Host-mediated, cross-generational intraspecific competition in a herbivore species

Bastien Castagneyrol^{1,*} Inge van Halder¹ Yasmine Kadiri¹ Laura Schillé¹ Hervé Jactel¹

¹ Univ. Bordeaux, INRAE, BIOGECO, F-33612 Cestas, France

* Bastien Castagneyrol, INRAE UMR BIOGECO, 69 route d'Arcachon, FR-33612 Cestas Cedex, France ; bastien.castagneyrol@inrae.fr

February 11, 2021

Conspecific insect herbivores co-occurring on the same host plant interact both directly through interference competition and indirectly through exploitative competition, plant-mediated interactions and enemy-mediated interactions. However, the situation is less clear when the interactions between conspecific insect herbivores are separated in time within the same growing season, as it is the case for multivoltine species. We hypothesized that early season herbivory would result in reduced egg laying and reduced performance of the next generation of herbivores on previously attacked plants. We tested this hypothesis in a choice experiment with box tree moth females (Cydalima perspectalis Walker, Lepidoptera: Crambidae). These females were exposed to box trees (Buxus sempervirens L., Buxaceae) that were either undamaged or attacked by conspecific larvae earlier in the season. We then compared the performance of the next generation larvae on previously damaged vs undamaged plants. Previous herbivory had no effect on oviposition behaviour, but the weight of next generation larvae was significantly lower in previously damaged plants. There was a negative correlation between the number of egg clutches laid on plants by the first generation and the performance of the next generation larvae. Overall, our findings reveal that early season herbivory reduces the performance of conspecific individuals on the same host plant later in the growing season, and that this time-lagged intraspecific competition results from a mismatch between the oviposition preference of females and the performance of its offspring.

²⁸ 1 Main text

2

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

9 1.1 Introduction

Biotic interactions are strong factors affecting the fitness of interacting individuals, even when interactions are delayed in time or do not imply direct contact between individuals. Such interactions can be found in both plants through plant-soil feedbacks (Putten et al., 2016) and in animals (Fisher et al., 2019; Pfennig & Pfennig, 2020). For instance, insect herbivores exploiting the same plant can compete for food, even when interactions among individuals are separated in time (Kaplan & Denno, 2007). Insects may reduce the impact of interspecific competition by avoiding crowded plants, or plants that have been previously consumed by herbivores, which assumes that they can detect competitors or their effects on plants (Shiojiri & Takabayashi, 2003; De Moraes et al., 2001). For many species, the choice of the oviposition site by mated females is crucial in this respect. The preference-performance hypothesis — aka the 'mother knows best hypothesis' — states that female insects evolved host searching behaviour that leads them to oviposit on hosts where their offspring do best (Gripenberg et al., 2010). A good match between the preference of a mated female for a given plant

and the performance of its offspring developing on the same plant implies that females can recognize cues that correlate with larval performance, for instance those related to plant defenses and nutritional quality. Yet, these cues can be largely modified by the simultaneous or sequential presence of other competing herbivores (Bultman & Faeth, 1986; Nykänen & Koricheva, 2004; Abdala-Roberts et al., 2019; Visakorpi et al., 2019). Therefore, initial herbivory by a given species may have time-lagged consequences on the preference and performance of herbivores of another species that subsequently attack the same plant in the same growing season (Poelman et al., 2008; Stam et al., 2014). However, while such time-lagged interspecific interactions between herbivores have long been documented (Faeth, 1986), surprisingly much less is known about delayed intraspecific interactions in multivoltine species having several generations per year.

Previous herbivory generally reduces the performance of later arriving herbivores on the same plant through different processes. First, the initial consumption of plant biomass can deplete the resource available to 51 forthcoming herbivores, therefore leading to exploitative competition between first and subsequent herbivores 52 (Kaplan & Denno, 2007). Second, initial herbivory triggers a hormonal response that results in the induction and production of anti-herbivore defenses as well as in resource reallocation in plant tissues (Hilker & Fatouros, 54 2015; Abdala-Roberts et al., 2019; Marchand & McNeil, 2004; Blenn et al., 2012; Fatouros et al., 2012), 55 which generally reduces plant quality and thereby the performance of late coming herbivores (Agrawal, 1999; Abdala-Roberts et al., 2019; Wratten et al., 1988). Such an effect has long been documented in interspecific 57 interactions (Kaplan & Denno, 2007; Moreira et al., 2018), but also in intraspecific interactions. For instance, prior damage by the western tent caterpillar Malacosoma californicum Packard (Lepidoptera: Lasiocampidae) 59 induces the regrowth of tougher leaves acting as physical defenses and reducing the fitness of the next tent caterpillars generation (Barnes & Murphy, 2018). Although less common, the opposite phenomenon whereby 61 initial herbivory facilitates damage by subsequent herbivores has also been reported (Sarmento et al., 2011; 62 Godinho et al., 2016; Moreira et al., 2018). 63

Previous herbivory can also affect the oviposition preference of herbivores that arrive later. Several studies have demonstrated that mated females can discriminate between host plants that have been previously 65 attacked by insect herbivores (Wise & Weinberg, 2002; Stam et al., 2014; Moura et al., 2017; Barnes & Murphy, 2018; Moreira et al., 2018; Weeraddana & Evenden, 2019), thereby reducing competition between 67 herbivores separated in time. Mated females can directly detect the present, past and possibly future presence of competitors themselves. For instance, Averill & Prokopy (1987) showed that female Rhagoletis pomonella 69 Walsh (Diptera: Tephritidae) marks its oviposition site with an epideictic pheromone that deters conspecific 70 females from laying eggs, thus reducing intraspecific competition at the larval stage. The frass of several 71 Lepidoptera species was also found to act as an oviposition deterrent (Jones & Finch, 1987; Hashem et 72 al., 2013; Molnár et al., 2017). Mated females may also detect herbivory-induced changes in the physical and chemical characteristics of attacked plants, and consequently avoid laying eggs on less suitable plants. 74 However, several authors reported a mismatch between prior herbivory effects on female oviposition preference 75 vs larval growth, consumption or survival of their offspring (Godinho et al., 2020; Wise & Weinberg, 2002; 76 Bergamini & Almeida-Neto, 2015; Martinez et al., 2017). For instance, Weeraddana and Evenden (2019) 77 found that herbivory by the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae) on canola 78 plants (Brassica napus L.) had no effect on subsequent oviposition by the bertha armyworm, Mamestra configurata Walker (Lepidoptera: Noctuidae) whereas its larvae had reduced growth on previously damaged 80 plants. Thus, in order to quantify the effect of prior herbivory on subsequent herbivore performance, we need to assess how it affects both female choice and progeny performance in attacked and non-attacked hosts.

In the present study, we investigated the consequences of box tree (Buxus spp.) defoliation by the first generation of the box tree moth (BTM) Cydalima perspectalis Walker (Lepidoptera: Crambidae) larvae on (i) the oviposition behaviour of the adults emerging from those larvae and (ii) on the larval performance in the next generation. Specifically, we hypothesized that plants that had previously been attacked by conspecific larvae would (i) receive fewer eggs (i.e. reduced preference) and (ii) host smaller larvae and chrysalis (i.e. reduced performance) of the next generation than previously undamaged plants. Our experimental design allowed us to separate the effects of previous herbivory on both preference and performance of conspecific herbivores attacking the same plant in sequence. By doing so, our study brings new insights into the understanding of cross-generational intraspecific competition in insect herbivores and further challenges the 'mother knows best hypothesis'.

$_{\scriptscriptstyle 93}$ 1.2 Materials and methods

94 1.2.1 Natural history

The BTM is a multivoltine moth species introduced to Europe in 2007 from Asia (Wan et al., 2014). In its native range, BTM larvae can feed on different host genera, whereas in Europe they feed exclusively on box trees (Wan et al., 2014). In the introduced area, BTM larvae overwinter in cocoons tied between two adjacent leaves, mainly in the third instar. Therefore, defoliation restarts in early spring at the beginning of the growing season. In Europe, damage is aggravated by the fact that the BTM has 3-4 generations a year (Kenis et al., 2013; Matošević et al., 2017). When several pest generations successively defoliate the same box tree, there are no leaves left to eat and the caterpillars then feed on the bark, which can lead to the death of the host tree (Kenis et al., 2013; Wan et al., 2014; Alkan Akıncı & Kurdoğlu, 2019).

1.2.2 Biological material

In spring 2019, we obtained box trees from a commercial nursery and kept them in a greenhouse at INRAE Bordeaux forest research station. Box trees were on average 25 cm high and 20 cm wide. We transferred them into 5 L pots with horticultural loam. For two months, we watered them every four days from the above (*i.e.* watering leaves too) to remove any potential pesticide remain.

We initiated BTM larvae rearing with caterpillars collected in the wild in early spring 2019, corresponding to those that had overwintered. We reared them at room temperature in 4320 cm³ plastic boxes, and fed them ad libitum, with branches collected on box trees around the laboratory. We used the next generation larvae to induce herbivory on box tree plants (experimental treatment, see below) and the subsequent adults for the oviposition experiment. At 25°C, the larval phase lasts for about 30 days and the BTM achieves one generation in 45 days. Adults live 12-15 days. A single female lays on average 800 eggs.

1.2.3 Experimental design

127

128

130

On June 18^{th} 2019, we haphazardly assigned box trees to control and herbivory experimental groups. The 115 herbivory treatment consisted of n = 60 box trees that received five L3 larvae each. Larvae were allowed to 116 feed freely for one week, after which we removed them all from plants. In order to confirm that the addition 117 of BTM larvae caused herbivory, we visually estimated BTM herbivory as the percentage of leaves consumed 118 by BTM larvae per branch, looking at every branch on every plant. We then averaged herbivory at the plant 119 level. Herbivory data were missing in 8 plants. We removed these plants from the analysis testing the effect 120 of prior herbivory as a continuous variable on BTM preference and performance. In the herbivory treatment, 121 the percentage of leaves consumed by BTM larvae ranged from 2.2 to 17.2% and was on average 9.1%. The 122 control group (n = 61) did not receive any BTM larva. On July 8^{th} , we randomly distributed plants of the 123 herbivory and control treatments on a 11×11 grid in a greenhouse (i.e. total of 121 plants). We left 40 cm between adjacent pots, which was enough to avoid any physical contact between neighbouring plants 125 (Figure 1, Figure 2).

The same day, we released ca 100 BTM moths that had emerged from chrysalis less than two days before (i.e., an uncontrolled mix of males and females). We released moths at the four corners of the experiment to reduce the risk of spatial aggregation. Moths were allowed to fly freely within the greenhouse. They could feed on small pieces of cotton imbibed with a sugar-water solution, disposed on the ground in the greenhouse.

It is important to note that at the time we released moths, there were no larvae feeding on experimental box trees anymore. In addition, at this time, plants in the herbivory treatment had been cleared of caterpillars for three weeks (corresponding to the duration of the chrysalis stage) during which they were watered every two to three days from above. Although larval frass may have been present in pots submitted to the herbivory treatment, it should have been washed out from leaves. Finally, we carried out our experiment in an enclosed greenhouse in which the potential effect of natural enemies on BTM behaviour can be neglected.

The consequences are that any effect of prior herbivory on subsequent oviposition behaviour and larval

Figure 1: The study design and model species. The two top photos (A, B) illustrate the experimental design and in particular distance among potted plants. Photo C is a view of the greenhouse from the outside, with an adult box tree moth in the foreground, and potted plants in the background. Photo D shows an adult box tree moth on a box tree branch, shortly after it was released.

performance should have been independent of cues emitted by BTM larvae themselves or by their frass (Sato et al., 1999; Molnár et al., 2017) and therefore were only plant-mediated.

140 1.2.4 BTM host choice

In order to test whether initial defoliation of focal plants influenced host choice for oviposition by BTM females, we counted egg clutches on every branch of every box tree on July 17th. Once eggs were counted, we moved box trees to another greenhouse. To prevent larvae from moving from one potted plant to another, we installed box trees in plastic saucers filled with a few centimeters of water (renewed regularly).

145 1.2.5 BTM growth rate

Fifteen days later (July 31st), we haphazardly collected up to five L3 BTM larvae per box tree (only 6% of plants hosted less than five larvae). We kept them in Petri dishes without food for 24h to make larvae empty their gut and weighed them to the closest 10 µg. In some Petri dishes, we observed cases of cannibalism such that in some instances we could only weight two larvae (Schillé and Kadiri, personal observation). For each plant, we therefore calculated the average weight of a L3 larva, dividing the total mass by the number of larvae. Because we did not record the day every single egg hatched, we could not quantify the number of days caterpillars could feed and therefore simply analysed the average weight of a L3 larva.

Larvae were allowed to complete their development on the potted box trees. After every larvae pupated, we counted the number of chrysalis per box tree and weighted them to the closest 10 μg.

