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Response to comments of Editors

Thank you for submitting your preprint “The variability spectrum of ecological communities: How
common and rare species shape stability patterns” to PCI Ecology. We have now received two reviews
of your manuscript.

Both reviewers regard your work as a strong contribution to the understanding to the diversity-stability
debate. We agree with the reviewers, it is indeed an insightful study that rigorously demonstrate that
the nature of the perturbation matters, in the sense that it can dramatically changes the relationship
between diversity and stability. We would therefore be happy to recommend it once the reviewers’
comments are addressed.

Most reviewers comments are suggestions that will doubtlessly improve the overall clarity of the manu-
script and so we regard the revision required as a minor one even though we acknowledge that the
edition of a long paper could be time-consuming. One of the reviewer has provided a very detailed list
of comments that should help you targeting parts that currently miss clarity. We would also like to
highlight some of the reviewers’ comments and expand on them:

We thank the Editors for their work, and for their constructive and encouraging comments.

* One reviewer points out that the paper is fairly long and that there is enough material for more than
one paper. We agree. That said, we would be happy to recommend an even longer preprint that have
a better balance between accuracy and pedagogy. The length issue may be one you will be dealing with
depending on where you submit your manuscript, not an issue for a recommendation for PCI (as far
as we understand the rules).

Although the manuscript length has not changed significantly compared to the previous
version, we made substantial efforts to focus our message and shortened the discussion
section to make it more factual and less speculative. Our paper is now essentially organized
in two parts. The first establishes a general theory for variability, emphasizing its highly
multidimensional nature, while the second part explains that a simple generic pattern can
emerge in species-rich communities. The relevance of this pattern is then illustrated by
explaining that it can shape diversity-stability relationships.

We revised the abstract accordingly (paraphrasing for conciseness): We show how variability
can reveal inherent stability properties of ecological communities, with clear connections
with other stability notions. This requires abandoning one-dimensional representations,
and instead consider the whole set of variability values associated to a given community.
Against the vertiginous dimensionality of variability, we show that a generic variability-
abundance pattern emerges in species-rich communities, relating variability to the abundance
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of perturbed species. The contrasting contributions of different species abundance classes
can be responsible for opposite diversity-stability patterns, which can be understood from
the behaviour of basic statistics of the abundance distribution.

* So far, the reader cannot reproduce the study, it is very important that the manuscript includes all
the simulations details so the reader can reproduce your analysis. Note that one way to deal with this
comment is to share your code.

The revised Appendix F includes a full description of the simulations. We also provide
Matlab code as supplementary material.

* One reviewer mentions that you must differentiate previous mathematical findings from new ones. We
agree, this would help understanding how to obtain equation B1. Another thought we had while reading
the appendix is that you should consider adding a reference that introduces Stochastic Differential
Equations to help readers not familiar with this to have a better understanding of the approach you
developed.

During the revision we did an effort to clarify what are the new results of this paper, and what
are the results that have been reported in previous papers, including our owns. Because we
wanted to make the paper self-contained, we sometimes included arguments that are closely
related to previously published ones. In the revisions we have more these connections as
explicit as possible.

Some examples: line 179, Generalizing previous work (Arnoldi et al., 2016b; Arnoldi and
Haegeman, 2016) to arbitrary perturbation type, we construct a measure of stability [. . . ];
line 234, Although we know from previous work (Arnoldi et al., 2016b) that the smallest
invariability value in response to immigration-type perturbations will always be smaller
than R∞, [. . . ]; line 262, Worst-case invariability is close to asymptotic resilience, which
corroborates previous findings showing that the long-term rate of return to equilibrium is
often associated to rare species (Haegeman et al., 2016; Arnoldi et al., 2018)

Concerning the remark about stochastic differential equations, we have added a reference
on line 104: In the perturbation term, ξi(t) denotes a standard white-noise source (Arnold,
1974; Van Kampen, 1997). In Appendix A we write: Stochastic perturbations in continuous
time are mathematically quite subtle (see, e.g., Turelli, 1977). However, in the setting of
linear dynamical systems, the effect of a white-noise perturbation can be analyzed relatively
easily. Because this analysis is not readily available in the ecology literature, we present here
a short overview.

Finally, we would like to add a few comments as well as two typos:

* Circularity: Basically, the authors use a model where the higher the value of α, the more density
dependent the perturbations are. Based on it, they found that the variability response for low values of
α is driven by rare species whereas common species drive the response when α is high. Isn’t it something
expected? We think the authors should expand on this. This is not a problem but as written, it feels a
little hidden behind the types of perturbations (demographic, immigration etc.)

The observation that the relative importance of rare vs common species changes when vary-
ing α is indeed obvious. However, our results are much stronger: we describe the exact
dependence of variability on α and explain how this dependence modifies qualitatively the
diversity-stability relationship.

We have made this precise in the revision, line 318 (paraphrasing for conciseness): The
generic limit that yields the variability-abundance patterns of Figs. 4 and 5 is the one
towards which a community of increasing complexity will tend. In the case of immigration-
type perturbations species contribution to variability become proportional to the inverse of
their abundance. The worst-case scenario follows the abundance of the rarest species, while
mean-case invariability scales as an average species abundance thus rapidly declining with
diversity. The responses to demographic perturbations are not determined by any specific
species abundance class, so that no simple expectations based on typical trends of abundance
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distributions can be deduced. We recover a simpler behaviour when looking at the response
to environmental-type perturbation. It is now abundant species that drive variability, and
mean-case invariability scales as a the inverse of average abundance, typically declining with
diversity.

* Figures 4-6 examine slopes for different values of α. why not report the values of the slope along a
gradient of α value

This representation would indeed describe more fully the dependence on α. However, we
decided to keep the original figure, because we think it is easier to grasp, especially given the
subtle difference with Taylor’s law (see our response to the comment of the second reviewer
about Taylor’s law).

* There are several notations use throughout the appendix, most of them are common some other are
introduced by the authors, so we would suggest that you add a table of notations when the set of appendix
are introduced p 35.

We have added Table A1 presenting the main notation used in the appendices.

* May be a naive one: in appendix A, why not saying that uk follows a multinormal distribution
N (0, Cu)?

Our results do not depend on assuming a multinormal distribution. We have kept the more
general presentation.

* Cx instead of C in equation (A7)

* l. 287: We think it should be “5th to 95th” instead of “10th to 90th”.

Changed (l.308).

