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Abstract 20 

Emergent neutrality (EN) suggests that species must be sufficiently similar or sufficiently 21 

different in their niches to avoid interspecific competition. Such a scenario results in a transient 22 

pattern with clumps and gaps of species abundance along the niche axis (e.g., represented by 23 

body size). From this perspective, clumps are clusters of species with negligible fitness 24 

differences, and therefore, are subjected to stochastic abundance fluctuations. Plankton is an 25 

excellent model system for developing and testing ecological theories, especially those related 26 

to size structure and species coexistence. We tested EN predictions using the phytoplankton 27 

community along the course of a tropical river considering (i) body size structure, (ii) 28 

functional clustering of species in terms of morphology-based functional groups (MBFG), and 29 

(iii) the functional similarity among species concerning their functional traits. Two main 30 

clumps in the body size axis (clump I and II) were conspicuous through time and were detected 31 

in different stretches of the river. Clump I comprised medium-sized species from the MBFGs 32 

IV, V, and VI while clump II included large-bodied species from the MBFGs V and VI. 33 

Pairwise differences in species biovolume correlated with species functional similarity when 34 

the whole species pool was considered, but not among species within the same clump. 35 

Although clumps comprised multiple MBFGs, the dominant species within the clump belonged 36 

always to the same MBFG. Also, within-clump species biovolume increased with functional 37 

distinctiveness considering both seasons and stretches, except the lower course. These results 38 

suggest that species within clumps behave in a quasi-neutral state, but even minor shifts in trait 39 

composition may affect species biovolume. In sum, our findings point that EN belongs to the 40 

plausible mechanisms explaining community assembly in river ecosystems.  41 

Keywords: emergent neutrality; functional distinctiveness; functional similarity; species 42 

coexistence 43 

  44 
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Introduction  45 

Understanding the mechanisms promoting species coexistence and shaping community 46 

structure has been a long-standing goal in community ecology. The former idea that the 47 

number of coexisting species is limited by the number of growth-limiting resources or niche 48 

dimensions (Gause 1936, Hardin 1960) and its derivate idea, “the paradox of the plankton” 49 

(Hutchinson 1957), have been widely explained in terms of endogenous and exogenous 50 

Spatio-temporal mechanisms (Roy and Chattopadhyay 2007). Trait-based approaches are 51 

useful to test this matter due to their potential to generalize patterns beyond species’ identity, 52 

especially because traits influence the species’ ability to acquire resources and persist through 53 

environmental changes (McGill et al. 2006, Díaz et al. 2013, 2016). Nonetheless, the niche-54 

based theory proposes that the environment filters community composition through species’ 55 

ecological requirements, which can be perceived through species’ traits. Also, intra- and 56 

inter-specific interactions potentially drive community assembly, in local communities 57 

(Götzenberger et al. 2012). In contrast, the more recent neutral theory suggests that diversity 58 

results from random dispersal, speciation, and extinction rates with no role of niche 59 

differences in species coexistence (Hubbell 2001). This type of dynamics should then result 60 

in a random distribution of functional traits along environmental gradients (Kraft et al. 2008, 61 

Cornwell and Ackerly 2009). 62 

More recently, it was shown that community organization is driven by eco-evolutionary 63 

processes such as speciation and nutrient uptake kinetics resulting in groups comprising 64 

different species with similar ecological requirements (Gravel et al. 2006, Scheffer and van 65 

Nes 2006, Hubbell 2006). This finding led to the ‘emergent neutrality hypothesis’ (EN; Holt 66 

2006) that has been supported by observational studies, e.g., for phytoplankton from brackish 67 

waters (Segura et al. 2011), birds from the North of Mexico (Thibault et al. 2011) and beetles 68 
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at the global scale (Scheffer et al. 2015). EN suggests that species must be sufficiently 69 

similar, and thus, behave neutrally, or different enough in their niches to avoid competition. 70 

Such a scenario would result in species-rich aggregations or clumps along the niche axis 71 

(Scheffer and van Nes 2006, Vergnon et al. 2009, Fort et al. 2010). Modelling studies have 72 

shown that such predictions apply for both steady environmental conditions (Fort et al. 2010), 73 

and also fluctuating resource conditions (Sakavara et al. 2018). Empirical evidence about EN 74 

is still scarce, however (Scheffer et al. 2018).  75 

The clumpy pattern arises from the exceedingly slow displacement rate of species under 76 

intense competition, that is, species within the same clump overlap in their niche such that the 77 

displacement rate of competing species is similar to the competition at the intraspecific level, 78 

leading to stochastic fluctuations in species abundances through time (Scheffer et al. 2018). 79 

Thus, the number of clumps corresponds to the number of species to be expected to stably 80 

coexist at equilibrium, but the identity of the dominant species is expected to be random 81 

among the clump residents. However, the assignment of species to clumps is challenged by 82 

the fact that trait differences among species are continuous (Villéger et al. 2008) and the 83 

threshold to include a species within a clump varies with the statistical approach that is 84 

applied (Segura et al. 2011, D’Andrea et al. 2019). Therefore, it is difficult to state 85 

empirically whether species behave neutrally within clumps (i.e., when the strength of 86 

interspecific interactions equals the intraspecific interactions) or if results are an artefact of 87 

clump construction. 88 

Zooming in on the uniqueness of trait combinations of species, i.e. functional distinctiveness, 89 

within clumps may advance our comprehension of biotic interactions and move towards a 90 

measurable value of similarity at which species coexistence is driven stochastically. 91 

Functional distinctiveness reflects the non-shared functions among species within a given 92 
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species pool (Violle et al. 2017), mirroring the concept of functional similarity (Pavoine et al. 93 

