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Abstract

Empirical knowledge of ecosystem stability and ef-diversity-stability relationships is mostly
built-based on the analysis of temporal variability of population and ecosystem properties.
Variability, however, often depends on external factors that act as disturbances, making it
difficult to compare its value across systems —and relate it to other stability concepts. Here
we show how variability, when seen-viewed as a response to stochastic perturbationsef-varieus
t¥pes, can reveal inherent stability properties of ecological communities, with clear connec-
tions with other stability measuresnotions. This requires abandoning one-dimensional repre-

sentationsef-stabiity, in which a single variability measurement is taken as a proxy for how

stable a system is, and instead consider the whole +

Y

of-the-system’sresponse-to-the-vast-set of variability values associated to a given communit
reflecting the whole set of perturbations that can generate variability. fa—speeies-rich-model

eommunitiesAgainst the vertiginous dimensionality of the perturbation set, we show that there

partietdara generic variability-abundance pattern emerges from community assembly, which
relates variability to the abundance of perturbed species. As a consequence, the response

to stochastic immigration is typtealy—governed by rare species while common species drive
the response to environmental perturbations. We-show—that-In particular, the contrasting

contributions of different species abundance classes can be-—respensiblefor-lead to opposite

diversity-stability patterns: s—,_which can be understood
from basic statistics of the abundance distribution. Our work shows that a multidimensional

perspective on stability-variability allows one to better appreciate the dynamical richness of

s-ecological systems and the

underlying meaning of their stability patterns.



2 Keywords: ecologiealstability—diversity-stability relationship, immigration stochasticit

s demographic stochasticity, environmental stochasticity, rare species, common species, diversity

7 meastres—disordered-systems;-asymptotic resilience.
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Introduction

Ecological stability is a notoriously elusive and multifaceted concept (Pimm, 1984; Donohue
et al., 2016). At the same time, understanding its drivers and relationship with biodiversity
is a fundamental, pressing, yet enduring challenge for ecology (Elton, 1946; MacArthur, 1955;
May, 1973a; McCann, 2000).

a-higherstability)-The temporal variability of populations or ecosystem functions, where lower
variability is interpreted as higher stability, is an attractive facet of ecological stability, for sev-

eral notablereasons. First, variability is empirically accessible using simple time-series statis-

tics s

—(Tilman et al., 1996). Second, variability — or its inverse, invariability — is a flexible notion
that can be applied across levels of biological organization (Haegeman et al., 2016) and spatial
scales (Wang and Loreau, 2014; Wang et al., 2017). Third, variability is-can be indicative of the
risk that an ecological system might go extinct, collapse or experience a regime shift (Scheffer
et al., 2009). During the last decade, the relationship between biodiversity and ecological sta-

bility has thus been extensively studied empirically

In the-a literal sense, stability is the property of what tends to remain unchanged (Pimm,

1991). Variability denotes the tendency of a variable to change in time, so that its inverse,
invariability, fits this intuitive definitionefstabilityy. However, variability is not necessarily an
inherent property of the system that is observed (e.g., a community of interacting species),
as it typically also depends on external factors that act as perturbations, and generate the

observed variability. In other words, the variability of an-eeelogical-a community is not a prop-
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erty of that community alone. It may be caused by a particular perturbation regime {e-g-

wotdd-so that a different regime could lead to a different value of variability. Stronger pertur-
bations will generate larger fluctuations, and the way a perturbation’s intensity is distributed
and correlated across species is also critical. In other words, a variability measurement reflects

the response of a system to the specific environmental context in which it is embedded.

That-being—saidDespite this complexity, quantifying the fluctuations of ;—an ecosystem

property (e.g., primary productionef-an—ecosystem—) can be of foremost practical interest ;
as it provides —a measure of predictability in a given environmental context —a—meastre

of-itspredietability—(Griffin et al., 2009). However, to generalize results beyond the specific
context in which variability is measured, use variability to compare the stability of differ-
ent systems, establish links between different stability notions, or reconcile the conflicting
diversity-stability patterns and predictions reported in the empirical and theoretical litera-
ture (Ives and Carpenter, 2007), one needs to know how variability measurements can reflect
a system’s inherent dynamical prepertiesfeatures.

Teo-dosoHere, we adopt an approach in which stability is viewed as the inherent ability
of a dynamical system to endure perturbations (Fig. 1A). As-a—eonsequenee—For simplicity

we will restrict to systems near equilibrium, by opposition to. e.g.. limit cycles or chaotic
attractors. We propose that a measure of stability should net-be-asseciated—-withreflect, not

a particular perturbation (as in Fig. 1B), but instead-should-refleet-a system’s propensity to
withstand perturbations—in—general—

We-a whole class of perturbations. We therefore consider a vast range-ofpossibleperturbations

that—ean—generate—variabilityperturbation set, and study ;—instead—ofa—unigque—measure;
the—eorresponding—broad—the corresponding range of community responses —which—we—eall

» (Fig. 1C). Even from a theoretical perspective, considering all possi-




A System-view on stability

perturbation system » response

B Variability dependent on system and perturbation

single
perturbation —| system » variability
value

C Variability as an inherent system property

perturbation 1
perturbation 2 — ]
perturbation 3
perturbation4

_variability
" distribution

system

yrr

Figure 1: Variability vs stability. A: Stability quantifies the way a system responds to perturbations, seen as
an inherent property of the system (indicated by the red framed box). B: By contrast, temporal variability is

typically a feature of both the system studied and external factors that act as perturbations. C: For variability

to measure-thestability—be an inherent property of the system, one can consider a whole set of perturbations,

thus integrating out the dependence on specific external factors.
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ble perturbations that any—eeological-community—an ecosystem can face is a daunting task.

restrict our attention to model ecological communities near equilibrium, perturbed by weak
stochastic perturbations, and derive analytical formulas for two statistieal-properties-of-their
vartability-speetrumcomplementary features of the set of their variability values: its average
valie(mean-ease seenario)-and-its targest-valwe-fand maximum, corresponding to the mean-
and worst-case seenariojperturbation scenarios, respectively.

perturbation-types-After having developed a general theory of variability that can be applied
to any model community near equilibrium, we turn our attention to species-rich communities
that_are assembled from nonlinear dynamics. We show that a generic variability-abundance
pattern can emerge from the complex interactions between species during assembly. We argue
that_this pattern, in conjunction with the type of perturbations considered (environmental,
demographic, or caused by stochastic immigration), and-shew-that-there-exist-generie-patterns
fer-whieh-determines the specific species abundance class govern-the-variabilityspeetrum—that

overns the variability distribution. In particular, we demenstratethatthere-is-establish a
generic link between rare species, worst-case variability, and asymptotic resilience — the long-

term rate of return to equilibrium following a pulse perturbation. We then-explore-therole

finally illustrate

that the contrasting contributions of various species abundance classes can be responsible

for opposite
eommnitiesdiversity-invariability patterns.

T-a—nutshell—the The goal of our work is (i) to demonstrate that variability is an inher-
ently multidimensional notion, reflecting the multidimensionality of an ecosystem’s responses

to perturbations; (ii) to show that clear patterns exist within-in ecosystem responses to per-
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turbationsrefleeting—, which reflect the dynamical properties of distinct species abundance
classes; (iii) to argue that, in order to compare and predict stability-variability patterns, it is
paramount to first identify to which abundance class these patterns or predictions refer to;
and finally, (iv) to propose that a multidimensional perspective on stabiity-variability allows
one to better appreciate the dynamical richness of ecosystems, and the underlying meaning

of their stability patterns.

Conceptual framework

eonvenient-setting-of-communitiesmedeled-We focus on communities modelled as dynamical
systems elese-te-an-at_equilibrium, and study their responses to a whole class of stochastic

white-noise forcing. In this section we outline the theory, focusing on ecological intuitions,
while Appendix A through D provides a self-contained presentation of its mathematical foun-

dations. Our work follows traditional approaches of theoretical ecolo May. 1973a: Ives et al., 2003

extending the analysis to encompass a large perturbation set.

Perturbed communities

ke ool variablos
Let N;(t) ¢

denotethedifference-betweenrepresent the abundance (or biomass) of species i ‘s—-biomass

N{trat time ¢, and its-z;(t) = N;(t) — IV; its displacement from an equilibrium value N;, with

¢ running over S coexisting species that form an ecological community. We model biomass
fluetuations-fluctuations in abundance (hence variability) as a response to weak-some stochas-
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tic forcing. We focus on stationary fluctuations caused by weak perturbations with zero mean;

which are governed by the following dynamical system, written from the perspective of any
feeal-species ¢ —the-dynamiesread- The-as

»n

d
i = 32 )+ 9o/N 60 1

ﬂuctuatlons 1nteract1ons pert urbatlon

In this expression, the coefficients A;; represent the effect that a small change in—-biomass
of-of abundance of species j has on the biemass-abundance of species i. Organized in the
community matrizc A = (A;;), they encode the linearized-dynamiesnear—equilibrivm—of the
non-hnear-model-that-hasJead-te-linearization of the nonlinear system of which (N;) —Fhe

is an equilibrium. In the perturbation term,

O_iNi% ‘/Vl(t)v

&(t) denotes a standard white-noise
source (VanKampen; 1997} Arnold, 1974; Van Kampen, 1997). In discrete time WoA{#)-&(t)

would be a normally distributed random variable with zero mean and unit variance, drawn

independently at each time step (Appendix A). We-thus-asswme no-temporal-antoecorrelations

Community models of the form eq. (1) were studied by Ives et al. (2003) to analyze ecological

time series. In their approach, stability properties are inferred from the system’s response
to specific perturbations. Here we build on a similar formalism. but explicitly explore a

LTf the perturbation effect does not have zero mean, an equivalent system can be studied by redefining the
equilibrium as the mean of species time series.