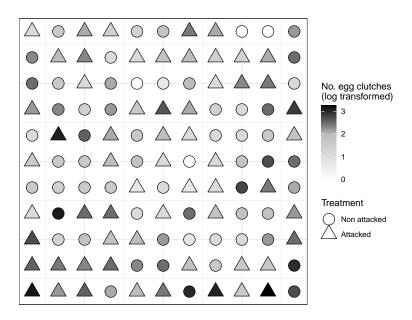


Figure 2: Experimental design. Pots were 40 cm apart. Circles and triangles represent non-attacked (control) and attacked trees. Scale colour represents the number of egg clutches per box tree (log-transformed).

1.2.6 Analyses

All analyses were run in R using libraries nlme and car (Team, 2018; Pinheiro et al., 2020; Fox et al., 2016).

We first looked for spatial patterns in female BTM oviposition. We ran a generalized least square model (GLS) testing the effect of potted tree location in the experimental design (through their x and y coordinates, **Figure 2**) on the number of clutches per plant (log-transformed) from which we explored the associated variogram using the functions gls and Variogram in the nlme library. There was evidence that oviposition was spatially structured, with strong spatial autocorrelation between 1 and 3m (**Figure S1**).

We tested the effect of prior herbivory on female BTM oviposition (log-transformed number of egg clutches) while controlling for spatial non-independence using two independent sets of GLS models. In the first one, we considered prior herbivory as a two-levels factor (attacked vs non-attacked) and used the full data set, whereas in the second one, we treated herbivory as a continuous variable, excluding data from the control treatment. In both cases, we had no particular hypothesis regarding the shape of the spatial correlation structure. We therefore ran separate models with different spatial correlation structures (namely, exponential, Gaussian, spherical, linear and rational quadratic), and compared them based on their AIC (Zuur, 2009). For each model, we computed the ΔAIC (i.e., Δ_i) as the difference between the AIC of each model i and that of the model with the lowest AIC (Burnham & Anderson, 2002). We report and interpret the results of the model with the lowest AIC (see Results).

We then tested the effect of prior herbivory on BTM performance using a two-steps approach. We first used two separate ordinary least square models, with the mean weight of L3 larvae (log-transformed) or the mean weight of chrysalis (untransformed) as a response variable, the herbivory treatment (non-attacked vs attacked) as a two-levels factor and the number of egg clutches as a covariate. Then, we restricted the analyses to plants from the herbivory treatment to test the effect of the percentage of prior herbivory, number of egg clutches and their interaction on the mean weight of L3 larvae (log-transformed) and chrysalis, separately. We deleted non-significant interactions prior to the estimation of model coefficient parameters. Finally, we tested the correlation between mean BTM larval weight and mean BTM chrysalis weight at the plant level using Pearson's correlation.

$_{\scriptscriptstyle 181}$ 1.3 Results

We counted a total of 818 egg clutches and 593 larvae on 117 out of 121 plants (*i.e.* 96.7%). We counted eggs in 93.4% of plants in the control (non attacked) groups, and in 100% of plants in the herbivory treatment. At individual plant level, the number of egg clutches varied from 0 to 25 (mean \pm SD: 6.76 \pm 5.11, **Figure 2**).

When modelling the effect of prior herbivory on the number of egg clutches using the full data set, the best model (i.e., model 5 with $\Delta_i = 0$, **Table 1**) was the model with a rational quadratic spatial correlation. It was competing with three other models with $\Delta_i < 2$ (**Table 1**). When the analysis excluded data from control plants, the best model was that with a Gaussian spatial correlation (**Table 1**). It was competing with three other models, including that with a rational quadratic spatial correlation ($\Delta AIC = 0.2$). For the sake of consistency, we therefore used this spatial correlation in further analyses, for it was common to the two analyses. The results were comparable with other spatial correlation structures.

Herbivory had no significant effect on the number of egg clutches per plant, regardless of whether it was treated as a categorical (model 5, full data set: $F_{1,119} = 2.91$, P = 0.09, **Figure 3A**) or continuous variable (model 5, herbivory treatment only: $F_{1,53} = 0.8$, P = 0.374).

The mean weight of BTM larvae varied from 6 to 54 mg (mean \pm SD: 20 ± 9 mg). There was a significant, negative relationship between the number of egg clutches on a box tree and subsequent larval weight (**Table 2, Figure 3B**), suggesting intraspecific competition for food. BTM larval weight was lower on box trees that had been previously defoliated (**Table 2, Figure 3B**), regardless of the amount of herbivory (**Table 2**). Larval weight was not significantly affected by the interaction between the herbivory treatment and the number of egg clutches, indicating that intraspecific competition was independent of prior herbivory (**Table 2**). The results were the same regardless of whether herbivory was treated as a categorical or continuous variable (**Table 2**).

The mean weight of BTM chrysalis varied from 52 to 210 mg (mean \pm SD: 145 \pm 35 mg, n 104). There was a significant positive correlation between the mean weight of BTM larvae and the mean weight of chrysalis (Pearson's r = 0.34, t-value = 3.67, P-value = < 0.001). The effects of herbivory treatment and number of egg clutches on mean chrysalis weight were very comparable to those observed for BTM larvae: BTM chrysalis weight was lower on box trees that had been previously defoliated (**Table 2**, **Figure 3C**), and this effect strengthened with an increasing amount of herbivory. There was a significant, negative relationship between the number of egg clutches on a box tree and the subsequent chrysalis weight, which was not significantly affected by the interaction between the herbivory treatment and the number of egg clutches (**Table 2**, **Figure 3C**).

212 1.4 Discussion

203

204

205

206

207

208

209

210

214

Our findings reveal that early season herbivory reduces the performance of conspecific individuals that subsequently attack the same host plant later in the plant growing season. This time-lagged intraspecific

Table 1: Summary of AIC of GLS models testing the effect of prior herbivory on the number of egg clutches with different spatial correlation structures, for the full dataset and the data set excluding plants from the control treatment.

		Ful	l model	Herbivory treatment		
Model	Correlation structure	AIC	\$\Delta\$	AIC	\$\Delta\$	
Model 1	Exponential	249.8	0.4	99.9	0.5	
Model 2	Gaussian	250.2	0.8	99.4	0.0	
Model 3	Spherical	250.9	1.5	99.6	0.2	
Model 4	Linear	255.1	5.7	104.0	4.6	
Model 5	Rational quadratic	249.4	0.0	99.8	0.4	

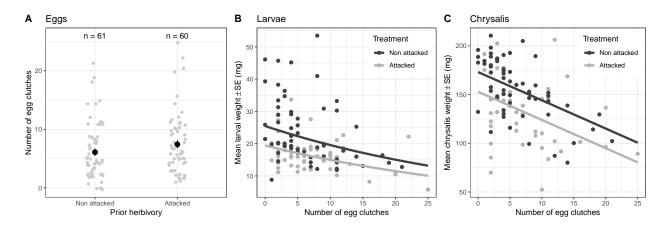


Figure 3: Effects of prior herbivory and conspecific density on (A) the number of egg clutches, (B) L3 larva weight and (C) chrysalis weight. In A, grey dots represent raw data. Black dots and vertical bars represent raw means (+/- SE). In B and C, dots represent raw data. Black and grey curves represent model predictions for control and herbivory treatments, respectively.

Table 2: Summary of models testing the effect of prior herbivory (with the full data set or the data set restricted to the herbivory treatment) and initial egg clutch density on mean BTM larvae and chrysalis weight

Data set	Response	Predictor	df	F-value	P-value	\mathbb{R}^2	Estimate (SE)
Full	Larvae	Number of egg clutches	1, 117	26.31	< 0.001	0.27	-0.026 (0.006)
		Herbivory	1, 117	20.30	< 0.001		-0.269 (0.06)
		Eggs x Herbivory	1, 117	0.73	0.396		
	Chrysalis	Number of egg clutches	1, 100	33.74	< 0.001	0.31	-0.003 (0.001)
		Herbivory	1, 100	12.23	< 0.001		-0.02 (0.006)
		Eggs x Herbivory	1, 100	3.14	0.079		
Herbivory subset	Larvae	Number of egg clutches	1, 43	9.36	0.004	0.17	-0.022 (0.007)
		Herbivory	1, 43	0.15	0.699		-0.004 (0.011)
		Eggs x Herbivory	1, 43	3.07	0.087		
	Chrysalis	Number of egg clutches	1, 29	5.08	0.032	0.31	-0.002 (0.001)
		Herbivory	1, 29	11.93	0.002		-0.005 (0.001)
		Eggs x Herbivory	1, 29	0.13	0.72		

competition results from a mismatch between female oviposition preference and the performance of its offspring.

Prior herbivory had no effect BTM oviposition choice. Two possible mechanisms can explain this observation: prior herbivory may have had no effect on box tree characteristics, or female BTM may have been indifferent to them at the time we conducted the experiment.

The first explanation seems unlikely as we found clear evidence that prior herbivory reduced the performance of BTM larvae later in the season. This is fully in line with the numerous studies that have established that insect herbivory induces changes in plant physical and chemical traits, which have profound consequences on herbivores or herbivory on the same host plant later in the season (Poelman et al., 2008; Abdala-Roberts et al., 2019; Wise & Weinberg, 2002; Stam et al., 2014; but see Visakorpi et al., 2019). We cannot dismiss the second explanation that BTM females were indifferent to box tree cues related to earlier herbivory. This may be particularly true in species whose females individually lay several hundred eggs, for which spreading eggs among several host plants may be an optimal strategy (Root & Kareiva, 1984; Hopper, 1999). Consistently, Leuthardt and Baur (2013) observed that BTM females evenly distributed egg clutches among leaves and branches, and that oviposition preference was not dictated by the size of the leaves. Assuming that this behavior is reproducible, the close distance between box-trees that we used in the present experiment (40 cm)

could explain the lack of effect of initial defoliation on BTM oviposition behavior. In addition, Leuthard et al. (2013) showed that BTM larvae are able to store or metabolise highly toxic alkaloid present in box tree leaves. Even if prior herbivory induced the production of chemical defenses, it is possible they this did not exert any particular pressure upon females for choosing undefended leaves or plants on which to oviposit, as their offspring would have been able to cope with it. Last, BTM larvae proved to be unable to distinguish between box tree leaves infected or not by the box rust Puccinia buxi, while their growth is reduced in the presence of the pathogenic fungus (Baur et al., 2019). Altogether, these results suggest that BTM female moths are not influenced by the amount of intact leaves and probably not either by their chemical quality when choosing the host plant, perhaps because of their strong ability to develop on toxic plants. It remains however possible that BTM adults use other cues to select their hosts, such as the presence of conspecific eggs, larvae or chrysalis.

Prior box tree defoliation by the spring generation of BTM larvae reduced the performance of the next generation. Two alternative, non-mutually exclusive mechanisms can explain this phenomenon. First, the reduced performance of individuals of the second generation can have resulted from induced plant defenses. This explanation is in line with studies that have documented in several plant species reduced herbivore performance and changes in plant-associated herbivore communities linked to induced defenses after prior herbivory (Nykänen & Koricheva, 2004; Karban, 2011; Stam et al., 2014). In the case of multivoltine species, negative relationship between prior herbivory and subsequent larva growth rate could indicate intraspecific plant-mediated cross-generation competition between cohorts of herbivores separated in time (Barnes & Murphy, 2018), which could influence herbivore population dynamics and distribution across host individuals. However, BTM is thought to have broad tolerance to variability in host traits, as suggested by previous observations that BTM larva growth rate did not differ significantly among box-tree varieties (Leuthardt et al., 2013). It is unknown whether herbivory induced changes in host traits are of the same order of magnitude as trait variability among varieties. Assuming variability among varieties is greater, this result goes against the view that reduced performance of larvae of the summer generation resulted from box tree response to prior herbivory. Secondly, reduced performance on previously defoliated plants may partly result from food shortage and increased exploitative competition among larvae of the same cohort. Although free living mandibulate herbivores were described to be less sensitive to competition (Denno et al., 1995), the effect of food shortage may have been exacerbated by the small size of box trees and exploitative competition (Kaygin & Taşdeler, 2019). This explanation is further supported by the fact chrysalis weight was more reduced in plants that were more defoliated by the spring generation of BTM larvae.

The number of egg clutches laid by BTM female moths correlated negatively with subsequent growth of BTM larvae. This suggests the existence of intraspecific competition for food within the same cohort. Such competition has already been reported, particularly in leaf-miners (Bultman & Faeth, 1986; Faeth, 1992), which are endophagous insect herbivores whose inability to move across leaves makes them particularly sensitive to the choice of oviposition sites by gravid female. In our study, we prevented larvae from moving from one plant to another and noticed that some box trees were completely defoliated by the end of the experiment. Although we did not record this information, it is very likely that larvae first ran out of food in plants on which several egg clutches were laid. We are however unable to determine whether the observed intraspecific competition in this cohort was determined by food shortage, or by herbivore-induced changes in resource quality, or both. In addition, we noticed that the number of chrysalis in 32 control plants (out of 61, i.e. 52%) was greater than the number of larvae, whereas this only happened in only one previously attacked plant (i.e. 2%). This suggests that in spite of our precautions some larvae could move from attacked to control plants (Table 3). Together with the fact that patterns of chrysalis weight were very similar to patterns of larval weight, these findings can be seen as another argument in favor of larvae escaping from intraspecific competition on previously attacked plants.

