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ABSTRACT71
Numerous conceptual frameworks exist for good practicebest practices in72
research data and analysis (e.g. Open Science and FAIR principles). In73
practice, there is a need for further progress to improve transparency,74
reproducibility, and confidence in ecology. Here, we propose a practical75
and operational framework for researchers and experts in ecology to76
achieve good practicebest practices for building analytical procedures77
from individual research projects to production-level analytical pipelines78
based on atomisation and generalisation. We introduce the concept of79
atomisation to identify analytical steps which support generalisation by80
allowing us to go beyond single analyses. The term atomisation is81
employed to convey the idea of single analytical steps as “atoms”82
composing an analytical procedure. When generalised, “atoms” can be83
used in more than a single case analysis. These guidelines were84
established during the development of the Galaxy-Ecology initiative, a85
web platform dedicated to data analysis in ecology. Galaxy-Ecology allows86
us to demonstrate a way to reach higher levels of reproducibility in87
ecological sciences by increasing the accessibility and reusability of88
analytical workflows once atomised and generalised.89

90



Graphical abstract – Levels of attainable good practicebest practices91
through the atomisation – generalisation framework92

93
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Introduction97

Ecology’s Reproducibility Crisis98

Research in ecology is increasingly shaped by the availability of novel99
analytical solutions and statistical tools. Given the ever-growing amount of100
data available, much attention is often given to the thought process behind101
statistical analyses to handle different data distributions, pseudo-replication,102
and sampling biases for instance (NERC 2010, 2012; Hampton et al., 2017;103
Emery et al., 2021). Despite the high-quality standards required by the104
scientific community from data access to analysis, the level of complexity of105
ecological systems makes results difficult to reproduce. The ongoing106
“reproducibility crisis” has also led researchers to pay closer attention to the107
quality of analyses to increase confidence in their studies and conclusions108
(Ioannidis, 2022; Fanelli, 2018).109
Reproducibility (i.e. different teams and experimental setups obtaining110

similar results; Plesser, 2018) is one of the main criteria for evaluating robust111
science and reliable conclusions. The term “reproducibility” is a relative112
concept and has known various definitions depending on field and context.113
Reproducibility of analyses In ecological sciences, most in-situ observations114
are not strictly reproducible due to stochasticity. Accordingly, the focus has115
been directed towards the reproducibility of analyses (“computational116
reproducibility”) is defined by Cohen-Boulakia et al. (2017) as the abilty of117
distinct analyses to reach to the same conclusion. over the reproducibility of118
data collection (Powers & Hampton, 2019; Samota & Davey, 2021).119
Reproducibility can be achieved at different levels of the analytical workflow,120
from primary data access to results. Archmiller et al., 2020 and Minocher et121
al., 2021 tried to evaluate computational reproducibility in 74 studies in122
wildlife science and 560 studies in biological and behavioural sciences.123
Although these authors found high rates of computational reproducibility124
when data and analytical procedures could be fully retrieved, they125
encountered significant difficulty in retrieving the data files and analytical126
procedures in most studies.127
Given the high complexity and the massive amount of information128

required to retrieve results using a broad range of data and methods,129
achieving sufficient reproducibility must be facilitated. In addition,130
researchers are increasingly challenged to stay up-to-date with the ever-131
growing number of advanced methods and technologies for data acquisition,132
storage, and analysis (Hampton et al., 2017). Providing technical and133
practical support to reduce the perceived complexity of analytical workflows134
could increase and accelerate the diffusion of good practices in the research135
community, fostering understanding for a wider audience thereby facilitating136
transparency and improving reproducibility. Here, we explore how137
computational reproducibility can be easily implemented in ecological138
sciences using simple and practical guidelines.139
In the current context of the global biodiversity crisis, the scientific140

community needs to use all available data and provide as robust as possible141
evidence regarding the state and dynamic of ecological systems, from142
genetic to ecosystem. At the same time, using analytical tools to provide143



robust evidence can be complex and may require advanced skills that are not144
widely available across the scientific community (Hampton et al., 2017).145
Therefore, operational solutions and methodological guidelines can allow the146
analytical workflows to be more accessible without degrading the scientific147
quality of the analyseis, and thus, promote efficient and broad deployment of148
good practicebest practices.149

Is the ecology community failing to meet good practicebest practices?150

The first step towards reproducibility is knowing current good practicebest151
practices and recommendations. Among them, the FAIR principles (Wilkinson152
et al., 2016), for which the availability of the data and the code used for each153
published result is an essential criterion, may be key for appropriate154
management through the data life cycle (Michener, 2015). The FAIR155
principles (see also CARE principles by Carroll et al., 2020) are considered as156
a founding framework to share data along four important elements:157
"Findable" for humans and machines; "Accessible" with a detailed access158
procedure; "Interoperable" for interaction with other data or applications;159
"Reusable" in an identical or different context. In addtition to these principles,160
propositions have been delimited within several thematic communities in161
ecology to evaluate and enhance best practices application, notably the162
Species Distribution Modelling communities (Araújo et al., 2019; Zurell et al.,163
2020).164
In 2022, Gomes and collaborators identified 12 barriers to data and code165

sharing, ranging from unclarity of processes to fear of inappropriate use and166
insecurities around data and code quality (Gomes et al., 2022). Although data167
accessibility has been substantially improved in ecology during the past168
decade, sharing analytical scripts and codes remain largely marginal (Ivimey-169
Cook et al., 2023Archmiller et al., 2020; ). According to Culina et al., 2020;170
Minocher et al., 2021; Ivimey-Cook et al., 2023).,171

in a “random sample of 346 nonmolecular articles published between172
2015 and 2019”, 79% had data availability but only 27% had code availability173
despite a tendency for journals to encourage code-sharing (75% of assessed174
ecological journals).175
Low code availability compared to data availability may suggest a lack of176

technical solutions for sharing computing codes. Nevertheless, many177
repositories dedicated to sharing code exist, such as GitHub178
(https://github.org), which software developers widely use to collaborate and179
share codes publicly and privately. Besides, the Software Heritage initiative180
automatically archives all openly available code from GitHub, ensuring long-181
term preservation (https://archiveprogram.github.com; Di Cosmo & Zacchiroli,182
2017). Alternatively, other solutions for data archiving may be used, even if183
not explicitly focused on code sharing (e.g., Zenodo, national public184
repositories; see also TRUST principles for data repositories, Lin et al., 2020).185
However, even if long-term public archiving ofsharing code is necessary to186

achieve good computational reproducibility, it is insufficient. Therefore, many187
guidelines and principles have been developed in the recent years. Among188
others, the utilisation of computational workflows has been suggested as a189
solution for improving computational reproducibility (Cohen-Boulakia et al.,190



2017; Grüning et al., 2018) through software such as Snakemake (Köster &191
Rahmann, 2012), Nextflow (Di Tommaso et al., 2017), or Galaxy (The Galaxy192
Community, 2022). A workflow is generally defined as a sequence of distinct193
computational tasks for a particular objective (Goble et al., 2020). As such, a194
workflow represents the backbone of a single specific analysis. Throughout195
the analytical procedure, a typical workflow starts with raw data, which can196
be extracted from several databases or data files and processed through a197
series of analytical steps. The products resulting from these analytical steps198
(i.e. the outputs of the computational workflow) can be data files, graphic199
representations and any associated metrics. In this respect, computer code200
can also be considered as research data (Borgman, 2020).201
When properly designed, a certain level of reproducibility can be easily202

achieved since workflow languages naturally capture the following four key203
elements (Cohen-Boulakia et al., 2017):204

 the specificities of the workflow, the analysis steps and associated205
tools;206

 the workflow entries, datasets and parameters;207
 the environment and context of the use of the workflow;208
 the results obtained and the outputs of the workflow.209
In the original publication of Wilkinson et al. (2016), the focus of FAIR210

principles was mainly on observational data. However, the principles can be211
applied to software and computational workflows (Lamprecht et al., 2019;212
Goble et al., 2020). For instance, a code shared as supplementary material of213
a non-open access publication could be considered as "Interoperable" but is214
not easily "Findable", "Accessible", or "Reusable". In contrast, a large block of215
code consisting of several hundred lines, from data pre-processing to final216
results and graphics as pictured in the Graphical abstract ❶, may require217
efforts to understand and adapt to other kinds of data ("non-reusable"),218
mainly if annotations or comments are limited. Similarly, an analytical219
procedure shared without indicating the versions of hardware, software, and220
packages has a low chance of producing identical outputs, making it non-less221
reproducible. These issues may harm the scientific community by preventing222
fully transparent communication among users about knowledge production223
and practice comparison. They can also be detrimental to individual authors,224
when they need to update or run new analyses.225