141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

vast_set of possible perturbations. Although environmental often follow temporal patterns

is-net-a-eritical-assumptionfor-what-folows—We-willallew(Vasseur and Yodzis, 2004; Ruokolainen et al., :

we will not consider autocorrelated perturbations. It would thus be interesting to extend

the analysis to more general temporal structures of perturbations, as well as to nonlinear

behaviors. What we will explicitly consider, however, fer-are temporal correlations between

Woltand W {twhich-eould-model-¢;(¢) and &;(t), a situation in which individuals of species
i and j are similar in their perception of a given perturbation—Fhe-perturbation—term {22}

seetions-, _a_property known to have potentially strong. and unintuitive effects on species
dynamics (Ripa and Ives, 2003).

Not-all-dynamical systems-writtenas_For the fluctuations of species abundance in eq. (1)
lead-to-stationaryHluetuations—Forthis-to-be-the-easeto be stationary, the equilibrium state
(V;) must be stable. More technically, the eigenvalues of the community matrix A must satisfy
the-stabilityeriterion—all-its-eigenvalues-must-have negative real part (May, 1973a; Gurney
and Nisbet, 1998). The eigenvalie-with-maximal real part determines the slowest long-term
rate of return to equilibrium following any—-weak-a pulse perturbation. This rate is a commonly

used stability measure in theoretical studies—We-; we call it asymptotic resilience and denote

it by Re (Arnoldi et al., 20160). H—will-serve-as—a—refereneeTo illustrate the connections

between stability concepts, we will compare asymptotic resilience to measures of variability.

10
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Perturbation type

The

perturbation
term in eq. (1) represents the direct effect that a perturbation has on the abundance of species

7. It consists of two terms: some power a of v/ /N; . The latter

is a function of the perturbation itself, and of traits of species i that determine how individuals
of that species perceive the perturbation. The former defines a statistical relationship between
a perturbation’s direct effects and the mean biemass-abundance of perturbed species. Fhis
distinct sources of variability (Fig. 2).

When individuals of a given species respond in synchrony to a perturbation, its—direet
effeet-will-sealeroughly tinearkywith-the direct effect of the perturbation will be proportional
to_the abundance of that-the perturbed species, thus a value of a —ee—2?}—close to 2
(Lande et al., 2003). We call this type of perturbation environmental as fluctuations of en-
vironmental variables typically affect all individuals of a given species, leading, for—instanee;
e.g. to changes in the population growth rate {Lande-et-al5-2003)—(May, 1973b).

If individuals respond incoherently, however—e.g., some negatively and some positively,
the direct effect of the perturbation en—that-speeiesbiemass—will scale sublinearly with that
species abundance. For instance, demographic stochasticity can be seen as a perturbation
resulting from the inherent stochasticity of birth and death events, which are typically as-

sumed independent between individuals. In this case o = 1, and we thus call such type

demographic

Lande et al., 2003).

We can also consider purely exogenous perturbations, such as the random removal or

addition of individuals. Fhis-ean-be-done-bysetting-In this case a = 0. We call thelatter

11
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of-the-such perturbations immigrationtype—~type but stress that actual immigration events

are-not—neeessarity-of this—+type-do not necessarily statisfy this condition (e.g.. they can be
density-dependent).

purely-exogenousstochastieity {Furthermore, because we focus on zero-mean perturbations
erturbations of this type contain as much emigration than immigration. The reasonin

behind this nomenclature is that, in an open system. fluctuations of an otherwise constant
influx of individuals (immigration flux) would correspond to an immigration-type e=#6};

perturbation.
More generally, eq. (1) with a € [0,2] can describe a continuum of perturbation types.
Note that, although not unrelated, thestatistiealrelationship{22)such a statistical relationshi

between a perturbation’s direct effects and the biemass-abundance of perturbed species is not
equivalent to Taylor’s (1961) law. The latter is an empirically observed power-law relation-

ship between the variance and mean of population biemasstime-series—fluctuations. Hence,

in contrast to the perturbation type «a, the exponent of Taylor’s law depends on communit

dynamics. e.g., on species interactions (Kilpatrick and Ives, 2003). We will come back to this

point below and in the Discussion.

Community response vs perturbation intensity

For a given community, a stronger perturbation will naturally—lead to stronger fluctua-

A disproportionate increase in their amplitude as perturbation intensity changes would reveal
nonlinearity in the dynamics (Zelnik et al., 2019). In a linear setting, by-definitionthisisnot

12
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of-a—ecommunity s-dynamieal-properties—we-must—eentrel-however, such effects cannot occur

and there is only a linear dependency on perturbation intensity. This trivial dependency can

be removed by controlling for perturbation intensity. We now disenss-illustrate how to do so,
for a simple-given definition of variability.

Bytinearity—the-In our setting, fluctuations induced by white-noise forcing are normally
distributed, thus fully characterized by their variance and covariance. It thus—makes—sense

is therefore natural to construct a measure of variability based on the variance of species

isto-econsiderthe-averagevarianeetime-series. To compare variability of communities with
different species richness we will measure their average variance:

we—In empirical studies, variability is often associated to an ecosystem function (primar

roductivity, ecosystem respiration, etc). This amounts to measuring the ecosystem response

along a direction in the space of dynamical variables. In Appendix B we explain how
considering the average variance amounts to taking the expected variance along a random

choice of direction of observation. In this sense, eq. (2) represents the variance of a “typical”
observation.

We now wish to remove the trivial effect of perturbation intensity —from eq. (2). Let us

start from a one-dimensional system da/dt=—rz—+-eW-{tdx/dt = —\x + g&(t). Its station-

. . 2 . . 2 .
ary variance is o2=-"79—Wesee-here-theecontribution-o_,, = Z5. Here we see the combined

effect of perturbation o2 and dynamics #in-determiningtheresponse—Herea-natural-choiee

13
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forperturbation-intensityis-\, leading us to define o2 as measure of perturbation intensity. For
species-rich communities, H-we-define-the-intensity-of-a—perturbation—we define perturbation
intensity as the average intensity per species, that is, using the species-specific intensities g2:

1
2 2
Uin_gzi:o-i' (3)

When increasing all species-specific perturbation intensities by a factor ¢, both o2 and o2

increase by the same factor. To remove this trivial-dependeneyfromour-measure-of variability;

2 2
V - O-out/a-inﬂ

from—which-we-dedueea—measure-of stability-linear dependence, we define variability as

Y=t (4)

to an arbitrary perturbation type, we construct invariability —defined-as-as

T=1/2V (5)

The factor 1/2 in—the—definition—ofinvariability—allows—it—allows Z to coincide, for simple
systems, with asymptotic resilience —H—is—+the—ease—(Arnoldi et al., 20166). In particular
for the one-dimensional example considered above —where—R=r—and—inresponse—to

scfor_which R = A we_do

have V = 1/2)\ and thus Z = A = R ..

14
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VariabilityspeetraPerturbation directions and the variability distributions

Once intensity is controlled for, perturbations can still differ in how their intensity is dis-
tributed and correlated across species. Fer-example;swe-We want to be able to model the fact
that species with similar physiological traits enght-+te-will be affected in similar ways by, say,

temperature fluctuations, whereas individuals from dissimilar species may react in unrelated,

or even opposite, ways (Ripa and Ives, 2003). We will thus study the effect of ehaneine—at
fixed-intensity—theecovariancestruetures—the covariance structure of the perturbation terms,

i.e.changingthe-, the effect of the direction of perturbations;—and-not-their-overall-intensity-
._Spanning the set of all perturbation directions will raturally—define a whole range of com-

munity respenseresponses. Assuming some probability distribution over this set eenseguently
defines-translates into a probability distribution over the set of ensuing—responses—We—eall

thislatterdistribution—the—variability-speetrum responses, i.e., a variability distribution (see
Fig. 2). We will typieatly—assume all perturbation directions to be equiprobable, but our

framework allows different choices of prior. FnalyFinally, spanning the set of perturbation
types then reveals a continuous family of variability spectra (blue « green. and red distributions

15
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inFig—family of variability distributions. In Fig. 2 we show three archetypal elements of this

corresponding to o = 0 (blue distribution), o = 1

distribution).
For each speetrum—we-will-distribution we consider two complementary statistics;namely

: mean- and worst-case responses. In Appendix ©&-C and D we prove that the worst-case
response is always achieved by a perfectly coherent perturbation, i.e., a perturbation whose

direct effects on species are not independent, but on the contrary, perfectly correlated in time.

—derive explicit formulas to compute the worst-case

variability from the community matrix and species equilibrium biemasses:abundances, see

egs. (C2, D5). The mean-case scenario, on the other hand, is defined with respect to the

prier-probability—distribution—a prior over the set of perturbation directions. fn—the-ease-of

For the least informative prior}, we

prove in Appendix C and D that a perturbation affecting all species independently but with
equal intensityis—met—with—, realizes the mean-case response;—providing—. This provides a
way to compute it-direetly-this response from the community matrix and speeies-equilibrivm

biemasses-the species abundances, given in egs. (C3-, D6).