Our findings may have profound implications on our understanding of BTM population dynamics. In many Lepidoptera species, all eggs are present in the ovarioles as the adult molt and larva body mass is proportional to fecundity (i.e., 'capital breeders', (Honěk, 1993; Awmack & Leather, 2002)). As a consequence, host plant quality during larval growth and development is a key determinant of individuals fitness (Awmack & Leather, 2002). Although the relationship between plant quality and herbivore fitness may vary among species (Moreau et al., 2006; Awmack & Leather, 2002; Colasurdo et al., 2009), we speculate that herbivory

by the first BTM larva generation reduces the fitness of the second BTM generation, and that this effect may
be further strengthened when high population density increases intra-specific cross-generational competition
(Tammaru & Haukioja, 1996). These cross-generational effects may thus lead to an important role of density
dependence population growth.

287 1.5 Conclusion

Insect herbivory induces changes in the amount and quality of plant resources, which are responsible for interspecific interactions among herbivores, even in herbivores that are separated in space or time (Poelman 289 et al., 2008; Stam et al., 2014). Our experiment provides evidence that insect herbivory also influences the 290 performance of conspecific herbivores through cross-generational competition, which may ultimately control 291 the overall amount of damage that multivoltine herbivore species can cause to plants. Cross-generational 292 competition may increase development time of individuals of the next generation, thereby increasing their 293 vulnerability to natural enemies (the slow-growth-high-mortality hypothesis; Coley et al., 2006; Benrey & 294 Denno, 1997; Uesugi, 2015). If this is the case, on the one hand stronger top-down control can be exerted on 295 herbivores feeding on previously attacked hosts, which could reduce the overall amount of damage to the host 296 plant. On the other hand, if herbivores take longer to develop, they may cause more damage to plants, in 297 particular to those with poor nutritional quality, due to compensatory feeding (Simpson & Simpson, 1990; 298 Milanovic et al., 2014). Our results highlight the overlooked ecological importance of time-lagged intraspecific competition (Barnes & Murphy, 2018). In the face of global warming, which shortens the generation time 300 of many insect herbivores and thus increases voltinism (Jactel et al., 2019), it is particularly necessary to 301 elucidate the consequences of cross-generational interactions on the population dynamics of multivoltine 302 herbivore species.

304 1.6 Acknowledgements

We thank Alex Stemmelen, and Yannick Mellerin for their help in BTM rearing and data collection. This research was founded by the HOMED project, which received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 771271. We thank Inês Fragata, Raul Costa-Pereira and Sara Magalhães for their helpful comments on earlier version of this manuscript.

309 1.7 Data accessibility

Raw data as well as codes of statistic analysis are available in supplementary material and on the INRA dataverse: Castagneyrol, Bastien; van Halder, Inge; Kadiri, Yasmine; Schillé, Laura; Jactel, Hervé, 2020, "Raw data for the paper 'Host-mediated, cross-generational intraspecific competition in a herbivore species', https://doi.org/10.15454/KMUX39, Portail Data INRAE, V3.0.

314 1.8 Conflict of interest

The authors of this preprint declare that they have no financial conflict of interest with the content of this article. Bastien Castagneyrol is one of the *PCI Ecology* recommenders.

1.9 References

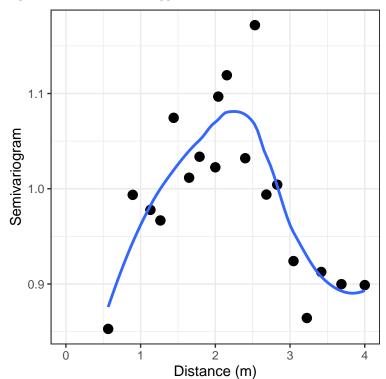
Abdala-Roberts L, Reyes-Hernández M, Quijano-Medina T, Moreira X, Francisco M, Angulo DF, Parra-Tabla V, Virgen A & Rojas JC (2019) Effects of amount and recurrence of leaf herbivory on the induction of direct and indirect defences in wild cotton. Plant Biology 21:1063–1071.

- Agrawal AA (1999) Induced responses to herbivory in wild radish: Effects on several herbivores and plant fitness. Ecology 80:1713-1723.
- Alkan Akıncı H & Kurdoğlu O (2019) Damage Level of Cydalima perspectalis (Lepidoptera: Crambidae) 323
- on Naturally Growing and Ornamental Box Populations in Artvin, Turkey. Kastamonu Üniversitesi Orman 324
- Fakültesi Dergisi. 325
- Averill AL & Prokopy RJ (1987) Intraspecific Competition in the Tephritid Fruit Fly Rhagoletis Pomonella. 326
- Ecology 68:878-886. 327
- Awmack CS & Leather SR (2002) Host Plant Quality and Fecundity in Herbivorous Insects. Annual Review of Entomology 47:817-844. 329
- Barnes EE & Murphy SM (2018) Time-lagged intraspecific competition in temporally separated cohorts of a 330 generalist insect. Oecologia 186:711-718. 331
- Baur B, Jung J & Rusterholz H-P (2019) Defoliation of wild native box trees (Buxus sempervirens): Does box 332
- rust (Puccinia buxi) infection influence herbivory, survival and growth of the invasive Cydalima perspectalis? 333
- Journal of Applied Entomology 143:766–775. 334
- Benrey B & Denno RF (1997) The slow-growth-high-mortality hypothesis: A test using the cabbage butterfly. 335
- Ecology 78:987-999.
- Bergamini LL & Almeida-Neto M (2015) Female Preference and Offspring Performance in the Seed Beetle 337
- Gibbobruchus bergamini Manfio & Ribeiro-Costa (Coleoptera: Chrysomelidae): A Multi-Scale Comparison. 338
- Neotropical Entomology 44:328–337.
- Blenn B. Bandolv M. Küffner A. Otte T. Geiselhardt S. Fatouros NE & Hilker M (2012) Insect Egg Deposition 340
- Induces Indirect Defense and Epicuticular Wax Changes in Arabidopsis thaliana. Journal of Chemical Ecology
- 38:882-892. 342
- Bultman TL & Faeth SH (1986) Experimental Evidence for Intraspecific Competition in a Lepidopteran Leaf 343
- Miner. Ecology 67:442-448.
- Burnham KP & Anderson DR (2002) Model selection and multimodel inference a practical information-345
- theoretic approach. Springer, New York. 346
- Colasurdo N, Gélinas Y & Despland E (2009) Larval nutrition affects life history traits in a capital breeding
- moth. Journal of Experimental Biology 212:1794-1800. 348
- Coley PD, Bateman ML & Kursar TA (2006) The effects of plant quality on caterpillar growth and defense 349
- against natural enemies. Oikos 115:219-228.
- De Moraes CM, Mescher MC & Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel 351
- conspecific females. Nature 410:577-580. 352
- Denno RF, McClure MS & Ott JR (1995) Interspecific Interactions in Phytophagous Insects: Competition
- Reexamined and Resurrected. Annual Review of Entomology 40:297–331. 354
- Faeth SH (1986) Indirect Interactions Between Temporally Separated Herbivores Mediated by the Host Plant. 355
- Ecology 67:479-494.

357

- Faeth SH (1992) Interspecific and Intraspecific Interactions Via Plant Responses to Folivory: An Experimental
- Field Test. Ecology 73:1802-1813. 358
- Fatouros NE, Lucas-Barbosa D, Weldegergis BT, Pashalidou FG, Loon JJA van, Dicke M, Harvey JA, Gols
- R & Huigens ME (2012) Plant Volatiles Induced by Herbivore Egg Deposition Affect Insects of Different 360
- Trophic Levels. PLOS ONE 7:e43607.
- Fisher DN, Haines JA, Boutin S, Dantzer B, Lane JE, Coltman DW & McAdam AG (2019) Indirect effects
- on fitness between individuals that have never met via an extended phenotype. Ecology Letters 22:697–706. 363

- Fox J, Weisberg S, Adler D, Bates D, Baud-Bovy G, Ellison S, Firth D, Friendly M, Gorjanc G, Graves S,
 Heiberger R, Laboissiere R, Monette G, Murdoch D, Nilsson H, Ogle D, Ripley B, Venables W, Winsemius D, Zoilois A, & P, Core (2016) Companyion to Applied Regression
- D, Zeileis A & R-Core (2016) Car: Companion to Applied Regression.
- Godinho DP, Janssen A, Dias T, Cruz C & Magalhães S (2016) Down-regulation of plant defence in a resident spider mite species and its effect upon con- and heterospecifics. Oecologia 180:161–167.
- Godinho DP, Janssen A, Li D, Cruz C & Magalhães S (2020) The distribution of herbivores between leaves matches their performance only in the absence of competitors. Ecology and Evolution 10:8405–8415.
- Gripenberg S, Mayhew PJ, Parnell M & Roslin T (2010) A meta-analysis of preference—performance relationships in phytophagous insects. Ecology Letters 13:383–393.
- Hashem MY, Ahmed AAI, Mohamed SM, Sewify GH & Khalil SH (2013) Oviposition deterrent effect of Spodoptera littoralis (Boisd.) Larval frass to adult females of two major noctuid insect pests. Archives of Phytopathology and Plant Protection 46:911–916.
- Hilker M & Fatouros NE (2015) Plant Responses to Insect Egg Deposition. Annual Review of Entomology 60:493–515.
- Honěk A (1993) Intraspecific Variation in Body Size and Fecundity in Insects: A General Relationship. Oikos 66:483–492.
- Hopper KR (1999) Risk-spreading and bet-hedging in insect population biology. Annual Review of Entomology 44:535–560.
- Jactel H, Koricheva J & Castagneyrol B (2019) Responses of forest insect pests to climate change: Not so simple. Current Opinion in insect science 35:103–108.
- Jones TH & Finch S (1987) The effect of a chemical deterrent, released from the frass of caterpillars of the garden pebble moth, on cabbage root fly oviposition. Entomologia Experimentalis et Applicata 45:283–288.
- Kaplan I & Denno RF (2007) Interspecific interactions in phytophagous insects revisited: A quantitative assessment of competition theory. Ecology Letters 10:977–994.
- Karban R (2011) The ecology and evolution of induced resistance against herbivores. Functional Ecology 25:339–347.
- Kaygin AT & Taşdeler C (2019) Cydalima perspectalis (Walker) (Lepidoptera: Crambidae, Spilomelinae)'in Türkiye'de Coğrafi Yayılışı, Yaşam Döngüsü Ve Zararı. Bartın Orman Fakültesi Dergisi 21:833–847.
- Kenis M, Nacambo S, Leuthardt FLG, Domenico F di & Haye T (2013) The box tree moth, Cydalima perspectalis, in Europe: Horticultural pest or environmental disaster? Aliens: The Invasive Species Bulletin:38–41.
- Leuthardt FLG & Baur B (2013) Oviposition preference and larval development of the invasive moth Cydalima perspectalis on five European box-tree varieties. Journal of Applied Entomology 137:437–444.
- Leuthardt FLG, Glauser G & Baur B (2013) Composition of alkaloids in different box tree varieties and their uptake by the box tree moth Cydalima perspectalis. Chemoecology 23:203–212.
- Marchand D & McNeil JN (2004) Avoidance of intraspecific competition via host modification in a grazing, fruit-eating insect. Animal Behaviour 67:397–402.
- Martinez G, Finozzi MV, Cantero G, Soler R, Dicke M & Gonzalez A (2017) Oviposition preference but not adult feeding preference matches with offspring performance in the bronze bug Thaumastocoris peregrinus.
- Entomologia Experimentalis Et Applicata 163:101–111.
- Matošević D, Matošević D, Croatian Forest Research Institute, Cvjetno naselje 41, HR-10450 Jastrebarsko,
- 405 Croatia, Bras A, INRA, UR633 Unité de Recherche de Zoologie Forestière, 2163 Avenue de la Pomme de
- Pin, CS 40001 ARDON45075 ORLEANS Cedex 2, France, Lacković N, Croatian Forest Research Institute,
- Cvjetno naselje 41, HR-10450 Jastrebarsko, Croatia, Pernek M & Croatian Forest Research Institute, Cvjetno