Impact on Ecology Research226

The efficiency of the expertise and research is greatly affected by the lack227
of computational reproducibility and FAIRness of analytical procedures. FAIR228
research data was estimated to save 10.2 billion € per year in Europe229
(Munafò et al., 2017; European commission, 20189; Gomes et al., 2022).230
Indeed, analyses and underlying conclusions cannot have a tangible impact if231
the raw data, the analytical procedures, and the outputs resulting from these232
procedures are not easily findable, accessible, interoperable and reusable.233
Moreover, consistent application of reproducibility and FAIR principles will234
improve trust in research studies and scientific reports (Powers & Hampton,235
2019; Lortie, 2021; Jenkins et al., 2023).236



The widespread use of computational languages to process large-scale237
data and analyse complex systems has been a major advance in studying the238
ecosphere at any spatio-temporal scale (Michener & Jones, 2012; Farley et al.,239
2018). Even if computational capacity may represent a significant limitation240
for analysing large data files or using resource-intensive algorithms (Green &241
Figuerola, 2005), computation clusters nowadays exist to overcome such242
challenges (Hampton et al., 2017; Larcombe et al., 2017). However, the ever-243
growing technical and programming skills required to take advantage of such244
computational solutions by the scientific community raise new challenges245
(Jetz et al., 2019; Leroy, 2022; Boyd et al., 2023). The use of increasingly246
complex analytical solutions, paired with different approaches or247
programming languages, mechanically reduces the number of potential users,248
limiting collaboration and fragilising fundamental pillars of scientific249
knowledge such as the peer-review process and critical evaluation. As a250
response to this situation, adequate training was identified by life science251
researchers (Community Survey Report, 2013; Williams & Teal, 2017;252
Larcombe et al., 2017), as it would help involve more people in the253
understanding of current analytical solutions and benefit to scientific254
cooperation (Touchon & McCoy, 2016; Gownaris et al., 2022). Research is255
typically structured through a highly competitive organisation, with a256
potentially detrimental effect on scientific knowledge (Fang & Casadevall,257
2015). Instead, fostering collaboration and collective intelligence by258
promoting transparent sharing of analytical procedures, would offer more259
persitent and robust ways to achieve actionable science (Ellemers, 2021).260
Such efforts would be of paramount importance in environmental sciences261
and the conservation of biodiversity by providing governance and guiding262
actions with increasingly robust evidence (Keenan et al., 2012).263

Are there simple and ready-to-use solutions?264

In this note, we aim to promote the reuse of existing concepts and265
solutions as pillars toward better practices for ecological analyses by266
providing a streamlined framework. We believe the atomisation-267
generalisation framework presented in the second part of this note268
represents an operational and actionable path for researchers and experts to269
attain levels of good practicebest practices (e.g. reproducibility, FAIR, open270
science, R compendium; Casajus N., 2023) with no more investment than271
they are able or willing to provide (Field et al., 2014). Atomisation is used to272
refer to the identification of single analytical steps constituting an analytical273
procedure. It is a non-standard term introduced in this note to convey the274
idea of analytical “atoms”. As for atom particles that etymologically275
correspond to “indivisible” but are composed of subatomic particles, an276
analytical atom represents a single analytical step composed of several277
functions. Generalisation involves the alteration of an analytical step to278
enlarge its applicability in diverse contexts and for diverse purposes.279
This framework has been formalised while building the Galaxy-Ecology280

(Galaxy-E) initiative (see section III). Galaxy (The Galaxy Community, 2022) is281
a workflow-oriented web platform for sharing and processing research data. It282
allows scientists to shareing, developing, and useing various datasets and283



data processing tools (e.g. data formatting, statistical tests, graphic284
representations). Many scientific workflow management systems, such as285
Snakemake and Nextflow, operate from the command line. In ecology,286
numerous initiatives have tried to introduce such systems, starting with more287
user-friendly solutions. For example, the KNIME and Kepler systems with the288
CoESRA initiative (Collaborative Environment for Scholarly Research and289
Analysis) in Australia, or Taverna with the BioVeL initiative (Biodiversity290
Virtual e-Laboratory) in Europe. These systems are more accessible to new291
users by offering a graphical interface while achieving high specificity292
(Berthold et al., 2007; Hardisty et al., 2016). However, good computer293
programming or scientific workflow management knowledge is still necessary294
to use these applications correctly.295
Galaxy is ready to use and has proved its efficiency and suitability in other296

research fields, including genomics and climate science (Knijn et al. 2020;297
Serrano-Solano et al., 2022). From a user’s point of view, it offers extensive298
computing power and a graphical interface to use analysis workflows, even299
without experience in software development. Web-based access allows easy300
sharing of analytical workflows between collaborators and with a broader301
audience. Galaxy supports tools in almost any computational language,302
including R and Python, two of the most used languages in ecology, with303
many packages dedicated to ecological and biodiversity-oriented analyses304
incorporated (Lai et al., 2019).305
Galaxy enables good reproducibility for data exploration and analyses,306

helps compute intricate analyses on big data files, enables collaboration, and307
can support the teaching process. Galaxy-E is a Galaxy server dedicated to308
ecological analyses maintained by the European Galaxy team (supported by309
the German Federal Ministry of Education and Research and the German310
Network for Bioinformatics Infrastructure), and is available at311
https://ecology.usegalaxy.eu.312
Galaxy-E is a demonstration platform for applying good practicebest313

practices such as the FAIR principles and computational reproducibility for314
analytical procedures in ecology. Hence, this technical note is partly Galaxy-315
oriented, not to present the platform as a prescriptive solution but to give an316
operational example of the good practicebest practices it helps to achieve.317
Recommendations described in this note regarding the construction of an318
analytical procedure on Galaxy are meant to be transposable to local code319
development or another consistent workflow engine.320

Framework towards good practicebest practices321

Atomisation: what is it and why?322

Atomisation refers tois dividing an analytical procedure into several323
specific steps (“atoms”; Graphical abstract ❷) generating a suite of324
elementary analytical steps as pictured in the Graphical abstract ❸. Breaking325
down the analytical process into atoms functioning as building blocks allows326
for better understanding, modularity, and visibility of the analytical flow. It327
permits making it more accessible to a broader audience or facilitating the328
peer-review process. Indeed, an extended one-block code that imports raw329



data, makes pre-processing steps (e.g. filter, formatting), conducts analyses330
(e.g. distribution study, modelling), and performs final representations of331
results (e.g. maps, plots) can be challenging to understand and reuse by332
others or even the same person after some time.333
McIntire et al. (2022) described the PERFICT approach (Prediction,334

Evaluation, Reusability, Free access, Interoperability, Continuous workflows,335
and routine Tests) to set a new foundation for models in predictive ecology.336
This can be applied more generally to the analytical procedure in ecology and337
biodiversity. In their article, McIntire and collaborators make an analogy338
between code development and Lego® construction, similar to our definition339
of atomisation. Functions are a workflow’s most fundamental analytical steps340
and can be seen as modular pieces, alike single pieces of Lego®. Modules341
can be created from a single or series of successive functions comparably as342
in Lego® structures made of several pieces (e.g. meant to build cars, houses,343
or road). These modules (or atoms, tools) can be used as standalone or344
combined to make simple to complex analytical workflows such as(e.g. data345
formatting or curation, running statistical models, or generating graphical346
elements for visualisation). Doing so, the atomisation approach may facilitate347
sharing or teaching analytical practices since beginners can easily348
understand the general organisation of the analytical procedure by simply349
reading the list of steps in the analysis with a limited degree of complexity.350
Decoupling programming skills from analytical skills can make data351
processing more accessible to a wider audience. Indeed, once each352
elementary step is clearly identified and delimited along the atomisation353
process, it is easier to grasp the whole analytical procedure and focus on the354
review of each step at a time or (re)use it. New workflows can further be355
generated by recombining existing, validated or peer-reviewed elementary356
steps in innovative ways. This process can save time, increase confidence,357
and avoid potential programming mistakes, allowing greater focus on358
understanding the analytical workflow.359

Generalisation: what is it and why?360

Generalisation is refers to the modification of an analytical procedure to361
make it applicable to many settings, by removing specificities related to a362
particular data file or data format. Generalisation aims to optimise the363
reusability at different times (e.g. regular result update), enlarge the364
application of a given analysis to different input data files while keeping the365
initial analytical procedure fully reproducible as pictured in the Graphical366
abstract ❹. Generalising an analytical step requires identifying key steps and367
invariant parameters from those that must be adaptable to allow for the368
analysis to be applied to specific characteristics of various datasets. These369
parameters must be implemented to be easily modified if needed.370
Generalisation can be tricky because the higher the flexibility of an analytical371
step, the greater the risk of errors in its use. This is why generalisation should372
be complemented by clear statement and an implementation of red flags and373
warnings to prevent such events. As with atomisation, generalisation is374
primarily a conceptual way to build analytical procedures. It requires minor375



change of practices to reach certain degree of generalisation, avoiding376
additional effort later on for reusability, reproducibility, and share.377