Variability speetra—ef-a—patterns for two-species community

Before movine-ontowardsmeore—considering complex communities, let us illustrate our vari-

ability framework on the following elementary example, in the form of a 2 x 2 community

matrix

-1 0.1
A= . (6)
—4 -1

16
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—
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different perturbation directions :mean-case
lead to different responses

Environmental-type: worst-case

Coherent response \ LT TN P P /
of individuals e /T' ‘ R, Ne—— 7 N
Demographic-type:
Incoherent response \ )
of individuals ' %ﬁ OV AN | {& »
\ - \ ,
n SN T N
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Random number of individuals
removed or added

!
@

i

<

o

°

®

1
Equency

/

sampling the intensity of responses leads
to a distribution of variability values Variability(V)

Figure 2: Fhe-A theoretical framework for variabilitys . Fop

IS B

represented-Perturbations are characterized by the-orange-and-purple-disestheir type, whose diameterrepresent
abundanee)-is-a funetion-ofboth-statistical relationship between the dynamies-direct effect of this-eommunity
perturbations and the envi
various-types-abundance of iperturbed species. For
a given type and fixed intensity, viedemographie-stochastieity{see—main—text—for_there remains a preeise
definition)—We-eliminatethe-dependenece-on—speeifiefeatures-whole set of covariance structure of perturba-
tions (i.e —their direction;—see—smain—text) that will be transformed by sampling-meny-perturbationsleading
to—community dynamics_into a whole speetrum—set_of responsecommunity responses, eatted-the—variability
speetrumi. Considering all-types-., various covariance structure of perturbations-thenrevealsspecies stationary
time series. A sampling of those responses, fer-measured here as an average variance, leads to a given
systemyariability distribution, one for each perturbation type. Spanning all perturbation types leads to a
family of variability spectradistributions (in blue green and red in the rightmost column). We derive analytical
formulas for the largest value (worst-case scenario) and for the mean value (mean-case scenario).
17
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This matrix defines a linear dynamical system that could represent a predator-prey commu-

nity, with the first species benefiting from the second at the latter’s expense. H-isstable-with

asymptotierestlience-Its asymptotic resilience is R = 1. Let us suppose that the biemass

of-the-prey, Ny (second row/column of A) is 7.5 times targerthanthe-one-of-more abundant
than its predator, Ny (first row/column of A) and consider stochastic perturbations of this

community, as formalized in eq. (1).

In Fig. 3 we represent —foranyeiventyperthe set of perturbation directions as a disc, every
point-of the-dise-correspondine—to-in which every point is a unique perturbation direction (see
Appendix E for details). The effect of a perturbation on a community ean-be-is represented as
a color;-darker—tones-implyinglargerresponse; darker tones imply larger responses, with the
baseline color (blue, green or red) recalling the perturbation type (o = 0, 1,2, respectively).

Points at the

:=—boundary of the disc correspond

to coherent perturbations, which have the potential to generate the largest (but also the

smallest) variability. This is why the color maps represented—in—of Fig. 3 which-are-always

take their extreme values at
the boundary. We see that variability strongly depends on the perturbation direetions;but
direction, and that this dependence is in—turn-strongly affected by the perturbation type. For
immigration-type perturbations (in blue) variability is largest when perturbing the predator
species most strongly (the least abundant species in this example). For demographic-type
perturbations (in green) perturbations that equally affect the two species but in opposite
ways achieve the largest variability. For environmental-type perturbations (in red) variability

is largest when perturbing the prey species (the most abundant species in this example). For

all types we see that positive correlations between the components of the perturbation (i.e.,

18
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moving upwards on the disc) reduce variability (see Ripa and Ives, 2003 for related results).

Thus, in general, a given community cannot be associated to a single value of variability

. Depending on the type of perturbations causing variability, different species can have com-

pletely different contributionste-variability. This stands in sharp contrast with asymptotic re-

silience R, which associates a single stability value to the community. Nete-thatitisunelear

at—this—stage-howthe-different-speeies—eontributeto-Although we know from previous work
Arnoldi et al., 2016b) that the smallest invariability value in response to immigration-type

erturbations will always be smaller than R, in general (i.e., any perturbation type and/or
any perturbation direction) there is, a priori, no reason to expect a relationship between

invariability and asymptotic resilience.

Stability-Generic variability patterns ef-in complex com-

munities

ing-dimensionality
of variability will be larger in communities comprised of many speciesin—interaction—F o
generate-sueh—ecommunities,—ve-consider—,_as their sheer number, S, increases the dimension
of the perturbation set _quadratically. Yet, when species interact, a generic structure can
emerge from ecological assembly, revealing a simple relationship between variability and the

abundance of perturbed species. To show this, we first generate a pool of speeciesfollowine
random-5H0 species following Lotka-Volterra interaetions-dynamics and let the dynamiessettle

we generate many stable communities of various complexity(see system settle to an equilibriun.
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Figure 3: Variability depends on perturbation direction and perturbation type. Top panel: For a two-
species community the set of all perturbation directions can be represented graphically as a disc (shaded in
gray), with the variance of the perturbation term &»(¢) on the z-axis and the covariance between &;(t) and
&5(t) on the y-axis. Some special perturbation directions are indicated (numbers 1 to 5, see also Appendix E).
Panels- A—CBottom panels: We consider a predator-prey system; the community matrix A is given by eq. (6),
and the equilibrivmbiomass—for-thepredatorprey (species +2) is 7.5 times—smaller-more abundant than fer
the—prey—its predator (species 21). The induced variability depends on the perturbation directions (darker
colors indicate larger variability), and this dependence in turn depends on the perturbation type «. A:+For
immigration-type perturbations (a = 0, in blue) variability is largest when perturbing species 1 most strongly.
B:+For demographic-type perturbations (a = 1, in green) perturbations that affect the two species equally
strongly but in opposite ways achieve the largest variability. ©+For environmental-type perturbations (o = 2,
in red) variability is largest when perturbing species 2 most strongly. Notice that the worst case is always

achieved by perturbations lying on the edge of the perturbation set. Such perturbations are fully—perfectly

correlated (see main text and Appendix E).
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We_randomly draw species dynamical traits, starting with a configuration in which mean
a_comparable variation around this mean (a complete description of the nonlinear model is
given in Appendix F for-detailsy—tmportantly—such-communities-exhibit-uneven—abundanee
variabiityand Matlab simulation code is available as supplementary material). Some species
would go extinct during assembly, but no limit cycles, chaotic behavior or multi-stability were
observed.

In this species-rich eemmunities—context, the perturbation set cannot be represented as

to-exhaustively. We therefore focus on the effect of a specific subset of perturbations, those
that-affeet-affecting a single species. By—superpeosition;—this-allows-thestudy-of-perturbation

Linear combinations of these perturbations will span all scenarios in which species are af-

fected independently, but #t-exeludes-exclude scenarios in which speeies-they are perturbed in
systematically correlated or anti-correlated way?. In Fig. 4 we consider a random-eommunity

of 40-nteracting-community of S = 40 coexisting species. We erderspeeies-acecordingto-their
abundanee—and-plot the variability induced by perturbine—them—We-observe-thefollowing
{i)-When-species-specific perturbations (of various types) against the abundance of perturbed
species.
The leftmost panel shows a negative unit slope on log scales: when caused by immigration-
type perturbations, variability is inversely proportional to the abundance of the-perturbed
speciesfleftmost-panely—n-otherwords:randomiy-perturbed species, Randomly adding and

2In terms of the geometrical representation of Fig. 3. this amounts to restricting to the equator of the
erturbation disc
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removing individuals from common species generates less variability than when the perturbed

species is rare. In fact, the worst-case scenario corresponds to perturbing the rarest species.

Remarkablywworst-easeinvariability remains-Worst-case invariability is close to asymptotic re-
silience, which corroborates previous findings thatshewed-that-asymptotie resilieneceshowing
that the long-term rate of return to equilibrium is often associated to rare species —pushed

{i-When-eansed-by-(Haegeman et al.. 2016: Arnoldi et al., 2018). On the other hand, the

middle panel of Fig. 4 shows that, in response to demographic-type perturbations, variability

is independent of perturbed species’ abundance. Finally, the rightmost panel
shows a positive unit slope on log scales: when caused by environmental-type perturbations,
variability is proportional to the abundance of the—perturbed-speeies{richtmest-paneh—In
this—ease—~—despite-perturbed species. The worst case is thus attained by perturbing the
most_abundant one. Despite being more stable than rare ones +—(they buffer exogenous
perturbations more efficiently, see left-hand panel), common species are more strongly affected
by environmental perturbations, allewingthemto-dominate-and can thus generate the most
variability.
The-patternsreportedinFig—4-arenot-sel-evident-Those patterns are not coincidental but
emerge from interaetions-between-speeiesspecies interactions. In their absence, other patterns

can be envisioned. This is because, without interactions, the response to a perturbation—of

Y

erturbation involves the perturbed species only. The variability-abundance relationship is
then V = N%/2r, swwhereN—eoincides—with-the—earrying—eapaeity-with N = K. If r and K
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Abundance of perturbed species

Figure 4: The contribution of abundant and rare species to variability. We consider a community of S = 40
species, and look at the variability induced by perturbing a single species, whose abundnace-abundance is
reported on the z-axis. Left: When caused by immigration-type perturbations (o = 0), variability is inversely
proportional to the abundance of the perturbed species (notice the log scales on both axis). The worst case is
achieved by perturbing the rarest species, and is determined by asymptotic resilience (more precisely, it is close
to 1/2R ). Middle: For demographic-type perturbations (« = 1), variability is independent of the abundance
of the perturbed species. The worst case is not necessarily achieved by focusing the perturbation on one
particular species. Right: For environmental-type perturbations (o = 2), variability is directly proportional

to the abundance of the perturbed species. The worst case is attained by perturbing the most abundant one.
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eottumn-of-are statistically independent in the community (top-left panel in Fig. 5:-without
interactions-there-is-noreason-to-expeet-the-patternsreported-), this yields a different scaling
than the one seen in Fig. 4. Mereover—if-there-is—a-In the case of an rvs—K trade-off —(i.e.,
species with larger carrying capacities have slower growth rate), abundant species would be
the least stable enes-and-drive-variability-patternsregardless-of-its-type{species (bottom-left

panel in Fig. 5, bettemteft—paneh—Yetin blue) which is the opposite of what the leftmost
anel of Fig. 4 shows. However, as interaction strength increases (panels-from left to right in

Fig. 5), we see emerging the relationship between abundance and variability deseribed—n—of
Fig. 4, showcasing its cenericity.
Frregardless of the choice made for species growth rates and carrying capacities. We

explain in Appendix G we-explain-why this reflects a generic, limit-case behavior ferse-ealled

of-speeies—are-hardly—of complex communities. It occurs when species abundances, due to

substantial indirect effects during assembly, become only faintly determined by their ews

a-high-degree-of collective-integration-in-—the-communitycarrying capacities®. Important]

our example demonstrates that this limit can be reached even for relatively weak interactions

recall that in Fig. 4 and in the right-hand panels of Fig. 5. the interspecific interaction

strengths are ten times smaller than the intraspecific ones).