- naselje 41, HR-10450 Jastrebarsko, Croatia (2017) Spatial Distribution, Genetic Diversity and Food Choice of Box Tree Moth (Cydalima perspectalis) in Croatia. South-east European forestry 8.
- 410 Milanovic S, Lazarevic J, Popovic Z, Miletic Z, Kostic M, Radulovic Z, Karadzic D & Vuleta A (2014)
- Preference and performance of the larvae of Lymantria dispar (Lepidoptera: Lymantriidae) on three species
- of European oaks. European Journal of Entomology 111:371–378.
- Molnár BP, Tóth Z & Kárpáti Z (2017) Synthetic blend of larval frass volatiles repel oviposition in the invasive box tree moth, Cydalima perspectalis. Journal of Pest Science 90:873–885.
- Moreau J, Benrey B & Thiery D (2006) Assessing larval food quality for phytophagous insects: Are the facts as simple as they appear? Functional Ecology 20:592–600.
- 417 Moreira X, Abdala-Roberts L & Castagneyrol B (2018) Interactions between plant defence signalling pathways:
- Evidence from bioassays with insect herbivores and plant pathogens (M Rees, Ed. by). Journal of Ecology 106:2353–2364.
- Moura RR, Ribeiro PVA, Pereira BG, Quero A, Carvalho RL & Oliveira DC (2017) Food, shelter or
- competitors? Overlapping of life stages and host plant selection in a Neotropical stink bug species. Journal
- of Plant Interactions 12:560–566.
- 423 Nykänen H & Koricheva J (2004) Damage-induced changes in woody plants and their effects on insect
- herbivore performance: A meta-analysis. Oikos 104:247–268.
- Pfennig KS & Pfennig DW (2020) Dead Spadefoot Tadpoles Adaptively Modify Development in Future
- Generations: A Novel Form of Nongenetic Inheritance? Copeia 108:116.
- ⁴²⁷ Pinheiro J, Bates D, DebRoy S, Sarkar D & Team RC (2020) Nlme: Linear and Nonlinear Mixed Effects
 ⁴²⁸ Models.
- ⁴²⁹ Poelman EH, Broekgaarden C, Loon JJaV & Dicke M (2008) Early season herbivore differentially affects
- plant defence responses to subsequently colonizing herbivores and their abundance in the field. Molecular
- 431 Ecology 17:3352–3365.
- Putten WH van der, Bradford MA, Brinkman EP, Voorde TFJ van de & Veen GF (2016) Where, when and
- how plant-soil feedback matters in a changing world. Functional Ecology 30:1109-1121.
- Root RB & Kareiva PM (1984) The Search for Resources by Cabbage Butterflies (Pieris Rapae): Ecological
- 435 Consequences and Adaptive Significance of Markovian Movements in a Patchy Environment. Ecology
- 436 65:147-165.
- Sarmento RA, Lemos F, Bleeker PM, Schuurink RC, Pallini A, Oliveira MGA, Lima ER, Kant M, Sabelis
- 438 MW & Janssen A (2011) A herbivore that manipulates plant defence. Ecology Letters 14:229–236.
- Sato Y, Yano S, Takabayashi J & Ohsaki N (1999) Pieris rapae(Ledidoptera: Pieridae) females avoid
- oviposition on Rorippa indica plants infested by conspecific larvae. Applied Entomology and Zoology
- 441 34:333-337.
- 442 Shiojiri K & Takabayashi J (2003) Effects of specialist parasitoids on oviposition preference of phytophagous
- 443 insects: Encounter-dilution effects in a tritrophic interaction. Ecological Entomology 28:573–578.
- Simpson SJ & Simpson CL (1990) The Mechanisms of Nutritional Compensation by Phytophagous Insects.
- Insect-Plant Interactions (1990): Volume II. CRC Press,
- Stam JM, Kroes A, Li Y, Gols R, Loon JJA van, Poelman EH & Dicke M (2014) Plant Interactions with
- 447 Multiple Insect Herbivores: From Community to Genes. Annual Review of Plant Biology 65:689–713.
- Tammaru T & Haukioja E (1996) Capital Breeders and Income Breeders among Lepidoptera: Consequences
- to Population Dynamics. Oikos 77:561–564.
- Team RC (2018) R: A language and environment for statistical computing.

- Uesugi A (2015) The slow-growth high-mortality hypothesis: Direct experimental support in a leafmining fly. Ecological Entomology 40:221–228.
- Visakorpi K, Riutta T, Martínez-Bauer AE, Salminen J-P & Gripenberg S (2019) Insect community structure covaries with host plant chemistry but is not affected by prior herbivory. Ecology 100:e02739.
- Wan H, Haye T, Kenis M, Nacambo S, Xu H, Zhang F & Li H (2014) Biology and natural enemies of Cydalima perspectalis in Asia: Is there biological control potential in Europe? Journal of Applied Entomology 138:715–722.
- Weeraddana CDS & Evenden ML (2019) Herbivore-induced plants do not affect oviposition but do affect fitness of subsequent herbivores on canola. Entomologia Experimentalis et Applicata 167:341–349.
- Wise MJ & Weinberg AM (2002) Prior flea beetle herbivory affects oviposition preference and larval performance of a potato beetle on their shared host plant. Ecological Entomology 27:115–122.
- Wratten SD, Edwards PJ & Winder L (1988) Insect herbivory in relation to dynamic changes in host plant quality. Biological Journal of the Linnean Society 35:339–350.
- ⁴⁶⁴ Zuur AF (2009) Mixed effects models and extensions in ecology with R. Springer, New York; London.

465 2 Appendix

$_{\scriptscriptstyle{56}}$ 2.1 Supplementary material

Figure S1 - Semivariogram of the number of egg clutches as a function of distance among box trees.

468

Table 3: Repartition of egg clutches, larvae and chrysalis across box trees with or without prior herbivory. Numbers correspond to mean $(\pm sd)$ and total number of egg clutches, larvae or chrysalis (n).

Response variable	Control	Herbivory treatment
Egg clutches	6.1 (4.87), n = 372	7.43 (5.3), n = 446
Larvae	4.84 (0.61), n = 295	4.97 (0.18), n = 298
Chrysalis	6.8 (5.78), n = 415	1.85 (1.79), n = 111

59 2.2 Raw data

Table S2 - Raw data used in the present manuscript: x and y are the position of each box tree in the green house; Treatment is the prior herbivory treatment; Clutch.number is the total number of egg clutches counted on a given box tree; N.L3 is the number of retrieved L3 larvae, L3.mean is the mean weight of a L3 larvae (g); N.chrysalids is the number of retrieved chrysalis; Chrysalid.mean is the mean weight of a chrysalis. Herbivory is the % of leaves consumed by box tree moth larvae, which was either measured or estimated where raw data was missing (Herbivory_source).

X	у	Treatment	Clutch.number	N.L3	L3.mean	N.chrysalids	Chrysalid.mean	Herbivory	Herbivory_
1	1	Attacked	22	5	0.0221740	0	NaN	7.3	Estimated
2	1	Attacked	8	5	0.0183980	0	NaN	8.8	Estimated
3	1	Attacked	12	5	0.0187360	1	0.1020100	8.8	Imputed
5	1	Attacked	6	5	0.0146140	0	NaN	16.4	Estimated
6	1	Attacked	10	5	0.0165620	2	0.1101750	10.5	Estimated
8	1	Attacked	20	5	0.0110140	1	0.0961900	8.7	Estimated
9	1	Attacked	4	5	0.0132300	1	0.1438500	7.4	Estimated
10	1	Attacked	25	5	0.0057520	1	0.0891900	11.7	Estimated
1	2	Attacked	12	5	0.0226500	2	0.2062350	6.2	Estimated
2	2	Attacked	10	5	0.0162200	1	0.0524100	0.0	Imputed
3	2	Attacked	9	5	0.0200760	0	NaN	4.2	Estimated
4	2	Attacked	11	5	0.0211200	5	0.1465000	4.8	Estimated
7	2	Attacked	5	5	0.0112560	0	NaN	9.0	Estimated
9	2	Attacked	4	5	0.0161760	1	0.1338800	15.1	Estimated
10	2	Attacked	4	5	0.0173680	1	0.1706800	9.4	Estimated
$\frac{1}{4}$	3	Attacked	14	5	0.0159000	4	0.1686525	8.6	Imputed
4	3	Attacked	5	5	0.0159420	2	0.1380100	0.0	Imputed
5	3	Attacked	6	5	0.0121100	1	0.1319100	8.6	Imputed
11	3	Attacked Attacked	11 2	5	0.0101960	$\frac{1}{2}$	$0.0836300 \\ 0.1224050$	7.2	Estimated Estimated
$\frac{1}{3}$	4	Attacked	11	5	$\begin{array}{c} 0.0111600 \\ 0.0157420 \end{array}$		0.1224050 NaN	11.4 8.6	Imputed
$\frac{3}{4}$	4	Attacked	11	5 5	0.0157420 0.0158140	0 4	0.1557575	6.8	Estimated
$\frac{4}{6}$	4	Attacked	2	5	0.0138140 0.0238660	2	0.1337373	11.7	Estimated
$\frac{6}{8}$	4	Attacked	5	5	0.0258000 0.0187260	2	0.1728000	10.0	Estimated
11	4	Attacked	8	5	0.0187200	0	0.1327030 NaN	10.0	Estimated
$\frac{11}{5}$	5	Attacked	1	5	0.0101900	1	0.1914500	2.7	Estimated
$\frac{3}{7}$	5	Attacked	1	5	0.0201320	3	0.1752800	8.9	Estimated
8	5	Attacked	2	5	0.0176160	1	0.0853400	9.1	Estimated
10	5	Attacked	10	4	0.0171925	1	0.1453700	9.0	Estimated
$\frac{10}{1}$	6	Attacked	4	5	0.0158160	2	0.1774000	2.2	Estimated
$\frac{1}{4}$	6	Attacked	6	5	0.0161500	0	NaN	6.8	Estimated
6	6	Attacked	2	4	0.0148600	0	NaN	10.9	Estimated
8	6	Attacked	2	5	0.0273120	2	0.0698850	17.0	Estimated
2	7	Attacked	20	5	0.0104900	4	0.1364600	3.6	Estimated
4	7	Attacked	7	5	0.0275520	5	0.1299800	12.5	Estimated
6	7	Attacked	6	5	0.0143660	2	0.1127850	9.7	Estimated
7	7	Attacked	2	5	0.0145880	0	NaN	17.2	Estimated
11	7	Attacked	5	5	0.0129260	3	0.1438500	9.5	Estimated
1	8	Attacked	8	5	0.0161140	0	NaN	9.5	Estimated
5	8	Attacked	4	5	0.0336620	4	0.1512050	0.0	Imputed
6	8	Attacked	13	5	0.0136940	1	0.0916800	5.6	Imputed
7	8	Attacked	7	5	0.0119960	0	NaN	7.6	Estimated
11	8	Attacked	16	5	0.0082180	5	0.1013240	5.6	Imputed
3	9	Attacked	2	5	0.0124840	2	0.1309350	0.0	Imputed
8	9	Attacked	2	5	0.0140740	1	0.0996800	5.6	Imputed
9	9	Attacked	9	5	0.0147260	3	0.1120367	15.1	Estimated
10	9	Attacked	10	5	0.0121140	3	0.1454233	7.9	Estimated
$\frac{2}{2}$	10	Attacked	6	5	0.0183400	3	0.1203367	0.0	Imputed
3	10	Attacked	9	5	0.0159820	3 2	0.1078233	6.8	Estimated
$\frac{5}{6}$	10	Attacked Attacked	5	5 5	$\begin{array}{c} 0.0291080 \\ 0.0185740 \end{array}$	0	0.1450000 NaN	10.5 8.6	Estimated Estimated
$\frac{6}{7}$	10	Attacked	6	5 5	0.0185740 0.0177680	0	NaN	12.4	Estimated
8	10	Attacked	3	5	0.0177080	1	0.2025200	9.4	Estimated
$\frac{\circ}{9}$	10	Attacked	3	5	10,0149200	2	0.2025200 0.1319950	8.2	Estimated
$\frac{9}{10}$	10	Attacked	7	5	0.0157780	$\frac{2}{2}$	0.0985400	16.2	Estimated
$\frac{10}{1}$	11	Attacked	2	5	0.0137780	5	0.0985400	8.6	Imputed
$\frac{1}{3}$	11	Attacked	7	5	0.0101340	5	0.1175720	8.5	Estimated
	11	Att		5	0.0150000	3	0.1555500	5.0	D 1