2017). However, functional distinctiveness is not directly linked to functional similarity at the 94 

pairwise level (Coux et al. 2016, Ricotta et al. 2016, Violle et al. 2017). For example, two 95 

species may be equally distinct, i.e. the degree to which a species differs from all the others 96 

within the species pool concerning their functional traits, and still not be similar in their trait 97 

composition at a pairwise level (Coux et al. 2016). This suggests that both pairwise functional 98 

similarity and group-based functional distinctiveness are complementary metrics to assess the 99 

role of trait combination in community assembly. To this end, phytoplankton communities 100 

are useful for biodiversity theory testing due to their species-rich communities, rapid 101 

responses (in human time-scales) and well-characterized relationships between morphology 102 

and physiological and ecological responses (Litchman and Klausmeier 2008, Kruk and 103 

Segura 2012, Litchman et al. 2012). 104 

Body size is considered a master ecological trait and it is often used to characterize species 105 

niche differences (Downing et al. 2014). In phytoplankton, the body size is related to 106 

physiology and life-history (Litchman and Klausmeier 2008), photosynthetic processes 107 

(Marañón 2008), nutrient uptake kinetics (Litchman et al. 2010) and other eco-evolutionary 108 

processes, e.g. the relationship among predation rates, nutrient uptake and organisms body 109 

size (Sauterey et al. 2017). Although body size may relate to different processes, using a 110 

single trait as a proxy for niche differences may not evidence species differences generated 111 

by hidden/unknown niche axes (i.e. ecological dimensions of the niche) and impair the 112 

understanding of clumpy patterns (Barabás et al. 2013, D’Andrea et al. 2018). The use of 113 

multiple traits emerges as a powerful tool to disentangle phytoplankton functional structure 114 

and evaluate competing hypotheses (Reynolds et al. 2014, Chen et al. 2015, Bortolini and 115 

Bueno 2017, Aquino et al. 2018). Morphology-based functional groups (MBFG) 116 

classification of phytoplankton species (Kruk et al. 2010) is a multidimensional combination 117 
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of morphological traits that cluster organisms into seven groups with similar physiology and 118 

ecological responses, potentially overcoming the limitations of using a single trait dimension 119 

only. Assessing the functional distinctiveness of species within the same functional cluster 120 

(e.g., clumps, MBFGs) could help to study the existence of functional equivalence (i.e., 121 

neutrality) among species. Overall, the functional similarity among species is a useful tool to 122 

compare species in a multidimensional space, particularly because the environment may filter 123 

different functional traits across space and time (D’Andrea et al. 2020).  124 

Rivers are highly heterogeneous systems characterized by a continuous water flow that 125 

affects the ecosystem’s morphology (e.g., meandering), sedimentation patterns, organisms’ 126 

dispersal, and more specifically the phytoplankton abundance and distribution (Reynolds and 127 

Descy 1996, Wetzel 2001). Several theories, e.g., the River Continuum (Vannote et al. 1980) 128 

and Flood Pulse (Junk et al. 1989) concepts explain the longitudinal distribution and 129 

abundance of riverine phytoplankton communities. However, an explicit study of 130 

communities’ body size structure and species coexistence under EN in riverine ecosystems is 131 

lacking. For example, phytoplankton species should attain higher biomass at the middle 132 

reaches or in the upper reaches of low-gradient stretches (Descy et al. 2017). Also, 133 

competition rates vary along the river course because water turbulence reduces the likelihood 134 

of biotic interactions (Reynolds et al. 1994), meaning that clumpy coexistence may not be 135 

observed in riverine phytoplankton. Alternatively, if functional trait combinations of species 136 

within the local species pool result from eco-evolutionary processes (Scheffer et al. 2015), 137 

the clumpy pattern should also be apparent in riverine phytoplankton communities. Here, we 138 

push forward three hypotheses to be tested in a tropical river by investigating phytoplankton 139 

community size structure both seasonally and spatially. We expect that: 140 
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 H1 – There are peak aggregations of species abundance (i.e., clumps) along the body size 141 

axis of phytoplankton in the river that remain constant across space and time as a result of 142 

eco-evolutionary processes.  143 

H2 – Pairwise-differences in species abundances increase with functional dissimilarity at the 144 

community-level but not at the clump level because species within the same clump behave in 145 

a quasi-neutral state. Thus, the dominance within clump varies stochastically between species 146 

as fitness differences are negligible.  147 

H3 – Species abundance increases with functional distinctiveness with respect to other species 148 

within the clumps. Although abundance fluctuates stochastically at the pairwise level, the 149 

number of species bearing similar trait combinations may affect the likelihood of the 150 

interactions within clumps. Therefore, species with the most distinct trait combinations 151 

concerning their clump peers are less likely to share the same ecological requirements, and by 152 

consequence, attain higher abundance.  153 

Methods 154 

Study area  155 

Samples were taken monthly at nine stations along the Piabanha river between May 2012 and 156 

April 2013. Piabanha river is in the tropical region of Brazil and has a drainage basin of 157 

approximately 4500 km² (Figure 1). The headwater is on Petrópolis at 1546m altitude and 158 

drains to the medium valley of Paraíba do Sul river crossing three cities and with agricultural 159 

activities in their watershed. We set three river stretches (lower, medium, and upper courses) 160 

based on the location of steep slopes the river elevation profile (Figure 1). Data from two 161 

meteorological stations (Bingen and Posse; Figure 1), located close to the sampling sites, 162 

were used to measure rainfall. We analyzed meteorological data up to three days before each 163 
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sampling campaign. We classified seasons as a dry season (May - October) and a wet season 164 