How to do atomisation and generalisation with computer codes: Finding378
balance379

Breaking down codes into elementary steps to achieve atomisation is not380
an intuitive task aet first as it may target a single function or a more intricate381
set of several functions. There could be different degrees of atomisation,382
depending on the grain required to decompose the analytical process (fig. 1;383
tab. 1). The application of general guidelines and good practicebest practices384
implies finding a balance between the most appropriate degree of385
atomisation and generalisation. This depends on the type of analytical386
procedure or the targeted audience (e.g. with different interests and387
programming skills). Attention to this balance is critical to ensure that the388
analytical procedures could be reused. For instance, a workflow in which each389
function would be considered as a unique elementary step would optimise390
the flexibility but may likely add unnecessary complexity. At the other391
extreme, considering a whole analytical workflow as an elementary step may392
make it ready-to-use and simplify its application, but would be too coarse and393
therefore limit flexibility by violating the principle of atomisation.394

395

Figure 1 - Illustration of the atomisation of an existing code396



Table 1 - Example of atomisation levels397

Level 1 - big shape Level 2 Level 3
Data exploration Sampling plan Complete

Balanced
Missing values Proportion

Distribution
Data granularity Geographic resolution

Temporal resolution
Measure resolution

Data distribution Geographic coverage
Temporal coverage
Measures ranges
Summaries

… …
Pre-processing Formatting Change file format

Change general format
Corrections Remove special characters

Remove low trust observations
Correct measures

Filtering Remove unwanted observations
Anonymisation Anonymise names

Anonymise localities
Anonymise species

… …
Analysis Variable exploration PCA

Collinearity
Correlation

Unimodal tests Linear Models
χ²
Student

Statistical models Generalised Linear Models
Generalised Additive Models
Random Forest

Models Evaluation Evaluation metrics (e.g. AIC, Jaccard)
Validation methods

Projections Geographical projections
Temporal projections

… …
Representation Plot Raw variables

Modelled results
Map Observations

Projections
… …

A fFew changes in code-writing habits can enhance the reusability of the398
analytical procedure by generating easy-to-understand analytical procedure399
without investing much time. It is best to develop each elementary step400
directly in separate code files and to give details of the order in which401
elementary steps are used for each analytical workflow. To ensure402
reproducibility and traceability of the results, each computation of the403
analytical workflow should be associated with the details of the parameters404
settings and datasets used. From a practical point of view, a couple of405
recommendations could be made for coding elementary steps in order to406
facilitate generalisation and ease the reuse. Once each elementary step is407
defined, we recommend all dependencies (e.g. software version, packages,408
libraries and their versions) to be set at the same place, at the start of the409
code, followed by modular parameters (e.g. input file location and name,410
column selection, modelling parameters, data specificities, output saving411
location). When the script of the elementary step is completed, modular412
parameters should be the only part of the code that may be modified in413
future reuse. Dependencies and subsequent computational tasks should be414



left untouched to ensure the integrity of the analysis and then, reproducibility.415
In the end, it is best to add an open-source license to any analytical416
procedure shared publicly (e.g. MIT, GPL). It permits to clearly state the terms417
and conditions of diffusion, share and reuse.418
As such, atomisation and generalisation may overcome social or419

psychological barriers related to transparent sharing, either related to420
securing ownership (e.g. DOI) and to embarrassment or fear during a peer-421
review process (Gomes et al., 2022).422
Atomisation and generalisation are related and complementary concepts.423

Atomisation into adequate elementary steps is necessary to properly424
generalise an analytical procedure as it permits to enhance the modularity of425
the procedure and its capacity to be tailored to different data types.426
Atomisation and generalisation must be applied from the earliest stages of427
the programming development of any analytical procedure in order to428
achieve:429

 Greater transparency, even for beginners, since the relevance and430
coherence of each step and their successive arrangement along the431
analytical procedure should be appraised independently of the432
programming skills;433

 Time savings;434
 Greater reusability;435
Modularity of the elementary steps, to rearrange them differently if436
needed.437

438

Entering a new dimension: the Galaxy-E initiative example439

Developing open and properly atomised and generalised analytical440
procedures can already represent a significant step forward in terms of good441
practicebest practice. Galaxy is a good illustration of atomisation and442
generalisation with easier management of analytical workflows. The platform443
proposes many analytical tools that represent generalised and atomised444
elementary steps. These tools are modular and openly licensed, which445
permits to build generalised workflows as pictured in the Graphical abstract446
❺.447
Galaxy-E is mostly aimed at scientists that process biodiversity data and448

already have an understanding of the general functionning of the analytical449
procedures they want to produce. The rationale for a user would be to create450
or reuse analytical workflows with high FAIRness in a collaborative and open451
source platform. It can be used for individual analyses as well as for452
collaborative projects. In some cases, if the analytical procedure is already453
clearly defined, it can be used by citizens or for teaching.454
It benefits from the same advantages as the framework presented in the455

previous section and can help achieve a further level of FAIRness as a456
demonstration platform to package analyses in an accessible and user-457
friendly manner (tab. 2).458



Galaxy as a demonstration platform to package analyses in an accessible and user-friendly manner can help achieve459
a further level of FAIRness. Any analytical procedure can be adapted on the platform and Galaxy can be used through460
the whole data life cycle (https://rdmkit.elixir-europe.org/galaxy_assembly). Throughout this note, many ways to461
contribute to Galaxy are discussed in their conceptual and methodological aspects. One can use off-the-shelf tools,462
workflows, and tutorials to design an analytical procedure, or suggest, develop, and share new workflows and tutorials,463
two aspects that do not require coding skills. Eventually, one can modify or develop entirely new tools with any464
computational language to make them accessible to all users on any Galaxy server. The Galaxy platform emphasises (i)465
accessibility of tools and data even without programming experience, (ii) reproducibility through the easy creation and466
reuse of analysis workflows, (iii) transparency through the open-source distribution of underlying codes; and (iv)467
community support.In 2022, Gomes and collaborators identified 12 barriers to data and code sharing, ranging from468
unclarity of processes to fear of inappropriate use and insecurities around data and code quality (Gomes et al., 2022).469
There are different Galaxy servers, at global, continental, and national levels (European and French levels for470

example), but also according to the fields (e.g., biomedical, ecology, climate). The Galaxy-E initiative is hosted by471
European (https://ecology.usegalaxy.eu) and French (https://ecology.usegalaxy.fr) servers.472
Datasets can be uploaded on a Galaxy server from a local device, an online server, or a database. Users can then473

access every available tools (fig. 2, left panel) to modify, explore, and analyse their data. All tools used, parameters,474
and data (inputs and outputs) of the analysis are saved in a private “Galaxy history” (fig. 2, right panel), documenting475
every step of the analytical procedure and recording the provenance of each output. From any history, the user can476
extract a workflow (fig. 3) or directly share or publish the history itself.477



478

Figure 2 - Galaxy-Ecology users’ interface https://ecology.usegalaxy.eu. Yellow panel on the left: analysis tool list; blue479
panel in the middle: current tool interface; red panel on the right: Galaxy analysis history480



481

Figure 3 - Representation of a Galaxy workflow in the editing interface of a Galaxy server. Each box represents an482
analysis tool, and the lines represent the flow of data through the tools483

Anyone can use the tools on Galaxy and/or develop new tools and workflows to make them available to all by484
publishing them in the shared Galaxy ToolShed (https://toolshed.g2.bx.psu.edu/) which ensures that the tools and485
dependencies can be installed on any Galaxy servers. By definition, a Galaxy workflow already has a degree of486
atomisation (each tool represents an elementary step) and generalisation and benefits from the same advantages as487
the framework presented in the previous section in good practices (tab. 2).Any analysis history or workflow can be488
shared and enriched in parallel by several users, facilitating teamwork.Galaxy-Ecology has implemented workflows for489
biodiversity data exploration, eDNA processing, general population and community metrics and models,490
ecoregionalisation, NDVI (Normalised difference vegetation index) computation with Sentinel-2 data among others (see491
some examples: https://workflowhub.eu/workflows/657) and tutorials for several of them are available on the GTN492
platform (see https://training.galaxyproject.org/training-material/topics/ecology).493