76 2.3 R codes used to generate this report

```
library(tidyverse)
library(knitr)
library(kableExtra)
library(nlme)
library(car)
library(here)
wd = here()
my.ggplot <- function(){</pre>
  theme_bw() + theme(legend.key = element_blank())
knitr::opts_chunk$set(echo= F, warning= F, message = F, results = "hide",
                      fig.width=4, fig.height=4, dpi= 100, fig.pos = "H",
                      fig.path = paste0(wd, '/Figures/'),
                      output.dir = paste0(wd, '/Outputs/'))
d = read.csv(paste0(wd, '/Data/Castagneyrol_cydalima_data.csv'), header = T)
str(d)
  d %>% mutate(L3.mean = Weight.L3 / N.L3) %>%
  mutate(Treatment = factor(Treatment, levels = c("Non attacked", "Attacked")))
knitr::include_graphics(paste0(wd, '/Figures/Figure 1.png'))
d %>%
  ggplot(aes(x, y, shape = Treatment, fill = log1p(Clutch.number))) +
  # geom_rect(aes(xmin = 1.5, ymin = 1.5, xmax = 10.5, ymax = 10.5), fill = 'grey90') +
  geom point(size = 6) +
  scale_shape_manual(values = c(21, 24)) +
  my.ggplot() +
  labs(x = "", y = "") +
  scale_fill_gradientn(colours = c('white', 'grey', 'black'),
                       values = c(0,0.6,1), name = 'No. egg clutches\n(log transformed)') +
  theme(axis.ticks.x = element_blank(),
        axis.text.x = element_blank(),
        axis.ticks.y = element_blank(),
        axis.text.y = element_blank())
d.center = droplevels(d[dx > 1 & dx < 11 & dy > 1 & dy < 11,])
m1a = gls(log1p(Clutch.number) ~ Treatment,
          correlation = corExp(form = ~x + y, nugget = TRUE),
          data = d, na.action = "na.omit")
m1b = gls(log1p(Clutch.number) ~ Treatment,
          correlation = corGaus(form = ~x + y, nugget = TRUE),
          data = d, na.action = "na.omit")
m1c = gls(log1p(Clutch.number) ~ Treatment,
          correlation = corSpher(form = ~x + y, nugget = TRUE),
          data = d, na.action = "na.omit")
```

```
m1d = gls(log1p(Clutch.number) ~ Treatment,
          correlation = corLin(form = ~x + y, nugget = TRUE),
          data = d, na.action = "na.omit")
m1e = gls(log1p(Clutch.number) ~ Treatment,
          correlation = corRatio(form = ~x + y, nugget = TRUE),
          data = d, na.action = "na.omit")
11 = list(m1a, m1b, m1c, m1d, m1e)
12 = list(
m1a_2 = update(m1a, ~ Herbivory,
               data = d[d$Herbivory > 0 &
                          d$Herbivory_source == "Estimated",]),
m1b_2 = update(m1b, ~ Herbivory,
               data = d[d$Herbivory > 0 &
                          d$Herbivory_source == "Estimated",]),
m1c_2 = update(m1c, ~ Herbivory,
               data = d[d$Herbivory > 0 &
                          d$Herbivory_source == "Estimated",]),
m1d_2 = update(m1d, ~ Herbivory,
               data = d[d$Herbivory > 0 &
                          d$Herbivory_source == "Estimated",]),
m1e_2 = update(m1e, ~ Herbivory,
               data = d[d$Herbivory > 0 &
                          d$Herbivory_source == "Estimated",])
)
AIC_1 = round(unlist(lapply(l1, function(x){AIC(x)})),1)
delta_1 = AIC_1 - min(AIC_1)
AIC_2 = round(unlist(lapply(12, function(x){AIC(x)})),1)
delta_2 = AIC_2 - min(AIC_2)
Table_AIC = data.frame(AIC_1, delta_1, AIC_2, delta_2)
plot.resid = function(m){
  df = data.frame(f = fitted(m), r = residuals(m))
  A = df \%
    ggplot(aes(f, r)) + my.ggplot() + geom_point() +
    geom_smooth(method = "lm", se = F) + geom_hline(yintercept = 0)
  B = df \%
    ggplot(aes(r)) + my.ggplot() + geom_histogram()
  cowplot::plot_grid(A,B)
}
m_larvae = lm(log(L3.mean) ~ Clutch.number * Treatment , d)
m_larvae2 = lm(log(L3.mean) ~ Clutch.number * Herbivory,
               d[d$Herbivory > 0 &
                   d$Herbivory_source == "Estimated",])
# plot.resid(m_larvae2)
d =
 d %>%
```

```
mutate(Chrysalid.mean = Weight.chrysalids / N.weighted.chysalids)
m_chrys = lm(Chrysalid.mean ~ Clutch.number * Treatment , d)
m_chrys2 = lm(Chrysalid.mean ~ Clutch.number * Herbivory,
              d[d$Herbivory > 0 &
                  d$Herbivory_source == "Estimated",])
#plot(m chrys2)
Anova(glm(Clutch.01 ~ Treatment, d %>% mutate(Clutch.01 = ifelse(Clutch.number == 0, 0, 1)), family =
# lapply(l1, function(x) anova(x))
# lapply(l2, function(x) anova(x))
Table_AIC %>%
  remove_rownames() %>%
  mutate(Model = paste('Model', 1:5),
         'Correlation structure' = c('Exponential', 'Gaussian', 'Spherical',
                                     'Linear', 'Rational quadratic')) %>%
  select(Model, `Correlation structure`, everything()) %>%
  kable(col.names = c("Model", "Correlation structure", "AIC", "$\\Delta$", "AIC", "$\\Delta$"),
        caption = "Summary of AIC of GLS models testing the effect of prior
        herbivory on the number of egg clutches with different spatial correlation
        structures, for the full dataset and the data set excluding plants from the
        control treatment.") %>%
  kableExtra::kable styling() %>%
  add header above(c(" " = 2, "Full model" = 2, "Herbivory treatment" = 2))
anova(m1e)
Fig_3A =
  d %>%
  ggplot(aes(Treatment, Clutch.number)) +
  my.ggplot() +
  geom_point(position = position_jitter(0.1), colour = "grey80") +
  stat_summary(size = 0.6) +
  labs(x = "Prior herbivory", y = "Number of egg clutches") +
  annotate(geom = 'text', x = 1:2, y = 26, label = paste("n =", c(61, 60)))
res_larvae = anova(m_larvae, test = "m")
n = expand.grid(Treatment = levels(d$Treatment), Clutch.number = seq(0, 25))
p = predict(update(m_larvae, ~.- Clutch.number:Treatment), newdata = n)
n\$Fit = 1000 * exp(p)
Fig 3B =
  d %>%
  ggplot(aes(Clutch.number, 1000 * L3.mean, colour = Treatment)) +
  my.ggplot() +
  geom_point(size = 2) +
  scale_colour_manual(values = c("grey25", "grey70")) +
  labs(x = "Number of egg clutches",
       y = expression("Mean larval weight" %+-% "SE (mg)")) +
  geom_line(data = n, aes(Clutch.number, Fit), size = 1.5) +
  theme(legend.position = c(0.8, 0.85))
r = with(d, cor.test(Chrysalid.mean, L3.mean))
```

```
r_corr = round(r$estimate,2)
r_tval = round(r$statistic,2)
r_pval = ifelse(round(r$p.value,3) < 0.001, "< 0.001", round(r$p.value,3))
res_chrys = anova(m_chrys)
n = expand.grid(Treatment = levels(d$Treatment), Clutch.number = seq(0, 25))
p = predict(update(m_chrys, ~.- Clutch.number:Treatment), newdata = n)
n$Fit = 1000 * p
Fig 3C =
  d %>%
  ggplot(aes(Clutch.number, 1000 * Chrysalid.mean, colour = Treatment)) +
  my.ggplot() +
  geom point(size = 2) +
  scale_colour_manual(values = c("grey25", "grey70")) +
  labs(x = "Number of egg clutches",
       y = expression("Mean chrysalis weight" %+-% "SE (mg)")) +
  geom_line(data = n, aes(Clutch.number, Fit), size = 1.5) +
  theme(legend.position = c(0.8, 0.85))
cowplot::plot_grid(
  Fig_3A + labs(title = 'Eggs'),
  Fig_3B + labs(title = 'Larvae'),
  Fig_3C + labs(title = 'Chrysalis'),
  ncol = 3,
  labels = c('A', 'B', 'C')
f = function(model, response, data_set){
  ANOVA = anova(model, test = "m")
  Fval = function(ANOVA) {round(ANOVA[,4], 2)}
  Pval = function(ANOVA) {ifelse(ANOVA[,5] < 0.001, '< 0.001', round(ANOVA[,5], 3))}
  if(Pval(ANOVA)[3] < 0.05){</pre>
    b = round(summary(model)$coefficients[-1,1], 3)
    b_se = round(summary(model)$coefficients[-1,2], 3)
    Estimate = paste(b, ' (', b_se, ')', sep = '')
    }else{
    form = formula(paste("~",
                         paste(attr(model$terms, "variables")[[3]],
                               attr(model$terms, "variables")[[4]],
                               sep ="+")))
    b = round(summary(update(model, formula. = form))$coefficients[-1,1], 3)
    b_se = round(summary(update(model, formula. = form))$coefficients[-1,2], 3)
    Estimate = c(paste(b, ' (', b_se, ')', sep = ''), '')
  return(df =
           data.frame(
             Data = c(data_set, "", ""),
             Response = c(response, '', ''),
             Predictor = c("Number of egg clutches", "Herbivory", "Eggs x Herbivory"),
             df = paste(ANOVA\$Df[1:3], rep(ANOVA\$Df[4], 3), sep = ", "),
```

```
`F-value` = Fval(ANOVA)[-4],
             `P-value` = Pval(ANOVA)[-4],
             R2 = c(round(summary(model)$adj.r.squared, 2), "", ""),
             Estimate = Estimate))
}
rbind(
  f(m_larvae, response = "Larvae", data_set = "Full"),
  f(m_chrys, response = "Chrysalis", data_set = ""),
  f(m_larvae2, response = "Larvae", data_set = "Herbivory subset"),
  f(m_chrys2, response = "Chrysalis", data_set = "")) %>%
  kable(caption = "Summary of models testing the effect of prior herbivory
        (with the full data set or the data set restricted to the herbivory
        treatment) and initial egg clutch density on mean BTM larvae and
        chrysalis weight",
        col.names = c("Data set", "Response", "Predictor", "df", "F-value",
                      "P-value", "R2", "Estimate (SE)"),
        escape = T, digit = 2) %>%
  kable_styling() %>%
  collapse_rows(columns = 1:2, valign = "top")
m0 = gls(log1p(Clutch.number) ~ x + y, data = d, na.action = "na.omit")
variog0 <- Variogram(m0, form = ~x + y, resType = "pearson", nugget = T)</pre>
variog0 %>%
  ggplot(aes(0.4*dist, variog)) +
  my.ggplot() +
  geom_point(size = 3) +
  geom_smooth(se = F) +
 labs(x = "Distance (m)", y = "Semivariogram") +
  xlim(0, 4)
d %>%
  select(Treatment, Clutch.number, N.L3, N.chysalids) %>%
  gather(Resp, Val, 2:4) %>%
  group_by(Treatment, Resp) %>%
  summarise(N = sum(Val), M = round(mean(Val),2), SD = round(sd(Val),2)) %>%
  mutate(Val = paste(M, '(', SD, ')', ', n = ', N, sep = '')) %>%
  select(- N, - M, - SD) %>%
  mutate(Resp = factor(Resp, levels = c('Clutch.number', 'N.L3', 'N.chysalids'),
                       labels = c('Egg clutches', 'Larvae', 'Chrysalis'))) %>%
  spread(Treatment, Val) %>%
  kable(col.names = c('Response variable', 'Control', 'Herbivory treatment'),
        caption = "Repartition of egg clutches, larvae and chrysalis across box trees with or without p
  kable_styling()
d %>%
  rename(N.chrysalids = N.chysalids) %>%
  select(x, y, Treatment, Clutch.number, N.L3, L3.mean, N.chrysalids, Chrysalid.mean, Herbivory, Herbiv
  kable() %>% kable_styling()
```

3 Responses to reviewers' comments

478 3.1 First round

Dear Dr Magalhães,

We would like to thank you for your constructive and helpful comments. We revised the original manuscript accordingly. Significant changes in the manuscript are highlighted in bold characters. You may find our responses to your comments and to the two reviewers below, highlighted with bold characters. Wherever only minor changes were requested, we simply indicated "[R] — Done", otherwise, we justified what we changed, or not, in the manuscript.

We hope that the revised version of our manuscript has addressed every concerns and will be suitable for recommendation.

Best regards,

Bastien Castagneyrol, on behalf of co-authors.

Dear authors,

First of all, I deeply apologize for having taken so long to comment on this manuscript. I hope that the quality of the reviews compensates for this long wait... I found this article interesting and straightforward. I particularly appreciated the scale and nature of the experiment, being an intermediate between a lab and a field experiment. The thorough and insightful comments of the two reviewers also point in the same direction: they both enjoyed the manuscript very much. They do, however, suggest a number of changes that I think should be addressed in the revised version of the manuscript. In particular, they both suggest including more variables in your analysis, which they (and I) believe you can do based on the data you already have. If that is the case, I think it is a cost-effective means to make your article more complete.

[Response] — We followed recommendations made by the two reviewers and yourself and provide below detailed answers wherever necessary

Below I place my own comments, and I would be happy to look at a revised version of this paper soon. I only have two relatively major and a lot of minor comments.

1. I agree with one of the reviewers in that the introduction could be a bit further streamlined. If I understand correctly, the first paragraph is about preference-performance correlations, the second about preference, and the third a bit about performance and then another bit about preference-performance. You also go a bit back and forth concerning the effects of conspecifics and that of heterospecifics. I don't want to impose my view on the introduction of a paper that is not mine, but I would like to feel that, whatever the structure chosen, it is apparent to the reader. In any case, I would exchange the order of second and third paragraph, first differences in performance and then oviposition choice, because the latter does not make sense without the former and the reverse is not true.