We now invite you to respond to the reviewers’ comments as well as the few comments we added and
submit a revised manuscript for a potential recommendation by PCI.

Response to comments of Reviewer 1

In this theoretical study Arnoldi et al. investigate how the variability of community dynamics is affected
by different types of perturbations. The stability-variability of ecological communities is set in relation
to species equilibrium biomasses for different perturbation scenarios, and different abundance classes’
roles in governing stability are acknowledged. Overall, the authors conclude that a multidimensional
view on stability allows one to better appreciate the dynamical richness of ecological communities.

In general, I think this is a very strong and well conducted study. Adding a stochastic component into
the thinking about complex ecological systems is interesting and much needed. However, I have a few
points that should be addresses before recommending this study.

We thank the reviewer for her/his constructive comments. Many parts of the article have
been substantially rewritten in order to improve clarity and address the points raised by the
reviewer.

Major point: I miss an important reference to a similar study (Ives et al. 2003; Ecological Monographs).
The similarity between this study and Ives et al. should specifically be addressed and discussed. Both
studies compare the (output) variability of the stationary distribution to the (input) variability of process
errors, in ecological models. Yet, Ives et al. uses linear discrete models.
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The study of Ives et al. (2003) has indeed a number of points in common with ours. First,
they also start from a simple linear community model to study stability properties. Second,
they also introduce variability-based stability measures based on the ratio of output and
input variability.

However, there are also major differences. First, the general objective of the Ives et al.
study is very different from ours. They present a strategy to estimate community stability
from time-series data, by inferring a linear community model as an intermediate step. In
the current paper we take a less statistical and more conceptual approach: we develop a
general theory of variability, and study its properties using the simple framework of linear
community models. Second, more specifically, we stress the multidimensional nature of
variability, while Ives et al. focus on a single variability metric, which can be seen as a single
point in our variability distribution (note however that their metric does not enter exactly
in our framework, mainly because they look at discrete-time dynamics, while we work in
continuous time). In the paper we explain the importance of a multidimensional approach
to variability. For example, as we argue in the discussion, it helps establishing connections
with other stability measures such as return rates. This question of connecting stability
measures is also raised by Ives et al. Finally, the second part of our paper, investigating the
effects of rare and common species on different variability measures, and how this can lead
to different diversity-stability relationships, takes a very different direction from the Ives et
al. paper.

We believe that in the revised manuscript the general objective of our study is better ar-
ticulated, and that the difference with related studies appears more clearly. For the Ives
et al. study, we have explicitly indicated the connections. In particular, line 106: Com-
munity models of the form eq. (1) were studied by Ives et al. (2003) to analyze ecological
time-series. In their approach, stability properties are inferred from the system response to
specific perturbations. Here we build on a similar formalism, but explicitly explore a vast set
of possible perturbations; line 177: To remove this linear dependence [of output variability
on input variability], we define variability as V = σ2

out/σ
2
in, i.e., the average species variance

relative to perturbation intensity (see Ives et al., 2003 for a similar definition of variability);
line 400: [To reconstruct a variability distribution], the most direct approach consists in
observing the same community under multiple environmental conditions. [. . . ] However,
there is more information to be extracted from time series than a single variability value. If
high-quality time series are available, it might be possible to infer linear model dynamics,
which can then be used to compute stability properties (Ives et al., 2003), and in particular,
variability distributions.

Minor comments: It would be interesting to see how the mean and sd of equilibrium biomasses change
as diversity increase in the networks. I would think that eq. biomasses decrease as diversity increase,
thus affecting the perturbation magnitudes.

When increasing diversity, total biomass (sum over species) increases and average species
biomass decreases. These relationships can be read off from Fig. H1, where the abundance
statistics are linked to the different variability measures. Note, however, that changes in
equilibrium biomass do not affect perturbation intensity σ2

in, which only depends on the
species-specific perturbation intensities σ2

i (see eq. 3).

It would be interesting to see how the two parts of stability, i.e. varout and varin, change when diversity
in the communities change (i.e. producing figures similar to fig. 6). This would add valuable infor-
mation about what is contributing the most to stability. I would suspect that varin is highest for the
environmental type of perturbation, followed by demographic and immigration types of perturbations.

Strictly speaking, there is no information to be gained by separating the numerator σ2
out and

the denominator σ2
in of our variability measure, as the effect of σ2

in is trivial (see argument
leading to eq. 4). However, it is true that the magnitude of direct effect of perturbations (the
perturbation term in eq. 1) depends on species abundances and will consequently vary with
diversity (except for immigration-type perturbations α = 0). As the reviewer suggests, it
would then be interesting to isolate this effect from the diversity-invariability relationships
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shown in Fig. 6. As this cannot be done by studying σ2
in (see also response to previous

comment), this would probably require the introduction of still another variability measure.
We believe that such an extension would lead us too far from the main objective of the
paper.

I agree that it is important to point out that different types of perturbations produce different stability
patterns. Yet, since the stability measures presented here appear to be linearly related to each other (at
least the mean responses), I would argue that a single measure of stability would hold a great deal of
information about the stability of the whole community. For example, asymptotic resilience is linearly
and negatively related to the mean stability for each perturbation scenario presented here (yet with
different slopes; Fig. 6). Thus, a more simple one-dimensional representation of stability may be
enough when calculating the stability properties of a community. Please comment on this!

This point indeed deserves clarification. In fact, we do not think that such a simpler repre-
sentation is possible, because different variability measures are determined by different sets
of species, and in general these sets of species, e.g., their abundances, are unrelated.

We explain this in the discussion, line 461: Ecologists have acknowledged the multiple-faceted
nature of ecological stability. But here we are showing that a single facet (variability) is in
itself inherently multidimensional, thus suggesting that links across stability facets may
be quite subtle. For instance, short-term return rates may be linked with environmental
variability, but environmental variability may have nothing to do with immigration-type
variability, the latter possibly related with long-term return rates and driven by rare species.
Even in our idealized mathematical setting, because measures can be determined by different
species abundance classes, we should not expect a general and simple connection to hold
between facets of ecological stability.

Response to comments of Reviewer 2

In this manuscript, the authors describe how the variability of modelled ecological communities are
affected by stochastic perturbations.