(November – April) based on the rainfall data. 165 

 166 

 167 

Figure 1. Map of the study area. The watershed area of the Piabanha river showing the river 168 

course (blue line), the meteorological stations Bingen and Posse, and the sampling sites are 169 

coloured according to river stretches (white circles = upper course, blue circles = medium 170 

course, red circles = lower course). The vertical dotted red line in the elevational profile 171 

figure indicates the locations of steep slopes used to define the boundaries of the river 172 

stretches. 173 

Sampling and sample analysis  174 

In the field, we measured temperature (°C), dissolved oxygen (DO, mg L−1), and turbidity by 175 

a multiparameter probe sonde (YSI model 600 QS). Water discharge (WD, m3 s−1) was 176 



 9 
 

measured with the SonTek RiverSurveyor – M9. Furthermore, water samples were taken and 177 

kept frozen (one or 2 weeks) until the laboratory analysis for ammonium (N·NH4+, mg L−1), 178 

nitrate (N·NO3 −,mg L−1), nitrite (N·NO2 −,mg L−1), total phosphorus (TP, mg L−1) and 179 

soluble reactive phosphorus (SRP, mg L−1). Ammonium, nitrite, and nitrate were summed up 180 

and are expressed as dissolved inorganic nitrogen (DIN, mg L−1). The water samples were 181 

filtered (except for total phosphorus analysis) using borosilicate filters (Whatman GF/C), and 182 

nutrient concentrations were measured following APHA (2005). A complete description of 183 

the spatial and temporal patterns of the environmental variables measured in the Piabanha 184 

river can be found in Graco-Roza et al. (2020). 185 

Phytoplankton samples 186 

Subsurface samples of phytoplankton were collected with a bottle of 200 mL and fixed with 187 

Lugol. In the laboratory, phytoplankton species were identified, and population densities 188 

were estimated under an inverted microscope (Olympus CKX41) (Utermöhl 1958). At least 189 

100 individuals of the dominant species were counted in each sample (Lund et al. 1958, 190 

Uhelingher 1964). Biovolume (mm3 L−1) of phytoplankton species was estimated by 191 

multiplying the density of each population (ind. L-1) by the average individual volume of the 192 

species (V, µm3org-1). The volume of each species was estimated by measuring geometrical 193 

dimensions and approximating to defined geometrical forms following Hillebrand et al. 194 

(1999). Geometrical dimensions were measured in 20 organisms from each species (when 195 

possible) and the average was used to characterize individual body size (volume). We recall 196 

that biovolume represents the biomass density and volume is an organism’s trait. Species’ 197 

surface area (S, µm2) was estimated, the maximum linear dimension (MLD, µm) was 198 

measured, and the presence of aerotopes, mucilage, flagella, and siliceous exoskeletal 199 

structures. We then used the volume and surface area of the species to estimate the individual 200 
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surface volume ratio (SV). Species were then classified into MBFG according to Kruk et al. 201 

(2010), based on the above mentioned morphological traits. This classification included the 202 

following seven groups: (I) small organisms with high SV, (II) small, flagellated organisms 203 

with siliceous exoskeletal structures, (III) large filaments with aerotopes, (IV) organisms of 204 

medium size lacking specialised traits, (V) flagellates unicells with medium to large size, 205 

(VI) non-flagellated organisms with siliceous exoskeletons and (VII) large mucilaginous 206 

colonies. For further details on MBFG classification, we refer to Kruk et al. (2010) or Segura 207 

et al. (2013a). 208 

Statistical analyses 209 

Statistical analyses were performed on R v.4.0.4 (R Core Team 2020) using the packages 210 

‘ade4’ v.1.7.16 (Chessel et al. 2004, Dray and Dufour 2007, Dray et al. 2007, Bougeard and 211 

Dray 2018, Thioulouse et al. 2018), ‘FD’ v.1.0.12 (Laliberte et al. 2010, Laliberté et al. 212 

2014), the suite of packages ‘tidyverse’ v.1.3.0 (Wickham et al. 2019), and the package 213 

‘vegan’ v.2.5.7 (Oksanen et al. 2020).  214 

Traits-environment relationship 215 

We tested the relationship between morphological traits and the environmental variables 216 

using a three-table ordination (RLQ) combined with a fourth-corner analysis (Dray et al. 217 

2014) (Figure S1). Both RLQ and fourth-corner methods require the information from three 218 

tables; a data frame including the measurements of environmental variables across the 219 

sampling sites (R table), a matrix containing species abundances or occurrences across the 220 

sampling sites (L table), and a data frame comprising the trait values for each species (Q 221 

table). Also, both methods rely on the analysis of the fourth-corner matrix, crossing the 222 

information between tables R and Q, weighted by table L. The RLQ analysis (Legendre et al. 223 
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1997) provides ordination scores to summarize the joint structure among the three tables, but 224 

it does not allow the identification of traits or environmental variables contributing 225 

significantly to the structure. The fourth corner method (Dolédec et al. 1996) tests the 226 

significance of bivariate associations between each trait and environmental variables but 227 

disregards the covariance among traits or environmental variables. Here, we combined the 228 

RLQ analysis with the fourth corner method by applying the fourth corner method to the 229 

output of the RLQ analysis instead of the original raw values (Dray et al. 2014). By doing 230 

this, we summarized the main patterns in the multivariate space and tested the global 231 

significance of the trait–environment relationships using the SRLQ multivariate statistic and 232 

the fourth corner sequential testing procedure (Dray and Legendre 2008). Applying the fourth 233 

corner method in the output of the RLQ determines (a) the relationship between individual 234 

traits and RLQ environmental scores (known as environmental gradients), and (b) the 235 

relationship between environmental variables and RLQ traits scores (known as trait 236 

syndromes) (Dray et al. 2014).  237 

Before applying the RLQ method, we first log-transformed (log10 x+1) species biovolume, 238 

species traits (SV, MLD, and V), and environmental variables (except pH and temperature). 239 