[R] — We changed the order of the two paragraphs as suggested and modified several sentences to improve the flow. Please note that we did not highlight every single change in the manuscript, only the most important additions.

2. I think the reader needs some information on how larval weight correlates (or may correlate) with fitness in this (or related) species. This would allow discriminating among the two main possible interpretations for this data set, namely (a) they don't discriminate because the consequences for fitness are not strong enough or (b) they don't discriminate because they don't have access to reliable cues.

[R] — We now discuss this question:

¹we have removed the bold characters after the first round of review round to make the article easier to read.

Our findings may have profound consequences on BTM population dynamics. In most of Lepidoptera species, all the eggs are present in the ovarioles as the adult molt and larva body mass is proportional to fecundity (i.e., 'capital breeders', (Honěk, 1993; Awmack & Leather, 2002)). As a consequence, host plant quality during larval growth and development is the key determinant of individuals fitness (Awmack & Leather, 2002). Although the relationship between plant quality and herbivore fitness may vary among species (Moreau et al., 2006; Awmack & Leather, 2002; Colasurdo et al., 2009), we speculate that herbivory by the first BTM larva generation reduces the fitness of the second BTM generation, and that this effect may be further strengthened where high population density increase intra-specific cross-generational competition (Tammaru & Haukioja, 1996).

- 3. Minor comments:
- 4. I would remove "multivoltine" from the title. The cross-generational already gives the idea....
- 532 [R] Done

519

520

521

523

525

527

528

529

530

533

539

541

542

545

546

547

549

550

- 5. Line 19: replace "proposed" by "offered".
- 534 [R] Done
 - 6. Line 23: unclear if this number of eggs is from the previous or the current brood.
- $_{536}$ [R] Changed
- 7. Line 37: replace "their" by "its".
- 538 [R] Done
 - 8. Line 54: "deters" instead of "deter".
- 540 [R] Done
 - 9. Line 60: incidentally, previous herbivory can also lead to increased performance in subsequent infestations (e.g., Sarmento et al 2011 Ecol Lett, Godinho et al 2016 Oecologia). This is just a side comment, you don't need to include this in the paragraph...
- ⁴⁴ [R] Thank you for these references.
 - 10. Lines 94-100. This paragraph is a bit confusing. First, I suggest placing the sentences on the biological details of the system (lines 96-98) elsewhere, maybe in the very beginning of the Material and Methods section. Second, it is not very clear to me when were the moths placed on the experimental trees. Is "the overwintering generation" the same as the "caterpillars collected in the wild"? If so, please be clear about this. Also, I guess that by "their" adults you mean "the adults emerging from those larvae"? (also commented by one of the reviewers).
- [R] We restructured this paragraph, adding a new subsection ("natural history") and clarifying the description of first and second BTM generations (section "biological material").
- 11. Line 104: I would state "plants" instead of "plant individuals".
- ₅₅₄ [R] Done
- 12. Line 111: you seem to use "chrysalis" and "chrysalids" interchangeably. If these terms refer to the same thing (I guess they do...) please choose one.
- 557 [R] Done
- 13. Results: Did you count the number of egg clutches per plant with at least one clutch or per experimental plant in general? That is, could there be a difference in the number of plants with no egg clutches among treatments?
- [R] We screened every single plant and counted the number of egg clutches on all plants.
 We added the information on the presence/absence of eggs to the 'results' section.

- 14. I would not discard the data concerning chrysalids so easily. It is indeed a pity that you cannot discriminate whether more larvae died in one treatment vs the other or if there was active migration, as you state. But in any case, this means that more individuals of this second 'generation' are eventually found on the previously clean plants, and this is an interesting result per se. I would at least discuss this a bit further in the Discussion.
- [R] We do agree this is very unfortunate we have not been satisfyingly efficient in preventing larvae from moving among plants. Although we have been reluctant to present this data in first instance, we now reinjected them back into the manuscript, with words of caution in the discussion. Changes can be seen throughout the text in the "methods / analyses", "results" and "discussion" sections.
- 15. Lines 180-183: Maybe rephrase as to use a more fluid text style. Ex: One possibility for female BTM not choosing among plants may be that...
- [R] Done. Indeed, it reads smoother.
- the moths of their mothers' choice.

 16. Lines 182-190: I think the main argument against this hypothesis comes from your own data: larval weight differs among treatments. Assuming this is correlated with fitness, there are consequences for the moths of their mothers' choice.
- ₅₇₉ [R] Yes! thank you for mentioning this. We have added this obvious argument.
- 17. Line 193: I don't understand why laying 200 eggs corresponds necessarily to a bet-hedging strategy.

 Maybe rephrase?
- 582 [R] —Done.

- 18. Lines 203-204: This paragraph is about the possible absence of cues, not about the possible absence of fitness consequences, so this sentence is best placed in the previous paragraph.
- [R] This paragraph, starting with "Prior box tree defoliation by the spring generation of BTM larvae reduced the performance of the next generation" is about herbivore growth. We dealt with possible absence of cues in the previous paragraph.
 - 19. Line 206: I would remove "trait-mediated" from this sentence because I am not convinced that the dichotomy between the two explanations rests on this. Instead, I think that the two possible explanations are past vs current competition. Also is there a possibility to obtain the density of larvae in the two treatments? That is, the number of larvae per intact lead?
- [R] We removed "trait-mediated". Although we acknowledge that this would have been a powerful way to further address competition, we did not precisely count the number of larvae per plant or per shoot, mostly to avoid disturbance.
- 20. Lines 213-215: does this mean that larval weight has no effect on fitness / population growth? Please clarify.

[R] — Done:

the BTM is thought to have broad tolerance to variability in host traits, as suggested by previous observations that BTM larva growth rate did not differ significantly among box-tree varieties (Leuthardt et al., 2013). It is unknown whether herbivory induced changes in host traits are of the same order of magnitude as trait variability among varieties. However, assuming variability among varieties is greater, this result goes against the view that reduced performance of larvae of the summer generation resulted from box tree response to prior herbivory

21. Line 219: although I agree with one of the reviewers that the possibility that food shortage may lead to cannibalism is fascinating, I would remove this sentence unless you have hard data on which to base this statement. In particular, if this were to be true, you would need to explain (a) why you still find the same overall number of larvae alive between the two treatments and (b) whether it is expected that

this cannibalism does not compensate for food shortage in terms of larval weight. Overall, I think that this observation opens too many doors, so either it is solid or it better be left out of the Discussion.

[R] — We deleted the mention to cannibalism, because this is true we do not have hard data ta back it up.

- 22. Lines 223-225: These sentences fit best in the next paragraph.
- [R] We completely modified the corresponding paragraph to account for the several comments on the results and discussion.
 - 23. Line 245: replace "in particular to plants" by "in particular to those".
- 17 [R] Done.

- 24. Lines 359-361: please check formatting here.
- 619 [R] Done.

Reviewed by Inês Fragata, 2020-09-08 23:55

In this manuscript the authors test whether female choice for oviposition impacts intraspecific competition across generations. In order to do this, the authors compare oviposition and larvae weight of box tree moths on box trees previously exposed to conspecific herbivores or un-attacked controls. They observe that previous herbivory does not affect where female choose to lay eggs, but it affects larvae weight. This suggests that there is a mismatch between female choice and larvae performance, which is against the preference-performance hypothesis. The question that the authors are trying to answer is very interesting and can help us to understand better how species avoid intra and interspecific competition, even across different generations. Unfortunately, the methodological problems with the chrysalids made it more difficult to fully explore the potential of the question and experimental design. I have some questions/suggestions that may allow to explore better the data set that you have here, and go a bit deeper into your questions.

[R] — Thank you for comments.

Questions/suggestions:

- If I understood correctly, you have the percentage of damage per plant that was done by the first infesting larvae. You could use this as a covariate in your choice experiment to see if damage was a better way of predicting female choice, in addition to your spatial correlation structure. I think it could also be interesting to use the initial percentage of herbivory on the analysis of the larvae weight.
- [R] We have now added this information and re-ran models accordingly. We therefore made appropriate changes in the *methods* | *Experimental design* and *Results* sections (but did not list all changes here). The reason we did not consider herbivory data in first instance was that potted plants were initially used in a completely separate experiment, for another purpose. We could not match every pot tags between the two projects, leading to missing data. However, because we agree that testing BTM response to actual herbivory rather than to a qualitative attacked/non-attacked factor, we decided to bring original data back into the main text.
 - Besides the effect on choice of the egg laying females, herbivory could also affect plant quality and manifest in other life stages. In addition to looking at the weight of the caterpillars, since you have a measure of egg to caterpillar mortality, it would be interesting to see if egg to larvae mortality was higher in attacked or control trees.
- [R] We agree that this would have been a great addition to the paper. However, we only counted and measured a subset of larvae and chrysalis (up to five), and therefore are not able to follow this advice

• Regarding the data on the chrysalids, why do you assume that it was the number of chrysalids that was wrong, and not the number of eggs or larvae (i.e. you could miss some larvae/eggs)? Does this excess occur more in non-damaged trees? Also, does the number of extra chrysalids match the number of missing caterpillars from nearby trees/attacked trees? Because it would be interesting to see if there was more dispersal for pre-attacked trees than for control trees. It is quite striking to have half your controls and 1 one attacked plant where this happens, so I wonder if there is something biologically interesting underlying this pattern. However, if you are planning to not analyse the data or speculate on it, I think it would be better to remove the chrysalid part, as the usefulness of the information is unclear.

[R] — Please see our response to Dr Magalhães, above*

- L148 Did you release the moths in this region of the plots (between the 1 and 3)? because that could be a reason for the spatial structure to occur? alternatively did it had a source of light/heat or something alike? because it is rather strange that they clustered around that region.
- [R] We released moths at the four corners of the experiment to reduce the risk of spatial aggregation (information now added to the manuscript). We have no data to support any explanation regarding the aggregation of eggs in one particular part of the experiment. This could actually be because of light (the part of the greenhouse received more sunlight in the afternoon) or because of fresher air arriving from the doors.
 - L152 Why did you use these different spatial correlation structures? and what does it mean to have these different spatial correlation structures? This is important to explain what are you accounting for in the analysis.

[R] — We simply followed textbook recommendations when there is no *a priori* hypothesis on the shape of potential patterns.

we had no particular hypothesis regarding the shape of the spatial correlation structure. We therefore ran separate models with different spatial correlation structures (namely, exponential, Gaussian, spherical, linear and rational quadratic), and compared them based on their AIC (Zuur. 2009)

• L163:166 – From table 2 you have 3 models (and not two) that have similar performance, and they are not significantly better or worse compared to the quadratic one, as you need at least a difference of 2 in the AIC, using the rule of thumb from Burnham & Anderson 2004

[R] — Thank you for noticing, we corrected the text.

• In the first section of the discussion, I think two hypotheses that you don't mention are that 1) the moths may need cues from other life stages, such as female conspecific oviposition or the chrysalids; 2) you let too much time pass and the cues related with the conspecific were not present anymore.

[R] — Thank you for these suggestions. We adapted the manuscript accordingly. As for (1):

or that female BTM were indifferent to them at the time we conducted the experiment. [...] It remains however possible that BTM adults use other cues to select their hosts such as the presence of conspecific eggs, larvae or chrysalis.

as for (2):

it is also possible that induced defense reactions were delayed in box trees, or that they were already relaxed when we released BTM moths three weeks after the herbivory treatment (Karban, 2011), which remains to be evaluated.

Text comments

• L17:20 – This sentence is a bit weird, suggestion: "We tested this hypothesis in a choice experiment with box tree moth females (*Cydalima perspectalis* Walker, Lepidoptera: Crambidae). These females

were exposed to box trees (*Buxus sempervirens* L., Buxaceae) previously defoliated by conspecific larvae earlier in the season."

700 [R] — Changed.

• L30 – remove the thus from "Insects may thus reduce"

702 [R] — Done.

698

699

701

703

705

706

707

709

711

713

715

718

719

720

723

724

726

727

728

730

731

734

735

• L32 – I think you mean assumes instead of supposes

$_{704}$ [R] — Changed.

• L38 – I don't understand why you say "in particular" here, are those the only traits that will be important for females to detect that correlate with larval performance? for example presence of predators and competitors could be other factors that females may detect before ovipositing.

$_{708}$ [R] — We replaced in particular by for instance.

• L41 – "time-lagged consequences on the preference"

$_{710}$ [R] — Done

• L49 – I would substitute a mix of, with both

712 [R] — Done

• L60 – I would replace the "later herbivores" by later arriving/appearing herbivores

714 [R] — Done

• L61 – I would replace the "late coming herbivores" by later arriving/appearing herbivores

$_{716}$ [R] — We preferred keeping this sentence unchanged to avoid repetition with the previous one.