Recommendations described in this note regarding the construction of an analytical procedure on Galaxy are meant494
to be transposable to local code development or another consistent workflow engine.495



Table 2 - Comparison between the atomisation-generalisation framework and Galaxy for the achievement of good496
practicebest practices. Limitations are occasionally raised with short advice to mitigate them when relevant497

Atomised-generalised code Galaxy
Reproducibility and
transparency

Environment, software
and package versions

Can be indicated but possibly hard to manage
Can also be set as an output of the analysis (e.g. session
info)
Packages written in each coded elementary step or using a
versioning system such as Conda

Entirely packaged with Conda package manager and BioContainers
Possibility to store analytical procedures as containers for persistent execution

Inputs and parameters One must keep track of different parametrisation and input
settings at each computation

Automatically tracked and shareable with the “Galaxy history”

Peer-review Organisation of the analytical procedure reviewable by non-
code developers
Code developers might be able to detect errors as it is
easier in shorter scripts
Transparency over the development process achievable
through Git

Reviewable “Galaxy history” and re-executable workflow
Continuous pPeer-reviewed of tools with open-source code
Transparency over the development process through Git
The workflows can be reviewed by the Intergalactic Workflow Commission (IWC) for best
practices

Output provenance Can be tracked and reproduced in some cases Tracked with the “Galaxy history” and reproducible with workflow
FAIR principles Findable If properly shared Web-based solution

Unified system for data and software citation and attribution
Tools can be made available on several servers
Tools can be linked to tools registries and annotated with different ontologies
Annotated workflows findable on WorkflowHub (https://workflowhub.eu) and Dockstore
(https://dockstore.org)

Accessible If properly shared Free distribution of tools via the Galaxy ToolShed and workflows via WorkflowHub and
Dockstore under an open-source licence

Interoperable When properly generalised, different elementary steps
should be useable in interaction with each other

Use different software, computational language and library versions on a single platform with
the Conda package management system
Workflows exportable in JSON and shareable through several standards (e.g. Common
Workflow Language; Crusoe et al., 2022 and Research Object Crate; Soiland-Reyes et al., 2022)

Reusable Generalised elementary steps are reusable and adaptable
with different analytical procedure, parametrisation and/or
inputs

Tools, histories and workflows are re-executable, reusable and adaptable with different
analytical procedure, parametrisation and/or inputs. Open-source code can be used outside of
a Galaxy server

Technical and
knowledge gaps

Understandability The analytical procedure is clearer when properly atomised Tools interface, workflow annotations, help sections and tutorials are a valuable help

Teaching opportunities Learning the analytical procedure design separately from
computing languages, giving structure to trainees
Reusability of elementary steps for trainees

Experimenting with intricate analyses without computer code first
Tutorials and videos from Galaxy Training Network (https://training.galaxyproject.org)
Galaxy community

Computing capacity Need for a computation cluster if large data or demanding
algorithm

HPC (High Performance Computing) through an interface
Bulk (meta)data manipulation

Collaboration and
attribution

Analysis design and
development

Achievable through collaborative code-editing applications With anyone through a Galaxy server

Citation Easy reuse of openly shared elementary steps could lead to
higher citation rates

Each tool, workflow, and tutorial are provided with a unique identifier for proper attribution
and citation

498



The Galaxy platform emphasises (i) accessibility of tools and data even499
without programming experience, (ii) reproducibility through the easy500
creation and reuse of analysis workflows, (iii) transparency through the open-501
source distribution of underlying codes; and (iv) community support.502
Galaxy is ready to use and has proved its efficiency and suitability in other503

research fields, including genomics and climate science (Knijn et al. 2020;504
Serrano-Solano et al., 2022). For scientists, from a user’s point of view, it505
offers extensive computing power and a graphical interface to use analysis506
workflows, even without experience in software development. Web-based507
access allows easy sharing of analytical workflows between collaborators and508
with a broader audience. Galaxy supports tools in almost any computational509
language, including R and Python, two of the most used languages in ecology,510
with many packages dedicated to ecological and biodiversity-oriented511
analyses incorporated (Lai et al., 2019).512
Anyone can use the tools on Galaxy and/or develop new tools and513

workflows to make them available to all by publishing them in the shared514
Galaxy ToolShed (https://toolshed.g2.bx.psu.edu/) which ensures that the515
tools and dependencies can be installed on any Galaxy servers. Any516
analytical procedure or workflow can be shared and enriched in parallel by517
several users, facilitating teamwork.518
Galaxy is a powerful platform enabling researchers to readily move519

towards best practices. The Galaxy interface mitigates the difficulties520
associated with library management and code development, which permits521
simpler access to complex analytical methods. One can focus on the analysis522
itself and its concepts, rather than on syntax difficulties or cluster523
programming, disconnecting the study of data analysis concepts from the524
study of computing languages.525
The platform is community-driven which permits continuous peer review of526

the platform and of the tools, workflows and tutorials provided. Many tutorials527
are available on the Galaxy Training Network (GTN) which is a valuable asset528
to the accessibility and reusability of tools and workflows (Batut et al., 2018;529
Hiltemann et al., 2023).530
If enough researchers and experts start using and contributing to the531

platform, the number and content of available analytical procedures could532
expand at the same pace as latest analytical methodologies are integrated to533
research processes. If a different platform fits best and is more widely used534
by ecological and biodiversity scientific communities in the end, the work535
done on Galaxy will not be lost as tools are easily transposable to other536
interfaces (e.g. scripts directly usable with R, Python, etc., translation of537
workflows to other workflow engines).538
There are different Galaxy servers, at global, continental, and national539

levels (European and French levels for example), but also according to the540
fields (e.g., biomedical, ecology, climate). The Galaxy-E initiative is hosted by541
European (https://ecology.usegalaxy.eu) and French542
(https://ecology.usegalaxy.fr) servers.543

544
Datasets can be uploaded on a Galaxy server from a local device, an545

online server, or a database. Users can then access every available tool (fig.546



2, left panel) to modify, explore, and analyse their data. All tools used,547
parameters, and data (inputs and outputs) of the analysis are saved in a548
private “Galaxy history” (fig. 2, right panel), documenting every step of the549
analytical procedure and recording the provenance of each output. From any550
history, the user can extract a workflow (fig. 3) or directly share or publish551
the history itself. Workflows are reusable through WorkflowHub552
(https://workflowhub.eu) or Dockstore (https://dockstore.org) and exportable553
in CWL and RO-CRATE standards.554

555

Figure 2 - Galaxy-Ecology users’ interface https://ecology.usegalaxy.eu.556
Yellow panel on the left: analysis tool list; blue panel in the middle:557
current tool interface; red panel on the right: Galaxy analysis history558

559

Figure 3 - Representation of a Galaxy workflow in the editing interface560
of a Galaxy server. Each box represents an analysis tool, and the lines561
represent the flow of data through the tools562



Any analytical procedure can be adapted on the platform and Galaxy can563
be used through the whole data life cycle (https://rdmkit.elixir-564
europe.org/galaxy_assembly). One can use off-the-shelf tools, workflows, and565
tutorials to design an analytical procedure, or suggest, develop, and share566
new workflows and tutorials, two aspects that do not require coding skills.567
Galaxy-Ecology has implemented workflows for biodiversity data568

exploration, eDNA processing, general population and community metrics569
and models, ecoregionalisation, NDVI (Normalised difference vegetation570
index) computation with Sentinel-2 data among others (see some examples:571
https://workflowhub.eu/workflows/657) and tutorials for several of them are572
available on the GTN platform (see https://training.galaxyproject.org/training-573
material/topics/ecology).574
Eventually, one can modify or develop entirely new tools and workflows575

with any computational language to make them accessible to all users on any576
Galaxy server.577
Galaxy is an utterly participative platform and several ways to participate578

to Galaxy exist depending on one’s skills, available time, and needs. Anyone579
can participate to the Galaxy-Ecology initiative by notably:580

 Sharing datasets, histories and workflows;581
 Giving feedback on servers, tools, and workflows;582
 Sharing tools and workflows ideas (eventually with code) through Git583
issues;584

 Asking for tool modifications through issues;585
 Modifying existing tools or proposing new tools through GitHub or586
GitLab;587

 Writing or contributing to a GTN tutorial on a specific functionality or a588
workflow on the Galaxy Training Network platform;589

 Create learning pathways, a set of tutorials curated by community590
experts to form a coherent set of lessons around a topic, building up591
knowledge (https://training.galaxyproject.org/training-592
material/learning-pathways);593

 Propose training events and help users in the utilisation of a workflow594
and tutorial.595