A correspondence analysis (Benzécri 1973) was performed on the L table using the function 240 

dudi.ca from ‘ade4’, and a Hill-Smith analysis (Hill and Smith 1976) on the R and Q tables 241 

separately using the function dudi.hill from ‘ade4’. We used Hill-smith analysis because both 242 

R and Q table included categorical or binary variables. The RLQ analysis was conducted in 243 

the output of the ordinations using the function rlq from ‘ade4’. We tested the significance of 244 

the joint structure among the RLQ tables using the fourth-corner method with a stepwise 245 

permutation procedure of 999 permutations using the function rlq.fourthcorner from ‘ade4’. 246 

The null hypothesis that given fixed traits, species abundances are independent of 247 

environmental conditions was evaluated by permuting sites (rows of tables L or R) while 248 
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keeping the species traits (table Q) fixed. The null hypothesis that given fixed environmental 249 

conditions, species abundances are independent of functional traits was evaluated by 250 

permuting species (columns of table L or rows of table Q) while the environmental conditions 251 

(R table) were kept fixed (Dray et al. 2014). Rejecting both null hypotheses imply that tables 252 

R, L, and Q are significantly linked. Because the fourth‐corner analysis explores one trait and 253 

one environmental variable at a time, multiple statistical tests are performed simultaneously 254 

increasing the probability of type I error (i.e. false significant associations), thus we adjusted 255 

p-values for multiple testing using the false discovery rate method (Benjamini and Hochberg 256 

1995). We divided the value of the fourth‐corner correlation by the square‐root of the first 257 

eigenvalue of the correspondence analysis of the L matrix, which is the maximum possible 258 

value (Peres-Neto et al. 2017). 259 

Clumpy patterns 260 

To test for the existence of peak aggregations of species biovolume along the body size axis 261 

of phytoplankton - H1, we analyzed the community structure in each season (dry and wet) and 262 

river stretches (upper, medium, and lower course) (Figure S1). First, the individual volume of 263 

species was log-transformed (log2) and used as the main niche axis (X= log2 volume). Hence, 264 

we divided the niche axis into equally spaced segments (one segment per unit log2 volume) 265 

and for each segment (j), we estimated the Shannon entropy (H) using the biovolume of the 266 

observed species (Fort et al. 2010, Segura et al. 2011). The entropy index was defined as: 267 

𝐻! =#𝑝"

#

"$%

𝑙𝑜𝑔&(𝑝")	 (1) 268 

where pi is the fraction of biovolume of species i in the community of n species. Finally, we 269 

tested the significance of the entropy (H) by comparing the observed H against an expected 270 

uniform distribution under the null hypothesis of homogeneous H. For this, we created 1000 271 



 13 
 

communities by sampling the volume of species from a random uniform distribution bounded 272 

by observed individual volumes. Then, each species had a biovolume assigned to it, which 273 

was taken from randomization of the observed biovolume matrix, keeping both the empirical 274 

species rank-biovolume pattern and total biovolume in the sample. For each segment, the 275 

observed H was compared with the distributions of H generated under the null hypothesis, 276 

with significance defined according to standard 5% criterion (Fort et al. 2010, Segura et al. 277 

2011). Finally, we considered a significant segment or two consecutive significant segments 278 

as a clump. 279 

Functional dissimilarity 280 

To test whether differences in species biovolume increases with functional dissimilarity – H2, 281 

we first calculated the functional dissimilarity and the differences in biovolume among pairs 282 

of species using the whole community and using only the species from the significant clumps 283 

separately (Figure S1). The functional dissimilarity was obtained by calculating Gower’s 284 

general dissimilarity coefficient on all the species functional traits, that is, all the traits that 285 

showed a significant (p < 0.05) relationship with the environmental gradients in the fourth 286 

corner method. The dissimilarity coefficient was estimated using the function gowdis 287 

from‘FD’. We used Gower’s dissimilarity (Gd) because it can handle mixed variable types 288 

(continuous, binary, ordinal, and categorical traits). Gd defines a distance value djk between 289 

two species as 290 

𝑑!' =
1
𝑁#

.
/𝑥"! − 𝑥"'2

max(𝑥") − min(𝑥")
.

#

"$%

(2) 291 

where, N is the number of functional traits considered, xij the value of trait i for species j, and 292 

xik the value of the trait i for species k. Therefore, Gd = djk = functional dissimilarity. We thus 293 
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tested H2 by conducting Mantel tests with 999 randomizations on the matrices of functional 294 

dissimilarity and differences in biovolume using the function mantel from ‘vegan’. We 295 

performed the Mantel test considering: a) all species present in a given season or river stretch, 296 

and b) separately for the species of each significant clump that were present in a given season 297 

or river stretch. 298 

Functional distinctiveness (FDist) 299 

To test whether species biovolume increases with functional distinctiveness at the clump-300 

level – H3, we estimated the functional distinctiveness (FDist) as the Euclidean distance of a 301 

species to the average trait position (centroid) in the multidimensional functional space for 302 

the set of species of each of the significant clumps using the equations proposed by Anderson 303 

(2006). First, we applied a Principal Coordinates Analysis (PCoA) in the species-by-traits 304 

data table using Gower’s dissimilarity (Gd) and obtained species coordinates in the functional 305 

space using all the axes from the PCoA. Hence, FDist was calculated as 306 

𝐹(")* = :∆&/𝑢"!+ , 𝑐"!!!
+ 2 − ∆&/𝑢"!, , 𝑐"!!!