• L71:73 – This last sentence is not very clear. Maybe: "Thus, in order to quantify the effect of prior herbivory on subsequent herbivore performance, we need to assess how it affects both female choice and progeny performance in attacked and non-attacked hosts."

721 [R] — Done

• L99:100 – "Their adults..." whose adults? you mean that the larvae were used on the preference test and the adult stage on the performance test? maybe something like: "The adult stage of these larvae were used in..."

725 [R] — we clarified this point:

We initiated BTM larvae rearing with caterpillars collected in the wild in early spring 2019, corresponding to those that had overwintered**. We reared them at room temperature in 4320 cm³ plastic boxes, and fed them ad libitum_, with branches collected on box trees around the laboratory. We used the next generation larvae to induce herbivory on box tree plants (experimental treatment, see below) and the subsequent adults for the oviposition experiment.

• L112 – feed on missing a space

733 [R] — Done

• L117 –Any specific reason for waiting the three weeks? is it the amount of time that they would take to lay eggs again?

[R] — We have added this information to the revised version:

In addition, at this time, plants in the herbivory treatment had been cleared of caterpillars for three weeks (corresponding to the duration of the chrysalis stage) during which they were watered every two to three days from above.

• L132 – Why did you wait 24h for weighting them? and not measured them right away? Also was there a high variance in larvae weight?

[R] — We have added this information to the revised version:

We kept them in Petri dishes without food for 24h to make larvae empty their gut and weighted them to the closest 10 μ g.

We present variability in larval weight in the 'Results' section:

The mean weight of BTM larvae varied from 6 to 54 mg (mean \pm SD: 20 \pm 9 mg).

• L140 – 61 instead of 60 (or otherwise you have the number wrong above)

[R] — Changed

737

738

739

740

741

742

743

744

745

746

747

749 750

751

752

754 755

756

757

758

759

760

761

762

764

765

766

767

769

770

773

774

776

777

778

• L140:141 – maybe "and only 1 previously attacked plant" instead of "(and only in 1 previously attacked

[R] — We rephrased this sentence.

• L146 – x and y coordinates of what?

[R] — Changed 753

We ran a generalized least square model (GLS) testing the effect of potted tree location in the experimental design (through their x and y coordinates, Figure 2) on the number of clutches per plant (log-transformed) from which we explored the associated variogram using the functions gls and Variogram in the nlme library.

• L166 – I would not call them competing models. Additionally, you should add whether they show similar results, since you cannot say which one is best.

[R] — x and y coordinates referred to the design of the experiment (Figure 2). We referred to 'competing models' after Burnham & Anderson textbook (2002). We now state that the results would have been the same regardless of the spatial correlation structure. However, because this information is not essential, we preferred not reporting the detailed model outputs. Interested or skeptical readers will have access to raw data and codes and will be able to simple uncomment the corresponding lines of codes.

- Fig1 I would put this figure as supplementary material.
- [R] We agree that this figure is not essential, but on the other hand we value this kind of illustration showing what the experiment looked like, because the reality is sometimes substantially different from what a 'Methods' section give to imagine.
 - Fig 2- I would like to know what are the x and y axis? meters? random unities?

[R] — Pots were installed 40 cm apart. The numbers on axes were misleading. We removed them. 772

Reviewed by Raul Costa-Pereira, 2020-09-06 15:59

Castagneyrpol et al. present results from a well-designed experiment aiming to test the detrimental effects between conspecific individuals that have never meet. They studied a peculiar system where consumers (box tree moth larvae) have limited mobility, relying on their mother's oviposition decision to occupy good food patches (i.e., host plants). Interestingly, food patches are dynamic, and consumers can reduce resource quality to next-generation conspecifics by triggering defensive responses in host plants. Therefore, even if conspecific individuals never coexisted on the same individual host plant, the legacy of past "tenants" can reverberate negatively on current and future ones. Motivated by this interesting conceptual basis, the authors set up a greenhouse experiment to test how past herbivory affects preference (i.e., selection of oviposition sites by mothers, quantified as the number of egg clutches) and performance (i.e., individual consumer growth, quantified as average larvae body mass). Surprisingly, mothers did not avoid laying eggs on plants previously consumed by larvae, but larvae feeding on these plants with the legacy of past conspecifics were smaller. These results are exciting because they shed new light on the mechanisms shaping temporal dynamics of antagonistic interactions both between (plant-herbivore) and within (herbivore-herbivore) species.

[R] — Thank you for this very nice summary and positive appreciation!

I enjoyed reading the manuscript and think it is well-written and the figures are well-presented. The experimental design is creative and statistical analyses are solid (I particularly appreciated how the authors accounted for the underlying spatial structure of their experiment in the models). Below I describe a few major points that came up while reading the manuscript, as well as some minor points that I believe can be helpful. Please let me know if you have any questions, I am happy to clarify.

[R] — Thank you for your valuable and clear comments.

First, I feel that the conceptual framing of the manuscript is fascinating and could be contextualized and motivated more broadly in the introduction. Indeed, multivoltine insect herbivores are a great example of how individuals can affect conspecifics they have never met. Still, similar types of time-lagged interactions between conspecifics occur across diverse taxa (e.g., squirrels [Fisher et al. 2019 Ecology Letters], frogs [Pfennig & Pfennig 2020 Copeia]) and via different mechanisms (e.g., extend phenotypes, ecosystem engineers). Therefore, although the current structure of the introduction works well, I think that opening the manuscript with a more general view of ecological interactions among individuals separated in time would call the attention of a wider and more diverse readership. This approach could also help to reduce some overlap in ideas across the 1st and 2nd paragraphs of the introduction.

[R] — We really appreciated this suggestion. We added a couple of opening sentences to broaden the scope of the paper

Biotic interactions are strong factors affecting the fitness of interacting individuals, even interactions are delayed in time and do not imply direct contact among individuals. Examples of such interactions can be found in both plants through plant-soil feedbacks (Putten et al., 2016) and in animals (Fisher et al., 2019; Pfennig & Pfennig, 2020)

Hypotheses and respective predictions could be more thoroughly presented to readers. The last paragraph of the introduction is concise and nicely describes the general hypotheses of the study (lines 84-85). However, readers will only find out how the authors investigated their hypotheses in the methods (e.g., lines 123-135), which creates a certain gap in the narrative flow. Thus, the authors could include their respective predictions as well at the end of the introduction (including 'operational variables' - e.g., We expect that plants that previously hosted larvae should [i] have fewer eggs and [ii] host smaller larvae). Moreover, as the experimental design allows inferring the contribution of purely spatial effects on oviposition patterns, the authors could at least mention this at the end of the introduction. By the way, I think that measuring and accounting for spatial structure in oviposition patterns is an exciting novelty of the manuscript. Thus, maybe the biological causes and implications of this spatial non-independence in mothers' oviposition choices could be more explored in the discussion.

[R] — We have modified the end of the introduction in order to introduce "operational variables" as suggested. As for the discussion on spatial analyses, we agree that our results could pave the way for further investigation. However, the experiment was not designed to explore such spatial effects. We only aimed at controlling possible bias in the design. Therefore, we preferred not putting to much emphasis on this issue as it would have been very speculative.

Finally, I have a quick suggestion about a potential additional dimension of performance that could be considered. To quantify the effects of past herbivory on offspring performance, the authors compared the average body mass of larvae across treatments. I fully agree this is a key aspect of *per capita* offspring

performance, and results are exciting in this regard. In light of the natural history of the system, as the authors also measured the number of L3 larvae per plant (lines 130-131), I wonder whether the conversion rate egg \rightarrow L3 larva (e.g., number of eggs/number of L3 larvae) could not be used as an additional metric of performance. Is there evidence in the literature that past herbivory can affect egg eclosion rates and/or early larval development (L1 \rightarrow L2 \rightarrow L3)? This alternative metric would capture a different facet of offspring performance not necessarily correlated with mean larvae weight (e.g., larvae mortality associated with lower foraging rates and/or increased toxins).

[R] — This would have been a great addition to the paper indeed. Unfortunately, we did not have such an information at hand for we counted up to five larvae per plant. The phrasing of the original version was ambiguous in this respect. We modified it accordingly.

839 Minor comments:

841

843

844

845

846

847

850

851

852

853

855

858

859

861

862

864

865

867

869

870

871

872

• Lines 1-2. The title is solid and general, but I am not sure if all readers will be familiar with the concept of 'multivoltine' (I guess it depends on the target journal).

[R] — We deleted the reference to multivoltine species.

- Lines 39-40. Given the idea of the last sentence in this paragraph, it would be good to emphasize here that "competing herbivores" refers to different species of herbivores (i.e., interspecific competition). I would say the same about Line 42.
- Lines 46-50. I feel that most of these ideas were already presented to readers in the previous paragraph. The argument presented in Line 50 sounds like an exciting way to begin this paragraph.

$_{848}$ [R] — We deeply modified the introduction, please see our response to Dr Magalhães' comments.

• Line 50. I follow the meaning of 'passage of competitors' but it's possible that some readers may find it a bit confusing. One potential alternative (maybe not that accurate) would be something like 'the legacy' of past herbivores on host plants.

[R] — The corresponding sentence was deleted.

• Line 51. Maybe the authors could provide a brief view of what 'direct' detection means in this context, e.g. "... mated females can directly detect (e.g., via visual or olfactory cues) the present...".

$_{856}$ [R] — We added "themselves" to make it clear that the female can detect herbivores, or herbivory-induced changes in plant traits.

• Line 61. Adding a 'triggering' or 'stimulating' before "defenses that generally" could make this idea clearer to readers.

[R] — We rephrased this sentence.

• Line 60. I am not an expert in plant-herbivore systems, but a first intuitive, simple mechanism seems to be the reduction of food biomass by previous consumers. Does it make sense?

863 [R] — Yes it does! We now mention interference competition and resource depletion.

• Lines 65-66. This is very interesting, and the following example illustrates well this mismatch between selection by mothers vs. impacts on offspring. However, I feel a follow-up conceptual sentence would help readers to crystallize this idea by clarifying that not necessarily the effects on preference and performance are congruent.

888 [R] — We restructured the introduction to improve the reading.

• Lines 74-75. Considering the broad readership of ecologists and evolutionary biologists this manuscript has the potential to reach, I recommend the authors to define the concept of 'multivoltine'. Not all readers may be familiar with it.

[R] — Done.

• Line 75. Tiny detail: remove the italic from spp.

874 [R] — Done.

873

875

876

877

878

880

881

882

883

885

887

888

889

891 892

893

894

895

896

899

901

902

903

904

907

908

909

910

912

913

914

• Lines 84-86. This is a matter of writing style, but one possibility here is to 'change the pace' of this key sentence to emphasize the potential effects on both preference and performance encapsulated by this hypothesis. A simple way to do this would be: "...early herbivory would (i) reduce oviposition..., and also (ii) reduce the performance ...

879 [R] — Done.

• Lines 85-86. As the last sentence of the introduction is often one of the most 'visited' by readers, I feel this one could deliver a 'self-standing', stronger message. For instance, instead of 'By addressing the above', one alternative could be 'By addressing the effects of previous herbivory by conspecifics on both preference and performance of subsequent..."

884 [R] — Done.

• Line 94. I think this initial sentence could be moved down in this paragraph.

$_{56}$ [R] — The sentence was moved to the "natural history" new paragraph.

• Line 107. It is clear from the previous sentence, but it would be helpful to clarify that this plant-level herbivory metric represents the mean frequency of attacked leaves/branch.

[R] — Done:

_ In order to confirm that the addition of BTM larvae caused herbivory, we visually estimated BTM herbivory as the percentage of leaves consumed by BTM larvae, looking at every branch on every plant. We then averaged herbivory at the plant level. In 8 plants, herbivory data was missing and was imputed as the average of herbivory measured in other plants. In the herbivory treatment, the percentage of leaf area consumed by BTM larvae ranged from 2.2 to 17.2% and was on average 9.1%._

• Figure 1. These photos are great for illustrating the experimental design and study system! I would just suggest adding more details in the legend.

898 [R] — Done.

• Line 113. feed on.

900 [R] — Done.

• Lines 115-116. I wonder if this difference of three weeks between caterpillars being removed (from the herbivory treatment) and moths oviposition reflect the phenology of this species in natural ecosystems. In other words, in light of the biology of BTM, a given box tree in nature could experience two separate groups/generations of caterpillars within three weeks?

$_{905}$ [R] — Yes, the duration of the pupal stage in the wild is long enough to have two separate generations.

• Line 118. Just to make it more straightforward: "... washed out from leaves".

[R] — We deleted this sentence.

• Line 120-121. This is an important point that could be briefly mentioned in the last paragraph of the introduction, e.g., "our experimental design allows us to quantify... of plant-mediated".

911 [R] — Done.

• Lines 126-128. I think that first presenting 'why' (i.e., "to prevent larvae from moving from one potted plant to another") and then 'how' (i.e., "we installed box trees in plastic saucers and interspaced plants and filled saucers with a few centimeters of water").