596
Analyses are rarely computed only once. Any analysis with a597

generalisation potential is a suitable candidate to be Galaxy-fied. A598
methodological framework is presented in online supplementary material599
(https://github.com/ColineRoyaux/Galaxy_Templates/blob/main/Methods/Meth600
ods%20-%20How%20to%20Galaxy-601
fy%20your%20analytical%20procedure_.md) at three levels depending on602
potential interests, computing language skills, and willingness to invest more603
or less time in the process: (i) ‘user’ relying on existing Galaxy tools and604
workflows to analyse data (lower time investment), (ii) ‘developer’ relying on605
existing and validated analytical procedure to develop Galaxy tools and606
workflows (highest time investment), and (iii) ‘trainer’ relying on existing607
Galaxy tools to share workflows and create training material (variable time608



investment).The 12 barriers to data and code-sharing raised by Gomes et al.,609
(2022) can be at least partially addressed by Galaxy (see fig. S1).610
Galaxy is a powerful platform enabling researchers to readily move towards611
good practices. The Galaxy interface mitigates the difficulties associated with612
library management and code development, which permits simpler access to613
complex analytical methods. One can focus on the analysis itself and its614
concepts, rather than on syntax difficulties or cluster programming,615
disconnecting the study of data analysis concepts from the study of616
computing languages.617
The Galaxy Training Network (GTN) is a valuable asset to the accessibility618

and reusability of tools and workflows (Batut et al., 2018; Hiltemann et al.,619
2023). The Galaxy Training platform (https://training.galaxyproject.org) is an620
open, FAIR, collaborative platform compiling a variety of tutorials written by621
researchers, administrators, developers, and other contributors. These622
tutorials not only aim to teach how to use Galaxy, and take advantage of623
advanced features such as Interactive Tools (i.e. interactive applications624
within Galaxy, e.g. Windows desktop, Rstudio, R Shiny apps), but also how to625
run and interpret scientific analyses through detailed step-by-step guides.626

Discussion and limitations627

Levels of good practice628

As highlighted in previous sections, there are many good practicebest629
practices and recommendations existing for analytical procedures, data630
management, and computational code development. The levels of631
application of these good practicebest practices fall within a continuum632
offering many possibilities. From the lowest to the highest good practicebest633
practice levels for a published work there can be for example:634

 Raw data and analytical procedure are not shared, only processed and635
interpreted results along with a brief description of methods.636

 Pre-processed data is shared, and methods are described in the word-637
limit given by the publisher (example: tables of metrics and how it was638
calculated).639

 Raw data and source code are shared on a repository. Software and640
package versions are not specified and there is no guaranty to be able641
to reproduce the analytical procedure.642

 Raw data and atomised – generalised source codes are shared on a643
repository with specified hardware, software and dependencies644
versions. Input parameters are recorded in an attached file.645

 Raw data is shared with proper metadata and an actionable version of646
the whole analytical procedure is traceable, ready to use and647
eventually reuse on other data types. Such level can be attained648
notably using Galaxy.649

 All results and conclusions are published as an executable paper with650
analyses and workflows implemented and executable directly in the651
shared article (Strijkers et al., 2011).652



Executable Papers (Strijkers et al., 2011) can require significant time and653
resource investment as well as good knowledge of programming languages,654
making it an admirable but hard-to-attain goal.655
Atomisation and generalisation of computer codes can represent a656

relatively low investment strategy to attain certain levels of best practices657
such as transparency and reusability. It also carries advantages such as658
easier peer review, modularity of analytical procedures and, consequently,659
time savings. Indeed, applying the framework is not sufficient to attain the660
highest levels of best practices. For reproducibility and transparency, the661
management of the environment, softwares and package versions can be662
hard to maintain and record. A comprehensive tracking of input, ouputs and663
codes requires meticulous management of files arborescence in the664
environment. Additionnaly, non-code developers will be able to partially665
review the analytical procedure only if the workflow is clearly outlined in an666
adapted format (e.g. table, graphical representation). Accessibility and667
findability of the atomised and generalised analytical procedure is dependent668
of its proper sharing (e.g. persistent link, open repository).669
On Galaxy can represent an easier gateway towards higher levels of best670

practice ,as any available tool can be easy to use. Sharing sharing a complete,671
detailed and (re-)executable analytical procedure is facilitated as through672
provenance is trackinged and metadata is automatically metadata673
enrichementd. Finally, a Galaxy history or workflow can be made accessible674
to anyone (See methods section for details on the use of Galaxy). In675
comparison, many scientific workflow management systems, such as676
Snakemake, Nextflow or the R package Targets, operate from the command677
line. In ecology, numerous initiatives have tried to introduce such systems,678
starting with more user-friendly solutions. For example, the KNIME and Kepler679
systems with the CoESRA initiative (Collaborative Environment for Scholarly680
Research and Analysis) in Australia; Taverna with the BioVeL initiative681
(Biodiversity Virtual e-Laboratory) in Europe; or very recently, the BON in a682
Box pipeline engine. These systems are more accessible to new users by683
offering a graphical interface while achieving high specificity (Berthold et al.,684
2007; Hardisty et al., 2016; https://boninabox.geobon.org/). However, good685
computer programming or scientific workflow management knowledge is still686
necessary to use these applications correctly.687
In comparison to the atomisation-generalisation framework, Galaxy can be688

rightfully seen as heavier for experienced programmers as it requires to learn689
to use a new platform. Additionally, mMore effort may be required on Galaxy690
when an additional analytical step needs to be developed, but the Galaxy691
community can be an efficient crutch on which hard-pressed scientists can692
rely. Indeed, one can ask for help on the implementation of tools whether one693
knows computing languages and can share their code or not.694

695

A deeply collaborative initiative696

Galaxy is an utterly participative platform. Any analysis history or workflow697
can be shared and enriched in parallel by several users, facilitating teamwork.698
As discussed earlier, several ways to participate to Galaxy exist depending on699



one’s skills, available time, and needs. In the methods section, three ways to700
participate to Galaxy are distinguished: “as a user”, “as a developer” and “as701
a trainer”. One is not confined to only one of these roles; this distinction is702
more of a handy way to give structure to the methodology depending on703
one’s skills, available time and needs. Anyone can participate to the Galaxy-704
Ecology initiative by notably:705
Sharing datasets, histories and workflows;706
Giving feedback on servers, tools, and workflows;707
Sharing tools and workflows ideas (eventually with code) through Git708
issues;709

Asking for tool modifications through issues;710
Modifying existing tools or proposing new tools through GitHub or GitLab;711
Writing or contributing to a GTN tutorial on a specific functionality or a712
workflow on the Galaxy Training Network platform;713

Create learning pathways, a set of tutorials curated by community experts714
to form a coherent set of lessons around a topic, building up knowledge715
(https://training.galaxyproject.org/training-material/learning-pathways);716

Propose training events and help users in the utilisation of a workflow and717
tutorial.718

Galaxy is community-driven which permits continuous peer review of the719
platform and of the tools, workflows and tutorials provided. If enough720
researchers and experts start using and contributing to the platform, the721
number and content of available analytical procedures could expand at the722
same pace as latest analytical methodologies are integrated to research723
processes. If a different platform fits best and is more widely used by724
ecological and biodiversity scientific communities in the end, the work done725
on Galaxy will not be lost as tools are easily transposable to other interfaces726
(e.g. scripts directly usable with R, Python, etc., translation of workflows to727
other workflow engines), histories shareable as files and workflows reusable728
through WorkflowHub (https://workflowhub.eu) or Dockstore729
(https://dockstore.org) and exportable in CWL and RO-CRATE standards.730
Galaxy-Ecology has implemented workflows for biodiversity data731

exploration, eDNA processing, general population and community metrics732
and models, ecoregionalisation, NDVI (Normalised difference vegetation733
index) computation with Sentinel-2 data among others (see some examples:734
https://workflowhub.eu/workflows/657) and tutorials for several of them are735
available on the GTN platform (see https://training.galaxyproject.org/training-736
material/topics/ecology).737

738

Conclusion739

This article note showcases a simple proposition to achieve good740
practicebest practices in analytical procedures with two plain guidelines:741
atomisation and generalisation. This straightforward framework represents a742
different manner to think and build analytical procedures; it doesn’t require743
using a new technology or learning to use a new software. In terms of744
attaining higher levels of best practice, whether it is through the atomisation-745



generalisation framework, Galaxy, a combination of the two or otherwise, the746
optimal approach is to be determined by individuals depending on their747
interests, projects, and available resources. Relying on existing solutions as748
much as possible is, in our perspective, an efficient way to achieve a better749
understanding of good practicebest practices and their implications. Given750
the current environmental crisis, science has the major political and social751
responsibility to maintain good levels of transparency, reproducibility and752
efficiency.753