, 2 (3) 307 

where Δ2 is the squared Euclidean distance between uij, the principal coordinate for the jth 308 

species in the ith clump, and ci, the coordinate of the centroid for the ith clump. The super-309 

scripted ‘+’ and ‘-’ indicate the real and imaginary parts respectively (see Anderson 2006, for 310 

details). We did not weight the clump-centroid by species biovolume because it would 311 

artificially give higher distinctiveness for less abundant species and bias our analysis. 312 

Besides, we calculated FDist using only species from the significant clumps and normalized 313 

the FDist to range between zero and one by diving the actual FDist values by the FDist of the 314 

most distinct species of the clump. We tested the H3, by modelling the relationship between 315 

species biovolume and FDist using linear models. We used log10 biovolume as the dependent 316 
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variable, with FDist and Clump (i.e. the clump to which a species belong) as the independent 317 

variables for each season and river stretch separately.  318 

Results 319 

Our samples included 150 species that were classified in six (MBFG I, III, IV, V, VI, and 320 

VII) from the seven MBFGs based on their functional traits (Table 1). MBFGs IV, V, and VI 321 

included 87% of the total number of species. Species from MBFG IV included filamentous, 322 

colonial, and unicellular species ranging from 21 µm³ to 8181 µm³ lacking specialized 323 

morphological traits (e.g. flagella, siliceous exoskeletal structures). MBFG V comprised 324 

unicellular flagellated species ranging in volume from 31µm³ to 31864 µm³, and MBFG VI 325 

included unicellular and chain-forming species with a siliceous exoskeletal body that ranged 326 

in volume from 48µm³ to 19045µm³.  327 

Table 1. Distribution of species among the morphological-based functional groups. 

MBFG Number of species Representative taxa 

I 9 Chroococcales sp., Chroococcus sp. 
III 3 Limnothrix sp. 
IV 60 Pseudanabaena limnetica, Pseudanabaena catenata 
V 13 Euglena sp., Cryptomonas sp. 
VI 57 Cymbella sp., Synedra sp. 
VII 8 Dictyosphaerium sp. 
Total 150  

Regarding the trait-environment relationship, the first two RLQ axes preserved well the 328 

variance of the ordinations and explained altogether 84.37 % of the variation, with 66.71% 329 

corresponding to the first axis alone. The SRLQ statistic indicated a significant global 330 

relationship between trait syndromes and environmental gradients (r = 0.18, p-value < 0.01). 331 

Mainly, the first trait syndrome (RLQ axis 1Trait) correlated significantly with the first 332 

environmental gradient (RLQ axis 1Environment; r = 0.17, p < 0.01) while the second trait 333 
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syndrome (RLQ axis 2Trait) correlated significantly with the second environmental gradient 334 

(RLQ axis 2Environment; r = 0.12, p < 0.01 ). Yet, there was no significant relationship between 335 

the first trait syndrome and the second environmental gradient, nor between the second trait 336 

syndrome and the first environmental gradient (Table 2). 337 

Table 2. Combined fourth‐corner‐RLQ analysis to test the relationship between 338 

functional syndromes (RLQ axisTrait) and environmental gradients (RLQ axisEnvironment). 339 

Results of the RLQ showed that most of the biovolume‐based variation in trait syndromes 340 

were related to the flow regime of the river Piabanha. The first RLQ axis summarised the 341 

spatial gradient in the environmental conditions, specifically the increase in turbidity, 342 

temperature, pH, and water discharge from the upper to the lower courses while the second 343 

RLQ axis summarised the temporal gradient with the smaller nutrient concentrations and 344 

higher water turbidity in the wet season (Figure 2A). Noteworthy, the spatial and temporal 345 

gradients in abiotic conditions coupled with the distribution of species from different 346 

MBFGs. The MBFGs I, III, and IV attained higher abundances in the upper course, 347 

contrasting with MBFG VI that showed the highest abundances at the lower course (Figure 348 

2B). Regarding the temporal gradient, MBFG V had higher abundances during the dry season 349 

(Figure 2B). Indeed, the fourth‐corner method showed that the first trait syndrome correlated 350 

positively with turbidity (r = 0.16, p = 0.01), temperature (r = 0.14, p = 0.02), pH (r = 0.13, p 351 

= 0.03), water discharge (r = 0.13, p = 0.03) and total phosphorus (r = 0.12, p = 0.04), and 352 

negatively with the upper course (r = -0.21, p < 0.01; Figure 2C). Besides, the second trait 353 

 RLQ axis 1Trait RLQ axis 2Trait 

  Pearson’s r (adjusted p-value) 

RLQ axis 1Environment 0.17 (< 0.01) 0.00 (1.00) 

RLQ axis 2Environment 0.00 (1.00) 0.12 (< 0.01) 
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syndrome correlated negatively with dissolved inorganic nitrogen (r = -0.11 , p = 0.04 ) and 354 

positively with turbidity (r = 0.13, p = 0.01; Figure 2C). For the spatial environmental 355 

gradient, there was a positive correlation with the species volume (r = 0.15 , p = 0.01) and the 356 

presence of siliceous exoskeletal structures (r = 0.22, p < 0.01), and a negative correlation 357 

with surface volume ratio (r = -0.19, p < 0.01; Figure 2D). For the temporal environmental 358 

gradient, there was a positive significant correlation with species maximum linear dimension 359 

(r = 0.12, p = 0.01), and a negative significant correlation with the presence of flagella (r = -360 

0.12, p = 0.01; Figure 2D). 361 

 362 
Figure 2. Results of the (A, B) RLQ ordination and (C, D) hypothesis testing through 363 

fourth-corner analysis. A) The relationships between species traits and environmental 364 

variables. B) The distribution of species in the functional space. Each point in the ordination 365 

plot represents the position of a species modelled according to its traits on RLQ axes 1 and 2. 366 

The black lines connect the species to the centroid of its morphology-based functional groups 367 