915 [R] — Done.

- Line 131. All plants had at least five larvae?
- 917 [R] Done: "only 6% of plants hosted less than five larvae".
- Line 133. It would be helpful to emphasize that this value represents the average weight of larvae from one plant individual.
- 920 [R] Done.

921

926

931

933

934

947

- Line 142. Thanks for such a careful explanation; I appreciate your transparency!
- 922 [R] Thanks.
- Line 150. Could you please describe in more detail the structure of these models? (i.e., define response variable and predictors).
- 925 [R] Done.
 - Line 165. With other three models ($\Delta i < 2$ Models 2, 3, and 4), right?
- 927 [R] Yes, corresponding information is now available in Table 1.
- Line 177. How about finishing this sentence after 'season' and then start a new sentence with 'This time-lagged'?
- 930 [R] Done.
 - Line 182-183. Maybe the fact that larval frass was washed out could be a potential explanation?
- 932 [R] We added the following sentence:
 - However, we cannot exclude that some cues were mediated by larva frass, which was watched out from leaves when we watered plants.
- Lines 201-203. This an interesting explanation! I wonder if host plants in the native range of BTM have even higher toxic alkaloids than box trees.
- $_{937}$ [R] This is an interesting question that would be worth digging further. We are not aware of dedicated studies.
- Lines 206-207. I do not follow this idea, could you please clarify? I feel that 'reduced performance of individuals... have been trait-mediated' requires some further explanation.
- $_{941}$ [R] "Trait mediated" was misleading. We deleted these two words and believe the sentence reads better now.
 - Line 219-220. The fact that food limitation can trigger cannibalism in this system is fascinating!
- [R] yes, we have been quite surprised to observe this, but did not try to investigate it further. However,in the absence of back-up data, we eventually deleted reference to this possible phenomenon.
 - Line 221. To avoid repetition, I suggest replacing the first 'Herbivore' by 'Consumer'.
- 948 [R] This sentence was deleted.
- Line 228. Would it be 'with' or 'within'?
- 950 [R] Changed to "within".
- Line 237. Perhaps 'negative interactions... generations' could communicate more clearly the results.
- 952 [R] Done.
- Line 241. Because this idea expands to the next sentence, it would be good to mention their main enemies (e.g., parasitoids, predators).
- 955 [R] Done.

- Line 244. It seems that a verb is missing in this sentence, 'causing more damage' is one option.
- 957 [R] Done.
 - Line 247. be investigated
- 959 [R] Done.

958

960

971

972

973

974

975

976

977

978

979

980

981

982

983

984

986

987

988

990

991

992

993

996

- Line 248. dedicated
- 961 [R] Done.
- 962 I hope the authors find these comments helpful. Best wishes, Raul.
- $_{963}$ [R] We did, thanks!

$_{64}$ 3.2 Second round

- Dear authors,
- I think you made a great job at replying to the concerns of the referees and opted not to send them the manuscript again. I do have some very minor comments still that I think should be addressed in the version of this manuscript that will then be accepted. Congratulations!
- $_{969}$ [R] Thank you for your very thorough review and positive comments on the revised version of our manuscript.
 - Lines 52-53: I would start general, stating that previous herbivory can affect the performance of subsequent herbivores. Then, when later on you refer to the effect via plant defences you mention the possibility of actually facilitating future herbivory. I think this part is important because it adds a bit of unexpected outcome to your story. Otherwise, the prediction of previous herbivory being detrimental is a bit too straightforward.

[R] — We reorganized the corresponding paragraph accordingly:

Previous herbivory generally reduces the performance of later arriving herbivores on the same plant through different processes. First, the initial consumption of plant biomass can deplete the resource available to forthcoming herbivores, therefore leading to exploitative competition between first and subsequent herbivores (Kaplan & Denno, 2007). Second, initial herbivory triggers a hormonal response that results in the induction and production of anti-herbivore defenses as well as in resource reallocation in plant tissues (Hilker & Fatouros, 2015; Abdala-Roberts et al., 2019; Marchand & McNeil, 2004; Blenn et al., 2012; Fatouros et al., 2012), which generally reduces plant quality and thereby the performance of late coming herbivores (Agrawal, 1999; Abdala-Roberts et al., 2019; Wratten et al., 1988). Such an affect has long been documented in interspecific interactions (Kaplan & Denno, 2007; Moreira et al., 2018), but also in intraspecific interactions. For instance, prior damage by the western tent caterpillar Malacosoma californicum Packard (Lepidoptera: Lasiocampidae) induces the regrowth of tougher leaves acting as physical defenses and reducing the fitness of the next tent caterpillars generation (Barnes & Murphy, 2018). Although less common, the opposite phenomenon whereby initial herbivory faciliates damage by subsequent herbivores has also been reported (Sarmento et al., 2011; Godinho et al., 2016; Moreira et al., 2018).

- Line 58: a hormonal
- 995 [R] Done
 - Line 61: effect
- 997 [R] Done
 - Line 62: space between interactions and bracket

999 [R] — Done

1000

1002

1004

1005

1006

1009

1010

1011

1012

1014

1015

1016

1017

1018

1019

1020

1021

1022

1024

1025

1026

1027

1028

1030

1032

1034

1035

1036

1037

1038

1039

1040

1041

- Line 66: previous herbivory can also affect the oviposition preference of herbivores that arrive later.
- [R] We rephrased the original sentence.
 - Line 67: can discriminate between.
- 1003 [R] Changed.
 - Lines 77-85: incidentally, we have data showing a match between preference and performance in absence of competitors, but not in their presence (Godinho et al. "The distribution of herbivores between leaves matches their performance only in the absence of competitors" Ecol Evol 2020). This is just a note, I think it's an interesting result that could be discussed in your paper, but you don't need to do it...
- 1008 [R] This is a nice paper which we refer to in the revised version.
 - Lines 125-126: I would say that it is more parsimonious to simply remove those plants from the analyses. Can't you do that?
 - [R] We followed this recommendation. Ignoring these individuals slightly changed the results in terms of significance. Specifically, this new analysis revealed that the negative effect of prior herbivory increased with increasing the amount of leaf area removed by BTM larvae earlier in the season. We modified the results section accordingly and added one sentence in the discussion.

Methods: Herbivory data were missing in 8 plants. We removed these plants from the analysis testing the effect of prior herbivory as a continuous variable on BTM preference and performance.

Results: The effects of herbivory treatment and number of egg clutches on mean chrysalis weight were very comparable to those observed for BTM larvae: BTM chrysalis weight was lower on box trees that had been previously defoliated (Table 2, Figure 3C), and this effect strengthened with an increasing amount of herbivory.

Discussion: This explanation is further supported by the fact chrysalis weight was more reduced in plants that were more defoliated by the spring generation of BTM larvae.

- In lines 146 and 148, both sentences start with 'In order to', you can easily replace one of them by 'To'.
- [R] Changed.
 - Figure 1: I actually agree with reviewer 2 that this fits better supplementary material, but you can also leave it, it's a matter of taste. However, the legend should be a bit more serious...
- [R] We kept Figure one in the main text but rephrased the caption.
 - Line 161: were run.
- 1031 [R] Changed.
 - Line 164: remove one of the brackets.
- 1033 [R] Done.
 - Lines 191-192: this sentence was not in the original version of the manuscript, and I have difficulties in reconciling it with the previous sentence. If egg clutches were found in more than 90% of the plants overall, how can they, per treatment, be found on circa 40% of them?
 - [R] The percentage of plants with eggs was calculated over the total number of plants, and not the number of plants per treatments, which was indeed misleading. We clarified this issue in the revised version:

We counted eggs in 93.4% of plants in the control (non attacked) groups, and in 100% of plants in the herbivory treatment.

• Line 192. I don't understand why this sentence starts with 'however' nor why you are stressing 'at individual plant level'. Isn't this just the variance around the average numbers presented in the previous sentence? Maybe I am missing something important here...

1045 [R] — "However" was indeed not necessary, we deleted it.

• Line 198: for the sake of consistency.

[R] — Changed.

• Line 201: I would say "Herbivory had no effect" because in the second analysis it is not the treatment per se that you are analysing.

[R] — Changed accordingly.

• Line 209: I think that what you mean is that 'larval weight was not significantly affected by the interaction ...". Right? Please state this explicitly, I got a bit confused.

[R] — Changed accordingly:

Larval weight was not significantly affected by the interaction between the herbivory treatment and the number of egg clutches, indicating that intraspecific competition was independent of prior herbivory (**Table 2**).

• Lines 220, 221: same here, I would merge the two sentences: There was a significant, negative relationship between the number of egg clutches on a box tree and the subsequent chrysalis weight, which was not significantly affected by the interaction between the herbivory treatment and the number of egg clutches (Table 2, Figure 3C).

[R] — We rephrased the initial sentence accordingly.

• Lines 227-230: please rephrase this sentence to clarify that you are proposing two explanations, not just one.

[R] — Done:

Prior herbivory had no effect BTM oviposition choice. Two possible mechanisms can explain this observation: prior herbivory may have had no effect on box tree characteristics, or female BTM may have been indifferent to them at the time we conducted the experiment.

• Line 231: later, not latter.

[R] — Corrected

• Lines 240-242: why? Can larvae move among trees? If not, I don't think this is a proper explanation.

[R] — This paragraph seeks to explain why prior herbivory had no effect on oviposition choice. Female BTM searching for oviposition sites were free to move in the greenhouse.

• Lines 242-243: so what? This may be interesting, but you need to spell out your reasoning here. Do you mean that it may be more important to accumulate those alkaloids for the future reproductive success of those larvae than to be of a particular weight? This may be true, but still, they are not facing the choice of no alkaloids and big vs alkaloids and small, right? Or is there evidence that pre-attacked plants have more alkaloids than clean plants? This whole issue needs to be further developed or excluded...

[R] — We explained this idea in more details:

Leuthard et al. (2013) showed that BTM larvae are able to store or metabolise highly toxic alkaloid present in box tree leaves. Even if prior herbivory induced the production of chemical defenses, it is possible they this did not exert any particular pressure upon females for choosing undefended leaves or plants on which to oviposit, as their offspring would have been able to cope with it.

• Line 248: add a coma after hosts.

1086 [R] — Done.

1085

1087

1089

1090

1093

1094

1096

1098

1100

1102

1104

1105

1107

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

• Line 263: I would remove the 'however'.

1088 [R] — Done.

• Line 268: the 'interference competition' comes a bit out of the blue here. Is there any evidence for this in your system? And for the possibility of it being stronger in defoliated plants?

[R] — The reference to "interference competition" was a mistake. We replaced it by "exploitative competition"

• Lines 270-271: I would write this statement in the same style as the others, ie: The number of egg clutches laid by BTM female moths correlated negatively with subsequent growth of BTM larvae.

1095 [R] — Changed accordingly.

• Line 280: was greater than.

1097 [R] — Changed.

• Line 282: I would state 'this suggests' instead of 'indicates'.

1099 [R] — Changed.

• Lines 285-287: I would remove this because you already state this in the previous paragraph.

1101 [R] — We removed this sentence.

• Line 296: I would replace where by when.

1103 [R] — Changed.

• Lines 297-298: I would state instead: These cross-generational effects may thus lead to an important role of density dependence population growth.

106 [R] — Changed.

• Line 307: add a comma after hosts.

1108 [R] — Done.

• I find the conclusion still a bit too much attached to the system. I was wondering whether this can be linked to the Ghost of competition past. I will think about it a bit more and maybe write something on it in my recommendation, but maybe you can tell me what you think about this link before that...

[R] — We completely re-wrote the discussion to make it more general. We did not phrase it in terms of "the ghost of competition past" but will love reading a recommendation about it!

Insect herbivory induces changes in the amount and quality of plant resources, which are responsible for interspecific interactions among herbivores, even in herbivores that are separated in space or time (Poelman et al., 2008; Stam et al., 2014). Our experiment provides evidence that insect herbivory also influences the performance of conspecific herbivores through cross-generational competition, which may ultimately control the overall amount of damage that multivoltine herbivore species can cause to plants. Cross-generational competition may increase development time of individuals of the next generation, thereby increasing their vulnerability to natural enemies (the slow-growth-high-mortality hypothesis; Coley et al., 2006; Benrey & Denno, 1997; Uesugi, 2015). If this is the case, on the one hand stronger top-down control can be exerted on herbivores feeding on previously attacked hosts, which could reduce the overall amount of damage to the host plant. On the other hand, if herbivores take longer to develop, they may cause more damage to plants, in particular to those with poor nutritional quality, due to compensatory feeding (Simpson & Simpson, 1990; Milanovic et al., 2014). Our results highlight the overlooked ecological importance of time-lagged intraspecific competition (Barnes & Murphy, 2018). In the face of global warming, which

shortens the generation time of many insect herbivores and thus increases voltinism (Jactel et al., 2019), it is particularly necessary to elucidate the consequences of cross-generational interactions on the population dynamics of multivoltine herbivore species.