Although we considered a specific section of the perturbation set, the response to single-species

erturbations of immigration and environmental types can still span the whole variabilit

distribution, from worst-case (rarest and most abundant species perturbed, respectively) to

mean- and best-case scenarios (most abundant and rarest species perturbed, respectively). For

3The slope of a linear regression between these quantities on logarithmic scales approaches zero.
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demographic-type perturbation the situation is more subtle as the response is independent
of species abundance, and, in_general, extreme scenarios will be associated to temporally
correlated perturbations affecting multiple species.

The variability-abundance patterns shown in Figs. 4 and 5 should not be confused with
Taylor’s (1961) law, a power-law relationship between a species’ variance and its mean abundance.
In fact, the variability-abundance pattern is dual* to Taylor’s law, it represents the community
response to single-species perturbations instead of that of individual species to a community-wide

perturbation.
Implications for the diversity-stability—diversity-invariability rela-
tionship

We-may-now-explore-the-underlying role-of the-above patternsin-10 illustrate some implications
of the generic variability-abundance pattern, we now propose to revisit the diversity-stability
relationships—Graduallyrelationship, with stability quantified as invariability Z. For a given

size of the species pool, we randomly sample species dynamical traits to assemble a stable
community. By increasing the size of the speeies—pool-and-drawing random—growth—and

¥pool we generate
communities of increasing species richness S. For each community, we uniformly sample the

boundaries of its perturbation set by drawing 1000 fully correlated perturbations (i.e., those

that can realize the maximal response), of a given type. We compute the bulk of its-variability

4Dual in the sense that the level of organization of observation and response are reversed. For Taylor’s

law the perturbation acts at the community level, and is observed at the population level. In the patterns
described here, the perturbation acts at the population level, while the observation is at the community level.
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Abundance of perturbed species

Figure 5: The emergence of the role-of species-abundanece-in-a-community’s-variability-variability-abundance

pattern (same procedure as in Fig. 4). Top row: intrinsic growth rates r and carrying capacities K are sampled
independently. Bottom row: Species satisfy a rvs—~K trade-off (r ~ 1/K). Colors correspond to the three
perturbation types: o« = 0 (blue), &« = 1 (green) and o = 2 (red). The value 5 reported in each panel
corresponds to the exponent of the fitted relationship V; o Nf for each perturbation type. As interaction
strength increases (left to right) we see emerging the relationship between abundance and variability described
in Fig. 4, i.e., # = a — 1. Thus when species interactions are sufficiently strong, variability always ends up
being: (blue) inversely proportional, (green) independent and (red) directly proportional to the abundance
of the perturbed species. Note that such relationships differ from Taylor’s law: they represent an average
community response to individual species perturbations, whereas Taylor’s law deals with individual species
responses to a perturbation of the whole community.
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the resulting invariability distribution (5 to 95 percentiles), as well as its mean and extreme

realized values. We also compute theoretical predictions for mean- and worst-case scenarios,

relationships-{Fig—6)—and asymptotic resilience R.
{i—tn—the-The leftmost panel of Fig. 6 —invariabilityis—defined—{from—theresponse—to
shows a negative relationship between immigration-type perturbations—H-is-an-exponentially

sS—invariability and species

richness. Asymptotic resilience and worst-case invariability mostly coincide, with a decreasing

rate roughly twice as large as the-ene-that of the mean case. Here—elearly—diversitybegets

gives-The middle panel suggests a different story. Mean-case demographic-type invariability
stays more or less constant whereas the werst-ease—diminishes—at—an—exponentialrate—with

Here-the-worst case diminishes with species richness, although much more slowly than R ...
The relationship between diversity and stability appears—to-be-ambiguotus—

{iihis thus ambiguous. In the rightmost panel —environmental-perturbations—yield-an
inerease—of —all—realized—we see an increase in all realized environmental-type invariability

values with

species richness, showcasing a positive diversity-stability relationship.

deseribed-in-"The generic limit that yields the variability-abundance patterns of Figs. 4 and 5
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is the one towards which a community of increasing diversity—complexity — sensu May (1972

— will tend. This explains why, in the case of immigration-type perturbations, the increas-

ing rarity of many species as S increases is a source of instability. ndeed;—at—high-enough
diversity each species cenericaly contributes to variability proportionally Species contributions

to variability become proportional to the inverse of its-abundanee{asin-the-their abundance
(first panel of Fig. 4)—Fhe-, and the worst-case scenario thus—follows the abundance of the

ARSACRAANARA

rarest species, which rapidly declines with diversity—Furthermere;—as-species richness. As
detailed in Appendix H, mean-case invariability will-seale—as—an—average-abundance—which

alse—scales as the average species abundance, which also typically decreases with diversity-
S.

o~

The responses to demographic perturbations, on the other hand, are not determined by

any specific species abundance class (as-in-the-middle-second panel of Fig. 4)—As—we-argue

speciesabundances—, so that no simple expectations based on typical trends of abundance
distributions can be deduced.

In-We recover a simpler behavior when looking at the response to environmental-type
perturbations—it-perturbation. It is now abundant species that mestly-econtribute-to-variability
4] ) o followi Lo abund = s a5
theleftmost—drive variability (rightmost panel of Fig. 4). Mean-ease—variability {and-—not
its—inverse-As explained in Appendix H, mean-case invariability now scales as an-—average
abundanece—Here—thenumber—of rarespeeies—mattersfor-the inverse of an average species
abundance. The latter typically declines with 5 explaining the observed increase of mean-

case vartabil ir-indivi invariability.
Theredisthus-eloseconneetion-In all panels of Fig. 6. the bulk of invariability stays close to

28



482

483

484

486

487

488

489

491

492

493

494

496

497

498

499

500

501

502

503

the mean- while moving away from the worst-case. This is because the worst-case corresponds
to a single direction of perturbation met with the strongest response, a fine-tuned perturbation

which becomes increasingly unlikely to be picked at random as .S increases.

There is an analogy to be made between stability and diversitymetries. As has been said
about diversity metrics (e.g.. species richness, Simpson index or Shannon entropy), different

invariability measures

speetes’™ “differ in_their propensity to_include or to_exclude the relatively rarer species” (Hill,
1973). 1In this sense, they—different invariability measures can probe different dynamical

aspects of a same community, with potentially opposite dependencies on a given ecological

parameter of interest.

Discussion

Summary of results

Because it is empirically accessible using simple time-series statistics, temporal variability is
an attractive facet of ecological stability. Yet-But there are many ways to define variability in
models ;erto-measureit-on-and empirical data, a proliferation of definitions reminiscent of the
proliferation of definitions of stability itself (Grimm and Wissel, 1997). From—san—empirical
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Figure 6: Different perturbation types yield contrasting diversity-stability—diversity-invariability rela-
tionships. We generated random Letka-Volterra—eompetitive—communities of increasing diversity—species

richness S and computed their invariability {leg-—seales—on—-both—axes)—We-—ecomputed-the-invariability o

distribution in response to 1000 perturbation—direetionsi+ul-random perturbations. Full line: median ever
perturbationsinvariability, dark-shaded region: 5th to 95th percentile, light-shaded region: minimum to max-

imum realized values. The x-marks correspond to the analytical approximation for the medianinvariability,
the dots to the analytical formula for the worst-caseinvariability. As-a—referenee—the—dashed-Dashed line
follows-is asymptotic resilience elongthe-diversitygradientR . For immigration-type perturbations (a = 0,
blue) diversity begets instability, with asymptetieresilienee-eloselyR o, following worst-case invariability. For
demographic-type perturbations (o = 1, green) mean-ease-invariability-does-not—arywith-diversitythe trend
is_ambiguous. For environmental-type perturbations (o = 2, red) stebility—inereases-all realized values of
invariability increase with diversity.
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perspeetive—variabiity—Variability measurements often depend, not only on the system of

interest, but also on external factors that act as disturbances, which makes it difficult to
relate variability to other stability concepts{Peneohte-et-al-—20146}. These caveats constitute

important obstacles toward a synthetic understanding of ecological stability, and its potential

drivers —(Ives and Carpenter, 2007).

—We proposed to consider variabilit
as_a _way to probe and measure an ecosystem’s response to stechastiecperturbations—We

erturbations, thus revealing inherent

dynamical properties of eeological-communitiesthe perturbed system. We did se-net-byseekine
not _seek for an optimal, single measure of variability but, on the contrary, by—aeccounting

we _accounted for a vast set of perturbationsthat—a—given—eommunity—ecan—face— We—ealled

leading to a whole distribution of responses. We

focused on the worst- and mean-case respenses-values of this distribution as functions of the

species abundance,
their interactions, and the typeof-perturbations of perturbations that generates variability.