- MBFG. Colours represent MBFGs, C) The correlation between species traits and the 368 

environmental gradients (RLQ axis environment), and D) the relationship between environmental 369 
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variables and the trait syndromes (RLQ axis trait). The grey boxes in C and D indicate 370 

significant relationships, and the values within the boxes indicate Pearson’s r. Aer, aerotopes; 371 

Muc, mucilage; Si, siliceous exoskeletal structures; Fla, flagella; MLD, maximum linear 372 

dimension; SV, surface volume ratio; V, volume; WD, water discharge; T, temperature; Turb, 373 

turbidity; SRP, soluble reactive phosphorus; DIN, dissolved inorganic nitrogen; DO, 374 

dissolved oxygen; TP, total phosphorus; WS, wet season; DS, dry season; UC, upper course; 375 

MC, medium course; LC, lower course. 376 

Overall, species volume ranged from 4.19 µm³ to 31864 µm³ totalling 14 equally spaced 377 

segments (S) of volume along the niche axis. From the 14 segments, three of them showed 378 

significant (p < 0.05) entropy values, specifically S9, S13, and S14. This resulted in a 379 

biovolume aggregation (i.e. clumps) in two regions of the niche axis considering both 380 

temporal (Figure 3; Column 1) and spatial categories (Figure 4; Column 1). The first clump 381 

included 24 species from the MBFGs IV, V, and VI at the range of S9 (512µm³ - 1024µm³), 382 

particularly eight species from MBFG IV (e.g. Pseudanabaena catenata and P. limnetica), 383 

four species from the MBFG V (e.g. Strombomonas sp., cf Cryptomonas sp.), and 12 species 384 

from MBFG VI (e.g., Fragillaria capuccina var. gracilis, Achnantes cf. rupestoides). The 385 

second clump (hereafter Clump II) included six species at the range of S14, being two species 386 

from MBFG V (i.e. Euglena sp.) and four species from MBFG VI (e.g. Pinnularia sp., 387 

Synedra sp.). Moreover, during the wet season, the S13 also had significant entropy values 388 

and six more species from MBFG VI (e.g., Achnantes inflata, Cymbella sp.) were included in 389 

the clump II.  390 

Species from the same MBFG tended to cluster in the functional space even if they belonged 391 

to different clumps (Figure 3 – 4; Column 2). Yet, species within the same MBFG did not attain 392 

the highest abundance in more than one clump (Figure 3 – 4; Column 3). The mean biovolume 393 



 19 
 

of species within clumps differed between seasons, but the identity of the most abundant 394 

species did not vary (Figure 3 – Column 3). Pseudanabaena sp. (spp. 028) and P. catenata 395 

(spp. 012) had the highest biovolumes of clump I at both dry (Figure 3 – A2) and wet (Figure 396 

3 – B3) seasons. Within clump II, Synedra sp. (spp. 080) attained the highest biovolume during 397 

the dry season (Figure 3 – A3) while Cymbella sp. (spp. 051) had the highest biovolume in the 398 

wet season (Figure 3 – B3).  399 

 400 

Figure 3. Distribution of phytoplankton biovolume along the body size axis, the 401 

ordination of species from the significant size segments (S) in the functional space, and 402 

the mean biovolume of the five most abundant species of each significant size segment 403 

during the (A) dry and (B) wet seasons of the Piabanha river, RJ. (1) Stem plots show size 404 
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distribution in the sampling sites of the river Piabanha. Each stem represents a species with its 405 

body size (in log2) plotted on the abscissa and the mean biovolume plotted on the ordinate. The 406 

red dotted line indicates the entropy value of each size segment (i.e., unit of log2 volume) and 407 

the asterisk highlights the significant entropy values tested through 1000 randomizations. (2) 408 

The species of the corresponding significant size segment are ordinated in the functional space. 409 

The size of the circles represents the species contribution to the total biovolume of the size 410 

segment, the black line connects species to the centroid (see equation 3), and the number in the 411 

centroid of the clump indicates the size segment. (3) Bar plots show the biovolume of the five 412 

most abundant species from each significant size segment. Species are coloured according to 413 

their morphology-based functional groups (MBFG). The code for species can be found in the 414 

supplementary material, Table S1. 415 

Regarding the river stretches, only the clump I had significant entropy values for species from 416 

the S9 (Figure 4 – A1), with Pseudanabaena sp. (spp. 028) and P. catenata (spp. 012) 417 

contributing most of the biovolume (Figure 4 – A3). At the medium course, both clumps I and 418 

II had significant entropy values with Pseudanabaena sp. (spp. 028) attaining the highest 419 

biovolume within clump I, and Synedra sp. (spp. 080) attaining the highest biovolume within 420 

clump II (Figure 4 – C3). At the lower course, only clump II had significant entropy values at 421 

the S14 with Synedra sp. (spp. 080) as the most representative species (Figure 4 – C3). 422 
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 423 

 424 

Figure 4. Distribution of phytoplankton biovolume along the body size axis, the 425 

ordination of species from the significant size segments (S) in the functional space, and 426 

the mean biovolume of the five most abundant species of each significant size segment at 427 

the (A) upper, (B) medium, and (C) lower courses of the Piabanha river, RJ. (1) Stem 428 

plots show size distribution in the sampling sites of the river Piabanha. Each stem represents a 429 

species with its body size (in log2) plotted on the abscissa and the mean biovolume plotted on 430 
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the ordinate. The red dotted line indicates the entropy value of each size segment (i.e., unit of 431 

log2 volume) and the asterisk highlights the significant entropy values tested through 1000 432 

randomizations. (2) The species of the corresponding significant size segment are ordinated in 433 

the functional space. The size of the circles represents the species contribution to the total 434 

biovolume of the size segment, the black line connects species to the centroid (see equation 3), 435 

and the number in the centroid of the clump indicates the size segment. (3) Bar plots show the 436 

biovolume of the five most abundant species from each significant size segment. Species are 437 

coloured according to their morphology-based functional groups (MBFG). The code for 438 

species can be found in the supplementary material, Table S1.  439 

Mantel tests showed that species’ pairwise differences in biovolume correlated with functional 440 

dissimilarity irrespectively of the season or river stretch when the whole community was 441 

analyzed (Table 3). The correlation was highest during the wet season (Mantel r = 0.23, p < 442 