Methods - How to Galaxy-fy your analytical procedure?754

Analyses are rarely computed only once. Any analysis with a755
generalisation potential is a suitable candidate to be Galaxy-fied. This756
methodological framework is presented at three levels depending on757
potential interests, computing language skills, and willingness to invest more758
or less time in the process: (i) ‘user’ relying on existing Galaxy tools and759
workflows to analyse data (lower time investment), (ii) ‘developer’ relying on760
existing and validated analytical procedure to develop Galaxy tools and761
workflows (highest time investment), and (iii) ‘trainer’ relying on existing762
Galaxy tools to share workflows and create training material (variable time763
investment). Of course, learning to use a new platform and trying to look764
differently at analyses is time consuming in the short term, but saves time in765
the long run. Even if in the end the analysis is not made available on Galaxy,766
the work is not lost as each step helps the analysis to reach a higher level of767
good practice.768

Guidelines “as a user”769

Whether one wants to design a new analysis directly on Galaxy or has770
already an established analytical procedure and wants to adapt it on Galaxy771
to make it easier to review and reuse, the following steps are approximately772
the same. As Galaxy already is a workflow-oriented platform with atomisation773
of steps, “atoms” of the analysis are apparent while building the analysis on774
Galaxy.775
The Galaxy platform offers many options that can be explored using the776

guided tours of the interface (on the welcome page or tab “Help – Interactive777
Tours”). Several tutorials are also available on the Galaxy Training Network778
(https://training.galaxyproject.org) to learn how to use Galaxy (e.g. topics779
“Introduction to Galaxy Analyses”, “Using Galaxy and Managing your Data”).780
Main steps of the implementation of an analytical procedure on Galaxy as a781
user are represented on figure 4.782



783

Figure 4 - Decision tree and framework for Galaxy users relying on784
existing tools and workflows. The orange boxes represent actions. The785
blue boxes represent possible situations one may encounter during the786
procedure. The red boxes represent steps where one could stop, share787
the work, and then attain better reproducibility and FAIRness. Letters at788
the top left of boxes indicate which paragraph it refers to in the text.789
Links: (1) https://toolshed.g2.bx.psu.edu (2) https://usegalaxy-790
eu.github.io/posts/2020/08/22/three-steps-to-galaxify-your-tool791
(3) https://matrix.to (4) https://github.com/galaxyecology792

(a) The first thing to do when starting an analysis on Galaxy is to look for793
tutorials on the Galaxy Training platform to benefit from others’ experience.794
One tutorial may be enough to set the tracks for the whole analytical795
procedure, but it is also possible to use sub-parts of tutorials and/or associate796
several tutorials to complete steps of the procedure. Numerous ready-to-use797
workflows are also available on the Galaxy servers (tab “Shared Data –798
Workflows”) or could be imported from WorkflowHub or Dockstore, one may799
find one or several workflows to complete its analysis. High-quality peer-800



reviewed Galaxy workflows are reported by the Intergalactic Workflow801
Commission (IWC, https://github.com/galaxyproject/iwc). Additionally, it is802
possible to seek for help by asking on the Matrix channel803
(https://gitter.im/Galaxy-Training-Network/Lobby) or by opening a topic on804
the Galaxy Help (https://help.galaxyproject.org).805
(b) If the whole analytical procedure has not been fully covered with806

available tutorials and workflows, almost 10,000 tools are available on the807
Galaxy Tool Shed (https://toolshed.g2.bx.psu.edu) to connect the dots.808
(c) One or several helpful tools might not be installed on the used Galaxy809

server and one may need to ask for an installation (See box. 1 Ask for tool810
installation).811

Box 1 - Ask for tool installation. See https://usegalaxy-812
eu.github.io/posts/2020/08/22/three-steps-to-galaxify-your-tool/ for813
more details814

Fork: Act of creating a copy of a repository in one’s personal space
Commit: Act of submitting a modification to a file
Pull Request (PR): Act of proposing one or several Commit(s) to be integrated
Merge: Act of accepting the PR and integrate the modification proposed on the repository
Galaxy tools installation process is accessible to anyone, it is often explained directly in the “Read me” file on the server tools
repository (usually on GitHub or GitLab). To ask for the installation of a tool one must:

Look for the tool repository on the Galaxy Tool Shed;
Look for the domain tools repository (e.g. https://github.com/usegalaxy-eu/usegalaxy-eu-tools for all Galaxy Europe servers;

https://gitlab.com/ifb-elixirfr/usegalaxy-fr/tools for Galaxy France);
Fork this repository and look for the .yaml file corresponding to the used server (e.g. ecology.yaml for the

https://ecology.usegalaxy.eu and https://ecology.usegalaxy.fr servers);
In the .yaml file, make a Commit to add the following lines with the name and owner of the tool (written on the tool repository

on the Galaxy Tool Shed) along with a suggested tool panel section in which the tool can be sorted:
```
name: pampa_presabs
owner: ecology
tool_panel_section_label: 'Species abundance'
```;

PR the modification on the domain tools repository and wait for server maintainers’ approval (merge) and/or suggestions. The
installation of tools might be rejected if the peer-review process or relevance of the proposed tool is not adequate in the
server maintainers’ opinion.

If there are still gaps in the analytical procedure that none of the existing815
tools can fill, several options are available:816
(d) Ask for help (see end of bullet a).817
(e) Temporarily fill the gap with a command-line code locally or through a818

Galaxy Interactive Tool (e.g. Rstudio, Jupyter notebook and Ubuntu desktop819
interactive tools). The code can be shared or not.820
(f) Propose a new tool by sharing the idea through a GitHub issue821

(https://github.com/galaxyecology; preferably along with a code if existing).822
Details on the task aimed and awaited input and output (i.e. full823
specifications) of the tool along with references are of great help for potential824
developers who may take over tool development. If one wants to try tool825
development, see section ‘As a developer’.826
(g) Through these steps of looking for tutorials, workflows, and tools, the827

analytical procedure is progressively designed on the Galaxy history. As each828
Galaxy tool, parametrisation and provenance of each file produced is tracked829
in the Galaxy history, one can try several tools with different parameters to830
compare and find out which configuration seems the best. The Galaxy history831



can be shared to anyone through a link to collaborate on the analysis or in a832
peer-review process.833
(h) When parametrisation stage is done and the analytical procedure is834

complete, one can extract a workflow to reuse the analytical procedure on835
new datasets.836
(i) In the case of a missing tool and part of the analytical procedure is837

temporarily performed outside Galaxy, one can build separate workflows,838
between which data is downloaded to make required steps locally. A better839
temporary solution is to program the launch of Galaxy Interactive Tools (e.g.840
Posit (R), Jupyter notebooks, and Ubuntu desktop interactive tools) in the841
workflow to keep most of the procedure on Galaxy. In this case, provenance842
tracking can be secured partially by saving created objects, command history843
(e.g. Rhistory), and running environment for example.844
(j) Extracted workflow(s) can be shared with others for feedback or845

collaboration, but it can also be shared publicly on Galaxy server(s) and/or846
integrated to an article. When starting to share openly workflow(s), one is a847
Galaxy contributor as well as a user (see section “As a trainer”).848

Guidelines “as a developer”849

Developing Galaxy tools requires time investment, especially at the850
beginning to understand how Galaxy works and the architecture of the tools.851
The development procedure can vary depending on the origin of the852
analytical workflow idea which can be (i) existing code, a package, or a853
workflow implemented elsewhere, (ii) an idea from a user proposal, (iii) a854
published article or a personal need, and even (iv) an analytical procedure855
using originally several interfaced tools. When an analytical procedure was856
originally designed with atomisation and generalisation of elementary steps857
in mind, the process of developing Galaxy tools should take a lot less time.858
Main steps of the implementation of an analytical procedure on Galaxy as a859
developer are represented on figure 5.860



861

Figure 5 - Decision tree and framework for Galaxy developers. Orange862
boxes represent actions, blue boxes represent possible situations one863
may encounter during the process and red boxes represent shareable864
steps where one could stop and still attain better reproducibility and865
FAIRness. Letters at the top left of boxes indicate which paragraph it866
refers to in the text.867
Links: (1) https://toolshed.g2.bx.psu.edu (2) https://usegalaxy-868
eu.github.io/posts/2020/08/22/three-steps-to-galaxify-your-tool869
(3) https://github.com/galaxyecology870
(4) https://planemo.readthedocs.io/en/latest/index.html871
(5) https://docs.galaxyproject.org/en/latest/dev/schema.html872
(6) https://planemo.readthedocs.io/en/latest/index.html873