One of the main findings is that the variability response to stochastic immigration perturbations is
driven by rare species while the common species drive the response to environmental perturbations.
While there have been previous suggestions of this differential responses of rare and common species to
environmental fluctuations (e.g., using British birds, Saether et al. 2011, or within debates on forest tree
communities dynamics, Chisholm et al. 2014), this is to my knowledge one of the first theoretical studies
to investigate in great detail the role of species abundances, perturbation types and their interaction in
shaping community-level variability. This work nicely builds on previous technical work by the authors,
relating mathematically well-defined variability measures to more classic resilience measures, all of
which are here described in a (relatively) accessible manner.

Other interesting finds of the paper include:
* how the variability (variance) vs mean abundance relationship is modulated by the strength of species
interactions (which connects to how Taylor’s law is modified by species interactions, see below)
* the effect of correlated or uncorrelated perturbations on community variability (for two-species sys-
tems)
* how diversity-stability relationships will be affected by these results: the relative contributions of the
abundance classes can generate opposite diversity-stability patterns for different kinds of perturbations.

Overall I found the manuscript very interesting and also very rich in information, exploring in several
interlinked directions how variability responses can be modified by both perturbation type and species
abundances. The upside is that there are clearly several novel or synthetic insights into how ecological
communities should function in a stochastic world. The downside is that the multifaceted nature of
the manuscript, which is already fairly long, makes it difficult for the authors to be simultaneously
pedagogical and very precise about the methods used. Most of my comments below probably stem from
slightly different perceptions about how to balance these two worthwhile yet conflicting aims.

We thank the reviewer for his very thorough and constructive evaluation of our work. To ad-
dress the “multi-faceted nature of the manuscript” we made substantial efforts to focus our
message and shortened the discussion section to make it more factual and less speculative.
Our paper is now essentially organized in two parts. The first establishes a general theory
for variability, emphasizing its highly multidimensional nature, while the second part ex-
plains that a simple generic pattern can emerge in species-rich assembled communities. The
relevance of this pattern is then illustrated by explaining that it can shape diversity-stability
relationships (see response to comments of Editors).
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I have two major technical comments regarding the connection of this work to Taylor law scaling /
stochastic population dynamics theory, as well as about the strength of interactions actually considered
(a little unclear so far, for lack of precise parameter values). Most of the comments can probably be
dealt with by rewriting and adding additional information — no additional results are required. In fact,
there might be ways to simplify the manuscript.

About the connection with Taylor’s law, there should indeed be implications of our findings.
However, it should be stressed that our observations are not equivalent to Taylor’s law, but
rather represent a dual pattern.

We have clarified this point as follows, line 295: The variability-abundance patterns shown
in Figs. 4 and 5 should not be confused with Taylor’s (1961) law. We plotted power-law
relationships between average community variance and abundance of perturbed species,
whereas Taylor’s law describes a power-law relationship between a species variance and its
mean abundance. In this sense, the variability-abundance pattern is dual to Taylor’s law,
i.e., the community response to single-species perturbations instead of that of individual
species to a community-wide perturbation.

Although the results in most sections and appendices seemed very sound to me, I have been a little
less convinced by the section “Implications for the diversity-stability relationship” so far. It relied on
the assumption of independently perturbed species (I may be wrong about this though — please see
the detailed comments). However, many communities for which we are interested in the diversity-
stability relationship are synchronously perturbed by a common driver like temperature, shared by most
species. This may imply a different diversity-invariability relationship that the currently positive one
described for environmental-type perturbations. This seems corroborated by the worst-case variability
response in Fig. 6 (right panel), where invariability decreases with richness which, if I am not mistaken,
is obtained for fully correlated perturbations. Although from appendix E and Fig. 3 I gather that
the authors attribute a special meaning to fully correlated, which can mean both synchronized and
antisynchronized (if correct, this would be worth mentioning in the text, by the way). In any case, the
worst-case variability does not corroborate the positive diversity-stability (sensu invariability) reported
for environmental noise.

Consequently, I have been wondering if this section would not be better developed as a separate work,
which would then allow to make more lifelike assumptions about the perturbation regime (or justify
these better). But it is perhaps just a matter of making the assumptions more explicit. Please see the
line-by-line comments for more specific interrogations.

We agree with the reviewer that much more can be said about the diversity-stability rela-
tionship, and that it would be better to leave a more thorough study for a separate paper.
In the revised manuscript we present the diversity-invariability relationship (Fig. 6) as a
practically relevant illustration of the patterns linking variability and abundance (Figs. 4
and 5); line 301: To illustrate some implications of the variability-abundance pattern, we
now propose to revisit the diversity-stability relationship; line 406: We showed that species
abundances greatly affect variability distributions. This new insight has broad consequences,
for example (...)

About the criticism that we only consider a subset of perturbations when dealing with
complex communities, it is true that in the section Generic variability patterns, species-
specific perturbations are used to reveal the abundance-variability patterns. It should be
noted however, that although this subset is indeed small compared to the entire perturbation
set, it does cover a lot of the complexity of the variability distributions. For example, mean-
case variability is equal to the mean of variabilities induced by single-species perturbations,
and worst-case variability is realized by a single-species perturbation for perturbation types
α = 0 and α = 2.

We added the following paragraph to clarify this point, line 288: Although we restricted
our attention to a specific section of the perturbation set, the response to single-species
perturbations of immigration and environmental types can still span the whole variability
distribution, from worst-case (rarest and most abundant species perturbed, respectively) to
mean- and best-case scenarios (most abundant and rarest species perturbed, respectively).
For demographic-type perturbation the situation is more subtle as the response is indepen-
dent of species abundance, and, in general, extreme scenarios will be associated to temporally
correlated perturbations affecting multiple species.
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Finally, note that for the simulated perturbations in Fig. 6 we did not restrict to species-
independent perturbations. The simulations span the entire set of perfectly correlated per-
turbations. We added the following sentence to clarify this point, line 305: For each commu-
nity, we uniformly sample the boundaries of its perturbation set by drawing 1000 perfectly
correlated perturbations (i.e., those that can realize the maximal response).

In the Discussion, it was difficult to get the point made by the “Theoretical consequences” section. There
were some interesting elements but also a number of vague statements with little direct connection to the
results. Thus, I have not felt that the Discussion was really doing justice to all the interesting findings
enumerated in the previous sections. I would suggest to have a Discussion and a Conclusion much more
factual, based on previous results and to-the-point, since the manuscript is already fairly long. Just for
the sake of the example, I was puzzled as to how positive correlations in the perturbation direction can
weaken community variability for environmental noise (quite unintuitive, since both species are given
a big push) in the predator-prey example. Would this occur with more species? The Discussion does
not tackle this sort of natural development of the results, and wanders, in my view, into too speculative
constructions.