A perturbation type characterizes a statistical relationship between its direct effect on a
population and the latter’s abundance. We distinguished between +—(i}-environmental per-
turbations, whose direct effects on populations scales proportionally with—their—abundanee;
{ity-to their abundance; demographic perturbations, whose direct effect on populations scales

sublinearly with-their-abundanee—and-{iii}-to their abundance; and purely exogenous pertur-

bations, representing random addition and removal of individualindependently, independent

of the size of the perturbed population (immigration-type). Aftereontreting Controlling for

perturbation type and intensity, we considered all the ways this intensity can be distributed

and correlated across
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s speetra: species,

s Onrandombotka-Velterra—communtty—models—wefound—that—After having described a
> general (linear) theory for variability, dependingonperturbationtypebotheommen-erwhich
s emphasizes its highly multidimensional nature, we turned our attention towards species-rich
s communities assembled by random (nonlinear) Lotka-Volterra dynamics. Because of the sheer
s number of species contained in such communities (S & 40 in our examples), we could have
s expected the dimensionality of perturbations and responses to be so large that variability

5

@

s distributions would be too complex and broad to be clearly described. However, the process
s Of assembly allowed for a simple behavior to emerge: a generic relationship between variability
s» and the abundance of individually perturbed species. In essence, this pattern predicts that
s0 species ability to buffer exogenous perturbations is inversely proportional to their abundance.
sa In_conjunction to this simple pattern, the type of perturbation will then determine the
sz individual contributions of species to the variability distribution, so that both common and

se3 rare species can determine variability. This is reminiscent of diversity measures (Hill, 1973):
sae  seme-, some of which (e.g., species richness) are sensitive to the presence of rare species, while

sss  others are mostly indicative of abundant-enes-the distribution of abundant species (e.g., Simp-

s6  son diversity index). E
547
548 These connections with different diversity metrics can explain contrasting trends in invariabilit

se0  as a function of species richness. Since immigration-type perturbations gives—a—prominent

550

ss1 growineg-vilnerabiity-mostly affect rare species, they lead to a negative diversity-invariabilit
ss2 relationship, reflecting a growing number and rarity of rare speciespushed-tewards—the-edge
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. _On the other hand, in response to demographic perturbations, species contributions to
variability can be independent of their abundance(Fig—4)—whichleads—to—a—proportional

generteatly—the—most—stable;—yet—In_this case, variability is_not expected to_follow trends
in diversity, so_that diversity-invariability patterns can be less predictable and harder to
interpret. Finally, although common species buffer exogenous perturbations efficiently, they
are also the most affected by envirenmental-perturbations;allowinethemto-drive-thelarger

leadine-invariability, and hence to a positive diversity-stabilityrelationship—diversity-invariabilit
04 loseribed . loof abund i

Implications for empirical patterns

Our theoretical models show wide variability distributions. These distributions would become
even wider when accounting for nonlinear system dynamics and temporally autocorrelated
erturbations. Therefore, we also expect a large dispersion of empirical variability data, i.e.
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when the variability of the same system is measured repeatedly. For certain applications it
might be sufficient to restrict to a particular perturbation regime, but in order to detect in
variability an inherent stability property of a system, i.e. a property that is not bound to a
specific environmental context (see Fig. 1), one must describe of the spread of variability.
To_do so, the most direct_approach consists in observing the same community under
multiple_environmental conditions. With relatively few observations, one can estimate the
mean_and spread of the response distribution. There is, however, more information to be
extracted from a time series than a single variability value, If high-quality time series are
available, it might be possible to infer linear model dynamics, which can then be used to

compute stabilit ., 2003), and in particular, variability distributions.

We showed that species abundances greatly affect variability distributions. This new
insight has broad consequences. For example, it has been reported that ecosystem-level and
population-level stability tend to increase and decrease, respectively, with increasing diversity

Jiang and Pu, 2009; Campbell et al., 2011). Ecosystem-level stability is often quantified based
on_the variability of total biomass, which gives, by construction, a predominant weight to
abundant species. On the other hand, averages of single-species variabilities have been used

to measure population-level stability (Tilman, 1996). These averages are strongly affected

and can even be fully determined, by rare, highly variable species (Haegeman et al., 2016

. Thus, here as well as in our theoretical results (Fig. 6), stability metrics governed b

common, or rare, species tend to generate respectively positive and negative diversity-stability
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in-a species-rich conmmmumity arve sufficientlv strone and heterogeneons. relationships. It would
be interesting to test whether this observation holds more generally, e.g.. if it can explain the

contrasting relationships recently reported by Pennekamp et al. (2018).

{Seheffer-et-al—2009The type of perturbations affects which species abundance class contributes

most to variability. In turn, the physical size of the system considered affects which perturbation
type dominates. This is

and-it-isin-thiseontext-that-eur-work-eught—to-be-meost—relevant—well known in population

dynamics (Engen et al., 2008), but it also transposes to the community level. At small spatial

scales, implying small populations, we may expect variability to be driven by demographic
stochasticity. At larger scales, implying larger populations, demographic stochasticity will
be negligible compared with environmental perturbations. Just as changing the perturbation
type_transforms the respective roles of common and rare species, patterns of variability at

different scales should reflect different aspects of a community (Chalcraft. 2013). associated

to different species abundance classes (abundant species at_large spatial scales, rare/rarer
Empirically determining the perturbation type, which is a preliminary step to test the
stability patterns predicted in this paper, is a non-trivial task. To develop suitable methods,

it might be helpful to first understand the link between the variability-abundance patterns (see
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Figs. 4 and 5) and Taylor’s (1961) law. The latter is an empirically accessible pattern, relating
the mean and variance of population sizes. A close connection is indeed expected: we studied
the behavior of the community response to an individual species perturbation, while Taylor’s
law_focuses on the individual species response to a perturbation of the whole community.
This duality also suggests that Taylor’s law is, at the community level, strongly affected by
species interactions. Although this is known (Kilpatrick and Ives, 2003), our approach could
shed new light on the information regarding species interactions and other dynamical traits,

actually contained in community-level Taylor’s laws.

Theoretical-consequeneesLink with other stability measures

We eould—relate—variability—te-noted a connection between variability and asymptotic re-

silience, the-mest—eommeonly—used—stability—metrie-which is a popular notion in theoretical
studies (Donohue et al., 2016). We found-showed that asymptotic resilience is comparable

to the largest variability in response to an immigration-type perturbation, which is often a
perturbation of the rarest species (first panel of Fig. 4). While the-asymptotierate-of return
to—equilibrivm—asymptotic resilience is sometimes considered as a measure representative of

the—collective recovery dynamics, we reeently—showed—previously explained why that this is
seldom the case (Arnoldi et al., 2018). The asymptotic rate of return eften—reflects-dynamical

to equilibrium generally reflects properties of rare “satellite” species, pushed at the edge of lo-
cal extinction by abundant “core” species. By—eentrastOn the other hand, short-time return

rates can exhibit qualitatively different properties related to more abundant species. This

suggest-theb

In fact, the multiple dimensions of variability are related to the multiple dimensions of re-

turn times. Indeed—variabilityrefleets-Variability is an integral measure of the transient regime
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0 following pulse perturbations, i.e., a superposition of responses to ptlse-perturbatiensvarious
st pulses, some of which have just occurred and are thus hardly absorbed, while others occurred
ez long ago and are thus-largely resorbed. Variability-is-thus-an-integralmeasure-of thetransient
es3  regimefolowingpulse-perturbations—If abundant species are faster than rare ones (whieh;
ese as—we-showed;—is—typieally—the case in complex communities, see Appendix G), if they are

ess also more strongly perturbed (e.g., by environmental perturbations), the bulk of the tran-
es6  sient regime will be relativelyshert—Thus-short: variability in response to environmental
es7  perturbations is associated with a short-term recoverydsynamies. By contrast, if all species
ess are, on average, equally displaced by perturbations (e.g., by immigration-type perturbations),
60 rare species initially contribute to the overall community displacement as much as abundant

660

s1  abundant ones. Since their recovery is typically very slow, the transient regime will be lenger-

ez Fhus-long: variability in response to immigration-type perturbations is associated with the-a

s63  long-term returnrate-to-equilibrivm{which-eonverges-towards-asymptotierestheneejrecovery.
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Ecologists

672
673 have long acknowledged the multi-faceted nature of ecological stability (Pimm, 1984: Grimm and Wissel, 1

o2, but here we show that a single facet (variability) is in itself inherently multidimensional
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thus suggesting that links across facets can be subtle. Short-term return rates may be linked

675

but environmental variability may have nothing to do with
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an—underlying—transition—oef—+the—Because measures can be determined by different species

abundance classesth

that-itfaces—, we should not expect a general and simple connection to hold between facets
of ecological stability.

Conclusion

The multidimensional nature of variability can lead to conflicting predictionsbut-once-acknowledeed,

but once this multidimensionality is acknowledged, it can be used to extensively probe the dy-
namical properties of different species abundance classes withinea connnumnity. in a similar way
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provides—a—dialeetical perspeetive—community. In particular, in species-rich systems, we

revealed a generic pattern emerging from ecological assembly, relating species abundance
to their variability contribution. This allowed connections to be drawn between variabilit
and statistics of abundance distributions. We argued that similar patterns should underlie

ecosystem responses to other families of perturbations (e.g.. pulse perturbations). Therefore

we conclude that embracing the whole set of a ecosystem responses can help provide a unifyin

to—a—community’ s—dynamiealidentityand shed new light on the meaning of empirical and

theoretical stability patterns.
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AppendixAppendices

The Appendix-is-Appendices are organized as follows: Appendix A through D provides
a self-contained presentation of the mathematical foundations of our variability theory. Ap-
pendix E through +H provide details concerning specific applications considered in the main
text: two-species communities in Appendix ¥F, complex Lotka-Volterra communities in ap-
pendices ¥-G—F and G, and the link between abundance statistics and variability in Ap-

pendix Ha

notions—in—Appendix1t. A list of the most important notation used in the Appendices is
iven in Table Al.