0.01) and at the lower course (Mantel r = 0.26, p < 0.01). For the clump-level pairwise 443 

differences, we only found a significant correlation at the upper course (Mantel r = 0.23, p < 444 

0.02; Table 3). In contrast, functional distinctiveness at clump level presented a significant 445 

positive relationship for both the dry season (b = 16.44, R² = 0.40, p < 0.01) and the wet season 446 

(b =18.32, R² = 0.40, p < 0.01), and also for the upper (b = 5.68, R² = 0.40, p < 0.01) and 447 

medium (b = 14.46, R² = 0.34, p = 0.02) courses (Table 4), indicating that species with the 448 

most distinct trait combinations within the clumps also attain the highest biovolume. 449 

Essentially, such pattern was observed only for the species within clump I, except during the 450 

wet season where species from clump II also showed a significant positive relationship (b = - 451 

17.83, p = 0.02; Table 4) 452 

Table 3. Mantel correlation results. Mantel correlation between the differences in species 453 

biovolume and functional dissimilarity for the whole community, and separately for the species 454 
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within significant clumps (see Figure 3 – 4) along the seasons (dry and wet) and river stretches 455 

(upper, medium, and lower courses). The species number of each stratum (whole community 456 

or clumps) are given. The relationships were tested for significance using 999 permutations, 457 

whenever possible. Bold values indicate significant correlations (p < 0.05). 458 

Seasons  
and  
river stretches 

Stratum 
Number  

of 
 species 

Mantel r p-value  
(permutations) 

Dry season     

 Whole community 135 0.254 < 0.01 
(999) 

 Clump I 22 0.13 0.09 
(999) 

 Clump II 4 -0.14 0.71 
(23) 

Wet Season     

 Whole community 123 0.29 < 0.01 
(999) 

 Clump I 20 0.06 0.24 
(999) 

 Clump II 11 -0.16 0.69 
(999) 

Upper course     

 Whole community 100 0.17 < 0.01 
(999) 

 Clump I 17 0.23 0.02 
(999) 

Medium course     

 Whole community 135 0.21 < 0.01 
(999) 

 Clump I 23 0.06 0.22 
(999) 

 Clump II 5 -0.16 0.65 
(119) 
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Lower course     

 Whole community 122 0.33 <0.01 
(999) 

 Clump II 5 -0.23 0.75 
(119) 

  

 

Table 4. Linear model results. Regression parameters of the relationship between species 

biovolume and functional distinctiveness at the clump level. The coefficients are shown along 

with the p-values of each independent variable.  

Dependent variable: l5og10 Biovolume 

Independent 
variables 

Dry  
season 

Wet 
 season 

Upper  
course 

Medium 
 course 

Lower  
course 

FDist 16.443 18.328 5.682 14.461 9.649 
 p = 0.007 p = 0.009 p = 0.004 p = 0.020 p = 0.059 
      

Clump II 12.286 17.734  11.613 5.774 
 p = 0.305 p = 0.017  p = 0.298 p = 0.476 
      

FDist ´ Clump II -11.905 -17.835  -11.12 -4.567 
 p = 0.343 p = 0.025  p = 0.345 p = 0.591 
      

Intercept -18.390 -20.420 -7.259 -16.636 -12.522 
 p = 0.002 p = 0.003 p < 0.001 p = 0.006 p = 0.013 

  
Observations 26 31 17 28 26 
Adjusted R2 0.408 0.397 0.405 0.343 0.546 

F Statistic 6.752 

(df = 3; 22) 
7.580 

 (df = 3; 27) 
11.874 

 (df = 1; 15) 
5.703 

 (df = 3; 24) 
11.006 

 (df = 3; 22) 

Discussion 459 

Present results showed that (i) the clumps in body size are a conspicuous feature of 460 

phytoplankton community structure in the Piabanha river across seasons and river stretches; 461 
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(ii) species within clumps showed a random distribution of biomass concerning their pairwise 462 

functional dissimilarity, but not at the whole-community level; and (iii) species biovolume 463 

generally increases for species far apart from the centroid of multivariate trait space (i.e., 464 

functional distinctiveness) within clumps. Altogether these results support the Emergent 465 

neutrality hypothesis and show that studying species beyond pairwise interactions helps to 466 

explain the biomass distribution of functionally similar species, paving the way to analyze 467 

intra-clumps trait distributions. 468 

Multimodal aggregation of species biovolume along body size axis only points to the 469 

integration of niche-based processes and neutrality driving community assembly (Vergnon et 470 

al. 2009), supporting H1. Alternative hypothesis such as pure neutrality (Hubbell 2001) or 471 

high dimensional hypothesis (HDH, Clark et al. 2007) are not supported by present results 472 

because pure neutrality predicts a uniform distribution of species biovolume and traits along 473 

the niche axis (Hubbell 2001), and the HDH does not predict any particular trait distribution 474 

(Vergnon et al. 2009, Ingram et al. 2018).  475 

One alternative theory that is likely to explain clumpy aggregations is Holling’s textural 476 

hypothesis (Holling 1992), which suggests that multimodal species size distribution is the 477 

result of environmental constraints. Our results do not support the textural hypothesis, as 478 

river stretches and seasons were markedly different in hydrology, nutrient concentrations, and 479 

other relevant descriptors of riverine landscapes fluxes, but that was not reflected in the stable 480 

clumpy size structure of the phytoplankton registered in the present study (Figure 3). The 481 

stability found in the clumps agrees with empirical results registered in Segura et al. (2011, 482 