We agree that the previous version of the discussion, especially the part focused on theoretical
implications, was rather speculative. We removed those ideas that were less connected with
the results, and tried to make the discussion more factual and to-the-point.

General comments for authors

The first two main comments are relatively major, while the latter three pertain mostly to the writing
style.

Scaling Taylor’s law up to the community level

The authors mention only in passing Taylor’s Law V(Ni) ∝ E(Ni)β in the introduction and in the
discussion. In my view, this is a missed opportunity and may appear very odd to readers familiar with
population ecology. Taylor’s law is not simply understood as a pattern in the data (as suggested l. 500-
506) but also a scaling expected on theoretical grounds in single-species stochastic population models
(see e.g. Linnerud et al. 2013 and related previous work by Lande et al. 2003).

What the authors do here, among other things, is bringing Taylor’s law to the community level. This is
evident from the formulas in Appendix B (B5) where the variability metric V is defined as proportional
to the trace of the variance-covariance matrix of abundances. This means that all plots in Fig. 4 and 5
are log(Variance) vs log(Mean focal abundance) plots – as in all attempts to check Taylor’s law (which
consists mostly in the linearity of that relation rather than the particular value of that exponent, Keeling
2000). The difference in the log-log plots with most TL publications is that the authors plot the log
of the community-level variance (sum of all species variances) rather than simply the variance of the
perturbed species. But I do not see how this may change massively the results, all other things being
equal (the authors are of course very welcome to prove me wrong here, if I am missing an important
mathematical step).

We have clarified in the text that our observations are not strictly equivalent to Taylor’s
law, but a dual pattern. We mention this in the caption of Fig. 5, in the results (line 295)
and in the discussion (line 430). For example, line 295: The variability-abundance patterns
shown in Figs. 4 and 5 should not be confused with Taylor’s (1961) law. We plotted power-
law relationships between average community variance and abundance of perturbed species,
whereas Taylor’s law describes a power-law relationship between a species variance and its
mean abundance. In this sense, the variability-abundance pattern is dual to Taylor’s law,
i.e., the community response to single-species perturbation instead of that of individual
species to a community-wide perturbation.

In fact, one of the main result in Fig. 5 is that the classic scaling of Taylor’s law β = α (authors’
notation, corresponding to the top-left corner of Fig. 5), which has seen derived for independent
stochastic populations (Linnerud et al. 2013), becomes β = α − 1 with “strong” interactions (see the
following comment for a discussion of how strong). This result is remarkable enough to be mentioned:
relatively strong interactions can bring down Taylor’s exponent by one unit.

As an aside: I have been wondering whether this result was showed only numerically here, or analytically
as well? It would be good to make this clear.

It would be worthwhile to discuss these results in connection to those of Kilpatrick and Ives (2003)
[cited in passing l. 502-504 but not discussed in the present manuscript]. They also showed a decrease
in Taylor’s law exponent for communities (albeit for less perturbation types, only environmental, and
no trade-offs). Kilpatrick and Ives (2003) use very similar methods as well (it was unclear if the
authors made this connection from the suggestion l. 504-505 of “simple models of the diversity-stability
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relationships based on an assumed Taylor’s law”). In Kilpatrick and Ives (2003), a relationship between
(species-level) variability and mean abundance is derived based on a linearization of a (discrete-time)
Lokta-Volterra model with environmental noise. The main difference with the work of the authors seems
to be discrete rather than continous time, but I would be surprised if it has a major influence on the
conclusions.

The main difference between our work and the one of Kilpatrick and Ives (2003) is that we
are looking at a pattern that is different from Taylor’s law (we agree that continuous-time
vs discrete-time is probably a minor difference). It would be interesting to explore with
our approach how Taylor’s law is affected by species interactions, extending the results of
Kilpatrick and Ives (2003), but this is outside the scope of this paper.

We make this point more explicit in the discussion, line 436: This duality suggests that
Taylor’s law is, at the community level, strongly affected by species interactions. This
is known (Kilpatrick and Ives 2003), yet our approach could help reach a more complete
understanding of the ecological information contained in community-level Taylor’s laws.

One of the innovations of the manuscript is the consideration of immigration-type perturbations (to
my knowledge we know little about those). A corollary of the abovementioned connection between the
authors’ results and Taylor’s law is that immigration-type perturbations generate TL exponents below
one or even negative (Fig. 5). We almost never observe those. Would it mean that immigration-
type perturbations are negligible in many communities? It is currently a bit unclear to me what we
should expect when different perturbations are considered simultaneously though — would a given type
necessarily dominate the community response? (these considerations would be interesting to bring in
the Discussion)

The observed variance-mean scalings could potentially be connected to the relationship between for-
est community dynamics and debates on neutral theory. Neutral theory suggests strong impacts of
immigration-extinction, under strong interactions as well due to the equal competition assumption.
According to the authors, these assumptions would translate almost surely into negative TL exponents
(or would this be incorrect?). Meanwhile, an environmental-perturbation variance scaling seems to be
prevalent in the forest community-level data (Chisholm et al. 2014).

We think these are interesting suggestions. However, because we believe the link with
Taylor’s law to be outside the scope of this paper, we did not incorporate these suggestions
in the revision.

How strong can be strong interactions?

The results of Figs. 4 and 5 assume that strong interactions proposed by the authors are somehow
resembling interactions present in real data. However, I wonder what is meant exactly by “strong” since
no parameter values are given for the assembled communities (see below my discussion of Appendix F).

Appendix G suggests that interactions should be as strong and multiple that species can somehow be
“swapped”, and yet the community as a whole keep the same properties. This resembles (at least
very superficially) neutral theory where intra- and inter-specific competition have comparable strengths.
However, a large body of current research (e.g., Adler et al. 2018, Barabas et al. 2017) highlights
that a high degree of self-regulation, making interspecific interactions comparably much weaker than
intraspecific, and therefore less influential over the community dynamics, must exist for both empirical
and theoretical reasons. I have therefore sought to understand what assumptions regarding intra- /
inter-specific interactions were made here. This is, in my view, a main limitation of this otherwise
very nice manuscript: we are currently not able to reproduce the results since we do not have the exact
parameter values or assembly algorithm.