A Response to white-noise perturbation

We describe the response of a linear dynamical system, representing the dynamics of dis-
placement of species around an equilibrium value, to a white-noise perturbation. Stochastic
perturbations in continuous time are mathematically quite subtle —(see, e.g., Turelli, 1977).
However, in the setting of linear dynamical systems, the effect of a white-noise perturbation
can be analyzed relatively easily. Because this analysis is not readily available in the ecology

literature, we present here a short overview. We start byfrom a fomulation in vector notation,

dx

where x = (x;) denotes the vector of species displacements, & = (&;) the vector of species
perturbations, and A = (4;;) the community matrix.
Suppose that the perturbation &€(¢) consists in a sequence of pulses. We denote the times

at which these pulses occur by t;, and the corresponding pulse directions by u; = (ug;). The

49



Table Al: Most important notation used throughout the Appendices

symbol equation
S meaning SRR
2
g; B2
e er species variance of applied perturbation {B2).
2
o B4, D3
out er species variance of system response to perturbation
C A3
A covariance matrix of individual pulses in multi-pulse perturbation {A3),
L frequency at which pulses occur in multi-pulse perturbation
FE B5
o erturbation direction, proportional to fC' {B5).
C A5, A9
o covariance matrix of species responses to perturbation (A5, A9).
L AT, A8
~ solution of Lyapunov equation, used to compute stationary C. (AT A8).
V. D4
A variability for perturbation type «; when index o is omitted (D).
immigration-type perturbations are assumed (o = 0
Vworst . . . . . . C2 D5
mean-case variability, i.e., variability averaged over perturbation (C2.D5).
directions
pmean C3. D6
worst-case  variabilit ie. variabilit maximized over (C3.D6).
erturbation directions
yspec %
variability for the perturbation that affects only species 7
z (B6)

~~

invariability, i.e., variability-based stability measure
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multi-pulse perturbation can then be written as

E(t) = ot — tx) uy. (A2)

where we have used the Dirac delta function 46(¢).

We model both the pulse times ¢; and the pulse directions u;, as random variables. Specif-
ically, we assume that the pulse times are distributed according to a Poisson point process
with intensity f. This means that the probability that a pulse occurs in a small time interval
of length As is equal to fAs, and that this occurrence is independent of any other model
randomness. We denote the average over the pulse times t; by E;.

Furthermore, we assume that the pulse directions uy, are independent (mutually indepen-
dent, and independent of any other model randomness) and identically distributed. They
have zero mean, and their second moments are given by the covariance matrix C,,. That is,
denoting the average over the pulse directions u; by E,, we have E, u;; = 0, E, u%l = Cui,
Ev upiur,; = Cuyj, and Ey upue; = Eyugue; = 0 for i # j and k # €. The latter equations

can be written in vector notation,
C,=E, uku,I and E. 'u,k,uér =0. (A3)

We use this information to compute the statistics of species displacements x(t). Because
the system response to a single pulse perturbation at time ¢; in directon w; is equal to

e(t=t)Aq, . the system response to the sequence (A2) of pulse perturbations is equal to

x(t) = Z et A gy (A4)

kltip<t
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Taking the mean over the perturbation directions, we obtain

E,x(t) = Z eUWAE =0,
kltp<t
showing that the species displacements fluctuate around the unperturbed equilibrium.

Next, we compute the covariance matrix of the species displacements,
C,=Esux(t)x(t)". (A5)
We substitute the response to the multi-pulse perturbation, equation—eq. (A4),

Cx _ Ef,u Z e(tftk)A wy Z u; e(tfte)AT

k|t <t Llte<t

=E; Z Z elt=tr)A E, uku; e(t—to) AT

k|t <t £]to<t

=E; Z elt=tr)A E, uku; plt—t) AT

kltp<t

_ Ef Z et—tr)A C, e(t—tk)AT’

k|t <t

where we have used eguationeq. (A3). To take the average over the pulse times, we partition

the time axis in small intervals of length As. Writing s,, = nAs for any integer n, we get

C, = Z elt=sn)A O e(t’s”)ATfAs,

nlsp <t

because the contribution of term n is equal to e*=")4 C, et=sn)AT with probability fAs, and
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zero otherwise. Assuming that the time intervals As are infinitesimal, we find the integral

t
Cx — / e(tfs)A Cu e(1‘/7s)AT de
= / e O, esA' fds
0

_ / T e (£C) e ds. (A6)
0

Hence, we have obtained the stationary covariance matrix of the species displacements under
a stochastic multi-pulse perturbation.

A white-noise perturbation corresponds to a special case of the stochastic multi-pulse
perturbation, namely, to the case of extremely frequent pulses (large f) of extremely small
size (small ||u||). More precisely, we have to take the coupled limit f — oo and C, — 0 while
keeping fC,, constant. Because equation—eq. (A6) depends on f and C, through the product
fC,, only, the same expression is also valid for white-noise perturbations.

Alternatively, the stationary covariance matrix C), can be obtained by solving the so-called
Lyapunov equation,

AC+CA" + E =0, (A7)

where F is the covariance matrix characterizing the white noise, equal to fC, in our case.

Indeed, it can be verified that equation—eq. (A6) satisfies equation—eq. (A7),

AC, + C,AT = / (AeSA 10, e ds + e £, eSATAT>ds
0

_ / h dii(esA 1C, esAT> ds
0

-
_ GSA fCu esA

§—00

T
— 6sA fOu esA

s=0

= —fC,.
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For a stable matrix A this is the unique solution of the Lyapunov equation, for which we

introduce the short-hand notation £(A, F),

Hence, we can write

From a numerical viewpoint, the covariance
matrix C, can be easily obtained by solving the Lyapunov eguation—eq. (A7), which can be
written as a system of S? linear equations, rather than by computing the integral in (AS).

Note also that solution of Lyapunov equation is linear in the perturbation covariance matrix,

L(A, ClEl + CQEQ) =C1 E(A, El) + Co ﬁ(A, Eg) (Al())

B Construction of variability measure

We explain the construction of the variability measure Y{#}), see eq. (4) in the main text.

The construction is based on the comparison of the intensity of the system response relative
to the intensity of the applied perturbation. It should be stressed that, while we take special

care of quantifying these intensities in a reasonable way, alternative choices are possible.

Perturbation intensity A reasonable measure of the perturbation intensity should in-
crease with the number of pulses and the intensity of each pulse separately. In particular,
we expect it to be proportional to the pulse frequency f and to some function of the pulse

covariance matrix C,.

o4



We propose to look at the squared displacements ||uy||* induced by pulses u;. The accu-

mulated squared displacement in time interval [t,t + T is

> el

tr €[t t4T)

Taking the average over pulse times and pulse directions,

Era 3 lwl?= 3 Eful?sas,

tr €t t+T] nlt<sp<t+T

where we have partitioned the time axis in small intervals of length As (see derivation of
eguationeq. (A6)). Then,
Era D llul? = Tr(C) fT.

tr €[t t+T)
The result is proportional to the length T of the considered time interval. The average

accumulated squared displacement per unit of time is

SEr Y ul?=Te(fC). (B1)
tr€[t,t+T]
As expected, this quantity is proportional to the pulse frequency f and increases with the pulse
covariance matrix C',. Note also that f and C, appear as a product, so that the expression
is compatible with the white-noise limit.

EeauationEq. (B1) quantifies the intensity of the perturbation applied to the entire ecosys-
tem. This measure is not directly appropriate to normalize the pertubation intensity across
systems. Indeed, when keeping the total perturbation intensity constant, the perturbation
applied to a given species would be weaker in a community with a larger number of species.

To eliminate this artefact, we normalize the perturbation intensity on a per species basis.
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Thus, we propose to quantify the perturbation intensity as

2= gTr C,. (B2)

g

Response intensity We measure the intensity of the system response in terms of the co-
variance matrix C,. This matrix encodes the statistical properties of the biemass-abundance
(or biomass) fluctuations in stationary state. For example, species biomass-abundance z;(t)
fluctuates around its equilibrium value NN; with variance C ;. More generally, we can de-
scribe the fluctuations of any function ¢ of species biemassesabundance. The dynamics near

equilibrium are

p(n(t)) = o(N) +v'z(t),

where vector v = Vi is the gradient of the function ¢ evaluated at the equilibrium IN. This
vector gives the direction in which the system fluctuations are observed. Then, denoting the

temporal mean and variance by E; and Var;, we have

Var; (p(n(t)) = Et<(UTm(t))2)
—E, <fuT:c(t)w(t)T"’)
=v'E, (:B(t);n(t)T)U

=v' C,v. (B3)

We use this variance to quantify the intensity of the system response. Rather than choosing
a particular vector v, we consider the average over all observation directions. Specifically, we

restrict attention to unit vectors v and average over the uniform distribution of such vectors.

56



Denoting this average by E,, we get

E, Vart(w(n(t)) =E, (UTCx'v) =TrE,vv'C,.

T

It follows from species symmetry that the average E, vv' is proportional to the unit matrix.

