row: worst-case. ×-marks:

analytical formula; +-marks: approximation in terms of abundance (see Appendix H); thick line: simulation

results. For immigration-type perturbations (first column, in blue), mean-case invariability scales as the

harmonic mean abundance (see eq. (H2)), which decreases with diversity. Worst-case invariability scales as

the abundance of the rarest species. On the other hand, in response to environmental-type perturbations

(third column, in red), mean-case variability scales as the arithmetic mean abundance (see eq. (H4)) so that

invariability increases. Worst-case variability scales as the abundance of the most common species. In between

(second column, in green), for demographic-type perturbations, neither worst- nor mean-case invariability is

determined by statistics of species abundances.
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the inverse weighted mean CV of species biomass. More precisely if pi = Ni/Ntot, we define

Ieco =
1

CV2(Ntot)
; Ipop =

1

(
∑

i piCV(Ni))
2 .

On the top row of Fig. I1 we see that Ieco increases with diversity for all perturbation types.

On the bottom row we see that Ipop decreases with diversity for all perturbation types.

By construction, regardless of perturbation type, Ieco gives a predominant weight to

abundant species while also allowing for buffering effects driven by synchrony between species

time-series (Loreau and de Mazancourt, 2013). On the other hand, regardless of perturbation

type, Ipop gives a large weight to rare species.

In fact, along any environmental gradient Ipop detects transcritical bifurcations, i.e. goes

to zero whenever a species gradually becomes extinct (Haegeman and Loreau, 2011). In this

sense it is clearly sensitive to the presence of rare species. On the other hand, Ieco relates to

the variability of total biomass which, by construction gives more weight to abundant species

than to rare ones, but is also known to be a very specific direction in phase-space. Indeed,

for competitive systems, due to species compensation, it is the most stable directions, i.e. the

direction along which perturbations are absorbed the fastest (Allesina and Tang, 2012; Arnoldi et al., 2016a)

. This effect was not present in the measure used in the main text, i.e. average variance, seen

as the outcome of a random sampling over directions of observations (see Appendix B).

We see here the strong effect that the choice of observation can have on variability patterns,

due to emphasis it puts on specific species abundance classes.
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