In Appendix F, I found the following information (I would appreciate a table of parameter values for
both the “weak” and “strong” interactions scenarios): “The mean interaction strength is set to 0.1 and
its standard deviation to 0.1, thus allowing some occasional positive interactions (e.g. facilitation).
Growth rates and carrying capacities are independently drawn from a normal distribution of unit mean
and 0.2 standard deviation.” If I am to rewrite the Lotka-Volterra model as

dNi

dt
= Ni

(
ri +

N∑
j=1

aijNj

)
we then have aii = ri/Ki, so 1 on average and aij = riBij/Ki, which is then around 0.1 on average.
So 10 times stronger intra- than inter-interactions. If this is what constitutes “strong” interactions
here (I assume that the reference set given is the one that corresponds to strong interactions), this
seems very reasonable to me — this is not all unrealistic when comparing to e.g., Adler et al. 2018.
However, this does not take into account the potential thinning out of communities during the assembly
process. This may lead to weaker interactions in many cases — and perhaps stronger in some other
cases, for reasons invoked in Haydon 2000. I would therefore be very curious to see which parameters
are truly used for the communities that went through the assembly process.
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We agree with the reviewer’s analysis, and his conclusion that relatively weak interactions
are sufficient to reach the case we called “strong interactions”. In the revised manuscript we
mention the values of interaction strength in the description of Fig. 4, line 245: We randomly
draw species dynamical traits, starting with a configuration in which mean interspecific
interaction strength is one tenth of the strength of species self-regulation, and we emphasize
the relatively weak interactions when presenting Fig. 5, line 285: Importantly, our example
demonstrates that this limit is reached already for relatively weak interactions (recall that
in Fig. 4 and in the right-hand panels of Fig. 5, the interspecific interaction strengths are
ten times smaller than the intraspecific ones.

More generally, we have rewritten the description of the multi-species model simulations,
to make them fully reproducible. We have included a brief description in the main text,
and give the full details in Appendix F. We also provide Matlab code as supplementary
information., together with Matlab code as supplementary material.

Concerning “the potential thinning out of communities during the assembly”, this effect was
negligible in our simulations. More generally, Bunin (2017) presents a detailed analysis of
this phenomenon for the random Lotka-Volterra models we use here.

Corollary question: I assume that the authors removed cases where a unique fixed point is unstable
(e.g., species going to extinction, or a community settling on a limit cycle or strange attractors). But
did the authors deal with cases with alternative stable states? (e.g., found in such models by Law and
Morton 1993). Were these sufficiently rare here?

We have added the following sentence, line 249: [In simulations] some species would go ex-
tinct during assembly, but no limit cycles, chaotic behavior or multi-stability were observed.”

Multidimensionality of stability

The abovementioned results are in many ways interesting and consistent enough to give (in my opinion)
less importance in the manuscript to the more conceptual plea made by the authors, i.e., to look at
stability from a multidimensional perspective. I certainly agree with them that this is needed, but it
has been suggested before (e.g., Donohue et al. 2013, 2016). Also, it may not be best illustrated by the
current focus on variability properties – this is only one aspect of stability. Or, perhaps the authors
need to make crystal clear that they want to highlight only the multidimensional aspect of variability
(which is but one component of stability). See line-by-line comments.

Yes, our focus here is on the multidimensional nature of variability. We have tried to clarify
this throughout the text, e.g., line 461: Ecologists have acknowledged the multi-faceted
nature of ecological stability. But here we are showing that a single facet (variability) is
in itself inherently multidimensional, thus suggesting that links across stability facets may
be quite subtle. For instance, short-term return rates may be linked with environmental
variability, but environmental variability may have noting to do with immigration variability,
the later possibly related with long-term return rates and driven by rare species. Even in
our idealized mathematical setting, because measures can be determined by different species
abundance classes, one cannot expect a general and simple connection to hold between facets
of ecological stability.

Variability spectrum or variability distribution?

I am not sure that the wording variability spectrum adds a lot to the reader’s understanding, especially
given that the meaning of spectrum here is relatively vague and does not fully match physical (e.g.,
color spectrum of the fluctuations) or mathematical definitions (eigenvalue spectrum of an operator; at
least I did not see an obvious connection). I would suggest to drop the term if spectrum is intended in
a vague sense. Perhaps variability distribution or vector would do an equally good job? But these are
just suggestions.

We changed “variability spectrum” to “variability distribution” throughout the manuscript.
This also led us to change the title: The inherent multidimensionality of temporal vari-
ability: How common and rare species shape stability patterns. The new title should also
communicate better the focus of the paper.
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Demonstrated mathematically here, previously, or demonstrated numerically?

It was difficult to separate, as currently written, the results that were 1. mathematically proven for
general communities (either here or in previous work) 2. conjectured based on a reasonable approxi-
mation (e.g., mathematically proven using a linear approximation of a nonlinear model) 3. found true
only for simulations performed in the paper, i.e., for some specific parameter values of a given model.

The reader should be able to make easily the distinction between these categories, that are sometimes
(if I understand correctly) blended in the same figures. Of course simplifications to the writing have
certainly been performed to avoid a too lengthy or indigest text, but I was left wondering in many places
if the results were proven by the authors and were, or from simulations, i.e. contingent upon parameter
values. The writing style is relatively discursive, and while I am confident that the authors know very
well their models and results, I had real difficulties pinpointing myself why some statements were true.
I flag these issues in the line-by-line comments with ***. Just a few edits here and there may truly
help the reader to pin down more easily to what category each result belongs to.

We added several references to previous work; see below for concrete examples.

Line-by-Line comments

* l. 32. There is quite some debate about whether EWS, including variance, can or cannot indicate
regime shifts (see Dutta et al. 2018 for an overview using simulated models): variability can be indicative
of ecosystem collapse but that is not always true. Please correct accordingly.

Agreed. Changed to “can be indicative” (line 31).

* l. 45 Here the authors express the idea that different values of perturbations will always lead to different
variability values. Stricto sensu this is of course true: even if a dynamical system reacts weakly to
perturbations, it is for instance unlikely that more perturbations will lead to less variability, provided
no species goes extinct. But I wonder if this applies equally well to cases where the community locks
on to a limit cycle or strange attractor. In those cases, a forced limit cycle can have an attractor that
bears a large resemblance to the same system without or with a low perturbation regime (e.g., see how
variances changes in Batt et al. (2013) once the limit cycle is reached). This is because the attractor,
once reached, is largely constrained by the average parameter values and not their fluctuations. If this
idea of stronger perturbations generating (much) larger fluctuations is only motivated by the assumption
of a fixed point equilibrium, this might be worth stating somewhere relatively early in the introduction
(currently the authors mention the assumption of a fixed point equilibrium l. 66 but the consequences
of that assumption are not fully made explicit).