(a) The atomisation process starts at early stage of the design of an874
analytical workflow before writing any computer code. Atomisation into875
elementary steps provides clarity to the development phases. Ultimately, one876
elementary step equals one Galaxy tool and the modular parameters877
identified in the code for generalisation would be those that appear on the878
tool interface.879
(b) One can start by splitting essential steps of the analysis (e.g. pre-880

processing, analyses, representations) and detailing each elementary step881
afterward to get different atomisation resolutions (tab. 1; fig. 1). The first882
atomisation is not a permanent choice and will certainly be refined over the883
course of the development process. It is mainly useful as a medium for884
researchers and other scientists to give feedback on the projected885
architecture of the workflow and to have an overview of the analytical886
procedure. As for any analysis, one must check if potential issues or red flags887
were raised by the community on the methods used and take it into account888
in the architecture of the workflow. At this point, any products generated889
from the atomisation process can be shared and be useful to the scientific890
community. For example, sharing a written description or a schematic891
representation of the steps and organisation of an analytical procedure892
(coded or not) is a valuable help for anyone trying to make a similar analysis.893
(c) As a user would do and before starting tool development, one must894

look for existing tools on Galaxy servers and Galaxy ToolShed895
(https://toolshed.g2.bx.psu.edu) to avoid redundancy. If all needed tools are896
available, one can directly build their workflow on Galaxy, see ‘As a user’897
section. Many tools are available on Galaxy for data manipulation. If one898
needs a particular format or type of data there is high probability that it can899
already be handled on Galaxy.900
(d) If some tools could work in the workflow, one must test it to see if and901

how it can be integrated.902
(e) In the case some tools are not installed on the Galaxy server, ask for903

tool installation (see box.1)904
(f) Selected tools might not integrate precisely as aimed, if the input or905

the output is not formatted as projected in the primary workflow design,906
other tools added before and/or after might solve the problem. If such tools907
are not available or the problem is more about a missing parameter or908
methodology, it might be more coherent to modify existing tool(s) than909
developing entirely new ones. One can open a new GitHub issue to ask for910
modifications on the tool repository (found on the Galaxy ToolShed) or911
directly suggest modifications on the tool. When modifying a tool, the process912
is approximately the same as for developing an entirely new tool (explained913
in the next paragraph) only the Pull Request for modifications should be914
opened on the tool repository.915
(g) The Galaxy community has made available a lot of documentation916

resources for tool development on the GTN Training platform (category917
“Development in Galaxy”; https://training.galaxyproject.org/training-918
material/topics/dev) and on the General Galaxy documentation919
(https://docs.galaxyproject.org;920
https://docs.galaxyproject.org/en/latest/dev/schema.html).921



Galaxy tools have a common architecture (fig. 6). Each tool consists of an922
XML (Extensible Markup Language) wrapper which defines input file(s) and923
parameters that are presented to the end-user in the Galaxy web interface924
("ToolName.xml" in fig. 6). Inputs provided through the interface can be925
processed with code in any computing language (“ExeToolName.r” in fig. 6).926
Outputs of the code are also specified in the XML file and are made available927
to the user in the Galaxy history at the end of the computation.928

929

Figure 6 - Schematic representation of the simplified architecture of an930
example Galaxy tool using R language. From the input files and931
parameters provided by the user, the tool will launch an analytical932
procedure through the XML and R files to produce the outputs.933

At least one unit test is mandatory to make sure a tool works and934
produces the expected outputs. This also facilitates maintenance, as tests935
will indicate if the functionality is preserved after tool updates. To do so, the936
test is written in the XML file with all parameter settings, input and expected937
output files (stored in a sub-directory “test-data”) or characteristics of the938
expected output.939
This organisation can be more elaborate, especially when developing940

several tools at the same time. For example, parts of XML files may repeat941
themselves in the different tools and one can create a supplementary XML942
file to write this repeating part once as a macro and call (‘expand’) it as943
needed, which saves time and space. The same type of repeating patterns944
can occur in the computing code and one should create a functions file to945
avoid copy-pasting of many lines in several separate code files.946
Detailed documentation of the XML wrapper files is available in Galaxy,947

see https://docs.galaxyproject.org/en/master/dev/schema.html, as well as948
tutorials (https://gxy.io/GTN:T00117). An empty Galaxy tool template in R949
language is available in the following repository:950
https://github.com/ColineRoyaux/Galaxy_Templates/tree/main/R_Tool_templa951
te.952
(h) To begin development, it is best to have knowledge of the required953

informatics dependencies of the tool(s) such as software versions, packages954
and their versions to directly check their availability on Conda Forge955
(https://conda-forge.org/feedstock-outputs).956



(i) Some dependencies might not be available, and, in this case, one must957
write and propose a recipe to the Conda Forge on GitHub958
(https://github.com/conda-forge), for guidelines see https://conda-959
forge.org/#add_recipe. For Python and R packages available on Pypi or CRAN960
respectively, helper codes are available to automatically generate recipes,961
see https://github.com/conda/grayskull and962
https://github.com/bgruening/conda_r_skeleton_helper (by B. Grüning),963
respectively. Dependencies of the Galaxy tools are called in the XML file.964
(j) Generalisation of computational code is especially important while965

developing the Galaxy tool to make sure the tool is useful to the largest966
audience. It is difficult to think about all possible purposes of a tool, one will967
likely miss some aspects but as Galaxy is a participative platform, anyone968
can ask for modifications or make it themselves. The format of the input file969
is a critical aspect of developing a Galaxy tool, while other aspects of the970
format can be left to the users’ choice or imposed. For example, on Galaxy,971
the preferred format for table input is tab-separated values (TSV or “tabular”).972
Many tools on Galaxy are available to convert file formats (e.g. from CSV to973
tabular).974
For example, a typical choice to make as a developer when developing a975

tool dealing with tables is to ask the user to specify through the interface976
which column contains a specific variable, or to require a column name to be977
present in the input file for the tool to find the variable. The first option is978
more generalised as it is easier for the user to select a column directly on the979
interface rather than change column names in the data files. The second980
option can however be chosen when the tool uses a lot of columns in981
different input tables or has a lot of intricate parameters to avoid982
unnecessary complexity of the tool interface. This option can also be983
consistent for tools using input data file written in a standardised way, as984
Darwin-core data standard for example.985
Depending on the type of manipulations and analyses made in the tool,986

many parameters might be useful for users to customise such as the type of987
model, the distribution law of the data, the corrections to make on the data,988
the level of resolution or the type and format of output(s). Prior discussions989
on the workflow with experts and researchers on the analytical procedure can990
permit to raise important parameters for the users to set. Another good way991
to get a view on what kind of parameters can be useful for users is to check992
directly for parameters in the functions used in the computational code and993
identify which ones are important for the computation and might be critical994
for users to set. These parameters can be provided with default values if the995
user does not provide a custom value. An “advanced parameters” collapsible996
section can also be implemented to keep the interface simple while still997
permitting flexibility for experimented users. Finally, to check if a workflow is998
properly generalised, one can seek input files of different origins from open999
data repositories or ask scientists to test their tools.1000
It is impossible to prevent all possible misuses of software and such events1001

occur also when using command-line functions. Implementation of error and1002
warning messages in the computing code is the best way to avoid misuse1003
(e.g. wrong input format or parameter selection). One can also use the1004



interface, the help section of tools, and training to help users to set1005
parameters properly and raise red flags on the use of tools and workflows1006
(e.g. the tool cannot be used on some types of data, types of modelling1007
interact badly with some parameters settings or data distributions). If1008
possible, implementing verification steps in the tools to give feedback to the1009
user on how the computation went is also a good way for the user to get1010
hindsight on the results (e.g. quantity of data that couldn’t be used in the tool,1011
models’ evaluation variables, summary plots).1012
(k) To verify tools syntax (lint), run unitary tests (test), and deploy a local1013

Galaxy server to test tools interface (serve), one must use Planemo, the1014
Galaxy Software Development Kit (Bray et al., 2023). Planemo is a command–1015
line tool used on a Linux environment (see documentation1016
https://planemo.readthedocs.io/en/latest. For Windows users, Planemo can1017
work on a WSL (Windows Subsystem for Linux) or using cloud development1018
environment like GitPod. Galaxy Tool development can take many forms; the1019
computational code can be developed beforehand on the local environment1020
or, together with the XML file and be tested directly through a local interface1021
deployed for testing. Each strategy has different pros and cons depending on1022
the type of analytical procedure, the origin of the workflow, and the1023
developer personal preference and knowledge.1024
(l) When ready, tool(s) can be proposed to a collaborative Galaxy tool1025

repository (for ecology: https://github.com/galaxyecology/tools-ecology; see1026
box. 2 for procedure on GitHub) for peer-review by the community.1027

Box 2 - Definitions of Git terminology and procedure for proposing a1028
tool to a Galaxy repository1029

Fork: Act of creating a copy of a repository in one’s personal space
Commit: Act of submitting a modification to a file
Pull Request (PR): Act of proposing one or several Commit(s) to be integrated
Merge: Act of accepting the PR and integrate the modification proposed on the repository
One has to fork the repository to add their new tool with a Commit and propose a PR against the original Galaxy repository with a brief
description of the aims of developed tool(s) (PR example: https://github.com/galaxyecology/tools-ecology/pull/50). When a PR is
opened on the repository, verification (“Check jobs”) of the tool(s) compatibility, syntax, development good practices and proper
running are made automatically. If there are problems, one can check output logs of what went badly and try to correct it while
scientists invested in the Galaxy community give feedback on the tool(s). When checks are finally passed and code is peer-reviewed by
the community, the PR is merged and the tool(s) made available on the Galaxy ToolShed within a few days. One may then ask for tool
installation on any server (see box. 1 Ask for tool installation).