2013b) and theoretical findings on the location of clumps (Fort et al. 2009). However, the 483 

morphological trait composition of species in the different clumps reflected different 484 

environmental templates. The dominant species from the clump I belonged to MBFG IV 485 
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(Figure 3 – 4) and presented the highest biovolume under low-flow and high nutrient 486 

conditions (Figure 2), which is in line with previous findings for this MBFG (Chen et al. 487 

2015). Within the second clump (II), the most abundant species belonged to MBFG VI 488 

(Figure 3 – 4) and had their highest biovolume under high-flow and turbid conditions (Figure 489 

2), in line with the ecology of siliceous organisms (diatoms) able to cope with turbulent 490 

environments (Bortolini and Bueno 2017). The empirical evidence is consistent with studies 491 

from coastal and estuarine environments (Segura et al. 2011, 2013b) and is in line with recent 492 

modelling results suggesting that clumpy patterns arise in environments subjected to 493 

resources fluctuation (Sakavara et al. 2018), such as rivers. The trade-off between resources 494 

among competing species (Tilman 1982), which is a required ingredient for the emergence of 495 

clumps should be further explored. 496 

The analysis of multiple trait dimensions, combining morphology-based functional groups 497 

(MBFG) and quantitative distance metrics helped to describe the changes in species traits 498 

within clumps. We found that the species from the same clump are distributed across multiple 499 

MBFGs but only species from the same MBFG attain the highest biovolume within a clump, 500 

reinforcing that body size is a good proxy for niche differences of the species (Blanckenhorn 501 

2000). MBFGs helped to detect differences at a finer degree because they synthesize multiple 502 

trait dimensions as suggested previously to understand community organization (D’Andrea et 503 

al. 2018). Given that species within the same MBFG share similar ecological strategies (Kruk 504 

et al. 2010, Kruk and Segura 2012), under EN premises they should also perform similarly 505 

(Scheffer et al. 2018). This is in line with the significant functional dissimilarity observed at 506 

the whole community level but not for each clump separately, agreeing with H2. However, 507 

the effects of traits in species’ fitness are context-dependent, whereas the use of traits for 508 

assigning MBFGs is static, therefore, testing the significance of traits given the observed 509 
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environmental conditions might help to unveil community assembling processes at an even 510 

finer degree (Kremer et al. 2017). 511 

We also outlined the role of functional similarity in community assembly by studying the 512 

effects of functional distinctiveness on species biovolume at the clump level. Within clump I, 513 

species biovolume increased with functional distinctiveness, but this pattern was weaker 514 

within clump II (Table 4). It may be that such patterns stem from the fact that phytoplankton 515 

growth-rate decreases with body size while increases with surface volume ratio, providing 516 

that populations of smaller species (such as in clump I) are less sensitive to losses by flushing 517 

rates (Kruk et al. 2010). On the other hand, large-sized species have often an elongated shape 518 

that provides an advantage under turbulent conditions with low light availability (Reynolds et 519 

al. 1994). Differently, aerotopes and mucilage are useful to reach the surface in deep 520 

stratified lakes but are not key in small rivers or streams were turbulent fluxes dominate and 521 

these traits are not useful to recuperate the position in the water column. Furthermore, in 522 

rivers, large-bodied phytoplanktonic species are often randomly introduced from different 523 

habitats (e.g. periphyton or epiphyton) (Wang et al. 2014, Descy et al. 2017), which has also 524 

been found true for the Piabanha river especially under high flow conditions (Graco-Roza et 525 

al. 2020). This mechanism can help to explain the weak relationship between functional 526 

distinctiveness and biovolume within clump II, which explain the niche overlap found in 527 

large-sized species as the result of immigration and emigration out of the pelagic zone. 528 

Emergent neutrality results from eco-evolutionary processes that lead species selection 529 

towards a limited number of functional groups (Scheffer and van Nes 2006). This implies that 530 

the clumps observed here are not likely a result of competitive exclusion at the Piabanha 531 

river, but a convergent evolution of competing species over time (Macarthur and Levins 532 

1967). Therefore, even when the competition rates are relaxed due to sufficient nutrient 533 
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supply, some other limiting factors that are not consumed by biotic organisms such as heat 534 

energy or turbulence determine species biovolume. Looking at species differences at a high-535 

order level (instead of pairwise differences) helped to detect the effects of trait composition 536 

on the biovolume distribution in quasi-neutral clumps. Our results showed that it is possible 537 

to predict the biovolume of species within clumps, but only when immigration from different 538 

habitats are relaxed and biotic interactions are more likely to occur. Therefore, our findings 539 

partially agree with H3 - there is a positive relationship between species abundance and 540 

species functional distinctiveness within clumps, but the environmental conditions seem to 541 

play a key role in the outcome.  542 

In summary, we provided evidence of both neutral and niche mechanisms driving planktonic 543 

community assembly and support the view that emergent neutrality is a likely mechanism to 544 

explain species coexistence in an open and environmentally heterogeneous ecosystem. The 545 

use of MBFG classification and functional space to describe species within clumps revealed 546 

that under the same size range, species with a greater degree of functional similarity 547 

unpredictably alternate their dominance. The position and dominance of the clumps were 548 

related to the environmental conditions, but the biovolume of species within the clumps was 549 

better predicted by functional distinctiveness than by pairwise functional similarity. This 550 

addresses the difficulty to avoid the ghost of hidden niches (Barabás et al. 2013) and also 551 

provides evidence from multiple angles that point to EN as a plausible mechanism in shaping 552 

species coexistence in riverine landscapes. 553 
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