Our results do not apply to communities in more complex dynamical regimes, such as limit
cycles or chaotic attractors. We have clarified this on line 57: For simplicity we will restrict
to systems near equilibrium, by opposition to, e.g., limit cycles or chaotic attractors.

* l. 61. I would suggest to replace “but instead should reflect a system’s propensity to withstand
perturbations in general” by “but instead should reflect a system’s propensity to withstand a whole class
of perturbations”. Indeed, not all possible types of perturbations are considered in this paper (as the
authors rightly acknowledge a few lines below), correlated environments in particular are not considered.

Done as suggested (line 60).

* l. 87-88. In connection to the previous comment regarding l. 45, I would suggest to expand a bit
here or earlier (unless the authors want to reserve a special place for this in the Discussion) on the
consequences of that assumption for the results to come.

See above.

* Fig 1: This is a naive suggestion but in that figure, can “variability spectrum” be equated with vector”
or “variability distribution”? Would this provide the same meaning? If so, it would simpler.

We replaced “variability spectrum” by “variability distribution” in all instances.

* l. 99 Eq. 1 I would suggest to use ξi(t) as in the Appendix and leave Wi(t) for the Wiener process
rather than its “derivative”. Or some other notation but please do not use Wi(t) in place of dWi(t) —
this will confuse anybody using SDEs.
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Agreed, this was an oversight.

* l. 110 “The absence of temporal autocorrelation is not a critical assumption for what follows”: al-
though it is perfectly fine to choose to model white noise as a first approximation in this manuscript,
there are many good reasons (and references) suggesting that temporal autocorrelations in the forcing
signal will strongly affect the responses of structured or multi-species models to perturbations (e.g. Ripa
and Ives 2003; Greenman and Benton 2005a,b). I would therefore suggest to just state that the noise is
uncorrelated here, or provide a demonstration (references, appendix, . . . ) that temporal autocorrelation
has indeed no bearing on the results.

We have clarified this point as follows, line 109: Although environmental fluctuations often
follow temporal patterns (Vasseur and Yodzis, 2004; Ruokolainen et al., 2009; Fowler and
Ruokolainen, 2013) we will not consider autocorrelated perturbations. It would thus be
interesting to extend the analysis to more general temporal structures of perturbations, as
well as to nonlinear behaviors.

* l. 118. Perhaps mention that stationary fluctuations = stability is limited to eq. 1 and not the
nonlinear equations considered later?

We now distinguish better linear stability and nonlinear community assembly. In the in-
troduction, line 67: After having developed a general theory of variability which could be
applied to any model community near equilibrium, we turn our attention to species-rich
communities, assembled from nonlinear dynamics.. In the discussion, line 368: After hav-
ing described a general (linear) theory for variability, which emphasizes its highly multidi-
mensional nature, we turned our attention towards species-rich communities assembled by
random (nonlinear) Lotka-Volterra dynamics.

* l. 129 References for this scaling of responses to environmental noise could be inserted here, e.g.
Engen et al. (1998) or Lande et al. (2003) – the reader has to take it in good faith otherwise.

Done.

* l. 151-152. “This could reveal [. . . ], this is not the case” — It is a bit unclear what “this” mean in the
sentence. I would suggest a rewrite along the lines of: “Large and nonlinear increases in fluctuation
intensity in response to a small variation in a parameter would instead suggest nonlinearity in the
dynamical system, but in the linear setting of eq. (1), such effects cannot occur by construction” — or
similar

We revised as follows, line 156: A disproportionate increases in fluctuation amplitude as
perturbation intensity changes would reveal nonlinearity in the dynamics. In a linear setting,
however, such effects cannot occur and there is only a linear dependency in perturbation
intensity.

* l. 161. I would refrain from denoting the strength of density-dependence r since this is the usual
notation for the intrinsic population growth rate. α, β, b or γ are commonly employed for denoting the
strength of density-dependence, maybe b or γ here?

We replaced r by λ (l. 172).

* l. 164. “average intensity felt by species” is a bit too interpretative. Replace by “average variance in
growth rate” or similar? It would be clearer to say precisely what σin means though.

We now define σ2
in as follows, line 174: For species-rich communities, we define the intensity

of a perturbation as the average intensity per species (...).

* l. 165. “then the maximal community response will be proportional to . . . ”. Do you mean “the
maximal community response σout will be proportional to . . . ” or is there another quantity defined as
maximal community response? This is the first introduction of the term. Please clarify.
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We rephrased the sentence as, line 176: When increasing the σ2
i s by a factor c, both σ2

in and
σ2
out increase by the same factor.

* l. 169. *** Is I defined from previous work (which I assume) — in this case, the authors should cite
their previous work here.

We now write (line 179): Generalizing previous work (Arnoldi et al., 2016b, Arnoldi and
Haegeman, 2016) to arbitrary perturbation type, we construct a measure of stability, called
hereafter invariability .

* l. 170. *** Same comment. The reader (assuming the reader is a biologist with some mathematical
training) has no way of knowing if this equality is mathematically proven, conjectured based on an
approximation, . . .

We have rephrased this sentence as, line 181: The factor 1/2 allows I to coincide, for simple
systems, with asymptotic resilience (Arnoldi et al., 2016b). In particular, for the one-
dimensional example considered above for which R∞ = λ, we indeed have that V = 1/2λ
and thus I = λ = R∞.

* l. 174 “In Appendix B we explain considering variance” — it looks like a word is missing from the
sentence.

Typo corrected.

* l. 196. I am concerned that calling the vector-valued variability responses “variability spectra” and
illustrating it graphically with blue, green, and red colors may induce some confusion with the spectral
density of the time series within these communities. One idea would be to avoid the term spectrum and
use distribution, but clearly that is up to the authors to decide which term they prefer.

Agreed. We replaced “variability spectrum” by “variability distribution”.

* l. 198. *** This may be a naive comment: is this result for perfectly coherent perturbations true only
for eq. (1) or more generally as well?

This result is generally true for linear systems. The case of perturbing nonlinear systems is
more subtle, and not considered here.

* l. 205. *** It is proven in Appendix C but has it been proven in a previous publication of the authors?
Please include the reference.

As far as we know, mean-case variability has not been studied before.