(m) Once all developed tools are available on the Galaxy server, one can1030
build a workflow as a user would do, share it and eventually write a training1031
on the use of the workflow, see section “as a trainer”.1032

Guidelines “as a trainer”1033

Main steps of the implementation of an analytical procedure on Galaxy as1034
a trainer are represented on figure 7.1035



1036

Figure 7 - Decision tree and framework for Galaxy trainers. Orange1037
boxes represent actions, blue boxes represent possible situations one1038
may encounter during the process and red boxes represent shareable1039
steps where one could stop and still attain better reproducibility and1040
FAIRness. Letters at the top left of boxes indicate which paragraph it1041
refers to in the text.1042
Links: (1) https://training.galaxyproject.org/training-1043
material/topics/contributing/tutorials/create-new-tutorial/tutorial.html (2)1044
https://training.galaxyproject.org/training-1045
material/topics/contributing/tutorials/create-new-1046
tutorial/tutorial.html#create-the-skeleton-of-the-tutorial1047

(a) When an analytical procedure is built on Galaxy, one can extract a1048
workflow from the history created. This workflow can be modified afterward1049
to add annotations, comments, and flags. To make their workflow more1050
generalised, one can leave parameters empty and users will have to set1051
these parameters each time the workflow is launched. This workflow can be1052



shared to contribute to Galaxy. Ultimately, it could be submitted to IWC and1053
be made available on WorkflowHub and/or Dockstore.1054
(b) Eventually, one can write a tutorial on the GTN or a blog post on the1055

Galaxy Community Hub to get better visibility and broadcast valuable1056
elements on the use of the workflow. GTN tutorials are written in markdown.1057
One can start from scratch, but it is easier to start from a template generated1058
from an existing Galaxy workflow using the dedicated webserver1059
(https://ptdk.apps.galaxyproject.eu) or the command-line software Planemo1060
(documentation: https://planemo.readthedocs.io/en/latest). Indeed, this1061
approach only requires adding any needed explanations between the auto-1062
generate “hands-on” boxes containing tools and parameters instructions.1063
Many tutorials explain the different ways to contribute to the GTN (e.g.1064
tutorials, slides, videos, training sessions, quizzes) in the contributing topic1065
on the GTN: https://training.galaxyproject.org/training-1066
material/topics/contributing Introduction on the creation of a new hands-on1067
tutorial is detailed in this tutorial: https://training.galaxyproject.org/training-1068
material/topics/contributing/tutorials/create-new-tutorial/tutorial.html. Like1069
tools, contributions to Galaxy Training Material are proposed through GitHub1070
(https://github.com/galaxyproject/training-material). Available tutorials are1071
publicly and freely available and can be openly shared to colleagues and1072
students and be used during courses and training sessions.1073

Appendices1074

Table S1 - Barriers and solutions to data and code-sharing raised by1075
Gomes et al. (2022), along with corresponding solutions on the Galaxy1076
platform.1077

Barriers Solutions and arguments from Gomes et al. (2022) How Galaxy addresses the barrier

Unclear
sharing
process

Use FAIR principles
Try, even if it is not perfect
Look for online resources
Ask editorial support staff and institutional libraries

FAIR and workflow-oriented platform
Easy sharing of computational procedures (“Galaxy history”
and/or workflow) as a link or a file attached to a publication
Available online resources and forums for help

Complex
workflows

Process and clean data with reproducible code
Detailed description of data processing steps
Use non-proprietary files or softwares
Avoid manual tasks

Reproducible workflows and visualisation of analytical
procedure with the interface (fig. 3)
“Galaxy history” tracks provenance of outputs and details of the
data processing steps
Possibility to add annotations and write a tutorial
Open source platform
Manual tasks can be recorded in workflows

Large data
files

Free cloud storage
Bundle smaller datasets

Free cloud storage (storage extension on demand) and High
Performance Computing

Insecurity Share to trusted peers and/or on pre-prints servers
before formal peer-review
Review before publication ensues in higher-quality
results
Foster an inclusive environment promoting growth
over criticism and shame
“Perfect code” doesn’t exist

“Galaxy history” and workflow record the whole analytical
procedure, it is private by default and can be shared to specific
users or through a link making review by trusted peers easier
and faster before public sharing
Peer-reviewed tools

Unclear value Uncertainty about potential reuse should not
present a barrier to sharing

Sharing an analytical procedure is not only relevant for others’
reuse but also for collaboration, peer review, and teaching
Sharing tools or workflows with Galaxy enables overcoming this
uncertainty
Methods of the note aims to facilitate this process and ensure it
is properly made, adding a layer of clarity regarding the value of
shared codes

Inappropriate
use

Metadata information with thorough description of
datasets and processes, terms and consideration of

Raise major red flags or potential misuse in the help section
and/or in the tool execution by validating input before tool



reuse and any limitations, assumptions, caveats, and
shortcomings
Include contact information

execution.
Implemented errors and warnings in the code to prevent
directly prohibitive use of tools.
Write execution suggestions and guidelines in the workflow
annotations and/or associated tutorial.
Possibility to produce editable report when executing a
workflow or from the “Galaxy history”

Rights Use open repositories instead of attaching code and
data directly to the article as supplementary
material
Use data and code licenses
Seek for help with institutional libraries and offices
dedicated to copyright, open science and
commercialisation

Open-source platform and tools shared through public servers
prevents copyright issues
Each Galaxy tool related code must have a license. Annotation of
workflows with license
Use of GitHub (or GitLab) to share code and workflows

Sensitive
content

Aggregating, generalising or anonymising data Sharing data and analytical procedure is up to the user
Available tool to anonymise geographical coordinates on Galaxy

Transient
storage

Archive data in permanent repositories
Avoid proprietary files (e. g. Microsoft suite files)
Use tools to promote backwards compatibility and
portability of softwares and packages within
different operating systems (e. g. containers, Jupyter
notebooks)

Use of Software Heritage through GitHub to archive code
Promotes non-proprietary files (e. g. TSV, fasta)
Version-controlled tools to ensure the consistency and
persistence of analyses even over updates
Conda package manager and BioContainers to ensure cross-
operating system compatibility for any programming language
Containerisation to ensure cross-infrastructure compatibility
(Grüning et al., 2018)
Possibility to execute and share Jupyter notebooks
Development repositories available in the Galaxy ToolShed

Scooping Data and code sharing increases opportunities for
collaborations
Use pre-print servers to make first claim to a
research project
“Those who collect data and develop code remain
best positioned to undertake future analyses” (pp. 6)

Credit of tools are displayed on the interface
Users creating a “Galaxy history” can export a reference list of
each tool used, facilitating credit attribution
Data can be shared privately through a link while being prepared
for publication, or while under embargo.

Lack of time “Despite the upfront time required, sharing research
data and code can ultimately save time for individual
researchers and their collaborators, as well as for
others who want to reuse it” (pp.7)
Begin the research project taking account of future
sharing of data and code

More time-consuming in the short term as learning to use a new
tool is time-costly but time is saved in the long-run as analyses
can be re-executed with different parameters, data, or by
different users
It can help reduce peer review time with possible reproduction
of results and easy access to analysis details through the
workflow interface

Lack of
incentives

“Sharing data and code can increase visibility and
recognition of a researcher within the scientific
community […]. It can also help develop open
science habits that increase efficiency, and
contribute to a better understanding of one’s own
data and code” (pp.7)

Facilitates sharing and reuse of analytical methods, broader
citations of the article associated with the analysis or
collaborations could naturally emerge
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