Moreover, because Tr vv " = 1 for all vectors v, the constant of proportionality is equal to %

Hence,
1

E, Var,(¢(n(t)) = §Tr C,.

Therefore, we propose to quantify the response intensity as

1
2= §Tr C,. (B4)

g

Variability and invariability We define variability ) as the ratio of the response intensity

2

o2 . and the perturbation intensity o2,

_o? _%TrC’x_ Tr C,
o2 éTrC’u—fTrCu'

Substituting eguation—eq. (A9) for C,, we get

- TrL(A, fC)

Cu
V= fIrC,

TrCu)7

= TrE(A,

where we have used the linearity property (A10). We see that only the normalized perturba-
tion covariance matrix matters in this expression. That is, the variability measure focuses on
the directional effect of the perturbation. We make this dependence explicit in the notation,

and write

V(E) = Tr L(A, E), (B5)
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where F = Trc—g is the perturbation direction, i.e., a covariance matrix with unit trace.
Variability is inversely related to stability: the more variable an ecosytem, the less stable
it is. For purpose of comparison, we construct a stability measure based on variability V(E),

which we call invariability Z(FE),

I(E) = . (B6)

The factor 2 in this definition guarantees that we recover asymptotic resilience for the simplest
dynamical systems. To see this, consider a system of S non-interacting species, in which all
species have the same return rate A. The community matrix is equal to A = —A1 where
1 denotes the identity matrix. From the Lyapunov equation (A7) we get the stationary
covariance matrix L£(A, E) = 5+ E. Therefore, V(E) = 5+ and Z(E) = X, which is equal to

the asymptotic resilience of this example system.

C Worst-case and mean-case variability

Worst-case variability is defined as
promst — max V(E) = max Tr L(A, E) (C1)

where the maximum is taken over perturbation directions, i.e., over covariance matrices F
with Tr £ = 1. The function Tr L(A, F) is linear in the perturbation direction F, see equation
eq. (A10), and the set of perturbation directions is convex. Hence, the maximum is reached
at an extreme point, that is, on the boundary of the set. The extreme points are the purely
directional perturbations (see Appendix E for the argument in the two-species case), so that
the maximum is reached at a purely directional perturbation. Arnoldi et al. (2016b) showed

that the worst-case variability can be easily computed, namely, as a specific norm of the
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operator A~! that maps E to £(A, E). Concretely

A=A®1+1® A,

so-that-, definin E:A®l—|—1®A

Vworst _ HA}lH? <C2>

where || - || stands for the spectral norm of S? x S? matrices.

To define mean-case variability V™" we assume a probability distribution over the
perturbation directions, and compute the mean system response over this distribution. Due
to the linearity property (A10), this mean response is equal to the response to the mean
perturbation direction. Hence, we do not have to specify the full probability distribution over
the perturbation directions; it suffices to determine the mean perturbation direction. As can
be directly verified in the two-species case (Appendix E), if, averaged over the distribution
of perturbation directions, perturbation intensities are evenly distributed across species, and
positive and negative correlations between species perturbations cancel out, then the mean
perturbation direction is adirectional. This corresponds to the center of the set of perturbation
directions (the-dise-eenter-in the two-species case the disc center represented in Fig. 3), and

is proportional to the identity matrix, that is, £ = %1. Therefore,

ymean — Ty £(A, 11). (C3)
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D Perturbation types and variability

The perturbation type (environmental-, demographic- or immigration-type) affects how the
perturbation intensity is distributed across species. Therefore, it also affects our measure of
variability, as defined in Appendix B. Here we describe how the variability definition has to
be modified.

We defined variability measure (B5) as the intensity of the system response relative to the
intensity of the applied perturbation. To quantify the perturbation intensity in the case of
biemass-dependent-abundance-dependent perturbations, we distinguish the intrinsic effect of
the perturbation on a species, which does not depend on the species’ biomassabundance, and
the total effect of the perturbation on the species, which does depend on biemassabundance.
We propose to express the perturbation intensity in terms of the intrinsic perturbation, while
it is the total perturbation that acts on the species dynamics.

Formally, for species i, we denote the intrinsic perturbation by £"(¢) and the total per-

turbation by £°%(¢). Then, for a type-a perturbation, we have
EM (1) = NP € (1), (D1)

where N; is the biemass-abundance of species 4. Thus, the intrinsic perturbation ™ (¢) can

be interpreted as the ation—per capita perturbation

strength. Fq. (D1) can be written in vector notation as

£ (t) = D™ (1), (D2)

where D is the diagonal matrix whose entries are species equilibrium biemass-values (D;; =
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Both the intrinsic and total perturbation are multi-pulse. If we denote the pulses of the
intrinsic perturbation by wuy, then, by eguationeq. (D2), those of the total perturbation are

D% D2uy,. Then, to quantify the perturbation intensity, we use the covariance matrix of the

pulses in the intrinsic perturbation. Repeatingthe-The derivation leading to equationeq. (B2)

ve-have
7 = TH(fCL)

is still valid. However, to compute the covariance matrix of the species displacements, we use
the covariance matrix of the pulses in the total perturbation. This corresponds to replacing

C, by D2C,D? in the derivation of equationeq. (B4), so that we get

ol = %Tr/;(A, fD=C,D?). (D3)

The variability measure for a type-a perturbation becomes

2 a a
_ Oow D2C,D->
Vo = o TrL'(A, o . ),

m

or, in terms of the (intrinsic) perturbation direction FE,
Vo(E) =Tr L(A,D2ED?). (D4)
Applying the same arguments as in Appendix C}, we find that worst-case variability,
prerst — max Vo(E) = max Tr L (A, D%ED%)7

is attained at a perfectly correlated perturbation. If we define the operator (an S? x S?
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matrix)

then the worst case-variability can be computed as

Vit = [|A™ o Dy, (D5)
where || - || is the spectral norm for S? x S? matrices. On the other hand, the mean-case
variability,

yresn = Tr L(A, £D%), (D6)

is attained by the uniform, uncorrelated perturbation.

E Perturbation directions in two dimensions

Variability spectra are built on the notion of perturbation directions. They are characterized
by a covariance matrix F with Tr £ = 1. To gain some intuition, we study the set of
perturbation directions in the case of two species.

Any perturbation direction F in two dimensions can be written as

1—2
Jo . (E1)

Yy T

with 0 < x < 1 and 3? < (1 — z). The first inequality guarantees that the elements on
the diagonal are variances, i.e., positive numbers. The second inequality guarantees that the
off-diagonal element is a proper covariance, in particular, that the correlation coefficient is

contained between —1 and 1. Note alse-that matrix (E1) has always Tr E' = 1.
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It follows from eguation-eq. (E1) that the set of perturbation directions in two dimensions
is parameterized by two numbers = and y. Using these numbers as axes of a two-dimensional
plot, we see that the set of perturbation directions corresponds to a disc with radius 0.5 and
centered at (0.5,0) (ef—see Fig. 3).

It is instructive to study the position of specific perturbation directions on the disc. The
point (0, 0) corresponds to a perturbation affecting only the first species, whereas point (1, 0)
is a perturbation only affecting the second species. More generally, any point on the boundary
of the disc correspond to a multi-pulse perturbation for which the individual pulses have a
fixed direction. For example, the point (0.5,0.5) is a perturbation for which each pulse has
the same effect on species 1 and species 2, whereas the perturbation corresponding to point
(0.5, —0.5) consists of pulses that affect the two species equally strongly, but in an opposite
way. Perturbations on the boundary are perfectly correlated.

The perturbations towards the center of the disc are composed of pulses with more variable
directions. For example, a multi-pulse perturbation for which half of the pulses affect only
the second species, and the other pulses affect the two species equally strongly corresponds to
the point $(0,1) 4+ £(0.5,0.5) = (0.25,0.75). The mixture of different pulse directions is the
strongest at the center of the disc (0.5,0). Examples of ways to realize this perturbation are
1(0,0) + 1(1,0), £(0.5,0.5) + (0.5, —0.5) and 1(0,0) + 1(0.5,0.5) + (1,0) + 1(0.5,—0.5). In
each of these example, the pulses have their intensities, averaged over time, evenly distributed
across species, and affect them, again averaged over time, in an uncorrelated way. The
perturbation corresponding to the point (0.5,0) is thus evenly distributed across species but

uncorrelated in time.

F Random Lotka-Volterra model
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Consider-The communities used in Figs. 4. 5 and 6 are constructed from the Lotka-Volterra

model with random parameters. We consider a pool of species felowingrandom-botka—Veolterra

interactions-governed by the dynamics

ANi(t)  7iNi(t) iy
2 ) )

Ki— N; =) BiNj(t)
j=1
J#i

and we let the dynamics settle to an equilibrium community of S remaining species. f—+the

By drawing
random values for the parameters — growth rates r;, carrying capacities K;, and interaction

strengths—competition coefficients B;; — we generated-many—different-generate communities

For the communities in Fig. 4, we set .S = 50, and chose the parameter values as follows

randomly drawn from A (1,0.2), a normal distribution with mean 1 and

standard deviation 0.2 (independent draws for different species

K.
~*~ drawn from N(1,0.2

B..
2~ half of the competition coefficients are set equal to 0: the other half are

drawn from N(0.1,0.1).
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This_procedure resulted in a_community of 5 = 50 persistent species. Note that some of
the competition coefficients can be negative, so that there can be positive interactions (e.g.
facilitation). Grewthrates-

For the communities in the top row of Fig. 5. we followed the same procedure, except
that we changed the way of generating the competition coefficients B;;. In the case without
interactions. all B;; were set zero; in the case with weak interactions, the non-zero coefficients
By; were drawn from A(0.02,0.02); and in the case with strong interactions, the non-zero By;
were drawn from A(0.1,0.1), as for the community of Fig. 4.