* l. 223-231. These are very interesting results. I wonder how they may connect to Ripa and Ives
(2003), which could be developed in the discussion.

We have added the following comment at the end of this paragraph, line 229: For all pertur-
bation types we see that positive correlations between the components of the perturbation
(i.e., moving upwards on the disc) reduce variability (see Ripa and Ives, 2003 for related
results).

* l.237. Do the authors mean that even in this very simple linear one-predator one-prey system,
we cannot formulate analytically any relationship between asymptotic resilience and invariability for a
given perturbation, like the one that you previously presented l. 170 (for a single-species system)? If so,
I believe this should be stated more explicitly. How about the inequality stated in Arnoldi et al. (2016b)
— I assume that the inequality at least holds?
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The general relationship is indeed given in Arnoldi et al. (2016b). But this inequality only
says that the worst-case invariability in response to immigration-type exogenous perturba-
tions will be smaller than asymptotic resilience. We have modified this sentence as follows,
line 234: Although we know from previous work (Arnoldi et al., 2016b) that the smallest
invariability value in response to immigration-type perturbations will always be smaller than
R∞, in general (i.e., any perturbation type and/or any perturbation direction) there is, a
priori, no reason to expect a relationship between I and R∞.

* l. 248 and 251. *** The authors consider here a perturbation of a single species and suggest that
“By superposition, this allows the study of perturbation scenarios in which species are affected indepen-
dently.” Would it be possible to provide a more precise reference or demonstration for this? While I
understand the need to simplify the analysis and do it one species at a time, I am (so far) unconvinced
that perturbing all species simultaneously would be exactly equal to perturbate species by species, even
if perturbations are not correlated. What is exactly meant by “by superposition” — is this a precise
mathematical definition or rather a physical analogy?

We mean here that the effect of a linear combination of independent perturbations can be
reconstructed (by linearity) from the response to each perturbation in isolation. Perturba-
tions that can not be described as such are those that present some inter-species correlations.
We have changed the text as follows, line 253: Linear combinations of these perturbations
will span all scenarios in which species are affected independently, but exclude scenarios in
which they are perturbed in systematically correlated or anti-correlated way.

* l. 254-261. *** It is unclear whether these results arise only from simulations of the Lotka-Volterra
community or also by examination of the linearised model of eq. (1). Fig. 4 suggests that it is both:
please clarify the methods for the reader. The thematic structure of the paper (no classic Intro-Methods-
Results-Discussion) requires that the methods are detailed unambiguously in each section. Alternatively,
the authors could have a Methods section at the end or some more details in the Appendices.

We give the details of the model simulations in Appendix F. We have added a reference in the
main text, line 247: (a complete description of the nonlinear model is given in Appendix F
and Matlab simulation code is available as supplementary material).

* l. 264 In what sense are more common species more stable? They could very well fluctuate more,
depending on their growth rates and intraspecific coefficients.

They are more stable in the sense that they are less sensitive to exogeneous perturbations.
We have added this following comment, line 269: Despite being more stable than rare ones
(they buffer exogenous perturbations more efficiently , see left-hand panel), common species
are more strongly affected by environmental perturbations.

* l. 273-274. This idea with respect to the r-K trade-off seems very interesting and underdeveloped here.
*** It is also symptomatic of the absence of detailed methods in the paper. I found myself wondering:
how exactly was this trade-off modelled? Does it mean that when r is higher K is lower or the reverse?
Both would make sense depending on the study system chosen. Neither Fig. 5 nor the main text p. 18
provide any answer as to exactly what relationship between r and K modelled (same for Appendix F).
The reader needs to be able to replicate the results.

Here we simply chose r ∼ 1/K, so that higher K implies lower r, and vice versa. In
the revised manuscript we have tried to include the methods in full detail. In particular,
we describe now the procedure to generate the r-K trade-off in Appendix F, and provide
Matlab code as supplementary material.

In the main text, we have specified a r vs K trade-off, i.e., species with larger carrying
capacities have slower growth rate (line 277). We have also added in the caption of Fig. 5
that species satisfy a r vs K trade-off (r ∼ 1/K).

* l. 278-281 and Appendix F: here there is a mention of “sufficiently strong interactions”. Are we
talking about the interaction coefficients in the Lotka-Volterra model? Do strong LV coefficients also
translate into strong elements in the community matrix? I would expect that the species abundance
distribution would then create weaker community matrix coefficients for the rarer species. Or does this
mention of sufficiently strong interactions already take abundances into account? The sense that is
given to weak or strong interaction may have to be made more precise somewhere to avoid confusion.
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We here use the standard terminology. Competition coefficients Bij are per capita and do
not depend on species abundances. The components of the community matrix Aij , however,
do depend on species abundance, because Aij = NiBij . We give the definition of competition
coefficient Bij in Appendix F.

* Fig. 5. In many ways this may be the most important figure of the article. I wonder if it might be
worth it to have it on the untransformed scale somewhere in the Appendix: it is not true that variability
is inversely proportional or proportional to variability here (cf. end of legend); if I understand correctly,
it is log(variance) that is linear in log(abundance).

Because the slope of the linear relationship in log-log scales is 1 or −1, it implies inversely
proportional (y = C/x) and proportional (y = Cx) relationships on untransformed scales.
Because abundances and variability values span several orders of magnitude, a figure with
untransformed scales is not particularly instructive.

* l. 287. Given what the authors report, I would refer more to a variability distribution rather than a
spectra. But again that is a question of style.

Agreed, see above.

* l. 300. I am not sure that it is possible to tackle the diversity-stability question while perturbing only
one species at a time. A proof of this superposition concept stated earlier would be most welcome to
convince the reader here. Also, the environment usually force many species in the same direction (e.g.,
bad weather) — can the authors say in which direction a synchronous forcing may affect the results?
This might be worth discussing later on.

Here we do not consider only species-independent perturbations. First, the numerical results
are based on a vast sampling (1000 perturbations) from the complete set of perturbations.
Second, we show the worst-case scenario, which is always associated with a perfectly cor-
related perturbation. On the other hand, the mean-case scenario is realized by a species-
independent perturbation.

We clarified this in the text, line 305: For each community, we uniformly sample the bound-
aries of its perturbation set by drawing 1000 fully correlated perturbations (i.e., those that
can realize the maximal response), of a given type. We then compute the bulk of the result-
ing (in)variability distribution (5 to 95 percentiles), as well as its mean and extreme realized
values.

* l. 324-325 If the authors’ meaning is that mean-case perturbations are more realistic because they
allow for compensatory dynamics between species, I think this strongly disagree with the evidence (e.g.,
Vasseur et al. 2014). Please clarify the meaning of the sentence or discuss the assumption later.

We removed this confusing sentence.

* l. 341 Here it may be simpler to talk about a variability distribution rather than a spectrum (but again
this is just a suggestion)

Agreed, see above.

* l. 360 diversity-invariability rather than diversity-stability?

Agreed.

* l. 362 The wording “immigration-type” perturbations suggests that one only adds new individuals to
the local population. But what the authors model is white noise, so there’s as much removal (emigration)
as immigration. Mentioning this could help the reader understand better why rare species can be strongly
affected by this type of perturbations (provided that my interpretation is correct of course . . . ).
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We agree with the reviewer. The reason why we call this immigration-type is that it would
correspond to a fluctuating influx of organisms, i.e., a perturbation of a constant immigra-
tion term. We have added this point when introducing the perturbation types, line 144:
Because we focus on zero-mean perturbations, perturbations of this type contain as much
emigration than immigration. The reasoning behind this nomenclature is that, in an open
system, fluctuations of an otherwise constant influx of individuals would correspond to an
immigration-type perturbation.

* l. 364 Does their contribution scale as the inverse of their abundance or their log-abundance? If we
refer to Fig. 4 or 5 I believe it is the latter.

This sentence has been removed. To answer the reviewer’s question, the left-hand panel in
Fig. 4 shows that lnV ≈ − lnN + (a constant), so that V ≈ (a factor)× 1/N .

* l. 371-374 Again, I believe the authors mean average log-abundance (or I am really misinterpreting
the scales on Fig. 4).

See above.

* l. 374 ends on a rather speculative note if the result relies on independent perturbations.

This sentence has been removed. To answer the reviewer’s question, the pattern shown does
not rely on the species independence of pertubations, as simulations in fact span perfectly
correlated perturbations.

* l. 384-386. This is speculation. To my knowledge autocorrelation in the perturbation can strongly
affect EWS in other cases than a saddle-node bifurcation. See Dutta et al. 2018 for a discussion.

We removed this paragraph.

* l. 386-390. Even more speculative. It does not seem that the concept of “global instability” is well-
defined. On the other hand, there are many kinds of possible local and global bifurcations in dynamical
systems, and these can be excited (or not) by noise in very many ways. If the authors want to discuss
this, I would suggest a rewrite of this paragraph to tackle the role of noise and forcing in dynamical
systems with non-point attractors. But this might be simply too much for the paper and the authors
might want to simply delete the paragraph.

We removed this paragraph.

* l. 415-422. From my perspective this paragraph is very speculative, which I feel is problematic when
dealing with mathematical concepts. Assessing feasibility makes sense mostly for nonlinear systems,
such as Lotka-Volterra. But in this case, a straightforward link between feasibility and asymptotic
resilience is not obvious at all (e.g., Jansen & Sigmund 1998). There are some references showing
a link between a locally stable interior fixed point and permanence sensu Jansen & Sigmund, such
as Townsend et al. (2010). Clearly, if the authors want to go in that direction, they need to discuss
theoretical work like this and do so precisely.

We followed the reviewer’s advice and simply removed this part of the discussion. In general
we tried to keep the discussion more factual and removed speculative assertions.

* l. 423-443. It is not quite clear to me what the point of this paragraph and section is. I would suggest
to suppress it.

Deleted.

* l. 434-437. May’s original complexity-stability bound is to my knowledge based on the community
matrix, not the per capita interaction matrix. Hence I do not completely follow this remark.
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Deleted.

* l. 443 I am uneasy with the progression towards more and more vague statements such as “demo-
graphic perturbations probe the collective response of ecosystems”, because I can attach at least 3 or 4
different meanings to “probe” in that sentence. As the authors say two lines below, these reasonings
go beyong the scope of the article. Perhaps it would be simply best to cut down the discussion and
elaborate on those thoughts elsewhere.

Deleted.

In this section, I have been a little concerned by the implicit message that repeated references to “May’s
work” sends to fellow scientists — many other researchers have worked on the stability bound for
random Jacobian matrices — perhaps best to cite articles in a factual manner rather than people.
Conversely, this may not be correct to reduce the work of Robert May to asymptotic resilience: in fact
he has done quite a bit on stochastic environments (May 1973).

Deleted.

* l. 483-484. Based on Saether et al. 2011, Linnerud et al. 2013, I would tone down a little bit
the novelty claims here. It has basically always been known, since the first works on demographic
stochasticity, that rare populations would be much more vulnerable to it.

Agreed. The phrasing was unfortunate. We now write, line 418: The type of perturbations
affects which species abundance class contributes most to variability. In turn, the physical
size of the system considered affects which perturbation type dominates. This is well known
for populations (Engen et al., 2008), and also transposes to the community level.

* l. 493-495. About this non-trivial scaling of the variance, there are some existing results in a single-
species context I think (e.g., Engen et al. 2008).

Thank you for this reference (see response to the previous comment).

* l. 497-506. Should be rewritten according to the general comment on TL above.

In the revised manuscript we stress at multiple occasions that our results are not directly
applicable to Taylor’s law. For example, in the discussion we now write, line 429: To develop
suitable methods, it might be helpful to first understand the link between the variability-
abundance patterns and Taylor’s (1961) law. A close connection is indeed expected: we
studied the behavior of the community response to an individual species perturbation, while
Taylor’s law focuses on the individual species response to a perturbation of the whole com-
munity.

* l. 508 and forward. The manuscript shows many clear results (the TL exponents decrease with
increasing interactions, worst-case variability is realized by rare species for immigration-type perturba-
tions and common species for environmental type, . . . ). In my view, it would be a pity to have clear-cut
results but a rather vague conclusion. I would suggest to either summarize well the findings and provide
some directions for future work, or simply delete this conclusion.

Agreed. We rewrote the discussion to remain more factual and less speculative.

Appendices

I have few comments on those as they are overall very-well designed (they allowed me to better under-
stand previous work by the authors). My only comment is that references, including to the authors’
publications, should be included whenever a result from a previously published publication is reported.
The reader needs to be able to differentiate already proven results (if repeated here for pedagogical
purposes) from new ones (if provided).

Agreed. We have added several references to differentiate better new and old results.
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