We applied a similar procedure to obtain the bottom row of Fig. 5. but for these communities
the growth rates r; and carrying capacities are—independently—drawn—K,; were not drawn
independently. Instead, we first drew auxiliary variables a; from N(1,0.2), b; from a-normal
distribution-of unit-mean-and-0-2 standard-deviation/N (1,0.1) and ¢; from N (1,0.1), and then
set r; = bia; and K; = ¢i/a;.

Inereasing—the-For the communities of Fig. 6, we varied the size of the peolfrom-one

speeies—species pool Spaal S0 _that the realized species richness covered the range from 1 to
20. _Specifically, we drew Speq randomly from 1 to ene-hundred—we-generated-eonmunities
of—various—realized—diversity-We—repeated—the—proecess—until-we—had—50-100, and generated
the parameter values as in Fig. 4. We repeated this procedure many times, until obtaining
1000 communities for each value of realized diversity,—frem——to—-30—For—each—realization
ofthe—random-—species richness 5 from 1 to 20. Then, for each realized community, and
a—given—perturbation—type—we—then—for each of the three perturbation types (e =0, a =1
and o = 2), we generated 1000 random perturbations leading to a variability distribution

Y

. From the variabilit

distributions we extracted median, 5th and 95th percentile, and minimum and maximum. For
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the realized communities we computed asymptotic resilience, worst-case variability and the

prediction for the mean—Fhen—-median. Finally, we computed the median of these statistics

all represented

G Limit-eof strong interaetionsGenericity in_strongl

interacting communities

We give some elements as to why the behavior reported in Figs. 4 and 5 in the main text can be

expected to be a general trend in diverse communities of interacting species. Fer-that-purpese;

eonsider-Denote by VP ¢ the community variability induced by a type-a perturbation that is
fully focused on a single species 7. We are interested in the relationship between this variabilit
and the equilibrium abundance N; of the perturbed species 3.

First, note that for single-species perturbations the variability metrics VP** for different
erturbation types « are directly linked. From definition (D4) we get that

1

V= Ny v @)

Hence, it suffices to study the behavior of V< .
Next, consider again the Lotka-Volterra dynamics (F1) +from the perspective of a focal

species {of-index—0}i. If a stable equilibrium exists in which the focal species survivesat

abundaneeNg—, small displacements from equilibrium z; = N;(t) — N; will-be-are met with
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the dynamics

de’i TiNi
dt K;

( - Bijxj) _ l( - Bijxj), (G2)

J#i JF

In—this-expression—rsets—the-where 7, = 5. has units of time. We claim that 7, sets a

DA

characteristic time scale of the focal species dynamics—his—speeies-specifie—time—seale—;

it measures the typical time it takes for the species to recover from a perturbation that

displaces it from its equilibrium. This species response time is directly related to the species’
contribution—to—variability — Indeed—variability V7" the slower the species, the larger
the impact of a repeated perturbation acting on this species, and the larger the speeies’
eontribution—to-—vartabiityinduced variability.
We illustrate the relationship between 7; and V% in Fig. G1 (inset panels). For the six
communities of Fig. 5, we fit the power-law relationshi
V;‘fgi x T/, (G3)
where the index 7 runs over the set of persistent species. The estimates of the exponent v
using linear regression on the log-log plot) are all close to one. This result is obvious for

spec %

anels). But the same result remains valid in the presence of interactions. We find that
interactions do not substantially modify the time scale on which a species responds to perturbations
affecting only that species..
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Figure G1: Clarifying the relationship between abundance of perturbed species and community variability.

In Appendix G we introduce the auxiliary variable 7;, the characteristic time scale of species i, to explain the

relationship between variability V**° * and abundance N;. For the six communities of Fig. 5 in the main text,

we plot 7; vs N; in the main panels, and VP ' vs 7; in the inset panels. We fit a power law to each of these

relationships, using linear regression on the log-lo

and v (for the data VP ¥ vs ;) are reported in the panels.

68



Therefore, to study the relationship between N; and VP ¢ we can restrict to the simpler
relationship between N; and 7; = £ which is determined by the correlations between growth

rates r;, carrying capacities K; and equilibrium abundances N;. Fi

. G1 (main panels) shows

this relationship for the six communities of Fig. 5-in-whieh-we-drew-5. Fitting the power law

we find various estimates for the exponent . Without interactions, we have N, = K;, and

qummljvgrowth rates and carrying capacities independently—Alternativelyare drawn

independently, abundance and response time are unrelated, leading to v ~ 0 (Fig. G1, we
eotld—assume—some—trade-off-between—upper-left panel). Alternatively, if growth rates and
carrying capacities ;—eausing—tow—abundance—to—-be—asseciated—with—lewer—econtribution—te
variabilityiHustrated-on-the second-row—of satisfy some trade-off, higher abundance (larger
K;) is associated with longer response time (smaller ;). leading to 7 > 0 (Fig. 5-—Jn-other

where—the-sum—measures—the-contributionof-all-G1, lower-left panel). When increasing the

interactions, the link between N; and K; becomes weaker. Indeed, from the equilibrium
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condition for species ¢ we have

Ni= Ki+ ) Byl
J#i

— Kz —+ (Z Binj -+ Z B”B]kKk —+ Z BiijkBlel 4+ ... ),
i oy kA

where in the second line we have used the equilibrium condition for the other species. Fhis

No=Ko+» BojK;+> BoBuK,+ Y BojByBuki+ ...

J Jik Jikyl

to-its-abundanee Ng—H thisis-the-ease—For sufficiently strong interactions, the terms between

brackets dominate the term K, so that /N; and K; become unrelated. In this case, we have

7, X ~, leading to v~ —1: more abundant species have faster dynamics and senerate—a

is of the immigration tvpe (o — 0). This explains the smaller response time. This limitin

case is observed both if r; and K; are independent, and if they satisfy a trade-off (Fig. G1

right-hand panels).
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Finally, putting together egs. (G1, G3, G4), we get
V;pe” x NP 117 o Nf‘ﬂ” ~ Nz.aﬂ, (Gb)

where in the last step we have used that v &~ 1. The relationship between abundance ane

speeies—abundanee—of perturbed species and community variability is strongly determined

by the exponent that is, by the relationship between abundance N, and response time
7;. In the case of weak interactions, the latter relationship depends on the assumed link

between growth rate r; and carrying capacity K, so that no unambiguous relationship is to

be expected between abundance and variability. However, in the ease-of-demographie-type

strong interactions, we have v &~ —1 and eommunity-variabiity

Vet o Nl (G6)

is inversely proportional to the

abundance of the perturbed species. In contrast, for environmental perturbations (o = 2

variability is directly proportional to the abundance of the perturbed species. These are the

relationships depicted in Figs. 4 and 5 of the main text.
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H Variability and abundance statistics

From the observed relationship between abundance and variability (Figs. 4 and 5), patterns
for worst- and mean-case variability can be deduced. This reveals a connection between
stability and diversity metrics.

Denote by ViPee ¥ eansed-by-a-perturbation-of type-the community
variability induced by a type-a sperturbation fully focused on species i. In-communities—with

this variability and the equilibrium abundance of species i. As argued in Appendix G}-we
have-that

VPeetoo N ox N7U = NpTL
—~—~— N~~~

perturbation response

we expect this relationship to hold for sufficiently strong interactions.

For immigration-type perturbations (« = 0), worst-case variability is approached by taking

the maximum over species which gives

1

spec %
Vworst p:(] x

a=0

(H1)

~ max V,
3

so that werst-ease—vartability-the worst case is governed by the rarest species. Fuarthermeore;
Because the abundance of the rarest species typically decreases with diversity, se-that-the cor-

responding diversity-stability relationship is decreasing. For mean-case variability, averaging

over species individual contributions, we get
mean _ L§m e IS Ly (H2)
a=0 S i a=0 S - Nz harm?

where (N)pam stands for the harmonic mean of species abundances. Mean abundance typ-
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ically decreases with diversity, so that the corresponding diversity-stability relationship is

decreasing.

When caused by environmental-type perturbations (« = 2), variability-is-propertional-te
the abundance of the perturbed species: so that the worst case is worst-case variability is

approached by taking the maximum over species, giving

Prost &~ max VEPG ' oc max N;., (H3)
7 1

so that werst-ease-invariability-the worst case is governed by the most abundant species. For

mean-case variability 5

mean 1
a=2 X § Z Nz - <N>arith7 (H4>

the arithmetic mean of species abundances. Mean abundance typically decreases with diver-
sity, so that the corresponding diversity-stability relationship is increasing.
Note ;-that when caused by demographic-type perturbations (o = 1) the species-by-species

approach does not work: demographic variability probes a purely—collective property of the

community. The different relationships between abundance and variability are illustrated in
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Figure H1: Invariability and species abundance. Top row: mean-case, bottom row: worst-case. x-marks:
analytical formula; +-marks: approximation in terms of abundance (see Appendix H); thick line: simulation
results. For immigration-type perturbations (first column, in blue), mean-case invariability scales as the
harmonic mean abundance (see eq. (H2)), which decreases with diversity. Worst-case invariability scales as
the abundance of the rarest species. On the other hand, in response to environmental-type perturbations
(third column, in red), mean-case variability scales as the arithmetic mean abundance (see eq. (H4)) so that
invariability increases. Worst-case variability scales as the abundance of the most common species. In between
(second column, in green), for demographic-type perturbations, neither worst- nor mean-case invariability is

determined by statistics of species abundances.
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